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We demonstrate that Dirac neutrino masses in the experimentally preferred range are generated
within supersymmetric gauge extensions of the Standard Model with a generalized supersymmetry
breaking sector. If the usual superpotential Yukawa couplings are forbidden by the additional gauge
symmetry (such as a U(1)′), effective Dirac mass terms involving the “wrong Higgs” field can arise
either at tree level due to hard supersymmetry breaking fermion Yukawa couplings, or at one-loop
due to nonanalytic or “nonholomorphic” soft supersymmetry breaking trilinear scalar couplings. As
both of these operators are naturally suppressed in generic models of supersymmetry breaking, the
resulting neutrino masses are naturally in the sub-eV range. The neutrino magnetic and electric
dipole moments resulting from the radiative mechanism also vanish at one-loop order.

The discovery of neutrino oscillations has confirmed
that neutrinos are massive and that leptons exhibit non-
trivial mixing, providing the first particle physics evi-
dence for physics beyond the Standard Model (SM). Neu-
trino masses require either the existence of novel matter
species not found in the SM spectrum and/or the vio-
lation of the global symmetries of the SM via higher-
dimensional operators. Extensions incorporating such
additional structure should ideally be capable of improv-
ing the ultraviolet behavior of the SM beyond Fermi ener-
gies. Low-energy softly-broken supersymmetry thus pro-
vides a well-motivated theoretical framework in which to
incorporate neutrino mass generation mechanisms. As
no conclusive experimental indications for neutrinoless
double beta decay (for Majorana neutrinos) or neutrino
magnetic or electric dipole moments (for Dirac neutrinos)
are available at present, we must explore all mechanisms
for generating light neutrino masses, not only to reveal
the origin of neutrino masses and mixings, but also to
determine viable patterns for physics beyond the SM.

Many mechanisms are known for generating light Ma-
jorana or Dirac neutrino masses (see e.g. [1, 2, 3, 4]).
Some scenarios, including the familiar seesaw mechanism
[1], rely upon the supposition that the right-handed neu-
trinos have no gauge quantum numbers with respect to
the low energy gauge group. Right-handed neutrinos are
SM gauge singlets, but they can be charged under addi-
tional gauge symmetries which may survive from many
high-scale theories, such as four-dimensional string mod-
els. Thus, if the right-handed neutrinos are not complete
(low scale) gauge singlets, these scenarios are not viable,
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at least not in their simplest implementation. Dirac neu-
trinos, which occur if lepton number is an exact symme-
try, do not necessarily have this requirement. However,
as neutrino Dirac masses originate from Yukawa interac-
tions after electroweak breaking, their Yukawa couplings
must be exceedingly small. This can be explained if they
are forbidden at the renormalizable level by additional
symmetries but are generated from higher-dimensional
operators. Previous work along these lines (see e.g. [5])
assumes that such operators occur in the superpotential.

In this Letter, we demonstrate that appropriately sup-
pressed Dirac neutrino masses can be generated by gen-
eralized supersymmetry breaking terms in models in
which the right-handed neutrinos are charged under ad-
ditional gauge symmetries. These symmetries forbid the
usual neutrino superpotential Yukawa couplings, but al-
low for higher-dimensional operators which lead to ef-
fective Dirac neutrino mass terms involving the “wrong
Higgs” field upon supersymmetry breaking.

Fermion masses represent the breakdown of chiral fla-
vor symmetries, and as such can be parametrized by vac-
uum expectation values (VEVs) of scalar fields charged
under the flavor symmetry. In theories with low energy
supersymmetry, it has long been known [6] (see also [7])
that such chiral flavor symmetries may be broken by the
VEVs of auxiliary fields, rather than their scalar counter-
parts. If the renormalizable superpotential Yukawa cou-
plings and right-handed neutrino Majorana mass terms
are forbidden by the symmetry, fermion masses are gen-
erated either (i) at tree level due to hard supersymmetry
breaking effective Yukawa terms, with

mf ∼ Yeff〈H〉, (1)

or (ii) radiatively via sfermion–neutralino loops:

mf ∼ α

2π

ÃMλ〈H〉
m̃2

, (2)
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in which α denotes a typical gauge coupling, Ã denotes a
soft trilinear scalar coupling, Mλ denotes a gaugino mass,
and m̃ denotes a typical sfermion mass.

In generic supersymmetry breaking models, Eq. (1)
and Eq. (2) are naturally in the experimentally favored
ranges for neutrino masses. The effective Yukawa inter-
action of Eq. (1) is due to a higher-dimensional Kähler
potential operator suppressed by a high scale M (the
messenger scale). Hence, Yeff ∼ m̃/M , and

( mν

10−3 eV

)
∼

(
m̃

100 GeV

) (
M

1016 GeV

)−1

. (3)

Due to the large suppression factor, these effective
“wrong-Higgs” Yukawa coupling terms do not spoil the
resolution to the hierarchy problem, although technically
they are hard supersymmetry breaking operators [8].

Let us now focus on the radiative mass terms of Eq. (2).
These terms are suppressed due to the specific trilinear
scalar couplings (the Ã terms) allowed by the flavor sym-
metry. To understand this suppression, recall that there
are two classes of Ã terms: (i) the standard analytic or
“holomorphic” terms, which are coefficients of operators
of the form φφφ, and (ii) the nonanalytic or “nonholo-
morphic” terms, which accompany φ∗φφ operators.

In typical models, the nonanalytic trilinear scalar
terms, which have previously been considered in the con-
text of radiative SM fermion mass generation [6], are well
known to be suppressed by m̃/M [8, 9]. Recently, it has
been claimed that without this strong suppression, Gold-
stino loops can reintroduce the hierarchy problem [10].
If these terms are so strongly suppressed, they are ir-
relevant for most phenomenological analyses and cannot
provide the dominant contribution to charged fermion
masses. However, this suppression is of the right order
to be relevant for Dirac neutrino masses:

( mν

10−3 eV

)
∼ α

2π

(
m̃

100 GeV

) (
M

1016 GeV

)−1

, (4)

which can fall within the experimentally allowed range
without excessive tuning. Furthermore, the associated
radiative neutrino magnetic and electric dipole moments
vanish at one loop level.

The nonanalytic terms contribute to quadratic diver-
gences through tadpole diagrams [11], and thus are not
soft in the presence of gauge singlets. If SM singlets such
as right-handed neutrinos are present these terms can be
rendered soft only if the SM gauge group is extended, and
all SM singlets are charged under the additional gauge
group(s). The simplest extension is to include an ad-
ditional Abelian U(1)′ factor, which can also provide a
resolution of the supersymmetric µ problem [12]. The
U(1)′ charges can be assigned such that the neutrino su-
perpotential Yukawa couplings and the associated trilin-
ear Kähler potential couplings are forbidden, while the
wrong-Higgs trilinear couplings are allowed. The non-
trivial U(1)′ charges of the right-handed neutrinos also
forbid bare Majorana mass terms.

We will now provide a detailed analysis of these points.
Consider the MSSM augmented by three right-handed

neutrino superfields, N̂ i =
(
ν̃c i

R , νc i
R

)
. Supersymmetry

breaking occurs in a hidden sector via the F -component

VEV of a chiral superfield X̂, with 〈X̂〉 = Fθθ, and is
communicated to the visible sector at a large scale M
via nonrenormalizable interactions. The F component of
the neutrino superpotential Yukawa coupling then gives
an analytic scalar trilinear coupling:1

1

M

(
X̂L̂ · ĤuYνN̂

)
F

= L̃ · HuAν ν̃c
R, (5)

with

Aν ≡ F

M
Yν ∼ m̃Yν , (6)

in which F/M ∼ m̃ sets the scale of soft-breaking masses
(where m̃ ∼ TeV). There are also D term contributions
from the Kähler potential, which are intrinsically nonan-
alytic. These contributions lead to suppressed effective
Yukawa couplings

1

M2

(
X̂†L̂ · ĤuȲνN̂

)
D

= L · HuỸννc
R, (7)

in which the effective Yukawa coupling is

Ỹν ≡ F

M2
Ȳν ∼ m̃

M
Ȳν , (8)

which were previously studied [13]. They also lead to
hard supersymmetry breaking effective fermion Yukawa
couplings of the wrong-Higgs form:

1

M2

(
X̂†L̂ · Ĥc

dȲ
′
νN̂

)
D

= L · Hc
dỸ

′
ννc

R, (9)

in which the effective Yukawa coupling is

Ỹ
′
ν ≡ F

M2
Ȳ

′
ν ∼ m̃

M
Ȳ

′
ν . (10)

In addition to the usual scalar mass-squared terms,

1

M2

(
X̂X̂†N̂ c

KνN̂
)

D
= ν̃T

Rm
2

Ñ
ν̃c

R, (11)

with

m
2

Ñ
≡ F 2

M2
Kν ∼ m̃2

Kν , (12)

D terms also lead to wrong-Higgs nonanalytic trilinear
couplings:2

1

M3

(
X̂X̂†L̂ · Ĥc

dY
′
νN̂

)
D

= L̃ · Hc
dA

′
ν ν̃c

R, (13)

1 The extension to quarks and charged leptons is straightforward.
2 Unlike the holomorphic couplings, the nonholomorphic couplings

are independent of the superpotential.
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with

A
′
ν ≡ F 2

M3
Y

′
ν ∼ m̃2

M
Y

′
ν . (14)

Hence, A
′
ν is suppressed by F/M2 = m̃/M with respect

to Aν ∼ F/M . It is the F/M2 suppression which plays a
key role in neutrino mass generation in both cases. The
F/M2 suppression has been discussed previously [13, 14];
however, these works present models in which nonholo-
morphic terms lead to Majorana masses and holomorphic
operators lead to Dirac masses, and do not typically allow
for the right-handed neutrinos to have nontrivial charges
under additional gauge symmetries.

To allow the wrong-Higgs couplings of Eq. (9) and
Eq. (13) and forbid the usual neutrino Yukawa couplings
(both tree level and effective, as in Eq. (5) and Eq.(7)),
we assume that the right-handed neutrinos are charged

under an extended gauge group. This prevents N̂ i from
acquiring a large tree-level Majorana mass3 (in contrast
to the seesaw mechanism), and has the added advantage
that the nonanalytic trilinear couplings of Eq. (13) now
are soft breaking terms (i.e., no quadratic divergences
are induced in the scalar sector). The simplest gauging,
though not the only logical possibility, is to add a new
Abelian gauge factor U(1)′, with charges that satisfy

QL + QHu
+ QN 6= 0, (15)

QL − QHd
+ QN = 0. (16)

These conditions are clearly inconsistent with having a
bare superpotential µ term. The remedy is to replace the

µ parameter by a chiral SM singlet Ŝ with a nonvanishing
U(1)′ charge QS , with QS + QHu

+ QHd
= 0 [12], such

that an effective µ term is induced by the VEV of S.4

In this case, it is worth noting that upon U(1)′ breaking,
superpotential holomorphic couplings of the form

1

M
ŜL̂ · ĤuY

′′
ν N̂ (17)

may also be generated. As discussed in [5], these may
give rise to an additional (“right-Higgs”) contribution to
the Dirac masses of a similar order of magnitude:

mf =
〈S〉
M

Y
′′
ν 〈H0

u〉 ∼
m̃

M
Y

′′
ν 〈H0

u〉. (18)

We assume any U(1)′ gauge anomalies are cancelled by
GUT remnants at the TeV scale; one can also consider
anomaly free family-dependent U(1)′ groups [7].

We now turn to a more precise analysis of the neutrino
masses generated by Eq. (9) and Eq. (13). The Yukawa
interaction Eq. (9) induces a Dirac neutrino mass

mν = 〈H0

d〉Ỹ′
ν , (19)

3 See [15] for related work involving discrete gauge symmetries.
4 One can also require that charged fermion masses are generated

radiatively, which requires much larger soft trilinear couplings.

!L !R
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FIG. 1: The one-loop diagram that generates radiative Dirac
neutrino masses.

in agreement with Eq. (1) and Eq. (3). This interaction
is technically hard, but the resulting Higgs mass shift

δm2

Hd
= −(1/(8π2))Ỹ′†

ν Ỹ
′
νM2 = −(1/(8π2))m̃2

Ȳ
′†
ν Ȳ

′
ν is

too small to leave any impact on the gauge hierarchy.
For the radiatively induced neutrino masses, the req-

uisite Lagrangian terms are

gY√
2
ν̃†

LNiχ
0

i νL +
√

2g′Y QN ν̃T
RN0

Z′iχ
0

i ν
c
R + h.c., (20)

in which N0

η0i denotes the contamination of the neu-

tralino gauge eigenstate η0 ∈ {Z̃ ′, B̃, W̃ 3, H̃0

d , H̃0
u, S̃} in

the ith neutralino χ0
i (i = 1, . . . , 6), and Ni is

Ni = cot θW N0

W 3i − N0

Bi + 2QL

g′Y
gY

N0

Z′i. (21)

These interactions induce Dirac neutrino masses at one
loop, as shown in Figure 1, of the form:5

mν ab =
gY g′Y 〈H0

d〉QN

32π2

{
SL ac(S†

LA
′
νSR)cdS†

R db

× mχ0

i

N0

Z′iNiF
(
m2

ν̃L c
, m2

ν̃R d
, m2

χ0

i

) }
, (22)

in which repeated indices are summed over, and SL and
SR are the sneutrino mixing matrices,6 defined via

S†
Lm

2

ν̃L
SL = diag.

(
m2

ν̃L 1
, m2

ν̃L 2
, m2

ν̃L 3

)
(24)

ST
Rm

2

ν̃R
S∗

R = diag.
(
m2

ν̃R 1
, m2

ν̃R 2
, m2

ν̃R 3

)
. (25)

5 Due to small mixing, the B̃ and W̃ 3 contributions are typically

subdominant to that of the Z̃′.
6 Their mass-squares are obtained by adding the associated D-

term contributions

m
2

ν̃L
= m

2

L̃
+

1

2
cos 2βM2

Z
+

1

2
QLδ2

Z′

m
2

ν̃R
= m

2

Ñ
+

1

2
QN δ2

Z′ , (23)

with δ2

Z′
= 2g′

Y

2
(
QHu

〈H0
u〉

2 + QHd
〈H0

d
〉2 + QS〈S〉

2
)
. 〈S〉 sets

the effective µ parameter below the U(1)′ breaking scale [12].
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The loop function appearing in Eq.(22) is given by

F
(
m2

1, m
2

2, m
2
)

=
1

m2
1
− m2

2

(
lnβ1

β1 − 1
− lnβ2

β2 − 1

)
. (26)

βi = m2/m2
i reduces to 1/2m2 when m1 = m2 = m.

Eq. (22) demonstrates that neutrinos acquire Dirac
masses radiatively only if the right-handed neutrinos are
gauged under the U(1)′ symmetry. U(1)′ invariance thus
not only ensures that the nonanalytic trilinear terms are
soft, but also provides the the chirality flip required for

neutrino mass generation through the Z̃ ′, which couples
to both left- and right-handed neutrinos.

For M ∼ MGUT , the neutrino masses are in the right
range (the α/2π suppression can be countered by relax-
ing the degeneracy among the superpartner masses; this
factor is absent for the tree-level masses of Eq. (19)). If
M ∼ MPl, an enhancement is required. For other me-
diation mechanisms the messenger scale can be lowered,
depending on the details of the model.

The flavor structure of the tree-level Dirac neutrino
mass Eq. (19) depends only on Ȳ

′
ν in Eq.(9). However,

the flavor structure of the radiative neutrino masses in-
volves m

2
ν̃L

, m
2
ν̃R

, and A
′
ν . If the left-handed and right-

handed sneutrinos are approximately degenerate in mass,
the neutrino mixings are controlled by the nonanalytic
trilinear coupling A

′
ν alone. Alternatively, A

′
ν may be

strictly diagonal, such that neutrino mixings arise from
nontrivial flavor structures of m

2
ν̃L

and m
2
ν̃R

.
The radiative mechanism that leads to fermion masses

also generically induces electric and magnetic dipole mo-
ments [6, 16]. However, in this scenario, the neutrino
dipole moments vanish at one loop. This occurs because
the right-handed neutrinos do not couple directly to the

higgsinos through Yukawa interactions, and they do not
have any charged gaugino with which to interact. Dirac
neutrino masses also induce dipole moments within the
SM of order 10−19µB , which are much smaller than the
best available bounds (of order 10−12µB) [17].

In this Letter, we have discussed mechanisms to in-
duce naturally suppressed neutrino Dirac masses within
gauge-extended models with low energy supersymmetry.
Neutrino mass terms of the “wrong-Higgs” type are gen-
erated either at tree level from formally hard (but in
practice safe) effective Yukawa couplings, or radiatively
due to nonanalytic soft supersymmetry breaking interac-
tions. The neutrino mass scale naturally falls within the
experimentally allowed range due to the F/M2 ∼ m̃/M
suppression. Moreover, this mechanism is operational for
models in which the right-handed neutrinos are not com-
plete singlets of the low energy gauge group. This sce-
nario, apart from providing an understanding of the ori-
gin of naturally suppressed Dirac neutrino masses, allows
for a natural resolution of the supersymmetric µ prob-
lem and leads to TeV-scale U(1)′ physics which should
be testable at forthcoming colliders such as the LHC.
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