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The Robustness of ns . 0:95 in Raetrak InationPh. Brax1�, S. C. Davis2y, and M. Postma3;4z1 Servie de Physique Th�eorique, CEA/DSM/SPhT,Unit�e de reherhe assoi�ee au CNRS,CEA{Salay 91191 Gif/Yvette edex, Frane2 Laboratoire de Physique Theorique d'Orsay, Bâtiment 210,Universit�e Paris-Sud 11, 91405 Orsay Cedex, Frane3 DESY, Notkestra�e 85, 22607 Hamburg, Germany4 Nikhef, Kruislaan 409, 1098 SJ Amsterdam, The NetherlandsDeember 4, 2007AbstratA spetral index ns . 0:95 appears to be a generi predition of raetrak inationmodels. Reduing a general raetrak model to a single-�eld ination model witha simple potential, we obtain an analyti expression for the spetral index, whihexplains this result. By onsidering the limits of validity of the derivation, possibleways to ahieve higher values of the spetral index are desribed, although theserequire further �ne-tuning of the potential. DESY 07-210, LPT-ORSAY-07-1241 IntrodutionRaetrak ination [1℄ is an expliit realization of modular ination within the ontextof KKLT volume stabilisation [2℄. It employs a superpotential of the double-exponential�brax�spht.salay.ea.frysdavis�lorentz.leidenuniv.nlzpostma�mail.desy.de 1
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raetrak form. The inaton is then the imaginary part of a geometri modulus. Inationbegins near a saddle in the moduli potential, and ends when the inaton fast rolls towardsa loal minimum of the potential. A big suess of this lass of models is the seeminglyvery robust predition ns . 0:95 for the spetral index, whih is very lose to the latestWMAP results [3℄. In this letter we explain the origin of this upper bound on the spetralindex, whih is a generi feature of double- as well as many-exponential superpotentials. Inaddition, we will show that to a very good approximation the spetral index only dependson one parameter, namely the value of the slow roll parameter � at the saddle point.2 Raetrak inationModular ination ours in the KKLT senario at suÆiently at saddle points of thepotential. There the real part of the volume modulus T is stabilised, and the tahyoni,imaginary part plays the role of the inaton. The KKLT [2℄ raetrak potential omesfrom a supergravity model withK = �3 ln(T + �T ) ; W =W0 + Ae�aT +Be�bT ; (1)together with an non-supersymmetri lifting term Vlift = 2�E=(T + �T )�. The onstantsa; b depend on the spei�s of the non-perturbative physis, whih an ome from gauginoondensation or Eulidean instantons. The lifting term is adjusted to obtain a Minkowskivauum with a vanishing osmologial onstant. Notie that the lifting term breaks super-symmetry expliitly. It an be realised in a string ontext by putting an anti-brane in thebulk (� = 2) or at the tip of a warped throat (� = 3). De�ning T = X + iY , the resultingpotential isV = EX� + 16X2�A2a[aX + 3℄e�2aX +B2b[bX + 3℄e�2bX + 3W0Aae�aX os(aY )+ 3W0Bbe�bX os(b Y ) + AB[2abX + 3(a+ b)℄e�(a+b)X os([a� b℄Y ) � : (2)It should be noted that the kineti terms Lkin = (3=4X2)[(�X)2+(�Y )2℄ are non-anonial.The axion �eld Y is the inaton [1℄. The potential is periodi in Y , giving rise to saddlepoints between degenerate loal minima. If its initial value is lose enough to the saddlepoint, the rolling of the T modulus along the unstable Y diretion produes ination (see�gure 1 in [1℄ for the shape of the potential).In [4℄ an improved raetrak ination model was proposed with two geometri moduli:K = �2 ln h(T2 � �T2)3=2 � (T1 � �T1)3=236 i ; W = W0 + Ae�aT1 +Be�bT2 : (3)In this ase the inaton is a linear ombination of the two axions (the orthogonal ombi-nation is a at diretion), and the inaton potential has a struture similar to (2).2



Alternatively, raetrak ination an be obtained without the need for non-supersymmetriterms by using D-term uplifting [5℄. Gauge invariane requires additional meson �elds �.The model isK = �3 ln(T + �T ) + j�j2 ; W =W0 + A��rae�aT +B��rbe�bT : (4)The D-term potential is similar in form to Vlift, and serves to uplift the minimum toa Minkowski vauum. Although the form of the potential is more ompliated [6℄, itsstruture of minima and maxima is similar to (2). In partiular, there are still saddlepoints whose unstable diretion is almost oinident with the Y diretion. Like the �eldX, the meson �eld � remains roughly onstant during ination. This was found to be thease for all models and parameters studied in [6℄.All these di�erent realizations of raetrak ination are e�etively single �eld inationmodels with the axion �eld as the inaton. Although other �elds are present | the Xiand the meson �elds | they are �xed during the period of ination when WMAP salesleave the horizon. One an therefore approximate the e�etive inaton potential asV (Y ) = V0 +Xi Ai os aiY ; (5)where the overall phase is hosen suh that the saddle/maximum is at Y = 0. For thedouble-exponential superpotentials disussed above, i = 3. More generally, the superpo-tential an have more than two exponentials, and i > 3�. Ination an our when thesaddle point is suh that �0 = V 00(Y )=V (Y )jY=0 is muh smaller than one, guaranteeingthat the slow roll onditions are satis�ed lose enough to the saddle point. In the following,we will use a further approximation of this e�etive potential to show that, quite gener-ially in raetrak ination, the spetral index is determined by �0 only, and is boundedfrom above.3 Inationary dynamisFor all the raetrak models mentioned in the previous setion, the physis whih deter-mines the osmi mirowave bakground parameters ours lose to the saddle point atY = 0, where the inaton is the only �eld that evolves signi�antly. Taylor expanding thepotential at the saddle givesV = Vsad�1 + �0 y22 + Cy44 + � � �� ; (6)where �0 is the value of � at the saddle point, and y is the anonially normalised inaton�eld, whih e.g. for the raetrak models (1, 4) is y =p3=2Y=X. Using this approximate�In model (3) there is more than one axion if there are more than two moduli �elds. In this ase thepotential only redues to the form (5) in the limit of single �eld ination.3
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Figure 1: Plot of ns(�0) for Taylor expanded, approximate osine, and full raetrak po-tentials (urves from top to bottom).potential we an alulate the number of e-folds before the end of ination N = � ln a, asa funtion of y in the slow roll approximation:N(y) = Z yyend V dyV 0 � � 12�0 log y2y2 + �0=C �yyend : (7)Ination ends when the slow roll parameter � = (1=2)(V 0=V )2 � 1, whih for the above po-tential happens at yend � C1=3. Inverting the above equation to get y(N), and substitutingit into the expression for the slow roll parameter � = V 00=V , we obtain� � �0 � 3�0�1� e�2�0N � �0Cy2end e�2�0N��1 : (8)In the raetrak models j�0j � 1 is tuned small, whereas the oeÆient C is not. Hene wean expand the above expression in j�0=(Cy2end)j � 1. To lowest order the spetral indexns � 1 + 2� is then ns = 1 + 2�0 � 6�01� e�2N�0 (9)evaluated N = N� � 55 e-folds before the end of ination. For the parameters used in theoriginal raetrak model [1℄ �0 � �0:0061, C � 293 and yend � 0:12, while for the D-termuplifted raetrak [6℄ �0 � �0:0095, C � 999 and yend � 0:10. Hene our expansion in�0=(Cy2end) is justi�ed. In fat, it is a partiularly good approximation sine the error inthe spetral index from negleting higher order terms is only of the order 10�4. As a resultns is pratially a funtion of �0 (and N�) only.
4



4 DisussionFigure 1 shows ns(�0) with N = 55 for D-term uplifted raetrak ination (4), for thee�etive potential (5), and for our analyti result (9). The results for the osine poten-tial are nearly idential to the full raetrak model, on�rming that the dynamis of the\spetator �elds" (Xi and �, whih only evolve signi�antly towards the end of ination)have a negligible e�et on the inationary preditions. Freezing the spetator �elds allthe di�erent models proposed (1, 3, 4) redue to the same e�etive model, so it is notsurprising they give the same inationary preditions. Hene the preditions of raetrakination are very robust.The approximation (6) of the full raetrak potential is simple yet very e�etive. Itgives ns(�0) in very good agreement with the results of the full raetrak potential, theerror in ns is of the order 10�3. Aordingly it orretly predits an upper bound on thespetral index ns . 0:95 for generi ases, i.e. with the oeÆient C not �ne-tuned. Itfurther explains the puzzling result of the raetrak models that the spetral index is afuntion of �0 only; the dependene on C and yend drops out in the Cy2end � j�0j limit.The reason for the small disagreement between the analyti results and the full potential isthat although (6) is a very good approximation when observable sales leave the horizon, itbeomes worse towards the end of ination when y is larger. To improve upon our resultswe should take higher terms into aount when alulating N(y), whih only play a role inthe integration region near yend. We reemphasise that higher order orretions in 1=C onlya�et the spetral index at the level of 10�4, and are not the ause of the small mismathbetween the analyti approximation and the raetrak model.Our analytial model also suggests ways to get around the upper bound ns . 0:95.These require extra tuning, in addition to that needed to get j�0j � 1. One possibility is ifination is multi-�eld, in whih ase our approximation (5) breaks down. This is probablymost easily ahieved in a set-up analogous to (3), with additional moduli �elds, and somore than one axion �eld. However, the parameters need to be tuned to arrange that thesaddle point has more than one unstable diretions with similar urvature if multiple axion�elds are to at as inatons.An alternative way to avoid the upper bound is by �ne-tuning the oeÆient of thequarti term in the expansion (6). Setting C � 0 would lead to a model where the y6 term isdominant. More generally we an onsider a model with V = Vsad(1+�0y2=2+Pn>1 ny2n),with the oeÆients jnj . j�0jy2(1�n)end for 1 < n < p , and so negligible during ination.Sine y� � y(N�) � yend, the evolution of y is then dominated by the y2 and y2p terms.The approximation (9) then generalises tons = 1 + 2�0 � 2(2p� 1)�01� e�2(p�1)N�0 : (10)Figure 2 shows the above funtion for various values of p. We see that as p is inreased,the bound on the spetral index is relaxed: ns . 0:950; 0:968; 0:975; 0:980 for p = 2; 3; 4; 5respetively. Larger values of p require more �ne-tuning, and hene progressively more5
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Figure 2: Plot of ns(�0) given in (10) for 2p = 4; 6; 8; 10; 20; 30; 40; 50; 100 (inreasing porresponds to larger spetral index).exponential terms are needed in the superpotential, in order to have enough parameters totune.In [4℄ it was argued that anthropi onsiderations may favour models with the largestpossible spetral index. In priniple, double exponential superpotentials (1) ontain enoughparameters to simultaneously �ne-tune both �0 and C to be small, as well as math theCOBE normalisation for the power spetrum (P = V=[150�2�℄ � 4 � 10�10 at N = N�).Hene ns � 0:97 may be possible for the raetrak models (1, 3, 4). However, it will omeat the ost of even more severe �ne-tuning.To summarise, in this paper we have redued a general raetrak model to a single �eldination model. This allowed us to derive a simple analyti expression for the spetralindex (9), and show that it is bounded from above. Barring exeptional �ne-tuning, i.e.any tuning beyond that needed to get � small, we predit ns . 0:95 for all raetrakination models in agreement with the WMAP3 data.Referenes[1℄ J. J. Blano-Pillado et al., Raetrak ination, JHEP 0411 (2004) 063[hep-th/0406230℄.[2℄ S. Kahru, R. Kallosh, A. Linde and S. P. Trivedi, De Sitter vaua in string theory,Phys. Rev. D 68 (2003) 046005 [hep-th/0301240℄.[3℄ D. N. Spergel et al. [WMAP Collaboration℄, Wilkinson Mirowave Anisotropy Probe(WMAP) three year results: Impliations for osmology, Astrophys. J. Suppl. 170(2007) 377 [astro-ph/0603449℄. 6
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