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al
ulus for supergravityon a manifold with boundary
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hes Elektronen-Syn
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s, SUNY at Stony BrookStony Brook, NY 11794-3840, USAE-mail: vannieu�max2.physi
s.sunysb.eduAbstra
t: Using the simple setting of 3D N = 1 supergravity, we show how the tensor
al
ulus of supergravity 
an be extended to manifolds with boundary. We present an ex-tension of the standard F -density formula whi
h yields supersymmetri
 bulk-plus-boundarya
tions. To 
onstru
t additional separately supersymmetri
 boundary a
tions, we de
omposebulk supergravity and bulk matter multiplets into 
o-dimension one submultiplets. As anillustration we obtain the supersymmetri
 extension of the York-Gibbons-Hawking extrinsi

urvature boundary term. We emphasize that our 
onstru
tion does not require any boundary
onditions on o�-shell �elds. This gives a signi�
ant improvement over the existing orbifoldsupergravity tensor 
al
ulus. Dedi
ated to Julius Wess (1934-2007)
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1. Introdu
tionSupersymmetry (susy) and supergravity (sugra) were �rst formulated in the 1970's as �eldtheories in x-spa
e (the x-spa
e or 
omponent approa
h). A tensor 
al
ulus for 4D N = 1rigid susy, with Poin
ar�e or 
onformal symmetries, was developed by Julius Wess and BrunoZumino in their pioneering work [1℄. For lo
al susy (sugra), a tensor 
al
ulus for 4D N = 1models was obtained in [2, 3℄. At the same time, the superspa
e approa
h of Salam andStrathdee [4℄ was extended to supergravity by Wess and Zumino [5℄ and was shown to beequivalent to the x-spa
e tensor 
al
ulus approa
h [6℄. Both approa
hes have been used sin
e,and ea
h has its own virtues. { 1 {



In all these studies, boundary e�e
ts were mostly ignored and various total derivativeswere simply dropped. Already in the x-spa
e approa
h, one 
alls a Lagrangian supersymmet-ri
 if its susy variation is a total derivative. In superspa
e, manipulations with susy-
ovariantderivatives D� often produ
e total x-spa
e derivatives whi
h are again dis
arded under thex-spa
e integration. One 
annot do so in the presen
e of boundaries in x-spa
e, whi
h is whythe superspa
e and tensor 
al
ulus approa
hes are not obviously extendable to a manifoldwith boundary.Susy models in the presen
e of x-spa
e boundaries have been studied before. Boundaryterms for open fermioni
 strings [7℄ and the Casimir e�e
t in 4D susy theories [8℄ were amongthe �rst 
onsidered. (For a 
avor of other models dis
ussed over the years, see [9℄.) Alreadyin [7℄ it was argued that one needs boundary 
onditions (BC) to maintain (at least part of)susy in the presen
e of a boundary, and that the BC must, in turn, be left invariant undersusy transformations (that is, form a \susy orbit" [10℄). This approa
h, whi
h we will 
all\susy with BC," was used in most works on susy in the presen
e of boundaries.In a re
ent analysis of [10, 11℄, the BC required by the Euler-Lagrange variational prin
i-ple, were 
onsidered together with the BC needed to maintain susy of the a
tions. The orbitof all BC was 
onstru
ted, and the fun
tional spa
e of o�-shell �elds was de�ned by the setof all 
onstraints. Here we take a 
ompletely opposite point of view: we develop an approa
hto rigid and lo
al susy in whi
h o�-shell �elds are totally un
onstrained.Our approa
h gives 
lassi
al1 bulk-plus-boundary a
tions that are susy (under a half ofbulk susy) without using any BC on �elds. We 
all our approa
h \susy without BC" to
ontrast it with the \susy with BC" approa
h used so far.2 For rigid susy, the validity of thisapproa
h has already been established by one of us in [13℄. The key ingredient used there,whi
h made the 
onstru
tion parti
ularly simple, was the 
o-dimension one de
ompositionof (rigid) super�elds [14℄. In this arti
le, we will give a �rst 
omplete realization of thisapproa
h in the 
ase of lo
al susy (sugra). We restri
t our dis
ussion to a 3D spa
e-timeand show how the 
omplete tensor 
al
ulus for 3D N = 1 lo
al susy 
an be extended totake boundaries into a

ount. Co-dimension one de
omposition of the bulk susy multipletswill play an essential role in our 
onstru
tion. An extension of our 
onstru
tion to higherdimensions and its superspa
e realization will be dis
ussed elsewhere [12℄.Understanding supergravity on a manifold with boundary is an interesting mathemat-i
al problem. It is also important for various physi
al models that have appeared in thepast de
ade. Notably, the 11D Horava-Witten (HW) 
onstru
tion [15℄ and the 5D Randall-Sundrum (RS) s
enario [16℄ (whose minimal supersymmetrization was a
hieved in [17℄).3 In1At the quantum level, lo
al susy is repla
ed by BRST symmetry, but the same approa
h 
an be followed[10, 11℄.2We will impose BC on symmetry parameters, but not on �elds. Of 
ourse, BC on �elds follow uponapplying the variational prin
iple to our a
tions, but these BC are not needed in the proof of susy of thea
tions. Whether these BC form susy orbits [10, 11℄ is a separate issue that we will dis
uss elsewhere [12℄.3The HW and (susy) RS models are usually dis
ussed in the \upstairs pi
ture" (on the S1=Z2 orbifold).The alternative \downstairs pi
ture" (on a manifold with boundary) approa
h to these models was 
onsidered,for example, in [18℄ and [19℄, respe
tively. Here we adhere to the \downstairs pi
ture" des
ription.{ 2 {



these models, one starts from a (standard) bulk supergravity a
tion and tries to 
onstru
t aboundary a
tion (involving, in general, additional boundary-lo
alized �elds) that makes thewhole system supersymmetri
 (under a half of bulk susy, with the other half being sponta-neously broken by the presen
e of the boundary). As of now, most approa
hes to 
onstru
tingsu
h susy bulk-plus-boundary a
tions have relied on 
ertain approximations. For example,1. the 11D HW a
tion is susy only to a 
ertain order in the expansion parameter �2=3[15, 18℄;2. the 5D orbifold supergravity tensor 
al
ulus of [20, 21℄ relies on using standard orbifold\odd=0" BC whi
h, in general, are in
ompatible with the BC one derives from thevariational prin
iple [22℄;3. the 5D 
onstru
tions of [23℄, whi
h in
orporate BC following from the variational prin-
iple, are worked out only to lowest fermi order.We hope that our approa
h, whi
h works without any approximations or assumptions, willhelp to bring these 
onstru
tions to 
ompletion.We base our 
onstru
tion on the existing tensor 
al
ulus for 3D N = 1 and 2D N = (1; 0)supergravity. This tensor 
al
ulus was worked out by Uematsu [24, 25℄, following the 4DN = 1 results of [2℄. In these derivations, 
onformal sugra plays a fundamental role, but we
onsider only Poin
ar�e sugra in this arti
le.Our 
onstru
tion will 
onsist of the following steps.First, we analyze the algebra of supergravity gauge transformations. We re
all why, inthe presen
e of a boundary, one 
an (typi
ally) preserve only half of bulk susy, and prove thatthe restri
tion to this half of susy redu
es the whole 3D N = 1 gauge algebra to the standard2D N = (1; 0) gauge algebra, without imposing any BC on �elds. We note that the analysisbe
omes parti
ularly simple in a spe
ial Lorentz gauge (whi
h is opposite to the standardKaluza-Klein 
hoi
e) and we adopt that gauge from then on. As a 
onsequen
e, the preservedhalf of susy transformations gets modi�ed by a 
ompensating Lorentz transformation.Se
ond, we perform a 
o-dimension one de
omposition of the 3D supergravity tensor
al
ulus. This gives, in parti
ular, the indu
ed supergravity multiplet that is ne
essary for
onstru
ting separately susy boundary a
tions. The de
omposition does not rely on usingany BC (like \odd=0" BC used in [20, 21℄) and is appli
able to any hypersurfa
e parallel tothe boundary.Third, we show that on a manifold with boundary, the standard 3D F -density formulamust be extended by the addition of a boundary A-term. The extended F -density formulaautomati
ally gives bulk-plus-boundary a
tions that are susy (under the half of bulk susy)without using any BC on �elds. We also write the extended F -density in terms of the 
o-dimension one submultiplets.To illustrate the 
onstru
tion, we �nally apply the extended F -density formula to the 3DN = 1 s
alar 
urvature multiplet. This will show that the minimal susy bulk-plus-boundary{ 3 {



a
tion, with the standard 3D N = 1 supergravity in the bulk, does not in
lude the York-Gibbons-Hawking term [26℄. The latter 
omes as a part of a separately susy boundary a
tionthat one needs to add in order to relax �eld equations whi
h would otherwise be too strong.2. Co-dimension one gauge algebraIn this se
tion, we will show how the 3D N = 1 supergravity gauge algebra4 redu
es naturallyto the 2D N = (1; 0) supergravity gauge algebra on the boundary, as well as on 
o-dimensionone sli
es parallel to the boundary.2.1 3D N = 1 gauge algebraThe gauge transformations of the 3D N = 1 (o�-shell) Poin
ar�e supergravity are the Einstein(general 
oordinate) transformation ÆE(�M ), the lo
al Lorentz transformation ÆL(�AB) andthe susy transformation ÆQ(�). The 
omplete gauge algebra reads5[ÆE(�M1 ) + ÆL(�AB1 ) + ÆQ(�1); ÆE(�M2 ) + ÆL(�AB2 ) + ÆQ(�2)℄= ÆE(�M
omp) + ÆL(�AB
omp) + ÆQ(�
omp) (2.1)where the 
omposite parameters are�M
omp = 2(�2
M�1) + h�N2 �N�M1 � (1$ 2)i�AB
omp = 2(�2
N�1)b!NAB + (�2
AB�1)S + h�N2 �N�AB1 + �A2 C�CB1 � (1$ 2)i�
omp = �(�2
M�1) M + h�N2 �N �1 + 14�AB2 
AB�1 � (1$ 2)i (2.2)with 
M = 
AeAM . The 
omposite parameters depend expli
itly on the �elds of the 3Dsupergravity multiplet (eMA;  M ; S), with eAM being the inverse of eMA and b!MAB beingthe super
ovariant spin 
onne
tion (see (3.4)). The algebra is realized on the supergravitymultiplet itself, as well as on other 3D multiplets su
h as the 3D s
alar multiplet �3(A) =(A;�; F ).2.2 Einstein boundary 
onditionWe are interested in 
onstru
ting supersymmetri
 bulk-plus-boundary a
tions of the formS = ZM d3xL3 + Z�M d2xL2 (2.3)4The gauge algebra of 4D N = 1 sugra was �rst dis
ussed in [27℄, and its 
losure if auxiliary �elds arein
luded was dis
ussed in [2, 3℄.5Our 
onventions are: M , N are 
urved 3D indi
es, A, B are 
at 3D indi
es, with de
ompositionM = (m; 3)and A = (a; 3̂). The 3D gamma matri
es satisfy 
A
B = 
AB + �AB with �AB = (� + +) and 
A
B
C =
ABC + �AB
C + �BC
A � �AC
B with 
ABC = "ABC . Our spinors are Majorana;  =  TC, CT = �C,C
AC�1 = �(
A)T. Einstein transformations yield Æ�eMA = �N�NeMA + eNA�M�N , et
.; Lorentz and susytransformations are given in (3.6), (3.1) and (3.32).{ 4 {



For notational simpli
ity,6 we 
hoose the 
oordinates xM in su
h a way that the boundary �Mis at x3 = 0 and that x3 > 0 in the bulkM. The boundary has 
oordinates xm = (x0; x1).Under Einstein transformations, L3 is assumed to be a density, Æ�L3 = �M (�ML3), so thatÆ�S = Z�M d2x�� �3L3 + Æ�L2� (2.4)The standard way to a
hieve Æ�S = 0 is to impose a BC on the Einstein parameter,�3 �M= 0 (2.5)and take L2 to be a density under the indu
ed Einstein transformations, Æ�L2 = �m(�mL2).(We assume that the total �m derivative integrates to zero on the boundary.) In prin
iple,one 
ould investigate other ways to a
hieve Æ�S = 0 without imposing the BC (2.5). In thisarti
le, however, we will assume that this BC on the parameter �M has to be imposed.2.3 The unbroken half of bulk susyConsisten
y of the gauge algebra (2.1) with the BC (2.5) requires [11℄�3
omp �M= 0 , (�2
A�1)eA3 �M= 0 (2.6)It is 
onvenient to 
hoose a spe
ial Lorentz gauge,7ea3 = 0 ) em3̂ = 0 (2.7)both on �M and inM. (We shall later 
omment on the 
ase when one does not impose thisgauge.) As e3̂3 is non-zero, the BC (2.6) now redu
es to a �eld-independent requirement�2
3̂�1 �M= 0 (2.8)Introdu
ing proje
tors P� = 12(1� 
3̂) and de�ning �� = P��, we solve this BC by imposing(without loss of generality) the following BC on the susy parameter �,�� �M= 0 , � �M= �+ (2.9)The half of susy that is not broken by the boundary satis�es�+ = P+�+; �+ = �+P�; 
3̂�+ = �+; �+ = ��+
3̂ (2.10)6Our 
hoi
e of 
oordinates xM does not impose an Einstein gauge as it does not restri
t �M(x). It alsodoes not imply that our boundary has to be 
at, be
ause it pla
es no restri
tions on (intrinsi
 or extrinsi
)
urvature.7Note that the gauge ea3 = em 3̂ = 0 is opposite to the standard Kaluza-Klein 
hoi
e [28℄, e3̂m = e3a = 0.It is the analog of the \time gauge" introdu
ed by S
hwinger [29℄ for the Hamiltonian analysis of gravity.(For the Hamiltonian analysis of the Dira
 a
tion in a 
urved spa
e it was used by Kibble [30℄, and for theHamiltonian formulation of 4D N = 1 supergravity it was used in [31℄). In more mathemati
al terms, thisgauge 
orresponds to the 
hoi
e of a surfa
e-
ompatible frame [32℄. Its usefulness in the setting of supergravityon a manifold with boundary was emphasized in [19℄.{ 5 {



The other half, parametrized by ��, is broken by the boundary. It 
ould, in prin
iple, berestored by introdu
ing appropriate Goldstone �elds on the boundary, whi
h would showthat the breaking is spontaneous. However, in this arti
le, we will only be interested inpreserving the �+ susy.2.4 Modi�ed �+ susyThe gauge 
ondition (2.7) is invariant under arbitrary �m and �ab transformations, but notunder �a3̂ and �+ ones. Only a parti
ular 
ombination of �a3̂ and �+ transformations survivesin this gauge. We, therefore, introdu
e a modi�ed �+ susy transformation,Æ0Q(�+) = ÆQ(�+) + ÆL(�0a3̂ = ��+ a�) (2.11)whi
h satis�es Æ0Q(�+)em3̂ = 0. (We will use the notation Æ0� � Æ0Q(�+).) It is this �+ susytransformation that we will use in the following 
onstru
tions.2.5 The redu
ed gauge algebraWe 
laim that the surviving gauge transformations, ÆE(�m), ÆL(�ab), and Æ0Q(�+), form asubalgebra of the 3D N = 1 supergravity gauge algebra that is isomorphi
 to the (standard)2D N = (1; 0) supergravity gauge algebra. The non-trivial part of the proof 
on
erns the
ommutator of two (modi�ed) �+ susy transformations. We �nd[Æ0Q(�1+); Æ0Q(�2+)℄ = ÆE(�M ) + ÆL(�AB) + ÆQ(�) + ÆL(e�a3̂) (2.12)where 8 �m = 2(�2+
a�1+)eam; �3 = 0; � = �12�n n + 12�n n��ab = �nhb!nab � 12 a�
n b�i; �a3̂ = �nhb!na3̂ + 12Senai (2.13)The extra 
omposite Lorentz transformation withe�a3̂ = ��2+Æ0Q(�1+) a� � (1$ 2) (2.14)arises be
ause the 
ompensating Lorentz transformation in (2.11) is �eld-dependent. Wesee immediately that the (
omposite) �� vanishes identi
ally (without imposing  m� = 0),thanks to the 
ontribution from the 
ompensating Lorentz transformation. Using the resultsof the next se
tion, one �nds that [12℄�a3̂ + e�a3̂ = 12�n n+ a�; b!nab � 12 a�
n b� = b!+nab (2.15)8The extra terms in �ab and � arise from the terms (�02)a3̂(�01)3̂b and 12�02a3̂
a3̂�1+ in (2.2) upon using theFierz identities (�+ �)(���+) = � 12 (�+

�+)(��

 �) and (�+ �)�� = �(�+��) �.{ 6 {



where b!+nab is the standard super
ovariant 
onne
tion 
onstru
ted out of ema and  m+. Thisbrings (2.12) to the form[Æ0Q(�1+); Æ0Q(�2+)℄ = ÆE(�m) + ÆL(�ab = �nb!+nab) + Æ0Q(�+ = �12�n n+) (2.16)whi
h is the standard form of the 2D N = (1; 0) (lo
al) susy algebra. We emphasize that wehave identi�ed this subalgebra without imposing any boundary 
onditions on supergravity�elds. A

ordingly, this identi�
ation works for any hypersurfa
e x3 = 
onst parallel to theboundary �M.3. Co-dimension one submultipletsHaving proved that the 3D N = 1 supergravity gauge algebra redu
es to the 2D N = (1; 0)supergravity gauge algebra on the hypersurfa
es parallel to the boundary, we are guaranteedthat the 3D multiplets 
an be de
omposed into a set of 2D submultiplets. In this se
tion, wewill des
ribe these submultiplets for the 3D supergravity and the 3D s
alar multiplets.3.1 3D supergravity multipletThe 3D supergravity multiplet, (eMA;  M ; S), enjoys the following susy transformations,Æ�eMA = �
A M ; Æ� M = 2 bDM�; Æ�S = 12�
MN b MN (3.1)where b MN = bDM N � bDN M is the super
ovariant gravitino �eld strength andbDM� = DM (b!)�+ 14
M�S; bDM N = DM (b!) N � 14
N MS (3.2)The 
ovariant derivatives DM are only Lorentz 
ovariant, so thatDM (b!) N = �M N + 14b!MAB
AB N (3.3)and the super
ovariant spin 
onne
tion is given byb!MAB = !(e)MAB + �MAB; �MAB = 14( M
A B �  M
B A +  A
M B)!(e)MAB = 12(CMAB � CMBA � CABM ); CMNA = �MeNA � �NeMA (3.4)where we use the standard 
onversion of indi
es,  A = eAM M , et
. The super
ovariant spin
onne
tion has the following susy transformation,Æ�b!MAB = 12�(
B b MA � 
A b MB � 
M b AB)� 12(�
AB M )S (3.5)Under a 3D Lorentz transformation, we haveÆ�eMA = �ABeMB ; Æ� M = 14�AB
AB M ; Æ�S = 0; Æ�b!MAB = �D(b!)M�AB (3.6)These Lorentz transformations will play a role as the (modi�ed) �+ susy transformation (2.11)involves a 
ompensating Lorentz transformation.{ 7 {



3.2 Co-dimension one splitTo identify 
o-dimension one submultiplets of the supergravity multiplet, we �rst split theindi
es, M = (m; 3), A = (a; 3̂), and the spinors, � = �+ + ��. The resulting 
omponent�elds (and parameters) 
an be formally assigned parities (in a way 
onsistent with the susytransformations) as follows,even: ema e33̂ !mab !3a3̂  m+  3� �+ �modd: e3a em3̂ = 0 !3ab !ma3̂ S  m�  3+ �� = 0 �3 (3.7)(The vanishing of em3̂ and �� 
orrespond to our Lorentz gauge 
hoi
e (2.7) and the restri
tion(2.9) on susy, respe
tively.) Co-dimension one multiplets will have de�nite parities as well.In general, the indu
ed metri
 on the x3 = 
onst sli
es is gmn = emaena + em3̂en3̂. Withour 
hoi
e of the Lorentz gauge, however, we have gmn = emaena, so that ema is the indu
edvielbein. One 
an also easily 
he
k that !(e)mab 
oin
ides with the torsion-free spin 
onne
tion
onstru
ted out of ema, whereas !(e)ma3̂ena 
oin
ides, up to a 
onvention-dependent sign,with the extrinsi
 
urvature tensor [19℄. We �x the sign by de�ning9Kmn = !(e)ma3̂ena (3.8)In our gauge, em3̂ = ea3 = 0, we have emaean = Æmn, eamemb = Æab and e33̂e3̂3 = 1, as well as
m = ema
a; 
3 = e3a
a + e33̂
3̂; 
m = 
aeam + 
3̂e3̂m; 
3 = 
3̂e3̂3 a = eam m;  3̂ = e3̂m m + e3̂3 3 (3.9)We will also use Kma = !(e)ma3̂ and Kba = ebmKma. Noting that b!ma3̂ is not super
ovariantunder the (modi�ed) �+ susy, we de�ne the super
ovariant extrinsi
 
urvature tensor asbKma = b!ma3̂ � 12 m+ a� (3.10)Using  m a =  m+ a� +  m� a+ and  m
3̂ a = � m+ a� +  m� a+, we �nd thatbKma = Kma + 14( m
a 3̂ �  m a +  a
m 3̂) (3.11)As the bosoni
 extrinsi
 
urvature tensor is symmetri
, Kab = Kba, the super
ovariant ex-trinsi
 
urvature tensor is symmetri
 as well, bKab = bKba.9The extrinsi
 
urvature is usually de�ned by KMN = �PMKPNLrKnL where PMK = ÆMK � nMnKand rKnL = �KnL � �KLSnS . In our gauge and with our 
hoi
e of 
oordinates, nM = (0; 0;�e33̂) andKmn = ��mn3n3 = ��mn3e33̂. The vielbein postulate yields �mn3e33̂ = �!ma3̂ena. (See appendi
es in [11℄and [19℄ for more details and referen
es.) Our sign 
hoi
e is then KMN = �PMKPNLrKnL.{ 8 {



3.3 Indu
ed supergravity multipletUnder the (modi�ed) �+ susy (2.11), the indu
ed vielbein transforms as follows,Æ0�ema = �+
a m+ (3.12)(The 
ompensating Lorentz transformation does not 
ontribute here as �0a3̂em3̂ vanishes inour gauge.) The variation of  m+ givesÆ0� m+ = 2(�m + 14b!mab
ab)�+ + 12�0a3̂
a3̂ m� (3.13)where �0a3̂ = ��+ a�. Performing the following de
omposition,b!mab = b!+mab + ��mab; ��mab = 14( m�
a b� �  m�
b a� +  a�
m b�)b!+mab = !(e)mab + �+mab; �+mab = 14( m+
a b+ �  m+
b a+ +  a+
m b+) (3.14)we observe that b!+mab is the (standard) super
ovariant spin 
onne
tion for the 2D (indu
ed)vielbein ema. De�ning the 2D (Lorentz) 
ovariant derivative asD0m(b!+)� = �m�+ 14 b!+mab
ab� (3.15)we arrive at Æ0� m+ = 2D0m(b!+)�+ + 12��mab
ab�+ + 12�0a3̂
a3̂ m� (3.16)We 
laim that the last two terms 
an
el ea
h other. To prove this, we �rst observe that theantisymmetrization in any three 2D ve
tor indi
es gives zero, [ab
℄ = 0, whi
h yields��mab = 12 a�
m b� (3.17)Se
ond, the identity 
ab = �ab3̂
3̂ a

ounts for a useful tri
k,
ab�+( a�
m b�) = ��+( a�
m
ab b�) (3.18)Finally, gamma-matrix algebra redu
es the last term to 2�+( a�
a m�) and the Fierz trans-formation gives 
ab�+( a�
m b�) = �2
a m�(�+ a�) (3.19)whi
h proves our statement and gives us the �nal result,Æ0�ema = �+
a m+; Æ0� m+ = 2D0m(b!+)�+ (3.20)This shows that (ema;  m+) is the (standard) 2D N = (1; 0) supergravity multiplet.{ 9 {



3.4 Radion multipletIn order to identify further submultiplets, we re
all the basi
s of the 2dN = (1; 0) supergravitytensor 
al
ulus [25℄. Besides the supergravity multiplet we have just identi�ed, there aretwo other basi
 multiplets, the s
alar multiplet �2(A) = (A; ��) and the spinor multiplet	2(�+) = (�+; F ). They transform by de�nition as follows,Æ0�A = �+��; Æ0��� = 
a�+ bD0aAÆ0��+ = F�+; Æ0�F = �+
a bD0a�+ (3.21)where bD0aA = �aA� 12 a+�� and bD0a�+ = D0a(b!+)�+� 12F a+ are super
ovariant derivatives.With these de�nitions, we now 
laim that�2(e33̂) = (e33̂; �e33̂ 3̂�) (3.22)is a good 2D N = (1; 0) s
alar multiplet whi
h we will 
all the radion multiplet.10 First of all,we observe that e33̂ is indeed a s
alar under the �m and �ab transformations. The non-trivialpart in this statement is that in Æ�e33̂ = �n�ne33̂ + en3̂�3�n (3.23)the last term vanishes in our gauge. Next, we apply the (modi�ed) �+ susy to e33̂ and �ndÆ0�e33̂ = �+
3̂ 3 + �03̂ae3a = �+(� 3� + e3a a�) = �+(�e33̂ 3̂�) (3.24)whi
h identi�es the superpartner of e33̂ as �� = �e33̂ 3̂�. To 
he
k that the variation of ��has the 
orre
t form is a bit more involved. The details will be presented in [12℄. The keyintermediate statement isÆ0� 3̂� = P�he3̂MÆ M +  MÆe3̂Mi = 
a�+hb!3̂a3̂ � 12 3̂+ a�i (3.25)Next, in our gauge, it is easy to prove thatb!3̂a3̂ = �e3̂3�ae33̂ + 12( 3̂+ a� �  3̂� a+) (3.26)Finally, the 
ontribution  3̂�Æe33̂ vanishes thanks to the identity (�+ �) � = 0. Colle
tingthe pie
es, we �nd that Æ�� has the required form, whi
h proves that (3.22) is a good 2DN = (1; 0) s
alar multiplet.10The term \radion" refers to a �eld parametrizing the radius of the extra dimension [33℄. In our 
ase,proper distan
es in the x3 dire
tion must be measured with g33 = e33̂e33̂ + e3ae3a, whi
h is not given by e33̂alone. Nonetheless, we will 
all �(e33̂) the radion multiplet.{ 10 {



3.5 Extrinsi
 
urvature multipletSo far, we have found two even submultiplets, the indu
ed supergravity and the radionmultiplets. Now we will present an important odd submultiplet, the extrinsi
 
urvature(s
alar) multiplet. The starting point is the (modi�ed) �+ susy transformation of  m�,Æ0� m� = b!ma3̂
a3̂�+ + 12
m�+S + 12�0a3̂
a3̂ m+ (3.27)Observing that Æ0�eam = �(�+
b a+)ebm, we �nd, after some Fierzing,Æ0� a� = 
b�+h bKab + 12�abSi (3.28)where bKab is the (symmetri
) super
ovariant extrinsi
 
urvature tensor de�ned in (3.10).Contra
ting this expression with 
a, we �ndÆ0�(
a a�) = ( bK + S)�+ (3.29)where bK = �ab bKab is the (super
ovariant) extrinsi
 
urvature s
alar. Noting that 
a a�behaves as �+, we 
laim that 	2(
a a�) = (
a a�; bK + S) (3.30)is a good 2D N = (1; 0) spinor multiplet. The proof 
onsists in demonstrating thatÆ0�( bK + S) = �+
aD0a(b!+)[
b b�℄� 12( bK + S)(�+
a a+) (3.31)The details of the proof will be presented in [12℄, where we will also dis
uss an extrinsi

urvature tensor multiplet as well as a submultiplet that starts with e3a.3.6 Submultiplets of the 3D s
alar multipletIn 3D N = 1 supergravity, there is only one type of matter multiplet, the s
alar multiplet�3(A) = (A;�; F ). (Other multiplets 
an be 
onstru
ted by adding extra Lorentz indi
es.)The susy transformations of this multiplet areÆ�A = ��; Æ�� = 
M� bDMA+ F�; Æ�F = �
M bDM�� 14S�� (3.32)where bDMA = �MA� 12 M� and bDM� = DM (b!)�� 12
N M bDNA� 12F M are super
ovariantderivatives. Under the (modi�ed) �+ susy, this 3D multiplet splits into the following two 2DN = (1; 0) submultiplets,11�2(A) = (A; ��); 	2(�+) = (�+; F + bD3̂A� 12 a�
a��) (3.33)11We note that our 
o-dimension one multiplets 
ontain terms of the type \odd � odd" that are set to zeroin the approa
h of [20, 21℄. For example, let us take F to be even, so that �+ is even and �� is odd. Themultiplet 	2(�+) is then even and 
ontains an expli
it produ
t of odd �elds,  a�
a��. Su
h a produ
t is alsopresent in the radion multiplet (3.22) via the term e3a a� inside �� = �e33̂ 3̂�. For dimensions higher than3D, su
h produ
ts also appear in the indu
ed supergravity multiplet [12℄.{ 11 {



The proof 
onsists in showing thatÆ0�A = �+��; Æ0��� = 
a�+ bD0aAÆ0��+ = F2�+; F2 � F + bD3̂A� 12 a�
a��Æ0�F2 = �+
aD0(b!+)a�+ � 12(�+
a a+)F2 (3.34)where bD0aA = eam(�mA� 12 m+��) and bD3̂A = e3̂M (�MA� 12 M�). The proof is straight-forward, ex
ept for the Æ0�F2 part that we will dis
uss in [12℄.3.7 Separately susy boundary a
tionsIn the 2D N = (1; 0) supergravity tensor 
al
ulus [25℄, susy a
tions are 
onstru
ted fromspinor multiplets 	2(�+) = (�+; F ) with the help of the following F -density formula,LF h	2(�+)i = e2hF + 12 a+
a�+i (3.35)where e2 = det ema. In our 
ase, this formula 
an be dire
tly applied to 
onstru
ting (sepa-rately) susy invariant boundary a
tions. Indeed, under the (modi�ed) �+ susy, we haveÆ0�LF h	2(�+)i = �mhe2(�+
a�+)eami (3.36)and the total �m derivative integrates to zero on the boundary. Therefore,Z�M d2xe2hF + 12 a+
a�+i (3.37)is a (separately) susy boundary a
tion for a general spinor multiplet 	2(�+) = (�+; F ). Forexample, we 
an apply this formula to the extrinsi
 
urvature multiplet (3.30) to obtainZ�M d2xe2h bK + S + 12 a+
a
b b�i (3.38)whi
h is (separately) supersymmetri
 under the (modi�ed) �+ susy (2.11).4. Susy bulk-plus-boundary a
tionsIn this se
tion, we will �nd an extension of the 3D F -density formula that makes it very easyto 
onstru
t susy bulk-plus-boundary a
tions. We will then show how this formula 
an bewritten in terms of 
o-dimension one submultiplets. Finally, we will use it to supersymmetrizethe York-Gibbons-Hawking 
onstru
tion. { 12 {



4.1 The \F +A" formulaIn the 3D N = 1 supergravity tensor 
al
ulus [24℄, susy a
tions are 
onstru
ted from s
alarmultiplets �3(A) = (A;�; F ) using the following F -density formula,LF h�3(A)i = e3hF + 12 M
M�+ 14A M
MN N +ASi (4.1)where e3 = det eMA. Under 3D susy, this density transforms into a total 3D derivative,Æ�LF h�3(A)i = �Mhe3��
M�+A�
MN N�i (4.2)In the presen
e of a boundary, the bulk F -density does not give rise to a separately susy bulka
tion be
ause the total derivative yields a boundary term,ZM d3xÆ�LF h�3(A)i = �Z�M d2xe2��
3̂�+A�
3̂a a� (4.3)We used that, in our gauge, ea3 = 0 and e3e3̂3 = e2. Noting that LF h�3(A)i is a Lorentzs
alar, the (modi�ed) �+ susy transformation (2.11) givesZM d3xÆ0�LF h�3(A)i = Z�M d2xe2��+�� +A�+
a a+� (4.4)Noting that Æ0�A = �+�� and Æ0�e2 = e2(�+
a a+), we 
an 
onstru
t a boundary a
tion whosevariation 
an
els (4.4). The following bulk-plus-boundary a
tion,SF+A = ZM d3xLF h�3(A)i� Z�M d2xe2A (4.5)is invariant under the (modi�ed) �+ susy. We 
all this the \F +A" formula.124.2 Extended F -densityAs we will demonstrate expli
itly in [12℄, the boundary A-term 
an also be written as a bulk
ontribution thanks to the following relation,�Z�M d2xe2A = ZM d3xe3(�3̂A+KA) (4.6)This allows us to de�ne an extended F -densityL0F [�3(A)℄ = LF [�3(A)℄ + e3(�3̂A+KA) (4.7)12 The \F+A" formula (4.5) has a natural extension to the 
ase when the Lorentz gauge (2.7) is not imposed[12℄. We only have to repla
e e2 = det(ema) with the determinant of the indu
ed vielbein e02 = det(e0ma) whi
hsatis�es e0mae0na = emaena + em 3̂en3̂. The resulting bulk-plus-boundary a
tion is susy under the half of bulksusy de�ned by 
3�+ = pg33�+. Note that this makes the susy parameter �+ �eld-dependent whi
h makesthe analysis of the gauge algebra more subtle [12℄. { 13 {



whose integral over the bulkM reprodu
es the bulk-plus-boundary \F + A" formula (4.5).Under the (modi�ed) �+ susy, this extended 3D F -density behaves like the ordinary 2D F -density (that is, it varies into a total �m derivative). Therefore, we expe
t that it should bepossible to rewrite it as a 2D F -density of some 2D N = (1; 0) spinor multiplet,13L0F [�3(A)℄ = LF [	2(�+)℄ (4.8)This is indeed possible, and we �nd [12℄	2(�+) = �2(e33̂)� h	2(�+) + 	2(
a a�)� �2(A)i (4.9)where �2(A) and 	2(�+) are the submultiplets (3.33) of the 3D s
alar multiplet �3(A),whereas �2(e33̂) and 	2(
a a�) are the radion and the extrinsi
 
urvature multiplets, re-spe
tively. To derive this result, one needs the multipli
ation formula(A; ��)� (�+; F ) = (A�+; AF � ���+) (4.10)whi
h is part of the 2D N = (1; 0) tensor 
al
ulus [25℄.4.3 Super-York-Gibbons-Hawking 
onstru
tionThe \F+A" formula (4.5) 
an be applied, in parti
ular, to the 3D s
alar 
urvature multiplet,14�3(S) = �S; 12
MN MN � 12
M MS; 12R(b!)� 12 M
N MN + 14S M M � 34S2�(4.11)We immediately obtain the following bulk-plus-boundary a
tion,SSG = ZM d3xe3h12R(b!) + 12 M
MNKD(b!)N K + 14S2i� Z�M d2xe2S (4.12)whi
h is, by 
onstru
tion, invariant under the (modi�ed) �+ susy (without using any boundary
onditions). However, when one tries to apply the variational prin
iple to this a
tion, oneruns into a problem be
ause the bulk auxiliary �eld S appears linearly on the boundary. (Its�eld equation would require e2 to vanish, whi
h is too strong.) This 
an be 
ured by adding a13In the super�eld language, this 
orresponds to giving a pres
ription for writing 3D lo
ally susy a
tions interms of 2D super�elds. For rigid susy, similar 
onstru
tions are known in various dimensions [14℄. For thelinearized 5D supergravity, the des
ription in terms of 4D super�elds was given in [34℄. For the full non-linear5D supergravity, su
h a 
onstru
tion would require [35, 22℄ going beyond the orbifold supergravity tensor
al
ulus of [20, 21℄ where odd supergravity submultiplets (like our extrinsi
 
urvature multiplet (3.30)) and\odd�odd" terms in even multiplets are dis
arded.14In our 
onventions, R(b!) = eBMeANR(b!)MNAB with R(b!)MNAB = �M b!NAB+b!MACb!NCB�(M $ N),and  MN = DM(b!) N �DN (b!) M . { 14 {



separately susy boundary a
tion that removes the term linear in S. We add the a
tion givenin (3.38). The resulting improved bulk-plus-boundary supergravity a
tion reads15SimprSG = ZM d3xe3h12R(b!) + 12 M
MNKD(b!)N K + 14S2i+Z�M d2xe2� bK + 12 a+
a
b b�� (4.13)where bK = ema bKma with bKma = b!ma3̂ � 12 m+ a� whi
h is the (symmetri
) super
ovariantextrinsi
 
urvature tensor. The boundary term, whi
h is obviously a susy generalization ofthe York-Gibbons-Hawking term [26℄, 
an also be written as followsZ�M d2xe2� eK + 12 a+
ab b�� (4.14)where eK = ema eKma with eKma = b!ma3̂ whi
h is neither symmetri
 nor super
ovariant underthe (modi�ed) �+ susy. The Euler-Lagrange variation of the improved supergravity a
tiongives rise to the following boundary term,Z�M d2xe2hÆema( eKma � ema eK) + Æ m+
ab b�eami (4.15)Therefore, removing the term linear in S in the boundary a
tion of (4.12) by adding a sepa-rately susy boundary a
tion (3.38) has improved the variational prin
iple it two ways. First,the una

eptable boundary 
ondition e2 = 0 is avoided. Se
ond, the boundary part of theEuler-Lagrange variation (known also as \the boundary �eld equation") is now in the \pÆq"form (by analogy with the Hamiltonian formulation). This allows one to derive \natural"boundary 
onditions (for on-shell �elds) by requiring that the boundary variation vanishesfor arbitrary Æq [36℄. In our 
ase, the role of \q" is played by the indu
ed supergravitymultiplet (ema;  m+) of (3.20).It is very important for extending our 
onstru
tion to higher dimensions (where the fullset of auxiliary �elds is not always known or does not exist) that it is possible to eliminate theauxiliary �eld S by its equation of motion S = 0 while preserving susy of the a
tion withoutthe use of any boundary 
onditions. This indi
ates, for example, that even though there is no(o�-shell) tensor 
al
ulus for 11D supergravity, the 
onstru
tion of Moss [18℄ 
an, perhaps,be improved so that susy of the 11D Horava-Witten a
tion on the manifold with boundarydoes not require any boundary 
onditions on �elds.15The boundary term of the improved supergravity a
tion (4.13) has the same form as the one found byMoss [18℄. (Note that 2 a+
a
b b� =  a
a
b b.) However, there are essential di�eren
es. Moss uses an\adaptive 
oordinate system eN̂I = ÆNI ," whi
h in our 
ase would mean em 3̂ = 0 and e33̂ = 1. Moreover, hisexpression for the super
ovariant extrinsi
 
urvature involves  N (our  3) and, therefore, 
ould be equivalentto our (3.11), whi
h involves  3̂, only if, in addition, e3a = 0. Finally, in the approa
h of Moss, susy ofthe bulk-plus-boundary a
tion is 
laimed only using the  m� = 0 boundary 
ondition. Our tensor 
al
ulusapproa
h, on the other hand, leads to bulk-plus-boundary a
tions that are susy without using any boundary
onditions. { 15 {



It is also instru
tive to �nd an alternative form of our bulk-plus-boundary a
tion (4.13)by separating the fermioni
 bilinear parts in b!MAB and bK. Setting S = 0, we obtain [12℄eSSG = ZM d3xe3h12R(!) + 12 M
MNKD(!)N K +O( 4)i+Z�M d2xe2�K + 12 a+
ab b�� (4.16)where K is the standard bosoni
 extrinsi
 
urvature term. In this form, ignoring the 4-fermiterms, the 3D bulk-plus-boundary a
tion for supergravity was �rst found by Lu
ko
k andMoss in [37℄.16 We have determined all 4-fermi terms in the bulk and boundary a
tions. Wefound 4-fermi terms in the bulk a
tion whi
h agree with the literature of supergravity, butno 4-fermi terms on the boundary. So, the 2-fermi terms of [37℄ give already the 
ompleteboundary a
tion. The new result of our 
onstru
tion is that the same boundary a
tion issuÆ
ient for \susy without BC" of the total bulk-plus-boundary a
tion.5. Summary and Con
lusionsIn this arti
le, we have studied the issue of 
onstru
ting lo
ally susy bulk-plus-boundarya
tions in the simple setting of 3D N = 1 supergravity. We demonstrated that the tensor
al
ulus for 3D N = 1 supergravity 
an be naturally extended to take boundaries into a

ount.For a 3D s
alar multiplet (A;�; F ), our \F + A" formula (4.5) gives a bulk-plus-boundarya
tion SF+A = ZM d3xe3hF + : : : i� Z�M d2xe2A (5.1)whi
h is \susy without BC" (its susy variation vanishes without the need to impose any BCon �elds) under the half of bulk susy parametrized by �+ (satisfying 
3̂�+ = �+ when theLorentz gauge (2.7) is imposed). Quite remarkably, this simple extension of the standard F -density formula works in 4D N = 1 sugra as well (where the D-density 
an also be similarlyextended) [12℄.The \F +A" (extended F -density) formula 
an be applied to a variety of models. As anillustration, we applied it to the 3D N = 1 s
alar 
urvature multiplet. The resulting bulk-plus-boundary a
tion (4.12) has the standard 3D N = 1 sugra in the bulk and just the terme2S on the boundary. It is \susy without BC" by 
onstru
tion, but the �eld equation for thebulk auxiliary �eld S gives not only S = 0 in the bulk but also e2 = 0 on the boundary, whi
his una

eptable. To resolve this problem while maintaining the \susy without BC" property,we looked for an additional separately susy boundary a
tion 
ontaining the same term e2S.The simplest su
h a
tion is (3.38). Adding it to the minimal bulk-plus-boundary a
tion givenby the \F +A" formula, we �nd that the S-term gets repla
ed by the York-Gibbons-Hawking16In 5D, the analog of this a
tion was found in [19℄ and its \susy without BC" was established up to the4-fermi terms and terms involving the 5D graviphoton.{ 16 {



extrinsi
 
urvature term K together with the gravitino bilinear  a+
ab b�. Neither the bulknor the boundary a
tion is separately susy, but their sum is and it is \susy without BC."In order to 
onstru
t separately susy boundary a
tions systemati
ally, we have developeda 
o-dimension one de
omposition of bulk supermultiplets. We found that the 3D N = 1sugra multiplet (eMA;  M ; S) de
omposes into several 2D N = (1; 0) multiplets: the indu
edsugra multiplet (ema;  m+), the radion multiplet (e33̂;� 3� + e3a a�) and an \o�-diagonalmultiplet" (e3a;�e33̂ a� + 
a 3+) [12℄. (The other o�-diagonal 
omponent of the vielbein,em3̂, vanishes in our Lorentz gauge (2.7).) With the parity assignments given in (3.7), the �rsttwo multiplets are \even" and the last one is \odd." The 3D N = 1 s
alar multiplet (A;�; F )allows a similar de
omposition; see (3.33). Expli
it veri�
ation that these submultipletstransform as standard 2D N = (1; 0) supermultiplets is tedious [12℄, but our analysis of thegauge algebra guarantees that the 
o-dimension one de
omposition does work and does notrequire any (boundary) 
onditions on �elds.In the superspa
e formulation, one 
an a
t on super�elds with superspa
e 
ovariantderivatives to 
onstru
t new super�elds. In the tensor 
al
ulus, the new multiplets 
an be
onstru
ted simply by 
hoosing an appropriate lowest 
omponent. For example, startingwith 
a a�, we obtain our extrinsi
 
urvature (s
alar) multiplet (3.30). Starting with  a�,we similarly obtain an extrinsi
 
urvature tensor multiplet [12℄. The multiplets obtained inthis way 
an, together with any number of independent boundary matter multiplets, be usedto 
onstru
t separately susy boundary a
tions using the standard 2D N = (1; 0) F -densityformula (3.35). In 
onjun
tion with our \F + A" formula, this gives the most general bulk-plus-boundary a
tions that are \susy without BC." However, requiring that the variationalprin
iple yields �eld equations that are not too strong restri
ts the 
hoi
e of boundary a
tionsthat one 
an allow [12℄.We should note that the Lorentz gauge (2.7) that we used in this work allows a tremendoussimpli�
ation of the algebra. At the same time, our results 
an be extended to the 
ase whenno Lorentz gauge is imposed (see e.g. footnote 12) [12℄. We also note that our tensor 
al
ulusapproa
h relies heavily on the o�-shell supergravity formulation (with auxiliary �elds). Su
ha formulation is not always available in higher dimensions. Nonetheless, a 
on
rete higherdimensional model (su
h as the 11D Horava-Witten 
onstru
tion) has still a 
han
e to be\susy without BC" as we dis
ussed in se
tion 4.3.Our program of \susy without BC" 
an and should be extended to (a) dimensions higherthan three, (b) the superspa
e formulation, (
) super
onformal symmetries and super
onfor-mal a
tions, (d) BRST symmetry. Some progress in these dire
tions has already been a
hieved[12℄. Ultimately, this would allow to have 
omplete 
ontrol over the models dis
ussed in theIntrodu
tion as well as other models where symmetries and boundaries 
ollide.A
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