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1. IntrodutionSupersymmetry (susy) and supergravity (sugra) were �rst formulated in the 1970's as �eldtheories in x-spae (the x-spae or omponent approah). A tensor alulus for 4D N = 1rigid susy, with Poinar�e or onformal symmetries, was developed by Julius Wess and BrunoZumino in their pioneering work [1℄. For loal susy (sugra), a tensor alulus for 4D N = 1models was obtained in [2, 3℄. At the same time, the superspae approah of Salam andStrathdee [4℄ was extended to supergravity by Wess and Zumino [5℄ and was shown to beequivalent to the x-spae tensor alulus approah [6℄. Both approahes have been used sine,and eah has its own virtues. { 1 {



In all these studies, boundary e�ets were mostly ignored and various total derivativeswere simply dropped. Already in the x-spae approah, one alls a Lagrangian supersymmet-ri if its susy variation is a total derivative. In superspae, manipulations with susy-ovariantderivatives D� often produe total x-spae derivatives whih are again disarded under thex-spae integration. One annot do so in the presene of boundaries in x-spae, whih is whythe superspae and tensor alulus approahes are not obviously extendable to a manifoldwith boundary.Susy models in the presene of x-spae boundaries have been studied before. Boundaryterms for open fermioni strings [7℄ and the Casimir e�et in 4D susy theories [8℄ were amongthe �rst onsidered. (For a avor of other models disussed over the years, see [9℄.) Alreadyin [7℄ it was argued that one needs boundary onditions (BC) to maintain (at least part of)susy in the presene of a boundary, and that the BC must, in turn, be left invariant undersusy transformations (that is, form a \susy orbit" [10℄). This approah, whih we will all\susy with BC," was used in most works on susy in the presene of boundaries.In a reent analysis of [10, 11℄, the BC required by the Euler-Lagrange variational prini-ple, were onsidered together with the BC needed to maintain susy of the ations. The orbitof all BC was onstruted, and the funtional spae of o�-shell �elds was de�ned by the setof all onstraints. Here we take a ompletely opposite point of view: we develop an approahto rigid and loal susy in whih o�-shell �elds are totally unonstrained.Our approah gives lassial1 bulk-plus-boundary ations that are susy (under a half ofbulk susy) without using any BC on �elds. We all our approah \susy without BC" toontrast it with the \susy with BC" approah used so far.2 For rigid susy, the validity of thisapproah has already been established by one of us in [13℄. The key ingredient used there,whih made the onstrution partiularly simple, was the o-dimension one deompositionof (rigid) super�elds [14℄. In this artile, we will give a �rst omplete realization of thisapproah in the ase of loal susy (sugra). We restrit our disussion to a 3D spae-timeand show how the omplete tensor alulus for 3D N = 1 loal susy an be extended totake boundaries into aount. Co-dimension one deomposition of the bulk susy multipletswill play an essential role in our onstrution. An extension of our onstrution to higherdimensions and its superspae realization will be disussed elsewhere [12℄.Understanding supergravity on a manifold with boundary is an interesting mathemat-ial problem. It is also important for various physial models that have appeared in thepast deade. Notably, the 11D Horava-Witten (HW) onstrution [15℄ and the 5D Randall-Sundrum (RS) senario [16℄ (whose minimal supersymmetrization was ahieved in [17℄).3 In1At the quantum level, loal susy is replaed by BRST symmetry, but the same approah an be followed[10, 11℄.2We will impose BC on symmetry parameters, but not on �elds. Of ourse, BC on �elds follow uponapplying the variational priniple to our ations, but these BC are not needed in the proof of susy of theations. Whether these BC form susy orbits [10, 11℄ is a separate issue that we will disuss elsewhere [12℄.3The HW and (susy) RS models are usually disussed in the \upstairs piture" (on the S1=Z2 orbifold).The alternative \downstairs piture" (on a manifold with boundary) approah to these models was onsidered,for example, in [18℄ and [19℄, respetively. Here we adhere to the \downstairs piture" desription.{ 2 {



these models, one starts from a (standard) bulk supergravity ation and tries to onstrut aboundary ation (involving, in general, additional boundary-loalized �elds) that makes thewhole system supersymmetri (under a half of bulk susy, with the other half being sponta-neously broken by the presene of the boundary). As of now, most approahes to onstrutingsuh susy bulk-plus-boundary ations have relied on ertain approximations. For example,1. the 11D HW ation is susy only to a ertain order in the expansion parameter �2=3[15, 18℄;2. the 5D orbifold supergravity tensor alulus of [20, 21℄ relies on using standard orbifold\odd=0" BC whih, in general, are inompatible with the BC one derives from thevariational priniple [22℄;3. the 5D onstrutions of [23℄, whih inorporate BC following from the variational prin-iple, are worked out only to lowest fermi order.We hope that our approah, whih works without any approximations or assumptions, willhelp to bring these onstrutions to ompletion.We base our onstrution on the existing tensor alulus for 3D N = 1 and 2D N = (1; 0)supergravity. This tensor alulus was worked out by Uematsu [24, 25℄, following the 4DN = 1 results of [2℄. In these derivations, onformal sugra plays a fundamental role, but weonsider only Poinar�e sugra in this artile.Our onstrution will onsist of the following steps.First, we analyze the algebra of supergravity gauge transformations. We reall why, inthe presene of a boundary, one an (typially) preserve only half of bulk susy, and prove thatthe restrition to this half of susy redues the whole 3D N = 1 gauge algebra to the standard2D N = (1; 0) gauge algebra, without imposing any BC on �elds. We note that the analysisbeomes partiularly simple in a speial Lorentz gauge (whih is opposite to the standardKaluza-Klein hoie) and we adopt that gauge from then on. As a onsequene, the preservedhalf of susy transformations gets modi�ed by a ompensating Lorentz transformation.Seond, we perform a o-dimension one deomposition of the 3D supergravity tensoralulus. This gives, in partiular, the indued supergravity multiplet that is neessary foronstruting separately susy boundary ations. The deomposition does not rely on usingany BC (like \odd=0" BC used in [20, 21℄) and is appliable to any hypersurfae parallel tothe boundary.Third, we show that on a manifold with boundary, the standard 3D F -density formulamust be extended by the addition of a boundary A-term. The extended F -density formulaautomatially gives bulk-plus-boundary ations that are susy (under the half of bulk susy)without using any BC on �elds. We also write the extended F -density in terms of the o-dimension one submultiplets.To illustrate the onstrution, we �nally apply the extended F -density formula to the 3DN = 1 salar urvature multiplet. This will show that the minimal susy bulk-plus-boundary{ 3 {



ation, with the standard 3D N = 1 supergravity in the bulk, does not inlude the York-Gibbons-Hawking term [26℄. The latter omes as a part of a separately susy boundary ationthat one needs to add in order to relax �eld equations whih would otherwise be too strong.2. Co-dimension one gauge algebraIn this setion, we will show how the 3D N = 1 supergravity gauge algebra4 redues naturallyto the 2D N = (1; 0) supergravity gauge algebra on the boundary, as well as on o-dimensionone slies parallel to the boundary.2.1 3D N = 1 gauge algebraThe gauge transformations of the 3D N = 1 (o�-shell) Poinar�e supergravity are the Einstein(general oordinate) transformation ÆE(�M ), the loal Lorentz transformation ÆL(�AB) andthe susy transformation ÆQ(�). The omplete gauge algebra reads5[ÆE(�M1 ) + ÆL(�AB1 ) + ÆQ(�1); ÆE(�M2 ) + ÆL(�AB2 ) + ÆQ(�2)℄= ÆE(�Momp) + ÆL(�ABomp) + ÆQ(�omp) (2.1)where the omposite parameters are�Momp = 2(�2M�1) + h�N2 �N�M1 � (1$ 2)i�ABomp = 2(�2N�1)b!NAB + (�2AB�1)S + h�N2 �N�AB1 + �A2 C�CB1 � (1$ 2)i�omp = �(�2M�1) M + h�N2 �N �1 + 14�AB2 AB�1 � (1$ 2)i (2.2)with M = AeAM . The omposite parameters depend expliitly on the �elds of the 3Dsupergravity multiplet (eMA;  M ; S), with eAM being the inverse of eMA and b!MAB beingthe superovariant spin onnetion (see (3.4)). The algebra is realized on the supergravitymultiplet itself, as well as on other 3D multiplets suh as the 3D salar multiplet �3(A) =(A;�; F ).2.2 Einstein boundary onditionWe are interested in onstruting supersymmetri bulk-plus-boundary ations of the formS = ZM d3xL3 + Z�M d2xL2 (2.3)4The gauge algebra of 4D N = 1 sugra was �rst disussed in [27℄, and its losure if auxiliary �elds areinluded was disussed in [2, 3℄.5Our onventions are: M , N are urved 3D indies, A, B are at 3D indies, with deompositionM = (m; 3)and A = (a; 3̂). The 3D gamma matries satisfy AB = AB + �AB with �AB = (� + +) and ABC =ABC + �ABC + �BCA � �ACB with ABC = "ABC . Our spinors are Majorana;  =  TC, CT = �C,CAC�1 = �(A)T. Einstein transformations yield Æ�eMA = �N�NeMA + eNA�M�N , et.; Lorentz and susytransformations are given in (3.6), (3.1) and (3.32).{ 4 {



For notational simpliity,6 we hoose the oordinates xM in suh a way that the boundary �Mis at x3 = 0 and that x3 > 0 in the bulkM. The boundary has oordinates xm = (x0; x1).Under Einstein transformations, L3 is assumed to be a density, Æ�L3 = �M (�ML3), so thatÆ�S = Z�M d2x�� �3L3 + Æ�L2� (2.4)The standard way to ahieve Æ�S = 0 is to impose a BC on the Einstein parameter,�3 �M= 0 (2.5)and take L2 to be a density under the indued Einstein transformations, Æ�L2 = �m(�mL2).(We assume that the total �m derivative integrates to zero on the boundary.) In priniple,one ould investigate other ways to ahieve Æ�S = 0 without imposing the BC (2.5). In thisartile, however, we will assume that this BC on the parameter �M has to be imposed.2.3 The unbroken half of bulk susyConsisteny of the gauge algebra (2.1) with the BC (2.5) requires [11℄�3omp �M= 0 , (�2A�1)eA3 �M= 0 (2.6)It is onvenient to hoose a speial Lorentz gauge,7ea3 = 0 ) em3̂ = 0 (2.7)both on �M and inM. (We shall later omment on the ase when one does not impose thisgauge.) As e3̂3 is non-zero, the BC (2.6) now redues to a �eld-independent requirement�23̂�1 �M= 0 (2.8)Introduing projetors P� = 12(1� 3̂) and de�ning �� = P��, we solve this BC by imposing(without loss of generality) the following BC on the susy parameter �,�� �M= 0 , � �M= �+ (2.9)The half of susy that is not broken by the boundary satis�es�+ = P+�+; �+ = �+P�; 3̂�+ = �+; �+ = ��+3̂ (2.10)6Our hoie of oordinates xM does not impose an Einstein gauge as it does not restrit �M(x). It alsodoes not imply that our boundary has to be at, beause it plaes no restritions on (intrinsi or extrinsi)urvature.7Note that the gauge ea3 = em 3̂ = 0 is opposite to the standard Kaluza-Klein hoie [28℄, e3̂m = e3a = 0.It is the analog of the \time gauge" introdued by Shwinger [29℄ for the Hamiltonian analysis of gravity.(For the Hamiltonian analysis of the Dira ation in a urved spae it was used by Kibble [30℄, and for theHamiltonian formulation of 4D N = 1 supergravity it was used in [31℄). In more mathematial terms, thisgauge orresponds to the hoie of a surfae-ompatible frame [32℄. Its usefulness in the setting of supergravityon a manifold with boundary was emphasized in [19℄.{ 5 {



The other half, parametrized by ��, is broken by the boundary. It ould, in priniple, berestored by introduing appropriate Goldstone �elds on the boundary, whih would showthat the breaking is spontaneous. However, in this artile, we will only be interested inpreserving the �+ susy.2.4 Modi�ed �+ susyThe gauge ondition (2.7) is invariant under arbitrary �m and �ab transformations, but notunder �a3̂ and �+ ones. Only a partiular ombination of �a3̂ and �+ transformations survivesin this gauge. We, therefore, introdue a modi�ed �+ susy transformation,Æ0Q(�+) = ÆQ(�+) + ÆL(�0a3̂ = ��+ a�) (2.11)whih satis�es Æ0Q(�+)em3̂ = 0. (We will use the notation Æ0� � Æ0Q(�+).) It is this �+ susytransformation that we will use in the following onstrutions.2.5 The redued gauge algebraWe laim that the surviving gauge transformations, ÆE(�m), ÆL(�ab), and Æ0Q(�+), form asubalgebra of the 3D N = 1 supergravity gauge algebra that is isomorphi to the (standard)2D N = (1; 0) supergravity gauge algebra. The non-trivial part of the proof onerns theommutator of two (modi�ed) �+ susy transformations. We �nd[Æ0Q(�1+); Æ0Q(�2+)℄ = ÆE(�M ) + ÆL(�AB) + ÆQ(�) + ÆL(e�a3̂) (2.12)where 8 �m = 2(�2+a�1+)eam; �3 = 0; � = �12�n n + 12�n n��ab = �nhb!nab � 12 a�n b�i; �a3̂ = �nhb!na3̂ + 12Senai (2.13)The extra omposite Lorentz transformation withe�a3̂ = ��2+Æ0Q(�1+) a� � (1$ 2) (2.14)arises beause the ompensating Lorentz transformation in (2.11) is �eld-dependent. Wesee immediately that the (omposite) �� vanishes identially (without imposing  m� = 0),thanks to the ontribution from the ompensating Lorentz transformation. Using the resultsof the next setion, one �nds that [12℄�a3̂ + e�a3̂ = 12�n n+ a�; b!nab � 12 a�n b� = b!+nab (2.15)8The extra terms in �ab and � arise from the terms (�02)a3̂(�01)3̂b and 12�02a3̂a3̂�1+ in (2.2) upon using theFierz identities (�+ �)(���+) = � 12 (�+�+)(�� �) and (�+ �)�� = �(�+��) �.{ 6 {



where b!+nab is the standard superovariant onnetion onstruted out of ema and  m+. Thisbrings (2.12) to the form[Æ0Q(�1+); Æ0Q(�2+)℄ = ÆE(�m) + ÆL(�ab = �nb!+nab) + Æ0Q(�+ = �12�n n+) (2.16)whih is the standard form of the 2D N = (1; 0) (loal) susy algebra. We emphasize that wehave identi�ed this subalgebra without imposing any boundary onditions on supergravity�elds. Aordingly, this identi�ation works for any hypersurfae x3 = onst parallel to theboundary �M.3. Co-dimension one submultipletsHaving proved that the 3D N = 1 supergravity gauge algebra redues to the 2D N = (1; 0)supergravity gauge algebra on the hypersurfaes parallel to the boundary, we are guaranteedthat the 3D multiplets an be deomposed into a set of 2D submultiplets. In this setion, wewill desribe these submultiplets for the 3D supergravity and the 3D salar multiplets.3.1 3D supergravity multipletThe 3D supergravity multiplet, (eMA;  M ; S), enjoys the following susy transformations,Æ�eMA = �A M ; Æ� M = 2 bDM�; Æ�S = 12�MN b MN (3.1)where b MN = bDM N � bDN M is the superovariant gravitino �eld strength andbDM� = DM (b!)�+ 14M�S; bDM N = DM (b!) N � 14N MS (3.2)The ovariant derivatives DM are only Lorentz ovariant, so thatDM (b!) N = �M N + 14b!MABAB N (3.3)and the superovariant spin onnetion is given byb!MAB = !(e)MAB + �MAB; �MAB = 14( MA B �  MB A +  AM B)!(e)MAB = 12(CMAB � CMBA � CABM ); CMNA = �MeNA � �NeMA (3.4)where we use the standard onversion of indies,  A = eAM M , et. The superovariant spinonnetion has the following susy transformation,Æ�b!MAB = 12�(B b MA � A b MB � M b AB)� 12(�AB M )S (3.5)Under a 3D Lorentz transformation, we haveÆ�eMA = �ABeMB ; Æ� M = 14�ABAB M ; Æ�S = 0; Æ�b!MAB = �D(b!)M�AB (3.6)These Lorentz transformations will play a role as the (modi�ed) �+ susy transformation (2.11)involves a ompensating Lorentz transformation.{ 7 {



3.2 Co-dimension one splitTo identify o-dimension one submultiplets of the supergravity multiplet, we �rst split theindies, M = (m; 3), A = (a; 3̂), and the spinors, � = �+ + ��. The resulting omponent�elds (and parameters) an be formally assigned parities (in a way onsistent with the susytransformations) as follows,even: ema e33̂ !mab !3a3̂  m+  3� �+ �modd: e3a em3̂ = 0 !3ab !ma3̂ S  m�  3+ �� = 0 �3 (3.7)(The vanishing of em3̂ and �� orrespond to our Lorentz gauge hoie (2.7) and the restrition(2.9) on susy, respetively.) Co-dimension one multiplets will have de�nite parities as well.In general, the indued metri on the x3 = onst slies is gmn = emaena + em3̂en3̂. Withour hoie of the Lorentz gauge, however, we have gmn = emaena, so that ema is the induedvielbein. One an also easily hek that !(e)mab oinides with the torsion-free spin onnetiononstruted out of ema, whereas !(e)ma3̂ena oinides, up to a onvention-dependent sign,with the extrinsi urvature tensor [19℄. We �x the sign by de�ning9Kmn = !(e)ma3̂ena (3.8)In our gauge, em3̂ = ea3 = 0, we have emaean = Æmn, eamemb = Æab and e33̂e3̂3 = 1, as well asm = emaa; 3 = e3aa + e33̂3̂; m = aeam + 3̂e3̂m; 3 = 3̂e3̂3 a = eam m;  3̂ = e3̂m m + e3̂3 3 (3.9)We will also use Kma = !(e)ma3̂ and Kba = ebmKma. Noting that b!ma3̂ is not superovariantunder the (modi�ed) �+ susy, we de�ne the superovariant extrinsi urvature tensor asbKma = b!ma3̂ � 12 m+ a� (3.10)Using  m a =  m+ a� +  m� a+ and  m3̂ a = � m+ a� +  m� a+, we �nd thatbKma = Kma + 14( ma 3̂ �  m a +  am 3̂) (3.11)As the bosoni extrinsi urvature tensor is symmetri, Kab = Kba, the superovariant ex-trinsi urvature tensor is symmetri as well, bKab = bKba.9The extrinsi urvature is usually de�ned by KMN = �PMKPNLrKnL where PMK = ÆMK � nMnKand rKnL = �KnL � �KLSnS . In our gauge and with our hoie of oordinates, nM = (0; 0;�e33̂) andKmn = ��mn3n3 = ��mn3e33̂. The vielbein postulate yields �mn3e33̂ = �!ma3̂ena. (See appendies in [11℄and [19℄ for more details and referenes.) Our sign hoie is then KMN = �PMKPNLrKnL.{ 8 {



3.3 Indued supergravity multipletUnder the (modi�ed) �+ susy (2.11), the indued vielbein transforms as follows,Æ0�ema = �+a m+ (3.12)(The ompensating Lorentz transformation does not ontribute here as �0a3̂em3̂ vanishes inour gauge.) The variation of  m+ givesÆ0� m+ = 2(�m + 14b!mabab)�+ + 12�0a3̂a3̂ m� (3.13)where �0a3̂ = ��+ a�. Performing the following deomposition,b!mab = b!+mab + ��mab; ��mab = 14( m�a b� �  m�b a� +  a�m b�)b!+mab = !(e)mab + �+mab; �+mab = 14( m+a b+ �  m+b a+ +  a+m b+) (3.14)we observe that b!+mab is the (standard) superovariant spin onnetion for the 2D (indued)vielbein ema. De�ning the 2D (Lorentz) ovariant derivative asD0m(b!+)� = �m�+ 14 b!+mabab� (3.15)we arrive at Æ0� m+ = 2D0m(b!+)�+ + 12��mabab�+ + 12�0a3̂a3̂ m� (3.16)We laim that the last two terms anel eah other. To prove this, we �rst observe that theantisymmetrization in any three 2D vetor indies gives zero, [ab℄ = 0, whih yields��mab = 12 a�m b� (3.17)Seond, the identity ab = �ab3̂3̂ aounts for a useful trik,ab�+( a�m b�) = ��+( a�mab b�) (3.18)Finally, gamma-matrix algebra redues the last term to 2�+( a�a m�) and the Fierz trans-formation gives ab�+( a�m b�) = �2a m�(�+ a�) (3.19)whih proves our statement and gives us the �nal result,Æ0�ema = �+a m+; Æ0� m+ = 2D0m(b!+)�+ (3.20)This shows that (ema;  m+) is the (standard) 2D N = (1; 0) supergravity multiplet.{ 9 {



3.4 Radion multipletIn order to identify further submultiplets, we reall the basis of the 2dN = (1; 0) supergravitytensor alulus [25℄. Besides the supergravity multiplet we have just identi�ed, there aretwo other basi multiplets, the salar multiplet �2(A) = (A; ��) and the spinor multiplet	2(�+) = (�+; F ). They transform by de�nition as follows,Æ0�A = �+��; Æ0��� = a�+ bD0aAÆ0��+ = F�+; Æ0�F = �+a bD0a�+ (3.21)where bD0aA = �aA� 12 a+�� and bD0a�+ = D0a(b!+)�+� 12F a+ are superovariant derivatives.With these de�nitions, we now laim that�2(e33̂) = (e33̂; �e33̂ 3̂�) (3.22)is a good 2D N = (1; 0) salar multiplet whih we will all the radion multiplet.10 First of all,we observe that e33̂ is indeed a salar under the �m and �ab transformations. The non-trivialpart in this statement is that in Æ�e33̂ = �n�ne33̂ + en3̂�3�n (3.23)the last term vanishes in our gauge. Next, we apply the (modi�ed) �+ susy to e33̂ and �ndÆ0�e33̂ = �+3̂ 3 + �03̂ae3a = �+(� 3� + e3a a�) = �+(�e33̂ 3̂�) (3.24)whih identi�es the superpartner of e33̂ as �� = �e33̂ 3̂�. To hek that the variation of ��has the orret form is a bit more involved. The details will be presented in [12℄. The keyintermediate statement isÆ0� 3̂� = P�he3̂MÆ M +  MÆe3̂Mi = a�+hb!3̂a3̂ � 12 3̂+ a�i (3.25)Next, in our gauge, it is easy to prove thatb!3̂a3̂ = �e3̂3�ae33̂ + 12( 3̂+ a� �  3̂� a+) (3.26)Finally, the ontribution  3̂�Æe33̂ vanishes thanks to the identity (�+ �) � = 0. Colletingthe piees, we �nd that Æ�� has the required form, whih proves that (3.22) is a good 2DN = (1; 0) salar multiplet.10The term \radion" refers to a �eld parametrizing the radius of the extra dimension [33℄. In our ase,proper distanes in the x3 diretion must be measured with g33 = e33̂e33̂ + e3ae3a, whih is not given by e33̂alone. Nonetheless, we will all �(e33̂) the radion multiplet.{ 10 {



3.5 Extrinsi urvature multipletSo far, we have found two even submultiplets, the indued supergravity and the radionmultiplets. Now we will present an important odd submultiplet, the extrinsi urvature(salar) multiplet. The starting point is the (modi�ed) �+ susy transformation of  m�,Æ0� m� = b!ma3̂a3̂�+ + 12m�+S + 12�0a3̂a3̂ m+ (3.27)Observing that Æ0�eam = �(�+b a+)ebm, we �nd, after some Fierzing,Æ0� a� = b�+h bKab + 12�abSi (3.28)where bKab is the (symmetri) superovariant extrinsi urvature tensor de�ned in (3.10).Contrating this expression with a, we �ndÆ0�(a a�) = ( bK + S)�+ (3.29)where bK = �ab bKab is the (superovariant) extrinsi urvature salar. Noting that a a�behaves as �+, we laim that 	2(a a�) = (a a�; bK + S) (3.30)is a good 2D N = (1; 0) spinor multiplet. The proof onsists in demonstrating thatÆ0�( bK + S) = �+aD0a(b!+)[b b�℄� 12( bK + S)(�+a a+) (3.31)The details of the proof will be presented in [12℄, where we will also disuss an extrinsiurvature tensor multiplet as well as a submultiplet that starts with e3a.3.6 Submultiplets of the 3D salar multipletIn 3D N = 1 supergravity, there is only one type of matter multiplet, the salar multiplet�3(A) = (A;�; F ). (Other multiplets an be onstruted by adding extra Lorentz indies.)The susy transformations of this multiplet areÆ�A = ��; Æ�� = M� bDMA+ F�; Æ�F = �M bDM�� 14S�� (3.32)where bDMA = �MA� 12 M� and bDM� = DM (b!)�� 12N M bDNA� 12F M are superovariantderivatives. Under the (modi�ed) �+ susy, this 3D multiplet splits into the following two 2DN = (1; 0) submultiplets,11�2(A) = (A; ��); 	2(�+) = (�+; F + bD3̂A� 12 a�a��) (3.33)11We note that our o-dimension one multiplets ontain terms of the type \odd � odd" that are set to zeroin the approah of [20, 21℄. For example, let us take F to be even, so that �+ is even and �� is odd. Themultiplet 	2(�+) is then even and ontains an expliit produt of odd �elds,  a�a��. Suh a produt is alsopresent in the radion multiplet (3.22) via the term e3a a� inside �� = �e33̂ 3̂�. For dimensions higher than3D, suh produts also appear in the indued supergravity multiplet [12℄.{ 11 {



The proof onsists in showing thatÆ0�A = �+��; Æ0��� = a�+ bD0aAÆ0��+ = F2�+; F2 � F + bD3̂A� 12 a�a��Æ0�F2 = �+aD0(b!+)a�+ � 12(�+a a+)F2 (3.34)where bD0aA = eam(�mA� 12 m+��) and bD3̂A = e3̂M (�MA� 12 M�). The proof is straight-forward, exept for the Æ0�F2 part that we will disuss in [12℄.3.7 Separately susy boundary ationsIn the 2D N = (1; 0) supergravity tensor alulus [25℄, susy ations are onstruted fromspinor multiplets 	2(�+) = (�+; F ) with the help of the following F -density formula,LF h	2(�+)i = e2hF + 12 a+a�+i (3.35)where e2 = det ema. In our ase, this formula an be diretly applied to onstruting (sepa-rately) susy invariant boundary ations. Indeed, under the (modi�ed) �+ susy, we haveÆ0�LF h	2(�+)i = �mhe2(�+a�+)eami (3.36)and the total �m derivative integrates to zero on the boundary. Therefore,Z�M d2xe2hF + 12 a+a�+i (3.37)is a (separately) susy boundary ation for a general spinor multiplet 	2(�+) = (�+; F ). Forexample, we an apply this formula to the extrinsi urvature multiplet (3.30) to obtainZ�M d2xe2h bK + S + 12 a+ab b�i (3.38)whih is (separately) supersymmetri under the (modi�ed) �+ susy (2.11).4. Susy bulk-plus-boundary ationsIn this setion, we will �nd an extension of the 3D F -density formula that makes it very easyto onstrut susy bulk-plus-boundary ations. We will then show how this formula an bewritten in terms of o-dimension one submultiplets. Finally, we will use it to supersymmetrizethe York-Gibbons-Hawking onstrution. { 12 {



4.1 The \F +A" formulaIn the 3D N = 1 supergravity tensor alulus [24℄, susy ations are onstruted from salarmultiplets �3(A) = (A;�; F ) using the following F -density formula,LF h�3(A)i = e3hF + 12 MM�+ 14A MMN N +ASi (4.1)where e3 = det eMA. Under 3D susy, this density transforms into a total 3D derivative,Æ�LF h�3(A)i = �Mhe3��M�+A�MN N�i (4.2)In the presene of a boundary, the bulk F -density does not give rise to a separately susy bulkation beause the total derivative yields a boundary term,ZM d3xÆ�LF h�3(A)i = �Z�M d2xe2��3̂�+A�3̂a a� (4.3)We used that, in our gauge, ea3 = 0 and e3e3̂3 = e2. Noting that LF h�3(A)i is a Lorentzsalar, the (modi�ed) �+ susy transformation (2.11) givesZM d3xÆ0�LF h�3(A)i = Z�M d2xe2��+�� +A�+a a+� (4.4)Noting that Æ0�A = �+�� and Æ0�e2 = e2(�+a a+), we an onstrut a boundary ation whosevariation anels (4.4). The following bulk-plus-boundary ation,SF+A = ZM d3xLF h�3(A)i� Z�M d2xe2A (4.5)is invariant under the (modi�ed) �+ susy. We all this the \F +A" formula.124.2 Extended F -densityAs we will demonstrate expliitly in [12℄, the boundary A-term an also be written as a bulkontribution thanks to the following relation,�Z�M d2xe2A = ZM d3xe3(�3̂A+KA) (4.6)This allows us to de�ne an extended F -densityL0F [�3(A)℄ = LF [�3(A)℄ + e3(�3̂A+KA) (4.7)12 The \F+A" formula (4.5) has a natural extension to the ase when the Lorentz gauge (2.7) is not imposed[12℄. We only have to replae e2 = det(ema) with the determinant of the indued vielbein e02 = det(e0ma) whihsatis�es e0mae0na = emaena + em 3̂en3̂. The resulting bulk-plus-boundary ation is susy under the half of bulksusy de�ned by 3�+ = pg33�+. Note that this makes the susy parameter �+ �eld-dependent whih makesthe analysis of the gauge algebra more subtle [12℄. { 13 {



whose integral over the bulkM reprodues the bulk-plus-boundary \F + A" formula (4.5).Under the (modi�ed) �+ susy, this extended 3D F -density behaves like the ordinary 2D F -density (that is, it varies into a total �m derivative). Therefore, we expet that it should bepossible to rewrite it as a 2D F -density of some 2D N = (1; 0) spinor multiplet,13L0F [�3(A)℄ = LF [	2(�+)℄ (4.8)This is indeed possible, and we �nd [12℄	2(�+) = �2(e33̂)� h	2(�+) + 	2(a a�)� �2(A)i (4.9)where �2(A) and 	2(�+) are the submultiplets (3.33) of the 3D salar multiplet �3(A),whereas �2(e33̂) and 	2(a a�) are the radion and the extrinsi urvature multiplets, re-spetively. To derive this result, one needs the multipliation formula(A; ��)� (�+; F ) = (A�+; AF � ���+) (4.10)whih is part of the 2D N = (1; 0) tensor alulus [25℄.4.3 Super-York-Gibbons-Hawking onstrutionThe \F+A" formula (4.5) an be applied, in partiular, to the 3D salar urvature multiplet,14�3(S) = �S; 12MN MN � 12M MS; 12R(b!)� 12 MN MN + 14S M M � 34S2�(4.11)We immediately obtain the following bulk-plus-boundary ation,SSG = ZM d3xe3h12R(b!) + 12 MMNKD(b!)N K + 14S2i� Z�M d2xe2S (4.12)whih is, by onstrution, invariant under the (modi�ed) �+ susy (without using any boundaryonditions). However, when one tries to apply the variational priniple to this ation, oneruns into a problem beause the bulk auxiliary �eld S appears linearly on the boundary. (Its�eld equation would require e2 to vanish, whih is too strong.) This an be ured by adding a13In the super�eld language, this orresponds to giving a presription for writing 3D loally susy ations interms of 2D super�elds. For rigid susy, similar onstrutions are known in various dimensions [14℄. For thelinearized 5D supergravity, the desription in terms of 4D super�elds was given in [34℄. For the full non-linear5D supergravity, suh a onstrution would require [35, 22℄ going beyond the orbifold supergravity tensoralulus of [20, 21℄ where odd supergravity submultiplets (like our extrinsi urvature multiplet (3.30)) and\odd�odd" terms in even multiplets are disarded.14In our onventions, R(b!) = eBMeANR(b!)MNAB with R(b!)MNAB = �M b!NAB+b!MACb!NCB�(M $ N),and  MN = DM(b!) N �DN (b!) M . { 14 {



separately susy boundary ation that removes the term linear in S. We add the ation givenin (3.38). The resulting improved bulk-plus-boundary supergravity ation reads15SimprSG = ZM d3xe3h12R(b!) + 12 MMNKD(b!)N K + 14S2i+Z�M d2xe2� bK + 12 a+ab b�� (4.13)where bK = ema bKma with bKma = b!ma3̂ � 12 m+ a� whih is the (symmetri) superovariantextrinsi urvature tensor. The boundary term, whih is obviously a susy generalization ofthe York-Gibbons-Hawking term [26℄, an also be written as followsZ�M d2xe2� eK + 12 a+ab b�� (4.14)where eK = ema eKma with eKma = b!ma3̂ whih is neither symmetri nor superovariant underthe (modi�ed) �+ susy. The Euler-Lagrange variation of the improved supergravity ationgives rise to the following boundary term,Z�M d2xe2hÆema( eKma � ema eK) + Æ m+ab b�eami (4.15)Therefore, removing the term linear in S in the boundary ation of (4.12) by adding a sepa-rately susy boundary ation (3.38) has improved the variational priniple it two ways. First,the unaeptable boundary ondition e2 = 0 is avoided. Seond, the boundary part of theEuler-Lagrange variation (known also as \the boundary �eld equation") is now in the \pÆq"form (by analogy with the Hamiltonian formulation). This allows one to derive \natural"boundary onditions (for on-shell �elds) by requiring that the boundary variation vanishesfor arbitrary Æq [36℄. In our ase, the role of \q" is played by the indued supergravitymultiplet (ema;  m+) of (3.20).It is very important for extending our onstrution to higher dimensions (where the fullset of auxiliary �elds is not always known or does not exist) that it is possible to eliminate theauxiliary �eld S by its equation of motion S = 0 while preserving susy of the ation withoutthe use of any boundary onditions. This indiates, for example, that even though there is no(o�-shell) tensor alulus for 11D supergravity, the onstrution of Moss [18℄ an, perhaps,be improved so that susy of the 11D Horava-Witten ation on the manifold with boundarydoes not require any boundary onditions on �elds.15The boundary term of the improved supergravity ation (4.13) has the same form as the one found byMoss [18℄. (Note that 2 a+ab b� =  aab b.) However, there are essential di�erenes. Moss uses an\adaptive oordinate system eN̂I = ÆNI ," whih in our ase would mean em 3̂ = 0 and e33̂ = 1. Moreover, hisexpression for the superovariant extrinsi urvature involves  N (our  3) and, therefore, ould be equivalentto our (3.11), whih involves  3̂, only if, in addition, e3a = 0. Finally, in the approah of Moss, susy ofthe bulk-plus-boundary ation is laimed only using the  m� = 0 boundary ondition. Our tensor alulusapproah, on the other hand, leads to bulk-plus-boundary ations that are susy without using any boundaryonditions. { 15 {



It is also instrutive to �nd an alternative form of our bulk-plus-boundary ation (4.13)by separating the fermioni bilinear parts in b!MAB and bK. Setting S = 0, we obtain [12℄eSSG = ZM d3xe3h12R(!) + 12 MMNKD(!)N K +O( 4)i+Z�M d2xe2�K + 12 a+ab b�� (4.16)where K is the standard bosoni extrinsi urvature term. In this form, ignoring the 4-fermiterms, the 3D bulk-plus-boundary ation for supergravity was �rst found by Lukok andMoss in [37℄.16 We have determined all 4-fermi terms in the bulk and boundary ations. Wefound 4-fermi terms in the bulk ation whih agree with the literature of supergravity, butno 4-fermi terms on the boundary. So, the 2-fermi terms of [37℄ give already the ompleteboundary ation. The new result of our onstrution is that the same boundary ation issuÆient for \susy without BC" of the total bulk-plus-boundary ation.5. Summary and ConlusionsIn this artile, we have studied the issue of onstruting loally susy bulk-plus-boundaryations in the simple setting of 3D N = 1 supergravity. We demonstrated that the tensoralulus for 3D N = 1 supergravity an be naturally extended to take boundaries into aount.For a 3D salar multiplet (A;�; F ), our \F + A" formula (4.5) gives a bulk-plus-boundaryation SF+A = ZM d3xe3hF + : : : i� Z�M d2xe2A (5.1)whih is \susy without BC" (its susy variation vanishes without the need to impose any BCon �elds) under the half of bulk susy parametrized by �+ (satisfying 3̂�+ = �+ when theLorentz gauge (2.7) is imposed). Quite remarkably, this simple extension of the standard F -density formula works in 4D N = 1 sugra as well (where the D-density an also be similarlyextended) [12℄.The \F +A" (extended F -density) formula an be applied to a variety of models. As anillustration, we applied it to the 3D N = 1 salar urvature multiplet. The resulting bulk-plus-boundary ation (4.12) has the standard 3D N = 1 sugra in the bulk and just the terme2S on the boundary. It is \susy without BC" by onstrution, but the �eld equation for thebulk auxiliary �eld S gives not only S = 0 in the bulk but also e2 = 0 on the boundary, whihis unaeptable. To resolve this problem while maintaining the \susy without BC" property,we looked for an additional separately susy boundary ation ontaining the same term e2S.The simplest suh ation is (3.38). Adding it to the minimal bulk-plus-boundary ation givenby the \F +A" formula, we �nd that the S-term gets replaed by the York-Gibbons-Hawking16In 5D, the analog of this ation was found in [19℄ and its \susy without BC" was established up to the4-fermi terms and terms involving the 5D graviphoton.{ 16 {



extrinsi urvature term K together with the gravitino bilinear  a+ab b�. Neither the bulknor the boundary ation is separately susy, but their sum is and it is \susy without BC."In order to onstrut separately susy boundary ations systematially, we have developeda o-dimension one deomposition of bulk supermultiplets. We found that the 3D N = 1sugra multiplet (eMA;  M ; S) deomposes into several 2D N = (1; 0) multiplets: the induedsugra multiplet (ema;  m+), the radion multiplet (e33̂;� 3� + e3a a�) and an \o�-diagonalmultiplet" (e3a;�e33̂ a� + a 3+) [12℄. (The other o�-diagonal omponent of the vielbein,em3̂, vanishes in our Lorentz gauge (2.7).) With the parity assignments given in (3.7), the �rsttwo multiplets are \even" and the last one is \odd." The 3D N = 1 salar multiplet (A;�; F )allows a similar deomposition; see (3.33). Expliit veri�ation that these submultipletstransform as standard 2D N = (1; 0) supermultiplets is tedious [12℄, but our analysis of thegauge algebra guarantees that the o-dimension one deomposition does work and does notrequire any (boundary) onditions on �elds.In the superspae formulation, one an at on super�elds with superspae ovariantderivatives to onstrut new super�elds. In the tensor alulus, the new multiplets an beonstruted simply by hoosing an appropriate lowest omponent. For example, startingwith a a�, we obtain our extrinsi urvature (salar) multiplet (3.30). Starting with  a�,we similarly obtain an extrinsi urvature tensor multiplet [12℄. The multiplets obtained inthis way an, together with any number of independent boundary matter multiplets, be usedto onstrut separately susy boundary ations using the standard 2D N = (1; 0) F -densityformula (3.35). In onjuntion with our \F + A" formula, this gives the most general bulk-plus-boundary ations that are \susy without BC." However, requiring that the variationalpriniple yields �eld equations that are not too strong restrits the hoie of boundary ationsthat one an allow [12℄.We should note that the Lorentz gauge (2.7) that we used in this work allows a tremendoussimpli�ation of the algebra. At the same time, our results an be extended to the ase whenno Lorentz gauge is imposed (see e.g. footnote 12) [12℄. We also note that our tensor alulusapproah relies heavily on the o�-shell supergravity formulation (with auxiliary �elds). Suha formulation is not always available in higher dimensions. Nonetheless, a onrete higherdimensional model (suh as the 11D Horava-Witten onstrution) has still a hane to be\susy without BC" as we disussed in setion 4.3.Our program of \susy without BC" an and should be extended to (a) dimensions higherthan three, (b) the superspae formulation, () superonformal symmetries and superonfor-mal ations, (d) BRST symmetry. Some progress in these diretions has already been ahieved[12℄. Ultimately, this would allow to have omplete ontrol over the models disussed in theIntrodution as well as other models where symmetries and boundaries ollide.Aknowledgments. We would like to thank Dima Vassilevih for his partiipationin the beginning of this projet. D.V.B. also thanks Jon Bagger for disussions on related{ 17 {
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