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ABSTRACT. We continue the study of the space BV*(R™) of functions with bounded
fractional variation in R™ of order a € (0, 1) introduced in our previous work [10], by
dealing with the asymptotic behaviour of the fractional operators involved. After some
technical improvements of certain results of [10], we prove that the fractional a-variation
converges to the standard De Giorgi’s variation both pointwise and in the I'-limit sense
as @ — 17. We also prove that the fractional [-variation converges to the fractional
a-variation both pointwise and in the I'-limit sense as § — o~ for any given « € (0, 1).
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1. INTRODUCTION

1.1. A distributional approach to fractional variation. In our previous work [10],
we introduced the space BV *(R™) of functions with bounded fractional variation in R"
of order o € (0,1). Precisely, a function f € L'(R"™) belongs to the space BV*(R") if its
fractional a-variation

| D fI(R™) := sup{/Rn fdiviedr : ¢ € CE(R™RY), |||l mn;rny < 1} (1.1)

is finite. Here

divp(z) = tin.a /Rn (v - Ty) _(irrﬁza:lw(x)) dy, r e R, (1.2)

is the fractional a-divergence of ¢ € C°(R"™; R"), where
()
na =202 ————~ 1.3

2

for any given « € (0,1). The operator div® was introduced in [35] as the natural dual
operator of the much more studied fractional a-gradient

Vef(x) = pina /n (y _|;)_(f:£ﬁlr;+{(x)) dy, xr € R", (1.4)

defined for all f € C2°(R™). For an account on the existing literature on the operator V¢,
see [31] Section 1]. Here we only refer to [20-33[35H37] for the articles tightly connected
to the present work and to [27), Section 15.2] for an agile presentation of the fractional op-
erators defined in (L2) and in (I4]) and of some of their elementary properties. According
to [33, Section 1], it is interesting to notice that [20] seems to be the earliest reference for
the operator defined in (I.4]).

The operators in (L2)) and in (4] are dual in the sense that

fdiviodr = —/ p-Vfdx (1.5)
R™ R™

for all f € C(R") and ¢ € C(R™;R™), see [35, Section 6] and [10, Lemma 2.5].
Moreover, both operators have good integrability properties when applied to test func-
tions, namely V*f € LP(R") and div®y € LP(R™;R") for all p € [1,+o0] for any given
f € CP(R™) and ¢ € C°(R™;R"), see [10, Corollary 2.3].
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The integration-by-part formula (ILH) represents the starting point for the distributional
approach to fractional Sobolev spaces and fractional variation we developed in [10]. In
fact, similarly to the classical case, a function f € L'(R™) belongs to BV*(R"™) if and
only if there exists a finite vector-valued Radon measure D®f € .# (R"; R™) such that

/Rnfdivo‘wd:c:—/RandDo‘f (1.6)

for all p € C°(R™;R"), see [10, Theorem 3.2].

Motivated by (L) and similarly to the classical case, we can define the weak fractional
a-gradient of a function f € LP(R™), with p € [1, +00], as the function V2 f € Li (R"; R")
satisfying

/fdiv‘ﬂpd:c:—/ Vo f-edx
Rn Rn

for all p € C°(R™;R™). For o € (0,1) and p € [1,+00], we can thus define the distribu-
tional fractional Sobolev space

SYP(R™) :={f e LP(R") : AV. fe LP(R";R")} (1.7)
naturally endowed with the norm
[fl[sor@ny == I fller@e) + IVEfllr@erny V€ S¥P(R™). (1.8)

It is interesting to compare the distributional fractional Sobolev spaces S“P(R™) with
the well-known fractional Sobolev space W*P(R™), that is, the space

)P 0
WP(R") := {f € LP(R") : [flwanmn) = (/n/n |2 _y|n+pa| dx d?/) < +OO}
endowed with the norm

| fllwer@ny = | fllo@n) + [flwer@ny — V.f € WHP(R").

If p = +oo, then W**(R") naturally coincides with the space of bounded a-Hélder
continuous functions endowed with the usual norm (see [14] for a detailed account on the
spaces W®P).

For the case p = 1, starting from the very definition of the fractional gradient V¢,
it is plain to see that W*!(R") ¢ S*!(R") Cc BV*(R™) with both (strict) continuous
embeddings, see [10, Theorems 3.18 and 3.25].

For the case p € (1, +00), instead, it is known that S*?(R™) D L*P(R"™) with continuous
embedding, where L*P(R") is the Bessel potential space of parameters a € (0,1) and
p € (1,+00), see [10, Section 3.9] and the references therein. In the forthcoming paper [9],
it will be proved that also the inclusion S*?(R™) C L*P(R") holds continuously, so that
the spaces S®P(R") and L*P(R") coincide. In particular, we get the following relations:
Seter(R") ¢ W*P(R") C S*=P(R") with continuous embeddings for all a € (0,1),
p € (1,400) and 0 < ¢ < min{a, 1 — a}, see [32, Theorem 2.2]; S*?(R") = W*?(R") for
all a € (0,1), see [32, Theorem 2.2]; W*?(R") C S*P(R™) with continuous embedding for
all a € (0,1) and p € (1,2], see [38, Chapter V, Section 5.3].

In the geometric regime p = 1, our distributional approach to the fractional variation
naturally provides a new definition of distributional fractional perimeter. Precisely, for
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any open set 0 C R", the fractional Caccioppoli a-perimeter in £ of a measurable set
E C R" is the fractional a-variation of xg in €2, i.e.

|DxE|(€2) = Sup{/E divipdz : o € CZ (G R), (ol = @rn) < 1}.

Thus, F is a set with finite fractional Caccioppoli a-perimeter in Q0 if |D*xg|(Q) < 4o00.
Similarly to the aforementioned embedding W*!(R") C BV*(R"), we have the in-

equality
[DXel(2) < pin.oLa(E; ) (1.9)

for any open set 2 C R", see [10 Proposition 4.8], where

Ixe(r) — Ixe(®) — xe(y)|
PaE;Q::/ W e dy 2// dedy (1.1
( ) QJo |"+O‘ + R™\Q |:E — y|nte ray (1.10)

|z =y

is the standard fractional a-perimeter of a measurable set E C R™ relative to the open set
Q2 C R™ (see [I1] for an account on the fractional perimeter P,). Note that, by definition,
the fractional a-perimeter of E in R™ is simply P,(F) := P,(F;R") = [XE]Wa 1&ny. We
remark that inequality (L) is strict in most of the cases, as shown in Section 2.6] below.
This completely answers a question left open in our previous work [10].

1.2. Asymptotics and I'-convergence in the standard fractional setting. The
fractional Sobolev space W*P(R™) can be understood as an ‘intermediate space’” between
the space LP(R™) and the standard Sobolev space W!?(R™). In fact, W*P(R") can be
recovered as a suitable (Teal) interpolation space between the spaces LP(R™) and W!P(R™).
We refer to [5,140] for a general introduction on interpolation spaces and to [26] for a more
specific treatment of the interpolation space between LP(R") and WP(R™).

One then naturally expects that, for a sufficiently regular function f, the fractional
Sobolev seminorm |[f]ya»@ny, multiplied by a suitable renormalising constant, should
tend to || f||Lrn) as @ — 0% and to ||V f||Lr(rny as o — 17. Indeed, for p € [1,400) and

€ (0,1), it is known that

alggl+a[f]wap(ﬂ&n = Anp Hf”LP Rn) (1.11)
for all f € Uae(o,) W*P(R™), while
lim (1-—a) [f]gva,p(w) By ||vf||LP(]Rn (1.12)
a—1

for all f € W!'?(R"). Here A, ,, B,, > 0 are two constants depending only on n,p. The
limit (LITI]) was proved in [2324], while the limit (I.I2) was established in [6]. As proved
in [13], when p = 1 the limit (LI2) holds in the more general case of BV functions, that
is,

lim (1 — @) [flwer (@) = Bui |DF|(R™) (1.13)

a—1-
for all f € BV(R"). For a different approach to the limits in (LII)) and in (TI3]) based
on interpolation techniques, see [26].
Concerning the fractional perimeter P, given in (LLI0), one has some additional infor-
mation besides equations (L.IT]) and (LI3)).
On the one hand, thanks to [28, Theorem 1.2], the fractional a-perimeter P, enjoys the
following fractional analogue of Gustin’s Bozing Inequality (see [19] and [16, Corollary
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4.5.4]): there exists a dimensional constant ¢, > 0 such that, for any bounded open set
E C R", one can find a covering

E C U Brk(xk)
keN

of open balls such that
> < cpa(l — a)Pu(E). (1.14)
keN
Inequality (LI4) bridges the two limiting behaviours given by (ILIIl) and (II3]) and
provides a useful tool for recovering Gagliardo-Nirenberg—Sobolev and Poincaré-Sobolev
inequalities that remain stable as the exponent « € (0, 1) approaches the endpoints.
On the other hand, by [2, Theorem 2|, the fractional a-perimeter P, T'-converges in
Li.(R") to the standard De Giorgi’s perimeter P as o — 17, that is, if Q@ C R" is a
bounded open set with Lipschitz boundary, then

[(Lige) - lim (1 — a) Po(E; ) = 2w,1 P(E; Q) (1.15)
a— 1"

for all measurable sets E C R", where w,, is the volume of the unit ball in R™ (it should
be noted that in [2] the authors use a slightly different definition of the fractional a-
perimeter, since they consider the functional J,(E,?) := 1P,(E,)). For a complete
account on I'-convergence, we refer the reader to the monographs [7,12] (throughout all
the paper, with the symbol I'(X) - lim we denote the I'-convergence in the ambient metric
space X). The convergence in ([LTH]), besides giving a I-convergence analogue of the limit
in (LI3), is tightly connected with the study of the regularity properties of non-local

minimal surfaces, that is, (local) minimisers of the fractional a-perimeter P,.

1.3. Asymptotics and ['-convergence for the fractional a-variation as a — 1.
The main aim of the present work is to study the asymptotic behaviour of the fractional
a-variation (1)) as @« — 17, both in the pointwise and in the I'-convergence sense.

We provide counterparts of the limits (LI2) and (LI3)) for the fractional a-variation.
Indeed, we prove that, if f € W'P(R") for some p € (1,+00), then f € S*P(R") for all
a € (0,1) and, moreover,

In the geometric regime p = 1, we show that if f € BV(R") then f € BV*(R") for all
a € (0,1) and, in addition,

D*f = Df in A4 (R";R") and |D*f| — |Df| in .# (R") as o« — 1~ (1.17)
and
Tim |D*f|(E") = |Df|(R"). (1.18)

We are also able to treat the case p = +o00. In fact, we prove that if f € W1h*°(R") then
f e S¥°(R") for all « € (0,1) and, moreover,

Vof—=Vu,f in LR"R") asa — 1~ (1.19)

and
7.0 f ey < L Ef |V e ) (1.20)
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We refer the reader to Theorem [4.9] Theorem .10 and Theorem [4.11] below for the precise
statements. We warn the reader that the symbol ‘—’ appearing in (LI7) and (LI9)
denotes the weak*-convergence, see Section 211 below for the notation.

Some of the above results were partially announced in [34]. In a similar perspective,
we also refer to the work [25], where the authors proved convergence results for non-local
gradient operators on BV functions defined on bounded open sets with smooth boundary.
The approach developed in [25] is however completely different from the asymptotic analy-
sis we presently perform for the fractional operator defined in (L)), since the boundedness
of the domain of definition of the integral operators considered in [25] plays a crucial role.

Notice that the renormalising factor (1 — oz)% is not needed in the limits (CI6) — (T20),
contrarily to what happened for the limits (L12)) and (LI3)). In fact, this difference should
not come as a surprise, since the constant p,, in (L3), encoded in the definition of the
operator V¢, satisfies

l-«

Wn

as o — 17, (1.21)

Hn,a ™

and thus plays a similar role of the factor (1 — oz)% in the limit as o — 17. Thus,
differently from our previous work [L10], the constant i, . appearing in the definition of
the operators V* and div® is of crucial importance in the asymptotic analysis developed
in the present paper.

Another relevant aspect of our approach is that convergence as  — 1~ holds true not
only for the total energies, but also at the level of differential operators, in the strong
sense when p € (1,+00) and in the weak™* sense for p = 1 and p = +o00. In simpler terms,
the non-local fractional a-gradient V* converges to the local gradient V as a — 17 in the
most natural way every time the limit is well defined.

We also provide a counterpart of (LIH) for the fractional a-variation as a@ — 1°.
Precisely, we prove that, if 2 C R™ is a bounded open set with Lipschitz boundary, then

D(LL)- lim [DXE|(©) = P(E: ) (1.22)

for all measurable set £ C R", see Theorem AI6. In view of (LJ), one may ask
whether the T'-limsup inequality in (L22) could be deduced from the I'-limsup in-

equality in (LI5). In fact, by employing (L9) together with (LIH) and (L2I]), one can

estimate

2wn—1

(L]

loc) -lim sup |DQXE‘ (Q) < F<Llloc> -lim sup :un,CVPCV(E7 Q) =

a—1— a—1— Wn

P(E,Q).

2wn—1

However, we have =2=t > 1 for any n > 2 and thus the I'-lim sup inequality in (C22)
follows from the I'-lim sup inequality in (ILT3) only in the case n = 1. In a similar way,
one sees that the I'-liminf inequality in (L22]) implies the I'-lim inf inequality in (I3
only in the case n = 1.

Besides the counterpart of (ILIH]), our approach allows to prove that I'-convergence
holds true also at the level of functions. Indeed, if f € BV(R") and 2 C R™ is an open
set such that either €2 is bounded with Lipschitz boundary or {2 = R", then

D(LY)- lim |D°FI(©) = |DS|(2). (1.23)
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We refer the reader to Theorem .13, Theorem .14l and Theorem E.I7 for the (even more
general) results in this direction. Again, similarly as before and thanks to the asymp-
totic behaviour (L.21), the renormalising factor (1 — «) is not needed in the limits (T.22))

and (T23)).
As a byproduct of the techniques developed for the asymptotic study of the fractional
a-variation as o — 17, we are also able to characterise the behaviour of the fractional

p-variation as § — a~, for any given a € (0,1). On the one hand, if f € BV*(R"), then
DPf — D*f in . (R™;R™) and |D?f| — |D*f| in .4 (R"™) as f — o~
and, moreover,
Jim |DPFI(RY) = |D*f|(R"),
see Theorem 5.4l On the other hand, if f € BV*(R") and 2 C R" is an open set such
that either € is bounded and |D*f|(0€2) = 0 or 2 = R", then

D) Jim [D%1(@) = |D*S1(9),
see Theorem and Theorem

1.4. Future developments: asymptotics for the fractional a-variation as o« — 0.
Having in mind the limit (LIT), it would be interesting to understand what happens to
the fractional a-variation (ILI)) as « — 0*. Note that

")
lim pi,.q = 2/
7 1
a—0t T (5)
so there is no renormalisation factor as o — 07, differently from (L2TJ).
At least formally, as a — 0% the fractional a-gradient in (L4]) is converging to the

operator
V(@) e [, 2 T;(f(gﬁn;f(x))

The operator in (L25]) is well defined for all f € C2°(R™) and, actually, coincides with the
well-known vector-valued Riesz transform Rf, see [17), Section 5.1.4] and [38, Chapter 3].
Similarly, the fractional a-divergence in (L2) is formally converging to the operator

= fino, (1.24)

dy, r e R" (1.25)

O () (y—2) (py) = »()) n
divip(z) = pno /R" 7 — o dy, x € R", (1.26)
which is well defined for all ¢ € C2°(R™; R™).

In perfect analogy with what we did before, we can introduce the space BV(R") as
the space of functions f € L'(R"™) such that the quantity

IDOF|(R™) = sup{/Rn Fdiv’pdz : o € CFR™RY), [l @izn < 1}

is finite. Surprisingly (and differently from the fractional a-variation, recall [10, Sec-
tion 3.10]), it turns out that |D°f| < £ for all f € BV°(R"). More precisely, one can
actually prove that BV?(R") = H'(R"), in the sense that f € BV(R") if and only if
f e HY(R"), with D'f = Rf.%™ in .4 (R";R"). Here

H'R") == {f € L'(R") : Rf € L'(R";R")}
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is the (real) Hardy space, see [39, Chapter III] for the precise definition. Thus, it would
be interesting to understand for which functions f € L'(R") the fractional a-gradient
Vef tends (in a suitable sense) to the Riesz transform Rf as a — 0. Of course, if
Rf ¢ L'(R™R"), that is, f ¢ H'(R"), then one cannot expect strong convergence in L'
and, instead, may consider the asymptotic behaviour of the rescaled fractional gradient
aVf as a — 07, in analogy with the limit in (LII]). This line of research, as well as
the identifications BV® = H! and S“? = L*P mentioned above, will be the subject of the
forthcoming paper [9].

1.5. Organisation of the paper. The paper is organised as follows. In Section [2
after having briefly recalled the definitions and the main properties of the operators V¢
and div®, we extend certain technical results of [I0]. In Section B, we prove several
integrability properties of the fractional a-gradient and two useful representation formulas
for the fractional a-variation of functions with bounded De Giorgi’s variation. We are
also able to prove similar results for the fractional f-gradient of functions with bounded
fractional a-variation, see Section [3.4]l In Section [, we study the asymptotic behaviour of
the fractional a-variation as & — 1~ and prove pointwise-convergence and I'-convergence
results, dealing separately with the integrability exponents p = 1, p € (1,+00) and
p = +o00. In Section [i, we show that the fractional S-variation weakly converges and I'-
converges to the fractional a-variation as 5 — a~ for any « € (0,1). In Appendix [A] for
the reader’s convenience, we state and prove two known results on the truncation and the
approximation of BV functions and sets with finite perimeter that are used in Section [3]
and in Section [l

2. PRELIMINARIES

2.1. General notation. We start with a brief description of the main notation used in
this paper. In order to keep the exposition the most reader-friendly as possible, we retain
the same notation adopted in our previous work [10].

Given an open set (), we say that a set E is compactly contained in {2, and we write
E €, if the E is compact and contained in Q. We denote by #" and S the n-
dimensional Lebesgue measure and the a-dimensional Hausdorff measure on R" respec-
tively, with o > 0. Unless otherwise stated, a measurable set is a .Z"-measurable set.
We also use the notation |E| = Z"(E). All functions we consider in this paper are
Lebesgue measurable, unless otherwise stated. We denote by B,(x) the standard open
Euclidean ball with center x € R™ and radius » > 0. We let B, = B,(0). Recall that

Wy = |B1| = 72T ("T“) and " Y(0B;) = nw,, where T is Euler’'s Gamma function,
see [4].

We let GL(n) D O(n) D SO(n) be the general linear group, the orthogonal group and
the special orthogonal group respectively. We tacitly identify GL(n) C R™ with the space
of invertible n x n-matrices and we endow it with the usual Euclidean distance in R™".

For k € NgU{+o0} and m € N, we denote by C*({2; R™) and Lip.(Q2; R™) the spaces of
Ck-regular and, respectively, Lipschitz-regular, m-vector-valued functions defined on R"
with compact support in €.

For any exponent p € [1,+o0], we denote by

LP(C;R™) = {u: Q= R™: Ju|| prormy < +oo}
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the space of m-vector-valued Lebesgue p-integrable functions on Q. For p € [1, 4+00], we
say that (fi)gen C LP(;R™) weakly converges to f € LP(;R™), and we write f, — f
in LP(Q;R™) as k — 400, if

im [ fi-pde= [ o 2.1

Jm o fipde= | f-pde (2.1)
forall ¢ € L1(Q; R™), with ¢ € [1, +0o0] the conjugate exponent of p, that is, %Jr% = 1 (with
the usual convention +%.o = 0). Note that in the case p = +00 we make a little abuse of

terminology, since the limit in (Z1]) actually defines the weak*-convergence in L>(2; R™).
We denote by

WHP(Q;R™) 1= {U € LP(GR™) @ [ulwipirm) = || VU o rrimy < +OO}

the space of m-vector-valued Sobolev functions on €2, see for instance [21, Chapter 10] for
its precise definition and main properties. We also let

wP(Q;R™) = {u € Li (GR™) : [ulwiormy < +oo}.

loc

We denote by
BV(;R™) = {u € L' R™) : [ulpy(@m) = |Dul(Q) < +o0}

the space of m-vector-valued functions of bounded variation on 2, see for instance [3,
Chapter 3] or [I5, Chapter 5] for its precise definition and main properties. We also let

bu(Q;R™) = {u € Li (G R™) : [ulpvarm) < +oo}.

loc

For ae € (0,1) and p € [1,+00), we denote by

WeP(Q;R™) = {u € LP(LR™) : [ulwew(o;rm) = (/Q ; lutz) = wly)l g, d?J); < +OO}

o=y
the space of m-vector-valued fractional Sobolev functions on €2, see [14] for its precise
definition and main properties. We also let
wP (G R™) = {u € Lio(BR™) : [ulwan(;zm) < +00}.
For a € (0,1) and p = +o00, we simply let
W (Q; R™) = {u € L¥(;R™) : sup M < —i—oo},
ryeQaty T — Y|

so that W®>®(Q;R™) = CP*(Q;R™), the space of m-vector-valued bounded a-Hélder
continuous functions on §2.

We let . (€2; R™) be the space of m-vector-valued Radon measures with finite total
variation, precisely

/() i=sup{ [ o -du: ¢ € CULR™, [ellumimm < 1

for p € A (1, R™). We say that (py)ken C A (Q;R™) weakly converges to p € A (£; R™),
and we write up — p in A (;R™) as k — +oo0, if

I / :/- 2.2
Jm oo edp = | o dp (2.2)
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for all ¢ € C%(€2;R™). Note that we make a little abuse of terminology, since the limit
in (2.2)) actually defines the weak*-convergence in .4 (2; R™).

In order to avoid heavy notation, if the elements of a function space F(€;R™) are
real-valued (i.e. m = 1), then we will drop the target space and simply write F'(2).

2.2. Basic properties of V* and div®. We recall the non-local operators V* and div®
introduced by Silhavy in [35] (see also our previous work [10]).
Let a € (0,1) and set

n+a+1
— 9a -5 I ( 2 )
na - s

. 2f(z + 2)
V() := piy o lim — dz
f(z) Hon,o 2111 (el>e} |z[ntet]

be the fractional a-gradient of f € Lip.(R") at x € R™. We also let

1

We let

div¥o(z) := finq lim 2o +z2) dz

e=0 J{|z|>e}  |z|ntott

be the fractional a-divergence of ¢ € Lip,(R";R"™) at © € R". The non-local operators V¢
and div® are well defined in the sense that the involved integrals converge and the limits
exist, see [35], Section 7] and [10, Section 2]. Moreover, since

z
——dz =0, Ve > 0,
/{z>€} |z|ntott

it is immediate to check that V% = 0 for all ¢ € R and

V1 0) = ol | WD)y

e=0 /{ly—a|>e} |y — x|totl
— o lim (y—2)(f (y)+—+{ (7)) dy
e=0 J{ja—y|>e} ly — z|nte

P (Lt (G

|y — z[rrot! ’

Ve e R",
for all f € Lip.(R™). Analogously, we also have

. . (y—x) -p(y)

div¥o(z) = pin.o lim s

()0< ) Mo, 250 {Jo—y|>c} |y _ x|n+a+1

o lim (y —2) - (ely) = ¢(2)) ,

7a 1
e=0 J{jo—y|>e} ly — x|ntot

B (y — ) - (oy) — p()) n
_,un,a/n ‘y_x‘nJrChLl dy; Ve e R )

)

9

for all ¢ € Lip (R").
Given o € (0,n), we let

Lo f(x) = Hmlze / L (2.3)

n—ao Jre |z —yl"e
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be the Riesz potential of order a € (0,n) of a function u € C°(R™; R™). We recall that,
if a, B € (0,n) satisfy o + 8 < n, then we have the following semigroup property

]oz(lﬁu) = la4pU (2'4)
for all u € C°(R™ R™). In addition, if 1 < p < ¢ < +o0 satisfy
I 1 «
¢ p n

then there exists a constant C,, ,, > 0 such that the operator in (Z3]) satisfies
Hawllza@n; km) < Cnopllull Lo (e Rm) (2.5)

for all u € C°(R™; R™). As a consequence, the operator in (Z3]) extends to a linear
continuous operator from LP(R™; R™) to LY(R™;R™), for which we retain the same nota-
tion. For a proof of (2Z.4]) and (2.H), we refer the reader to [38, Chapter V, Section 1] and
to [18, Section 1.2.1].

We can now recall the following result, see [10, Proposition 2.2 and Corollary 2.3].

Proposition 2.1. Let o € (0,1). If f € Lip (R"), then

Vaf = [1,an - V[l,af (26)
and Vf € LY(R™R™) N L>°(R™; R"), with
IVl rey < ttnalflwes@n (2.7)
and
IV [l @nirny < Cra v IV fllLoe@nsmm) (2.8)
for any bounded open set U C R™ such that supp(f) C U, where
n+a—1
Nfn,« . 1— nwn, B l1-a
= ’ d o _— no . 2.
Cnav (1—a)(n+a-—1) (wn fam(U) + <n+a—1) U] ) (29)

Analogously, if ¢ € Lip (R™; R™) then
div¥e = I1_,divp = divli_,p (2.10)
and div®p € LY(R™) N L®(R"), with
[div¥ell1mny < pinalplwer@n, rn) (2.11)
and
vl 1) < Craolldivell e (2.12)
for any bounded open set U C R™ such that supp(y) C U, where Cy, o is as in ([2.9).

2.3. Extension of V® and div* to Lip,-regular tests. In the following result, we
extend the fractional a-divergence to Lip,-regular vector fields.

Lemma 2.2 (Extension of div® to Lip,). Let o € (0,1). The operator
div®: Lip,(R™";R") — L*(R")
given by

div¥e(z) = fina /Rn v = Ty) _(i‘(gja:f(x)) dy, xeR", (2.13)
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for all ¢ € Lip, (R™; R™), is well defined, with

11—«
2 NWn o

ive g oe ey < 5 Lip ()l e e (2.14)

a(l —
and satisfies
Aiv* o (2) = fin, lim / (y—=)- (w(y+) :;p(fc)) dy
e=0F J{|ly—z|>¢} |y — .T‘n « (2 15)
— . Tim (y—)-»(y)
M0t Jly—ale} |y — @frret!
for all x € R™. Moreover, if in addition I,_,|dive| € LL (R"), then
divip(z) = I_odive(x) (2.16)

for a.e. x € R™.

Proof. We split the proof in two steps.
Step 1: proof of Z13), 2I4) and (ZIH). Given z € R™ and r > 0, we can estimate

/ (y — ) (py) — p(z))
{ly—=z|<r}

|y — [rtett
(y— ) - (p(y) — () | too )
dy < 2nwy ||| Lo mR / o~ do.
/{|ym|>r} ly — a|rtatt Il ')

Hence the function in (2I3)) is well defined for all z € R™ and

Li 2|l || Lo (Rn: Rn
Hdiva(p”Lw(R”) < nwy, (M e 4 M T—oz) ’
11—« o

dy < nw,Lip(yp) / o “do
0

and

so that (2I4) follows by optimising the right-hand side in r > 0. Moreover, since

(y — ) (oly) — o))
. — o —x .
< Lip(p) X000 =2 oo gy M2l =2

jy — oot jy— o+
and

z
——dy =0
/{z>€} | z|ntott y

for all ¢ > 0, by Lebesgue’s Dominated Convergence Theorem we immediately get the
two equalities in (Z.I5]) for all z € R™.
Step 2: proof of ([ZI0G). Assume that I, _,|divey| € L .(R™). Then

loc
dive(y)|
|y — x[rret

1 n
€ L,(R") (2.17)
for a.e. z € R". Hence, by Lebesgue’s Dominated Convergence Theorem, we can write

. . dive(y)
I _odivp(z) = pino lim —
' @) =0t J{jy—al>e} |y — z[rTe!
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for a.e. z € R™. Now let € > 0 be fixed and let R > 0. Again by (2I7) and Lebesgue’s
Dominated Convergence Theorem, we have

fim dive(y) . _ / dively)
R—+00 J{R>|y—a|>e} [y — x|nFTot {ly—z|>e} |y — x[nte-l

for a.e. x € R". Moreover, integrating by parts, we get

di di
/ W(f),l dy = / lvy¢(+y ix) dy
{(R>|y—a|>e} [y — x|+ (R>lyl>e}  |y|"te

y (p(y+:L‘) -1 y (p(y+x) 1
4"y / Py ED) G pn1gy,
/{Iy =R} |y| |y|"+°‘ ! ( ) {lyl=¢} |y| |y|n+oz 1 ( )

Yoy + )
o[ wevid,
{R>\y|>6} |y|n+a+1 y

for all R > 0 and for a.e. x € R™. Since ¢ € L>®(R™R"), by Lebesgue’s Dominated
Convergence Theorem we have

lim

y-oly +x) :/ y-oly+ )
R—+too J{R>[y|>e}  |y[rTott {ly|>e}

|y |ttt

for all e > 0 and all z € R™. We can also estimate
y ply +) 1
A" (y
’/{Iy ey Tyl fyret W)
for all R > 0 and all x € R™. We thus have that
divip(y y-ply+ao Yy eyt n—
/ ()dy:/ ( )dy/ WE2) s en11y)
{ {lyl>e} {

ly—a|>e} |y — x|rte-] |y|nratt wl=e} [y] [y[nro

< o] oy R

for all e > 0 and a.e. x € R™. Since also

‘/ﬂy Y ey+a) Ly) =

y oly+z)—e@) . .4
/{ 4" (y)

=} [yl [yl ot wi=ey Jyl Jylrre?
< nwy, Lip(p) et ™
for all e > 0 and € R", we conclude that
di -
lim ivip(y) dy = lim (y — ) - o(y) dy
=0+ J{jy-al>e} |y — z[*Te! =0+ J{jy-al>e} |y — z[rTet!
for a.e. z € R™, proving (2.10). O

We can also extend the fractional a-gradient to Lip,-regular functions. The proof is
very similar to the one of Lemma and is left to the reader.

Lemma 2.3 (Extension of V® to Lip,). Let a € (0,1). The operator
Ve Lip,(R") — L®(R";R")
given by

V1) = e [ O UGS

" |y — a|rrott
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for all f € Lip,(R™), is well defined, with

21‘“nwnun a

a {o o] mn. n < - . <
IV Ly < =g e i) e

and satisfies

@ — . f —f
V@) = tine elg(% {ly—z|>e} . T?/) —($|(342a+1 ) dy
(y—=)-fy)
= lim AV VAP
= Mn,a e—0t /{y x|>e} |y x|n+a+1 Y

for all x € R™. Moreover, if in addition I, |V f| € Li,
Vef(x) = LoV f(x)

(R™), then

for a.e. x € R™.

2.4. Extended Leibniz’s rules for V* and div®. The following two results extend the
validity of Leibniz’s rules proved in [10, Lemmas 2.6 and 2.7] to Lip,-regular functions
and Lip,-regular vector fields. The proofs are very similar to the ones given in [10] and
to those of Lemma and Lemma 2.3] and thus are left to the reader.

Lemma 2.4 (Extended Leibniz’s rule for V¥). Let a € (0,1). If f € Lip,(R") and
n € Lip.(R™), then

V) =V + fVi+ Vo, f),
where

o (0 F)(2) = fine / (y —2) - (f(y) = f2)(n(y) —n()) ,

|y — z[rrotl Y
for all x € R"™, with

« 2% nwnlunoszHL‘X’R”
VR0 Dl ey < GG Lip () [l ey

and
VR Il @esrey < el f1 2oe @y [ wet gy

Lemma 2.5 (Extended Leibniz’s rule for div®). Let a € (0,1). If ¢ € Lip,(R™;R") and
n € Lip,(R™), then

div¥(ny) = ndivie 4+ ¢ - V9 + divyy (1, ),

where

A ) = v, == DA =)

for all x € R, with

22 T fhn, ozHQOHLOO R™;

R™)
L OO n

| divR, (7, @) || Loe mny <

and
[divRe, (7 @) pr ey < tinallpll oo @nsrm [Mlwer ey
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2.5. Extended integration-by-part formulas. We now recall the definition of the
space of functions with bounded fractional a-variation. Given a € (0, 1), we let

BVe(R") = {f € L'(R") : D" f|(R") < +oo},
where
D fI(R™) = sup{ | Fdiviedr:p e CE@YRY), [lp]imnan < 1}

is the fractional a-variation of f € L*(R™). We refer the reader to [10, Section 3] for the
basic properties of this function space. Here we just recall the following result, see [10],
Theorem 3.2 and Proposition 3.6] for the proof.

Theorem 2.6 (Structure theorem for BV* functions). Let a € (0,1). If f € L'(R"),
then f € BV*(R") if and only if there exists a finite vector-valued Radon measure Df €
A (R™;R™) such that

/ fdivipds = —/ o dD°f (2.18)
R R"
for all ¢ € Lip (R"; R™).

Thanks to Lemma [2.5] we can actually prove that a function in BV*(R") can be tested
against any Lip,-regular vector field.

Proposition 2.7 (Lip,-regular test for BV* functions). Let o € (0,1). If f € BV*(R"),
then (2I8) holds for all ¢ € Lip,(R"™; R™).

Proof. We argue similarly as in the proof of [10, Theorem 3.8]. Fix ¢ € Lip,(R™;R") and
let (nr)r>0 C C°(R™) be a family of cut-off functions as in [I0, Section 3.3]. On the one
hand, since

L fordiviode = [ fdivioda| < |divpliee [ 1f](L=ne) do

for all R > 0, by Lebesgue’s Dominated Convergence Theorem we have

lim fnrdiviepdr = / fdiv¥pdr.
n Rn

R—+4o00 JR
On the other hand, by Lemma we can write

/Rn fordiviede = /]R fdive (nre) do — /]R fo-Vinrdr - /R f AivRy, (g, @) dx

for all R > 0. By [10, Proposition 3.6], we have

/Rn fdiv¥(ngy) de = —/Rn nryp - dD* f

for all R > 0. Since
[ mg-apg = [ o dD*f| < Jellimmeaen [ (1= ) diD ]

for all R > 0, by Lebesgue’s Dominated Convergence Theorem (with respect to the finite
measure |D®f|) we have

lim chp-dDo‘f:/ o dD°f.
n R’VL

R—+4+00 JR
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Finally, we can estimate

‘/ fo-Vrdx

and, similarly,

’/ fdiviy, (R, ) dx

By Lebesgue’s Dominated Convergence Theorem, we thus get that

i ([ g0 Vonmde+ [ fdiviy(m o)) =0

R—+o00

n8(y) — nr(2)]
< el [, 1@ [ HEE T dy da

nr(y) — nr(@)]
< Apllimimney [ 17 [, dyde

and the conclusion follows. O

Thanks to Lemma 2.4 we can prove that a function in Lip,(R") can be tested against
any Lip_-regular vector field. The proof is very similar to the one of Proposition 2.7 and
is thus left to the reader.

Proposition 2.8 (Integration by parts for Lip,-regular functions). Let o € (0,1). If
f € Lip,(R™), then

/ fdiv%pdx:—/ ©-VOfdz
R?’L R?’L
for all p € Lip . (R™; R™).

2.6. Comparison between W*! and BV seminorms. In this section, we completely
answer a question left open in [10, Section 1.4]. Given « € (0, 1) and an open set  C R",
we want to study the equality cases in the inequalities

”vafHLl(R";R") < ,Un,a[f]Wo"l(R")v |ID*xEe|(Q2) < ,Un,aPa(E3 Q),

as long as [ € W*(R") and P,(E;Q) < +o0o. The key idea to the solution of this
problem lies in the following simple result.

Lemma 2.9. Let A C R" be a measurable set with £™(A) > 0. If F € L'(A;R™), then

/A F(z)dz| < /A |F(2)| da,

with equality if and only if F = fv a.e. in A for some constant direction v € S™ 1 and
some scalar function f € L*(A) with f >0 a.e. in A.

Proof. The inequality is well known and it is obvious that it is an equality if F' = fv
a.e. in A for some constant direction v € S™! and some scalar function f € L'(A) with
f>0a.e. in A. So let us assume that
= F(z)|dz.
J @)

/A F(z)dx

If [, F(z)dx =0, then also [, |F(z)|dz =0. Thus F' = 0 a.e. in A and there is nothing
to prove. If [, F'(x) dx # 0 instead, then we can write

/A \F(2)| — F(z) - vda =0,
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with Pl d
x)dz
U= fA ( ) c Smfli
| [a F () da|
Therefore, we obtain |F(z)| = F(x) - v for a.e. x € A, so that ;Eg‘ cv=1forae z€ A

such that |F(z)| # 0. This implies that F' = fv a.e. in A with f = |F| € L'(A) and the
conclusion follows. U

As an immediate consequence of Lemma 2.9, we have the following result.
Corollary 2.10. Let a € (0,1). If f € W*(R"), then
IV fllLi@nirry < tnal flwes @ny, (2.19)
with equality if and only if f =0 a.e. in R".
Proof. Tnequality (2I9) was proved in [I0, Theorem 3.18]. Note that, given f € L'(R"),

[flwe1@ny = 0if and only if f = 0 a.e. and thus, in this case, (ZI9) is trivially an equality.
If (219) holds as an equality and f is not equivalent to the zero function, then

o |f(y) — f(=)] _
/Rn <|v f@)| = pin,a /R ly—amte dy> dx =0
and thus

/ (f(y) = f(x)) - (y — ) J

|y — a|rrett

|y — [t

for all = € U, for some measurable set U C R" such that Z"(R"\ U) = 0. Now let z € U
be fixed. By Lemma (applied with A = R™), (2.20) implies that the (non-identically
zero) vector field

y—= (fly) = f@)(y—=), yeR"
has constant direction for all y € V,, for some measurable set V, C R" such that
LR\ V,) =0. Thus, given y,y" € V,, the two vectors y — = and y" — = are lin-
early dependent, so that the three points x, y and 3" are collinear. If n > 2, then this
immediately gives .£"(V,,) = 0, a contradiction, so that (ZI9) must be strict. If instead
n = 1, then we know that

relU = y— (f(y) — f(x)) (y — x) has constant sign for all y € V. (2.21)

We claim that (Z2I) implies that the function f is (equivalent to) a (non-constant)
monotone function. If so, then f ¢ L*(R), in contrast with the fact that f € W*1(R),
so that (2.I9) must be strict and the proof is concluded. To prove the claim, we argue as
follows. Fix x € U and assume that

(fly) = f2) (y —x) >0 (2.22)
for all y € V, without loss of generality. Now pick 2’ € U NV, such that 2’ > z. Then,

choosing y = 2’ in ([2.22), we get (f(2') — f(z)) (¢ —x) > 0 and thus f(z') > f(z).
Similarly, if " € U NV, is such that 2/ < x, then f(2') < f(z). Hence

esssup f(z) < f(z) < ess>inff(z)
z<x 2>
for all x € U (where esssup and essinf refer to the essential supremum and the essential

infimum respectively) and thus f must be equivalent to a (non-constant) non-decreasing
function. ]
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Given an open set {2 C R” and a measurable set £ C R", we define

olo |y —axrte r\QJo |y — x|rte

It is obvious to see that
P.(E;Q) < P,(E;Q) < 2P,(E;Q),

where P, is the fractional perimeter introduced in (LI0). Arguing similarly as in the
proof of [10, Proposition 4.8], it is immediate to see that

||vaXE||L1(Q;R") < Nn,apa(Eé Q), (2.23)
an inequality stronger than that in (IL9). In analogy with Corollary [ZT10, we have the
following result.
Corollary 2.11. Let a € (0,1), Q CR" be an open set and E C R" be a measurable set
such that P,(E;$) < 400.

(i) If n > 2, Z£™(E) >0 and ZL"(R" \ E) > 0, then inequality (Z23)) is strict.
(ii) If n =1, then [Z23) is an equality if and only if the following hold:
(a) for a.e. z € QN E, L1 ((—o00,z)\ E) =0 vel L ((z,4+00)\ E) =0;
(b) for a.e. x € Q\ E, L' ((—00,2) N E) =0 vel L' ((z,+00) N E) =0.

Proof. We prove the two statements separately.
Proof of (il). Assume n > 2. Since Z"(E) > 0, for a given z € Q \ E the map
y— (y—=x), foryekFE,

does not have constant orientation. Similarly, since Z"(R"\ E) > 0, for a given z € QNE
also the map

yrr (y—x), foryeR"\E,

does not have constant orientation. Hence, by Lemma 2.9 we must have

dy
/‘y x‘n+a+1 </EW, fOI'ZL‘GQ\E,

and, similarly,

y—x dy
—d </ —— forx e QNE.
/Rn\E [y — afrrert Y ‘ R\E |y — x|t

We thus get
a _ (xe(y) —xe(@) - (y —2)
”v XEHLl(Q;R") - ,un,oz/Q /n |y—{L‘|n+O‘+1 dy | dx
y—x
fina yldotpma [ [ dy|d
,/Q\E / |y_x|n+a T+ fhn, ang | Jem s [y — o] y | dx

dy dx dydx ~
<,Una/ / o T b, / / —— = fin,aPa(E;Q),
e Je Jy — z|rte one JrmE |y — z|Pte

proving ().
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Proof of (). Assume n = 1. We argue as in the proof of [10, Proposition 4.12]. Let
xe(y) — xe(2)
fE<y7 .CL’) =

|y — afite 7

for x,y € R, y # x.

Then we can write

I I
S— S5—

/ x)| dydx
( ety o)ldy+ [ Ity >|dy>

and

IVXEllp r) = Ml,a/ﬂ|/RfE(ya$) sgn(y — z) dy | dv

= | [ ety [ ety

Hence (2:23)) is an equality if and only if

dx.

[ tstworas = [ sstnoras| = [ Atstnolans [Tisstrolay 20

for a.e. x € €. Observing that

[ tetwrdy = [ feta dy} }/ frly @ dy}

/ ey, )dy>
< [ sty oldy+ [ Vst dy

for a.e. z € Q, we deduce that (223)) is an equality if and only if

[ty [ sty

= | [ st do| +

400

/x fE(y,x)dy\ (2.25)
v +00

:/,w|fE(y’x)|dy+/z [fely, )|y (2.20)

for a.e. x € Q. Now, on the one hand, squaring both sides of (225]) and simplifying, we
get that (2.23)) is an equality if and only if

T 400
( | fel.) dy) ( | ) dy) =0 (2:27)

for a.e. x € Q. On the other hand, we can rewrite (TZZEI) as

0</ |fe(y,x)|dy —

/ fe(y, dy|

)y~ [ o]y <0

for a.e. x € €2, so that we must have

[ tstvaay| = [ sty ay
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and
—+o0

+o0o
foly.w)dy| = [ |fely.2)] dy

for a.e. x € Q. Hence (227)) can be equivalently rewritten as

([ rstveaan)( [ 1stlan) =0 228)

for a.e. x € Q. Thus (Z23) is an equality if and only if at least one of the two integrals in
the left-hand side of (Z28)) is zero, and the reader can check that () readily follows. [

Remark 2.12 (Half-lines in Corollary ZITI{)). In the case n = 1, it is worth to stress
that (Z.23)) is always an equality when the set £ C R is (equivalent to) an half-line, i.e.,

xT

IV X (a,+00) |21 (@ ) = 1,0 Pa((@, +00); ©2)

for any o € (0,1), any a € R and any open set Q C R such that P,((a, +00); Q) < +oo.
However, the equality cases in (Z23) are considerably richer. Indeed, on the one side,

VX (=5, —)0(— 1,100 |1 (0,1 R) = B1,aPal(—5, —4) U (=1, +00); (0,1))

and, on the other side,
VX (=5,-4)0(0,400) | L1 (= 1,1); ) < fi1,0Pa((—=5, —4) U (0, +00); (—1, 1))
for any a € (0,1). We leave the simple computations to the interested reader.
3. ESTIMATES AND REPRESENTATION FORMULAS FOR THE FRACTIONAL a-GRADIENT

3.1. Integrability properties of the fractional a-gradient. We begin with the fol-
lowing technical local estimate on the W®!-seminorm of a function in BV..

Lemma 3.1. Let o € (0,1) and let f € BVioo(R™). Then f € W5 (R™) with

loc
Fwasion < " D) (Bye) (3.)

for all R > 0.
Proof. Fix R > 0 and let f € BVjy( R") be such that f € C*(Bsg). We can estimate

1fly) = f=)]
a dy dx
W A1(Br) — /BR /BR |y _ x|n+a

_/ / fly) — f(= )Idd
Br JBrN{ly— m|<2R} |y — z|nte

/ \f(x + h) — f(z)| dz dh.

<
{|h|<2R} |h|"+“ Br

Since

/B |f(x+h)—f(x)\dx§/3 /01|Vf(a:+th)~h|dtd:c
< \h\/Ol/B IV f(z + th)| de dt
<l f,  IVSE)d
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for all h € R™, we have

1
oty < / . / V£(2) dz dh
Flw (Br) = {In|<2Ry || o=t Bryn| V=) dz

S/ |Df|(Bsr) dh

{ln<2Rr} |h[nrot
nw, (2R)1 =

= PR D (B

proving (31 for all f € BW,.(R") N C*(Bsgr). Now fix R > 0 and let f € BVj,.(R").

By [15, Theorem 5.3], there exists (fx)ren € BV (Bsgr)NC>(Bsg) such that | D fi|(Bsg) —

|Df|(Bsgr) and fi, — f a.e. in Bsg as k — 4o00. Hence, by Fatou’s Lemma, we get
[flwea(sg < Lim inf [felwea(sg)

nw, (2R
< # lim |ka|(B3R)
k——4o00

- 1—«a
nwy (2R)1
=———|Df|(B
=2 D | (Byn)
and the proof is complete. O

In the following result, we collect several local integrability estimates involving the
fractional a-gradient of a function satisfying various regularity assumptions.

Proposition 3.2. The following statements hold.
(i) If f € BV(R"), then f € BV*(R") for all o € (0,1) with D*f = V*f.£" and

Vef=5L_oDf a.e inR". (3.2)

In addition, for any bounded open set U C R™, we have
I9° 121 sse) < Cras IDSIRY) (33)
for all a € (0,1), where C,, o is as in [29). Finally, given an open set A C R,

we have

IV fllrarny <

Wy, fina [ |DfI(A) - n+2a—1 B
: 4 n @ 3.4
n+a—1< 1—a * £l gy 7 (3-4)

for all v > 0 and o € (0,1), where A, := {x € R" : dist(z, A) < r}. In particular,
we have

o NWy, tn.a(n + 200 — 1)1
192 sy < 22l )

all—a)n+a—1) ”fHLl(Rn A Bv@n): (3.5)

(i) If f € L®R") NWEH(R™), then the weak fractional a-gradient D*f € Moo (R™; R™)
exists and satisfies D f = NV f.£" with Vo‘f € LIIOC(R"' R™) and

. 1) = S W)l
P N e

< ina ([Alwer(sg) + Pa(Br) | fll @)
for all R >0 and o € (0,1).

(3.6)
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(iii) If f € L>®(R")N BVioc(R™), then the weak fractional a-gradient D*f € Mo.(R™; R™)
exists and satisfies D*f = VL™ with V*f € LL .(R";R") and

nw, (2R)1 2(nw, )R«
I9° s < o "5 1D f1(Bar) + 2L ) 31

for all R >0 and o € (0,1).

Proof. We prove the three statements separately.

Proof of (). Thanks to [10, Theorem 3.18], we just need to prove (3.3) and (B4).
We prove ([B3]). By ([B2]), by Tonelli’s Theorem and by [10, Lemma 2.4], we get

[ 19°1de < [ BealDflde < G IDSI®Y),

where C), , ¢ is defined as in (Z9)).
We now prove ([3.4]) in two steps.

Proof of (84), Step 1. Assume f € C°(R"™) and fix » > 0. We have
J19estde = [ 1uV sl de

,Una // ‘Vf l""h)‘ dhd
- n+0z—1 ( {lnj<ry  |h|ntet v A

We estimate the two double integrals appearing in the right-hand side separately. By
Tonelli’s Theorem, we have

\Vf(z+h) / / dh
dh dx = Vflr+h)|de ——
//{|h<r} |h|nte-t {|h|<r} A| ( ) |h|rto—t

dh
< VAl mey {In<r} [R|nte=1
11—«

r
= Nn 1—a ||vf||L1(A_T;R”)'

{Ih[>ry |h|rrert

Concerning the second double integral, integrating by parts we get

/{ Mdh:(nJra—l)/ hf(x+h) .

njsr} |h[Pret {In[>r} |h|rtett
h f(x +h) -1
A" (h
™ i T T 4
for all x € A. Hence, we can estimate
Vi(x+h)
AlJ{ir>ry  [h|rret

|f(z+ h)|
dr<(n+a-1 // ——dhdx
( ) {ln>ry B[t

|f$+h| —1
" (h)d
//|h =r} |h|"+0‘ p dAT (h) de

o (nta—1
S TLwanHLl(Rn) r <T + 1)

n+2a—1 _a
i (2 s

dh
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Thus ([B.4) follows for all f € C*(R™) and r > 0.

Proof of B4), Step 2. Let f € BV(R™) and fix r > 0. Combining [I5, Theorem 5.3]
with a standard cut-off approximation argument, we find (fi)reny C C°(R™) such that
fr — fin LY(R") and |D fi|(R™) — |Df|(R™) as k — +o00. By Step 1, we have that

@ Wy fina (1Dfil(Ar) 1o  n+2a-1 —a
IV fk!\LuA;Rn)gnm_l( St | fillwny 7 (3.8)

for all k£ € N. We claim that
(Vefir) L — (VOf) L as k — +o0. (3.9)
Indeed, if ¢ € Lip,.(R™;R"™), then div®p € L>*°(R") by ([212)) and thus
/ oV do —/ o VO dx| = U fodiveeo da —/ fdivo‘godx‘
R™ Rn R” R»

< Nldiv el oo sy i = fllzny

for all £ € N, so that
lim <p-vafkda;=/ o VO da.
k—+oo JRn R™

Now fix ¢ € C?(R™; R"™). Let U C R" be a bounded open set such that supp ¢ C U. For
each ¢ > 0 sufficiently small, pick 9. € Lip,(R™;R"™) such that ||¢ — .|| pecrn;rn) < € and
supp . C U. Then

Lo Vfede— [ o Vofds
R" R"
+ ([ = Plle@nimn (IV fill i zmy + 1Vl s )
< -V — -V
<|[ o Vohedo= [ vovesds
+ & Crav(IDfl (RY) + [DFI(R™)),

<|[ weVopedo= [ v vepds

so that
lim

@-V“fkda:—/ 0 Ve fde| <26 Cp ol DfI(RY).
k—4o00|JR" R

Thus, (39) follows passing to the limit as ¢ — 0. Thanks to (39), by [22, Proposi-
tion 4.29] we get that

HvafHLl(A;R”) < légljgof ||vafk||L1(A;Rn)-

Since

IDF|(U) < limnf | Dfe| (V)
—+00
for any open set U C R™ by [I5], Theorem 5.2], we can estimate

lim sup |ka|(/Tr) < khlf |D fr|(R") — llimjnf |Dfe|(R™\ A,)

k——4o00

< [Df|(R") — [DF|(R™\ A,)
= |DfI(A,).

Thus, [B34) follows taking limits as k — +oc in (3.8)). Finally, (81) is easily deduced by
optimising the right-hand side of (B.4]) in the case A = R™ with respect to r > 0.
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Proof of (id). Assume f € LOO(R”) N VVI‘;"Cl(R”). Given R > 0, we can estimate
/ Ve f(a |dw<uw/ / 7e) = FW)l 4, g,
Br n |x — |"+0‘

|f(x) = fy)| / / |f(x) = fy)|
. dr d n.a dx dy
= /BR/BR \:c— |n+a Ty e \:c— oo

< pinalflwessny + 2ol = [
R

R™\Bp |T — yl’”“
= tnalflwersr) + tnall fll Lo @) Pa( Br)

and (3.6) follows. To prove that D*f = V*f.Z" we argue as in the proof of [10, Propo-
sition 4.8]. Let ¢ € Lip.(R";R"). Since f € L>*°(R"), we have

dx dy

e i) [ P2 gy ¢ e,
Er [y — afrre
Hence, by the definition of div® on Lip_-regular vector fields (see [10} Section 2.2]) and by
Lebesgue’s Dominated Convergence Theorem, we have

/Rn fdivipdr = lim - f(x)/{ wdyd:c

e—0t ly—z|>e} \y — «T‘n—’—a—’—l

Since

)| o) .
dydz < |f e | — 2| dad
Lo Sy o < i ot vl y

{ly—z|>e}
nw.
S c ooy o]l g ey

for all € > 0, by Fubini’s Theorem we can compute

Jo I o i ante == ) [ g
_ (z—y) (f(x) = f(y)) .
a Y /{|m yl>e} du dy.

R" |z —y[rrett

Since

<o) [ D= TWN,

R |z -yt

o)) /{lgg . (& —y) (f(@) = fW)

|l‘ _ y|n+a+1

for all y € R™ and € > 0, and

o [ VS0, i

by ([B.6]), again by Lebesgue’s Dominated Convergence Theorem we conclude that

/n f( )le 90 dl‘ _ _hm/n )/{xy>€} (.T _|y) (f(l’) B f(y)) dx dy

e—0 T — y‘n+a+1
: (z —y) (f(x) = f(y))
= — lim dx d
Rn (y) ing {lz—y|><} |z — y[rrott Y

== [ o) V1) dy
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for all p € Lip.(R™;R"). Thus D*f € M,.(R";R") is well defined and D*f = Vo f. £~ 1.

Proof of (@d). Assume f € L*®(R™) N BVj,.(R"). By Lemma Bl we know that f €
L®(R™) N WEHR™) for all o € (0,1), so that D*f € oo (R™; R") exists by (). Hence,
inserting (B.)) in (3.6]), we find

||vaf||L1(BR;]Rn) < Hn,o (

Since for all z € B; we have

/ dy _/ dz </ dz nwy,
r\B |y — @[t JrmBi-a) |27 T ey 27T a1 = fa])

being I" increasing on (0, +00) (see [4]), we can estimate

dy dx ann dx
=) <
By JR\B; |y — SL’|"+O‘ a Jp (1—lz|)

_ (nwy)? /01 ( =1 g — 2(nw,)? T(n)T(1 — «)

nwy(2R)

O DA Ban) + PaB) R )

e 1—t) a I'(n+1-a)
2<”;"">2 T(1 - a),

so that
nwy(2R) 2(nw, )?R"—°
I9° e < s (2200 1D floviay + 2o e
proving (3.7)). O
Note that PropositionB.2(f), in particular, applies to any f € W11(R"). In the following
result, we prove that a similar result holds also for any f € WHP(R") with p € (1, +00).
Proposition 3.3 (W'?(R") C S*P(R") for p € (1,400)). Leta € (0,1) andp € (1, +0c0).
If f € WHP(R™), then f € S“P(R™) with
nwnptina (IWVuolfllpp@srny 1o  n+2a—1 B
’ ’ et p(Rr) T 3.10
n—l—a—l( -« roT a 171z v (3.10)
for any r > 0 and any open set A C R", where A, = {x € R" : dist(z, A) <r}. In
particular, we have

IV fllorasrny <

(n+2a — 1) nw, iy o

o p(RN:R) < w P(R7; R™) P (RN 11

IV ey < St S |0, 5 ey (31D
In addition, if p € (1, &) and q = n_(?i’j), then

Vof=5L_oVuf ae inR" (3.12)

and V§ f € LI(R™; R™).
Proof. We argue similarly as in the proof of Proposition B.2I().

Proof of (BI0), Step 1. Assume f € C°(R") and fix an open set A C R" and r > 0.
Arguing as in the proof of ([B.4]), we can write

L_oVf(z) = __Hna </{ Vi +h) dh + /{ Vi@ +h) dh)

n+ao—1\ Jn<ry |hjrtet hj>r}  |h|rest
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_ _ Hna / V/x+h) dh 1 / h-fle+h) dh
ntoa—1 < (h<rp  |R|rre—T + (n + « ) (hl>r}  |h[rotT

hofath) )
— — = 2 dH# h
S T et )

for all x € A. By (286) and Minkowski’s Integral Inequality (see [38, Section A.1], for
example), we thus have

Hn,a || Y .f( h)HLP(A'R")
vV PARN) < ——————— / : dh
|| f”L (4R = n+a—1 < {|r|<r} |h|n+a71

1f(- =+ h)|lLeca)
+n+a-—1 /
( ) {h|>r} | h|rte

1fC+M ey 5 ona )
+ /{m:r} 4" (h)

‘h‘nJrafl

dh

n+2a—1

Hn,a nwn,
“Tn—a+1\l—-«a

proving (BI0) for all f € C°(R") and r > 0.
Proof of [BI0), Step 2. Let f € WIP(R") and fix an open set A C R™ and r > 0.

Combining [I5, Theorem 4.2] with a standard cut-off approximation argument, we find
(fi)ken C C°(R™) such that f, — f in WHP(R™) as k — +o00. By Step 1, we have that

1l )

vaHLP(A_,A7 R7) 7"1*04 —+ nwy,

n Mn,a V A R" 200 —
IV frllzr(a;rny < v (H fk||Lp(AT7R)T1_a+7n+ a

1
pReY T 3.13
Tenttna (MG Ifdzrsey ™) 333

for all £ € N. Hence, choosing A = R", we get that the sequence (V®f;)ren is uniformly
bounded in LP(R™; R™). Up to pass to a subsequence (which we do not relabel for simplic-
ity), there exists g € LP(R";R") such that V*f; — ¢ in L?(R";R") as k — +oo. Given
p € CX(R™;R™), we have

/ fkdivo‘@d:c:—/ v - Vfrdr
R Rn
for all £ € N. Passing to the limit as k — +o00, by Proposition 1] we get that
/ fdivo%pd:c:—/ p-gdx
R?’L R?’L

for any ¢ € C°(R™R"), so that g = V% f and hence f € S*P(R") according to [10,
Definition 3.19]. We thus have that

IV fllzrcarny < Hminf [V fillzoca; rn
for any open set A C R", since

for all p € C°(A;R™). Therefore, (B310) follows by taking limits as &k — +oc in (BI3).

Proof of (B11). Inequality (B.IT]) follows by applying (8I0) with A = R"™ and minimis-
ing the right-hand side with respect to » > 0.

o e < Nl it 9 il
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Proof of ([B12). Now assume p € (1, %) and let ¢ = —"2 Let ¢ € C=(R™; R")

be fixed. Recalling inequality (2.35), since ¢ € L#(R"; R™) vifle iz)ve that
Pl Lalfl € LARY), (o] |V f] € LYRY).
In particular, Fubini’s Theorem implies that
fh op€ L' R,RY), I_op-Vf € LYRY).
Since div®p € LP_Z(R") by Proposition 2], we also get that
fdivl_qp = fdivtp € LY(R").
Therefore, observing that I;_,p € Lip,(R™; R") because VI;_ap = V% € L®(R";R™)

again by Proposition 2.1l and performing a standard cut-off approximation argument, we
can integrate by parts and obtain

/ <p-]1_anfdx:/ Iowp - Vofde = —/ Fdiv,_ppde = —/ Fdivee da.
R™ R™ R™ Rn
Therefore

/ oI oVyfdr = —/ fdiv¥eodx

R’ﬂ R’ﬂ

for all p € C°(R™;R™), proving ([BI2). In particular, notice that V@ f € LI(R™; R™) by
inequality (Z3]). The proof is complete. O

For the case p = +00, we have the following immediate consequence of Lemma [2.4] and
Proposition 2.8

Corollary 3.4 (WL(R") C S“®(R")). Let a € (0,1). If f € WE(R"), then f €
S0 (R") with

NWnHn,a 1-a

IV f || oo rn; mmy < 277 ol — a) IV flIZoo @y mey | f 1] s (e - (3.14)
3.2. Two representation formulas for the a-variation. In this section, we prove two
useful representation formulas for the a-variation.

We begin with the following weak representation formula for the fractional a-variation
of functions in BVj,.(R")NL>*(R™). Here and in the following, we denote by f* the precise
representative of f € L (R"), see (AJ]) for the definition.

Proposition 3.5. Let a € (0,1) and f € BVioe(R*)NL>®(R™). Then V*f € Li .(R";R")
and

/Rn@-v fdx:Rgrfw/[Rnw-[1,Q(XBRDf)da: (3.15)
for all ¢ € Lip (R"; R™).

Proof. By Proposition B2(M), we know that V*f € Ll _(R™;R") for all a € (0,1). By
Theorem [A.T], we also know that fxp, € BV(R") N L*(R") with D(xp,f) = x5, Df +
[*Dxg,, forall R > 0. Now fix ¢ € Lip,(R";R") and take R > 0 such that supp ¢ C Bgys.
By [10, Theorem 3.18], we have that

| xmafdivipde == [ o 9 (pf)de == [ ¢ L aDlxs,f)dz.
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Moreover, we can split the last integral as

L e heaDOaf)de= [ o Iiali, D) do+ [ ¢ Dol Dxs,) o, (3.16)

For all x € Bg/y, we can estimate

|li-o(f*Dxsg)(7)] =

/a fy) id%nq(y)‘

Br |z —y|"rol |y

5 o T g )

= o - n+a—1

R y— % ]
nwy,

S a ‘Z“ n+o¢—1 ”fHLOO(Rn)
e (1= %)
2n+a71nwn

< - oo n

ST £l £oe (rm)

and so, since supp ¢ C Bg/2, we get that
. n+a71nwn
[ ealf" Dxsg) do | € 0 gl [ ey (317)

Therefore, by (ZI1]), Lebesgue’s Dominated Convergence Theorem, (3.16) and (317), we
get that

/Rn fdiviedr = Rlirfm /Rn XBpfdivipdr = lim e L o(Xp,Df)dx

R—+o00 JR

and the conclusion follows. O

In the following result, we show that for all functions in bv(R"™) N L*(R"™) one can
actually pass to the limit as R — 400 inside the integral in the right-hand side of (3.13]).

Corollary 3.6. If either f € BV(R") or f € bu(R"™) N L*(R"), then
VY =15L_,Df a.ec. inR" (3.18)

Proof. 1t f € BV (R™), then (8I8)) coincides with (3:2)) and there is nothing to prove. So
let us assume that f € bv(R") N L®(R"). Writing Df = v;|Df| with vy € S*™! |Df]-a.e.
in R”, for all z € R™ we have

: * vi(y) _ vs(y)
REI—POO XBR(y) |y . {L‘|n+a71 - |y . ZL‘|"+O‘71 for |Df|—a.e. Yy 7& xX.

Moreover, for a.e. x € R", we have

vi(y)
ly —afrremt] 7 |y — zfrrert

X, (V) € LL(R",|Df|) VR >0,

because I, o|Df| € LL.(R") by [10, Lemma 2.4]. Therefore, by Lebesgue’s Dominated

loc

Convergence Theorem (applied with respect to the finite measure |Df|), we get that
RE)IEOO Lo, Df)(x) = (Ii-aDf)(x) forall z € R™
Now let ¢ € Lip,(R™;R™). Since
- ol DF) < lol ol Df| € L'EY) VR >0,
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again by Lebesgue’s Dominated Convergence Theorem we get that

Jim /Rn@-fl,a(XBRDf) dr = /}Rnw-ll,anda:. (3.19)
The conclusion thus follows combining (3.15) with (B.19). O

3.3. Relation between BV? and BV®? for 8 < o and p > 1. Let us recall the
following result, see [10), Lemma 3.28].

Lemma 3.7. Let a € (0,1). The following properties hold.
(i) If f € BVY(R"), then u = I;_of € bu(R™) with Du = D*f in .# (R";R").
(ii) If u € BV(R"), then f := (=A)2*u € BVYR") with

||f||L1(Rn) S Cn,aHuHBV(R") cmd Daf = DU mn %(Rn, Rn)
As a consequence, the operator (—A)™=": BV (R") — BV*(R™) is continuous.

We can thus relate functions with bounded a-variation and functions with bounded
variation via Riesz potential and the fractional Laplacian. We would like to prove a
similar result between functions with bounded a-variation and functions with bounded
[-variation, for any couple of exponents 0 < f < o < 1.

However, although the standard variation of a function f € Li _(R") is well define, it
is not clear whether the functional

© / fdiviodr (3.20)
R?’L

is well posed for all ¢ € C°(R™;R"), since div*¢ does not have compact support. Nev-
ertheless, thanks to Proposition 2], the functional in (B.20) is well defined as soon as
f € LP(R") for some p € [1,+00]. Hence, it seems natural to define the space

BV*P(R") :={f € LP(R") : |ID“f|(R") < o0} (3.21)
for any o € (0,1) and p € [1,+oc]. In particular, BV*!(R") = BV*(R"). Similarly, we
let

BV'(R™) := {f € LP(R") : [Df|(R") < 400}
for all p € [1, +00]. In particular, BV (R") = BV (R").

A further justification for the definition of these new spaces comes from the following
fractional version of the Gagliardo—Nirenberg—Sobolev embedding: if n > 2 and o €
(0,1), then BV*(R") is continuously embedded in LP(R") for all p € [1, r"a}, see [10]
Theorem 3.9]. Hence, thanks to ([B:21I]), we can equivalently write

BV(R") C BV**(R")

with continuous embedding for all n > 2, o € (0,1) and p € [1, #}

Incidentally, we remark that the continuous embedding BV*(R") C L#=s (R") for n > 2
and « € (0, 1) can be improved using the main result of the recent work [36] (see also [37]).
Indeed, if n > 2, a € (0,1) and f € C°(R"), then, by taking F' = V*f in [36, Theo-
rem 1.1}, we have that

11l gy < eV Al s gy < ol V3
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thanks to the boundedness of the Riesz transform R: L+ (R") — L#='!(R";R"), where
Cnas Cp.o > 0 are two constants depending only on n and a, and L7=1(R") is the Lorentz
space of exponents —"— 1 (we refer to [I7,18] for an account on Lorentz spaces and on
the properties of Riesz transform). Thus, recalling [10, Theorem 3.8], we readily deduce
the continuous embedding BV*(R") C L#a'(R") for n > 2 and a € (0, 1) using Fatou’s
Lemma in Lorentz spaces (see [17), Exercise 1.4.11] for example). This suggests that the
spaces defined in (B.:2I) may be further enlarged by considering functions belonging to
some Lorentz space, but we do not need this level of generality here.

In the case n = 1, the space BV*(R) does not embed in Lﬁ(R) with continuity,
see [10, Remark 3.10]. However, somehow completing the picture provided by [36], we
can prove that the space BV*(R) continuously embeds in the Lorentz space Lﬁ’w(R).
Although this result is truly interesting only for n = 1, we prove it below in all dimensions
for the sake of completeness.

Theorem 3.8 (Weak Gagliardo-Nirenberg—Sobolev inequality). Let o € (0,1). There
exists a constant ¢, o > 0 such that

A1 72 oo gy < Cnal DY FI(R) (3.22)
for all f € BVY(R"™). As a consequence, BV*(R") is continuously embedded in LI(R™)

n

for-any q € [ 7m)
Proof. Let f € C*(R™). By [35, Theorem 3.5] (see also [10, Section 3.6]), we have

_r) . ve
o) = =div Ve f o) = o |

dy, x€R",
so that

£ gt [ I gy e ) 1o ), xR
R |y — x|r Hn,1—a

Since I,: L*(R™) — L7-a°°(R") is a continuous operator by Hardy-Littlewood-Sobolev
inequality (see [38, Theorem 1, Chapter V] or [I7, Theorem 1.2.3]), we can estimate

,un —o e} a « n
ol VEFI im0 gy S CnalllVEFlll 2y = cna [DYFI(RT),

n,l—a

||f||Lﬁ’°°(Rn) — ,LL

where ¢, , > 0 is a constant depending only on n and a. Thus, inequality (3.22)) follows
for all f € C*(R™). Now let f € BV*(R™). By [10, Theorem 3.8], there exists (fx)ren C
C>®(R™) such that fr — f a.e. in R® and |D*fy|(R") — |D*f|(R") as k — 4o00. By
Fatou’s Lemma in Lorentz spaces (see [17, Exercise 1.4.11] for example), we thus get

||f||Ln ooy S < hm 1nf I fxl R, < o lim |DYfi|(R") = cpo| D f|(R™)
k—>+00

and so (B.22) readily follows. Finally, thanks to [I7, Proposition 1.1.14], we obtain the

continuous embedding of BV*(R") in L4(R™) for all ¢ € [1, 2-). O

' n—a

(R™) —

Remark 3.9 (The embedding BV*(R) C Lﬁ’oo(R) is sharp). Let a € (0,1). The
continuous embedding BV*(R) C Lﬁ’oo(R) is sharp at the level of Lorentz spaces, in
the sense that BV *(R™) \ Lﬁ’q(R) # & for any ¢ € [1,400). Indeed, if we let

fo(z) =]z — 1|* tsgn(z — 1) — |2|* ' sgn(x), x € R\ {0,1},
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then f, € BV*[R) by [10, Theorem 3.26], and it is not difficult to prove that f, €
Lﬁ’c’o(R). However, we can find a constant ¢, > 0 such that

Fa)] 2 el X2y (@) = gale), 2 €R\{0,1},

so that dy, > d,,, where d;, and dg, are the distribution functions of f, and g,. A simple
calculation shows that

1
5 if 0 < s <cpdt=@

dg, (8) =

_1
2 <%a) T s> cad ™,

so that, by [I7, Proposition 1.4.9], we obtain
1

+oo
ol > ||gall® - | ()" st
Il 2ol = [ () 51 s

24(1—a)  rtoo
> 1 / ) s 9597 ds = 400
— X Jepdl—a

and thus f, ¢ Lﬁ’q(R) for any ¢ € [1,400).
We collect the above continuous embeddings in the following statement.

Corollary 3.10 (The embedding BV* C BV*?). Let a € (0,1) and p € {1, nT”a) We

have BV*(R™) C BV*P(R"™) with continuous embedding. In addition, if n > 2, then also
BV*(R") ¢ BV*w=(R") with continuous embedding.

With Corollary [3.10 at hands, we are finally ready to investigate the relation between
a-variation and [-variation for 0 < f < a < 1.
Lemma 3.11. Let 0 < f < a < 1. The following hold.
(i) If f € BVA(R™), then u = I, gf € BV*P(R") for any p € (n_ZJrB, I
p=-"ifn>2), with D*u= D’f in .#(R";R").
a=p

(ii) If u € BV(R"), then f := (—=A)"2 u € BV?(R") with
1|2y < Cnag llullpvawsy and D°f =D in .4 (R";R").

) (including

As a consequence, the operator (—A)#: BV (R") — BVA(R"™) is continuous.

Proof. We begin with the following observation. Let ¢ € C*(R™ R™) and let U C R™
be a bounded open set such that suppe C U. By Proposition 2] and the semigroup
property ([24]) of the Riesz potential, we can write

divPp = I,_gdivp = I,_gI,_odivep = I,_gdive.
Similarly, we also have
Lo—pldivie| = In—g|h-adive| < Io_gli_o|dive| = I1_g|dive],
so that I,_g|div®p| € L>*°(R™) with
Eaepldiv el oeqan) < [T pldivelleqen) < Copoldivel o

by [10, Lemma 2.4]. We now prove the two statements separately.
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Proof of [@). Let f € BVF(R") and ¢ € C®(R™; R"). Thanks to CorollaryB.10, if n > 2,
then f € BVA4(R") for any ¢ € [1,-2] and so I,_sf € LP(R™) for any p € ( - - }

' n— n—a+8' n—a
by (235). If instead n = 1, then f € BVA4(R) for any ¢ € [1, ﬁ) and so I,_af € LP(R)
for any p € (m,ﬁ) Since f € L'(R") and I, g|div¥p| € L*(R"), by Fubini’s
Theorem we have

fdivPedz :/ [ lo—pdivipda :/ udivte dr, (3.23)
Rn Rn Rn

proving that u := I,_gf € BV*P(R") for any p € (n_ZJrB, nT"a) (including p = = if
n > 2), with D% = DPf in .4 (R";R").

Proof of (ii). Let u € BV*(R"). By [10, Theorem 3.32], we know that u € Wo=21(R"),
so that f := (—A)#u e L'(R™) with || f]| L1 &n) < Cnyas |[u] Bve@n), see [10, Section 3.10].
Then, arguing as before, for any ¢ € C°(R™; R") we get (3.23)), since we have I,_sf = u
in L'(R™) (see [10, Section 3.10]). The proof is complete. O

3.4. The inclusion BV* Cc W#! for 8 < a: a representation formula. In [I0,
Theorem 3.32], we proved that the inclusion BV* C W#! is continuous for 3 < a. In the
following result we prove a useful representation formula for the fractional g-gradient of
any f € BV*(R"™), extending the formula obtained in Corollary B.6l

Proposition 3.12. Let a € (0,1). If f € BVY(R"), then f € WAL(R") for all B € (0, )

with
VPf=1,5D"f a.c. inR" (3.24)
In addition, for any bounded open set U C R"™, we have
IV? fll 2w, mny < Cna-arsyo | DFI(R™) (3.25)

forall B € (0, ), where Cy, o v is as in (Z9). Finally, given an open set A C R", we have

BEN rsamoms < Hnl+a—p wn,1|Daf|(Kr) a—B wna(n +26 — a)
||Vf||L(A,R)_n+B_a< o B " + 3

1l rﬁ)

(3.26
for all r >0 and all B € (0, ), where Wy = ||VYB, | 1@ zn), Wnit = [Dxs, |(R") =
nwy, and, as above, A, = {x € R" : dist(x, A) < r}. In particular, we have

B _B
O‘Mn,l—l—a—ﬁwﬁ,lwivaa (TL + 25 - a)l_ B

5 8
B(n+ B —a)la—p) Hf”Ll((])f&")‘D fI(R™)a.

Proof. Fix 3 € (0,a). By [10, Theorem 3.32] we already know that f € W#(R"), with
DFf = VP 2" according to [10, Theorem 3.18]. We thus just need to prove (3.24)), (3.25)
and (3.26]).

We prove ([B:24). Let ¢ € C°(R";R™). Note that I,_zp € Lip,(R™;R") is such that
divl,_pp = I,_pdivep, so that

V7 fll 2 ey <

(3.27)

L odivly_go = I, _o I pdive = I, _gdivep = divPp

by the semigroup property (2] of the Riesz potential. Moreover, in a similar way, we
have

L_o|divIa_sg| = L1_o|In_pdive| < I)_olo_gldive| = I1_g|dive| € LL (R™).

loc
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By Lemma 2.2] we thus have that div®l,_gp = divPp. Consequently, by Proposition 27,
we get

/Rn FdivPods = /R FAivel,_spde = — /R Lo_pp - dDCF.

Since | D f|(R") < +oo, we have I, g|D*f] € L .(R") and thus, by Fubini’s Theorem,
we get that

/Rnfa_gap-dDo‘f:/Rngo-fa_BDo‘fdx.
We conclude that
/ Fdiviode — —/ o Lo sD°f dz
Rr Rr
for any ¢ € C°(R™;R"), proving (3.24)).
We prove (3.25). By (B.:24]), by Tonelli’s Theorem and by [10, Lemma 2.4], we get

IVl < [ ToslD?flde < Craasano| DS I(RY)

where C,, o v is as in (Z3)).
We now prove ([3.28) in two steps. We argue similarly as in the proof of (3.4)).

Proof of (826), Step 1. Assume f € C*(R") and fix » > 0. We have

V4 lde = [ 11a-sve fl da

+
- n+5 -« < {|h\<r} |h|"+5 a T A

We estimate the two double integrals appearing in the right-hand side separately. By
Tonelli’s Theorem, we have

|V f (e + h)| dh
dhd:c:/ /V“fx+h dr —2
//{h|<r} ||t {Inl<r} LV ) |h|rt e

dh
S
DA iy |hfrtoe
_ Nwn |DfI(A) ra—b
a— 3 '
Concerning the second double integral, we apply [, Lemma 3.1.1(c)] to each component
of the measure D*f € . (R™;R") and get

PR =P e (10 P e (C1C)
{Ih|=r} r

|h|n+6—a Qn—i—B—a—i—l B ,r.n-l—ﬁ—oz

Ve f(z+h) ‘ )
Y I anlde )
{lnl>r}  [h|rHAe

for all z € A. Since

D f(B,(x))

L xe,) VoS (@ +y) dy
_ /R f(z+y) Vg, (y) dy

=" [ J(@+ey) VX (v) dy,
Rn
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we can compute

+oo D*f(B, Df(B,
(’I’L + 6 — O[) /T gn+(5_ag_li)) dQ _ TnS—B_SL'))
=—(n+pf-0a) /:OO Qﬁlﬂ /Rn f(@+ 0y) Vxi, (y) dy do

1 [e%
+ T—B/Rnf(w+ry)v X8, (y) dy

:/n <W—(n+ﬂ—a) +w%d9> Vs (y) dy

dxg/
RTL

[z +ry)

S/n/n|7«75||va><31( )| dz dy

+(n+B-a) [ /r+°°/n|f‘;;fy||va ()| dz dody

_ Wn,oz(n 225 - ) ”fHLl(R”)T

for all z € A. Hence, we have
Vef(x+ h)

dh
{(Ih>r}y  |h|nHA—e

Vef(x+h) ‘
Y I an | de
/{h|>r} |h|ntB-e

,5.

Thus (3.4)) follows for all f € C2°(R") and r > 0.

Proof of [B4), Step 2. Let f € BV*(R") and fix » > 0. By [10, Theorem 3.8], we
find (fi)ren C C®°(R™) such that fp — f in LY(R") and |D?f|(R™") — |D°f|(R") as
k — 4o00. By Step 1, we have that

fingip—a (MWl D fil(Ar) o 5 | Wna(n+28—a)

n+p—ao < a—p3 " + 3 ||fk||L1(Rn)7“
(3.28)

for all £ € N. We have that

(Vo) 2™ =~ (V)L™ ask — +oc. (3.29)

This can be proved arguing similarly as in the proof of (3.9]) using (3:25]). We leave the
details to the reader. Thanks to (8:29), by [22, Proposition 4.29] we get that

IV fllzraimny < i Inf V7 fill b2 emy-

-8

IV fillrarny <

Since
D £|(U) < lim inf [ D° £, (U)
k—+o00
for any open set U C R™ by [10, Theorem 3.3|, we can estimate
limsup |D° fy](A7) < lim_[D*fil (R") — i inf | D° fy (R \ 4,)
k—+o0

< \Daf\(R”) — |DYSI(R™\ Ay)
= [Df[(A,).

Thus, ([3.20) follows taking limits as k — +oc0 in (3.28). Finally, (8:27) follows by consid-
ering A = R™ in (8:26) and optimising the right-hand side in r > 0. O
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4. ASYMPTOTIC BEHAVIOUR OF FRACTIONAL «-VARIATION AS o — 1~

4.1. Convergence of V* and div® as a — 17. We begin with the following simple
result about the asymptotic behaviour of the constant p, , as a — 17.

Lemma 4.1. Let n € N. We have

Mo ex _n 3P(%+1)
> < 2] ———— —: 1 4.1
1_@_7r \/; F(Q) C, Vo € (0,1) (4.1)
2
and
lim Hme wit. (4.2)
an1- 1 — @

Proof. Since I'(1) = 1 and T'(1 + x) = x'(x) for z > 0 (see [4]), we have I'(x) ~ 27! as
x — 0. Thus as @« — 1~ we find

LU (), n
foa =27 8 — Bt E (1= a) T (— + 1) — (1 —a)

and (£2)) follows.
Since T is log-convex on (0, +00) (see [4]), for all z > 0 and a € (0,1) we have
D(r+a)=T(1-a)r+alx+1)) <T(x)"*T(x+1)* =2°T(z).
For x = % and a = O‘T“, we can estimate
.

() < () T () < (3+)

for all n > 2. Also, for n = 1, we trivially have ' (%) <T (%), because I' is increasing

|3

[\

on (1,400) (see []). For z =1+ 5% and a = £, we can estimate

3 1—a\? 1—a 3l1-a_(l—«a
r(=-)<|(1 r{t <4/= r :
(=015 (159 =3 500 (5

We thus get
L (ndatl N rz+1
:un,a<1—04)122a1ﬂ'57(1 2 ) SWE\/gi(Qg )
Lt +1) 2 1(3)
and (@) follows. O

In the following technical result, we show that the constant C, .y defined in (23) is
uniformly bounded as « — 17 in terms of the volume and the diameter of the bounded
open set U C R™.

Lemma 4.2 (Uniform upper bound on Cp, oy as a = 17). Letn € N and a € (3,1). Let
U C R" be bounded open set. If C, o v is as in (29), then

Chovu < (r;wiC;) ((n z %) max{l, L}ﬂ}z + max{l, \/diam(U)}) = knu, (4.3)

n

where C,, is as in ([L1)).
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Proof. By (@), for all @ € (3, 1) we have
N .o nC, nC,
: <

< .
(n+a—-1)(1-a)  n+a-1"n-1

Since t17 < max{ \f} for any ¢t > 0 and a € (;, 1), we have

wy (diam (U))* < w, max{l, diam(U)}

and
nta—1 U 1 l-a U 1
( nwy, ) s nw, Ul(n+a—1) < M ax l,u '
n+a-—1 n—i—a 1 W, (n—%) Wn,
Combining these inequalities, we get the conclusion. O

As consequence of Proposition 2.1 and Lemma 4.2 we prove that V¢ and div® converge
pointwise to V and div respectively as a — 17.

Proposition 4.3. If f € C}(R"™), then for all x € R™ we have

lim 1, (@) = £(a). (14)
As a consequence, if f € C3R") and p € C2(R";R"), then for all x € R™ we have
lir{l_ Vef(z) = Vf(x), 111{1_ divip(z) = dive(z). (4.5)

Proof. Let f € C}(R") and fix = € R™. Writing (2.6]) in spherical coordinates, we find
of(x) = 2ty [ [ o ) dodn ),

n—aéao

Since f € C}(R™), for each fixed v € B; we can integrate by parts in the variable ¢ and
get

0—r+00 °S)
Y RNV EET
=" o)~ [ oy o)
= o s 0 Yo % 9.

/;OO o f(z+ ov) do = [%a Sz + ov)

Clearly, we have

lim 60‘/8 f(z + dv)ds"(v) = 0.
B1

=0t
Thus, by Fubini’s Theorem, we conclude that
Hn,1—« > —1
I, = —’7/ o dzc" do. 4.
fla) = = fees [T [ 0, + 00) o™ ) do (16)

Since f has compact support and recalling (£.2]), we can pass to the limit in (4.0]) and get
lim I, f(x

dod" ' (v) =
lim, = [ T s o) dedotm (o) = fo)
proving (£4)). The pointwise limits in (£.3) immediately follows by Proposition 21 O

In the following crucial result, we improve the pointwise convergence obtained in Propo-
sition .3 to strong convergence in LP(R™) for all p € [1,400].
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Proposition 4.4. Let p € [1,+00]. If f € C?}(R") and ¢ € C*(R™;R"), then
limﬁ ||Vaf - foLP(]R";R”) = 0, hmﬁ ||divo‘g0 — diVQOHLp(Rn) =0.
a—1 a—1
Proof. Let f € C*(R™). Since

/ dy /1 do  nw,
= nwy, ,
By |y|ntet 0 0 11—«

for all x € R™ we can write

NWy o

Lo Vf(x)

(1-—a)n+a—1) Vi) = n+aoa—1J/p |y/nte-t
Therefore, by (2.6]), we have
nwn n,x
Ve f(x) — fre v f(a)

(I1—a)(n+a—1)
_ Hna (/ Vi(z+y) — Vi) dy+/Rn\B Vi +y) dy)

nta-—1 [ylreaT [yl

for all z € R™. We now distinguish two cases.
Case 1: p € [1,+00). Using the elementary inequality |v+w|? < 2P~ (|v]P + |w|P) valid
for all v, w € R™, we have

p
NWy U, o
() — ’ d
/n VeI (@) (1-a)n+a—-1) Vi) da
p—1
< 2 e / Vifz+y)— Vf()dy dr
n+a—1Jr|/B ly|rto—t
p—1 p
2 Hna / Lf(x ) dy | dx.
n+oa—1Jre|Jrn\p, |y|rtot

We now estimate the two double integrals appearing in the right-hand side separately.
For the first double integral, similarly as in the proof of Proposition [£.3, we pass in
spherical coordinates to get

[ R = [ [ (V@ o) = V@) e 0
1 n—1
- /BBI (Vf(x +0) = Vf(z)) d™ " (v) (4.7)
[ 0+ o) dodr )
o, Jo
for all x € R™. Hence, by ([4.2]), we find
. Hn,a n—1
O}E{L (1-—a)(n+a—1) /831 (Ve +v) = V@) A ()
— [ (Vi) = V@) d )
and
. :umOé ! 11—« n—1
alg?_ T—a)n+a=1) /831/0 0 2 0,(Vf(x+ov))dods" " (v)
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1 1 .
nw, /8B1 /0 9,(Vf(x + ov)) dod " (v)
1
nwy, JoB1
for all x € R". Therefore, we get
: fn,a Via+y) -V
aligl* n+a—1Jp ‘y‘n+a71 dy =0

for all x € R"™. Recalling (4.1]), we also observe that

pna |Vf(x+y)—Vf(r)
n+a—1 ly|nte-t

IVf(z+y) = V[(2)
ly|"

for all @ € (0,1), x € R™ and y € B;. Moreover, letting R > 0 be such that supp f C Bkg,
we can estimate

/ IVf(z+y) = Vi)
By ly|™

<G,

dy < nw, ||V £l 1o ®n;re) X Bayy (T)
for all x € R", so that
_ P
. </ |Vf(:1:+y) Vf(x)‘ dy) c Ll(Rn).
B1

|y |"

In conclusion, applying Lebesgue’s Dominated Convergence Theorem, we find

/ Vil +y) - Vi)

p
et dz = 0.

. ,un,oz
lim ————
asl-n+oa—1Jre

dy

For the second double integral, note that

/ Vi(z+y) dy:/ V(fx+y) - fl@) ,
R7\ By R™\ By

|y|nrot |y|nFet

Y

for all z € R™. Now let R > 0. Integrating by parts, we have that
/ \ V(f(z+y) - f(z)) dy=(n+a—1) y(f(z+y) - f(2)) ay
Br\B1

|y|ntot Br\B1 |y|nFott

n % / o ot y) = f@) drm ™ (y)

= [ ) = f@) d )

for all x € R™. Since

Sty = f@] 2
d < oo n
e TEERN £y U
and
1 A" () < 2nwy,
T oy @+ 9) = £(@) 7 (0) < S22 e
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for all R > 0, we conclude that
/ Vi@+y) o o Vi+y)
R™\B

|y[rta-t R—+o0 JBp\By  |y[ntel

y(flz+y) — f(z)) dy (4.8)

R™\ By |y[rrett
= [, ) f)da T )

for all x € R™. Hence, by Minkowski’s Integral Inequality (see [38, Section A.1], for
example), we can estimate

/ Vitty)
r\B; [y[rrert

=n+a-1)

s(n+a—1)‘

[ trn-sol,
R"\ By

|y | e

Lp(R7; R™) Lr(R™)

N H L, 1C+ ) = FO )

n+2a—1
< T | e

L (R")

Thus, by (£2), we get that
P

dz = 0.

li Nn@
im ————
a=sl-n+a—1Jr

/ Vi +y)
R"\ By

|y|nFet

Case 2: p = 4+00. We have

VaI@) = G zﬁ:ﬂ"l —y v/ @
/ Viz+y) - Vi) dy|+ su

|y |t

sup
rER™?

Vi +y)
P oy prret

|y |t

,L[/n (6%
<—— | su .
a n'+‘0f_'1 (zeéi 4 )
Again we estimate the two integrals appearing in the right-hand side separately. We note
that

Ly (VFG ) = V() dor™ (o) - / / 0 OV e+ o)) dod 7 (v)

rER™

_/831/ Op(V f(x + ou)) dods™ " (v),
so that we can rewrite (A7) as
Vilx+y)—Vf N
/Bl (x|y|z£a_1 = T 1-a /BB/ (1— 0" 0,(Vf(x + ov)) dods#" " (v).

Hence, we can estimate

/ Vi@ +y) = Vi) dy|

|y|n+a71

sup
rER™

<

[ [ =2 s 9,V o+ o) e o)

l—«o r€eR”™

< nv oo n. n
_2_anw IVZF N oo s 2y
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so that

lim —E™ _ sup
a=1-n+ o — 1 zern

/ Vi(r+y)— Vi)

|y|nte-t

dy‘:().

For the second integral, by (£8) we can estimate

/ Vf(z+y) dy‘dx
R"\Bl

e jypret

rER™

<(n+a—1)sup
zeR”

/ |fz+y)— f(2)
R™\ B,

|y [t

dy‘

#swp | [ 150 = F@l )
x€R" | JOB1
n—+2a—1
< 0 i |l

Thus, by (£2), we get that

lim sup / M dy‘ =0.
R"\Bl

as1l-n+ o — 1 4ern |y|n+a71

We can now conclude the proof. Again recalling (£.2), we thus find that
m [[V*f = V| Le@nrn)
a—1

NWy Un, o
(I-a)(n+a—1)

Vf

a—1~

< lim HVO‘f—

LP(R;R7)

. NWn hn,«
+ IV Fllzr @ ) o i- <(1—a)(n+a—1) )

for all p € [1,+00] and the conclusion follows. The LP-convergence of div®y to divp

as o — 17 for all p € [1,+o0] follows by a similar argument and is left to the reader. O

Remark 4.5. Note that the conclusion of Proposition4.4still holds if instead one assumes
that f € Z(R™) and ¢ € Z(R";R"), where .#(R"; R™) is the space of m-vector-valued
Schwartz functions. We leave the proof of this assertion to the reader.

4.2. Weak convergence of a-variation as o — 17. In Theorem [T below, we prove
that the fractional a-variation weakly converges to the standard variation as « — 1~ for

functions either in BV (R"™) or in BVj,.(R™) N L>(R™). In the proof of Theorem A7), we
are going to use the following technical result.

Lemma 4.6. There exists a dimensional constant ¢, > 0 with the following property. If
f € L>®(R™) N BVjoe(R™), then

19 fllia sy < e (R DS1(Byr) + R | o) (49)
for all R >0 and o € (1, 1).

Proof. Since T'(x) ~ 27! as x — 0% (see [4]), inequality (£3) follows immediately com-
bining (3.7) with Lemma .11 O
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Theorem 4.7. If either f € BV (R™) or f € BVjoo(R™) N L*®(R"), then
D*f —~Df asa—1".

Proof. We divide the proof in two steps.
Step 1. Assume f € BV(R"). By [10, Theorem 3.18], we have

p-Vfdr = —/ fdivipdr
R™ R™

for all ¢ € Lip.(R™;R"). Thus, given ¢ € C*(R";R"), recalling Proposition and the
estimates (2.12) and (43), by Lebesgue’s Dominated Convergence Theorem we get that

im [ o -Vefdsr=— lim/ fdivo‘godx:—/ fdiwpd:c:/ ©-dDJ.
R~ R™ R~

a—1— JR» a—1—

Now fix p € C?(R™;R™). Let U C R™ be a fixed bounded open set such that supp ¢ C U.
For each ¢ > 0 sufficiently small, pick ¢ € CZ(R™; R") such that [|¢ — 9| pec(mnrn) < €
and supp ¥ C U. Then, by (B3], we can estimate

[oeverdn= [ o-dDf| < llp =l ([, VS do+ [DSIERD)
| [ ve-vesdo- [ v.-apf|
Rn Rr
<e(l+ Coap) [IDFI(R")
| [ ve-vesdo= [ v.-apf|
R R”
for all @ € (0,1). Thus, by the uniform estimate (43]) in Lemma (.2, we get

p-Vofdu— [ ¢-dDf| <e(l+ k) [DSIR) (410

lim
a—1—

Rn
and the conclusion follows passing to the limit as e — 07.
Step 2. Assume f € BVio.(R") N L>*(R™). By Proposition B2( ), we know that
Def = Vof¥™ with VO f € Ll _(R™;R"). By Proposition 4, we get that
lim / go-Vo‘fdx—/ o-dDf
a—1-|Jrn Rn
for all p € C*(R™; R™). Now fix ¢ € C?(R"; R") and choose R > 1 such that supp ¢ C Bg.

For each ¢ > 0 sufficiently small, pick ¢ € C2(R™;R") such that [|¢ — 9| pec(rnrn) < €
and supp ¢. C Bg. Then, by (£9), we can estimate

< ||l oo ) alLrl}_ |div®e — divel| L1 gn; rey = 0

| | e fde— [ o dDf| < llp = tullimqzn (IV°fllzsoamn + 1D (Br))

| [ weverae— [ v.-apg
< ecn" (|| fllzeqen) + |DFI(Bsn))

+| [ we-verdr— [ v.-apy
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for all o € (3,1). We thus get

tim [ govepde— [ -anf| <o (/e +1DS(Bom)  (211)
a—1 R Rn
and the conclusion follows passing to the limit as e — 07. U

We are now going to improve the weak convergence of the fractional a-variation ob-
tained in Theorem [L7 by establishing the weak convergence also of the total fractional
a-variation as a — 17, see Theorem below. To do so, we need the following prelimi-
nary result.

Lemma 4.8. Let pn € 4 (R™;R"™). We have (Iopu) L™ — pas a — 0.

Proof. Since Riesz potential is a linear operator and thanks to Hahn-Banach Decompo-
sition Theorem, without loss of generality we can assume that p is a nonnegative finite
Radon measure.

Let now ¢ € C}(R") and let U C R™ be a bounded open set such that suppy C U.
We have that ||Z,|¢]||zoe®n) < Knu @l L@ for all a € (0,3) by [10, Lemma 2.4] and
Lemma 2 Thus, by (£4), Fubini’s Theorem and Lebesgue’s Dominated Convergence
Theorem, we get that

lim @ lypdr = lim [agod,u:/ pdpu.
R

a—0t JR» a—0t JR»

Now fix ¢ € C?(R™;R"). Let U C R" be a fixed bounded open set such that supp p C U.
For each € > 0 sufficiently small, pick 1. € C}(R™;R") such that [l — ¢)e||peomnrn) < €
and suppv. C U. Then, since u(R") < 400, by [10, Lemma 2.4] and by ([@3)), we can
estimate

A{nwfaﬂdx—énwdﬂl < /Rn@/)efaﬂdx—/wtbedu‘+€I|fau||L1<U)+€M(U)

< /Rn Lotpe dpp — /Rn Ve dp ‘ +e(l+ Crav) n(R)

< /Rn Lotpe dpt — /Rn Ve dp ‘ +e(l+ kny) p(R")

for all @ € (0, %), so that

lim sup / ¢ lLopdr — / wdﬂ‘ <e(l+ ko) p(R").
a—07t R R
The conclusion thus follows passing to the limit as e — 07. O

Theorem 4.9. If either f € BV(R") or f € bu(R™) N L*(R"), then

|D*f| = |Df| asa—1". (4.12)
Moreover, if f € BV (R"), then also

Tim |D°f|(RY) = [Df|(R). (4.13)
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Proof. We prove (£12) and (£I3) separately.
Proof of (AI2)). By Theorem AT, we know that D*f — Df as o« — 17. By [22|
Proposition 4.29], we thus have that

IDF|(A) < liminf [D*f|(4) (4.14)

for any open set A C R". Now let K C R" be a compact set. By the representation
formula (B.I8) in Corollary 3.6, we can estimate

D FICK) = IV fllzemny < Mol Df Il = (Lol DF|£7)(K).
Since |Df|(R") < +o00, by Lemma .8 and [22, Proposition 4.26] we can conclude that
limsup [D° f|(K) < limsup(I,_o|Df| £")(K) < |DS|(K),

a—1— a—1~
and so (£I2) follows, thanks again to [22, Proposition 4.26].
Proof of ([A13)). Now assume f € BV (R"). By (8.4) applied with A = R" and r = 1,

we have
nwp thna (|DfI(R")  n+2a—1

Da Rn < ’ 1(Rn .

DR < et (IIE) e
By (£2), we thus get that

lim sup | D f|(R") < |Df|(R") (4.15)
a—1-

Thus (£I3) follows combining (£I4)) for A = R" with (EI5). O

Note that Theorem .7 and Theorem in particular apply to any f € WH(R").
In the following result, by exploiting Proposition B3] we prove that a stronger property
holds for any f € WH?(R") with p € (1, +0c0).

Theorem 4.10. Let p € (1,+00). If f € WEP(R™), then
Jim V5 f = Vo fllzo@n ) = 0. (4.16)

Proof. By Proposition B3] we know that f € S“P(R"™) for any a € (0,1). We now divide
the proof in two steps.

Step 1. We claim that
i [V ez = [Vl vy (4.17)
Indeed, on the one hand, by Proposition 4], we have

/ @-wadg;:—/ fdivpds = — hnla/ fdivipde = lim [ ¢-Vefdr (4.18)
Rn Rn a—1" n [e%

—1= JRn

for all ¢ € C°(R™;R™), so that

Lo Vafde < el e gy BT V5 F ] oeren

for all ¢ € C°(R";R™). We thus get that
||vwf||LP(Rn;Rn) S lt{rg}]f_lf ||V?Uf||LP(Rn;Rn). (419)
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On the other hand, applying (B.I0) with A = R™ and r = 1, we have

a NWn, fn, o vafHL Rn™; R™ n+2a—1
V2 gy < ( g T

n+aoa-—1 -« o}
By (£.2), we conclude that
lim sup |92 oy < Vol iogarmo. (4.20)

a—1—

Thus, ([EI7) follows combining (EI9) and (Z20).

Step 2. We now claim that

Vof—=Vuf inP(R%R")asa— 17, (4.21)
Indeed, let ¢ € LP_Z(R”;R"). For each ¢ > 0, let ¢. € C*(R";R") be such that
||1e — QOHL%(R”-R") < e. By (@I8) and (£IT), we can estimate
lim sup @-Vf‘ufdx—/ ¢ Vof da Slimsup‘/ wg-Vf‘dex—/ be - Vo f da
a—1- R™ R™ a—1- R™ R

[ o=l IVaflde+ [ o=l Vaflda

<e (aligl_ IV fllLr®n;rny + vaf”LP(R”;R")>

= 2¢ ||V fll Lo @n;rm)
so that (£21]) follows passing to the limit as e — 0.

Since LP(R™;R™) is uniformly convex (see [8, Section 4.3] for example), the limit
in (416]) follows from (AI7) and (£2I) by [8, Proposition 3.32], and the proof is com-
plete. U

For the case p = 400, we have the following result.
Theorem 4.11. If f € WH>(R"), then
Vof—=Vuf in LR"R") asa— 1" (4.22)
and

Proof. We argue similarly as in the proof of Theorem [£10, in two steps.
Step 1: proof of ([A22]). By Proposition and Proposition [£.4], we have

lim [ ¢-Vfdr=— lim / fdivo‘cpdx:—/ fdivcpdx:/ o Vofde (4.24)
a—1— JR» a—1— JRn» R™ R7
for all ¢ € C°(R™;R™), so that
/ @ - wa dx S HSOHLl(R”;R”) lim 11;lf HVO‘fHLoo(Rn;Rn)
Rn a—1

for all ¢ € C°(R"™; R™). We thus get ([£23)).
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Step 2: proof of [E23). Let ¢ € L'(R™;R"). For each ¢ > 0, let 1. € C°(R™; R") be
such that ||¢. — ¢||p1gn;rny < €. By @24) and (3.14)), we can estimate

/RnSO.Vf‘dea:—/Rnw.wadx /Rnilje-vféfdx—/wwe-vwfdx

< lim sup
a—1—

lim sup
a—1—

[ o= vlIVaslde+ [ lp—vlIVaflde

<e <lim sup ||V f| Lo (mn; mmy + HVfHLoo(Rn;RnJ

a—1-

< e (n+ 1) [V fllegnsin
so that (£21]) follows passing to the limit as e — 0. O
Remark 4.12. We notice that Theorem [4.7l and Theorem [4.9 in the case f = xgp €

BV (R") with £ C R"™ bounded, and Theorem [TI0 were already announced in [34]
Theorems 16 and 17].

4.3. T'-convergence of a-variation as a — 1. In this section, we study the I'-
convergence of the fractional a-variation to the standard variation as a — 1.
We begin with the I'-lim inf inequality.

Theorem 4.13 (I'-liminf inequalities as o — 17). Let Q C R™ be an open set.
(1) If (fa)ac,1) C Lig.(R™) satisfies SUP e (0,1) | fallLeo@ny < +00 and fo — fin Li (R™)
as o — 17, then
|IDf(Q) <liminf |Df,|(£). (4.25)
a—1-
(i) If (fa)aco,1) C LY(R™) satisfies fo — f in L*(R") as @ — 17, then ([d23) holds.
Proof. We prove the two statements separately.
Proof of (@). Let ¢ € C(§;R™) be such that ||| @z < 1. Since we can estimate

‘/ fadivipdx —/ fdivpdr| < / | fo — fl|divep| dz +/ | fol |[divie — divel| dz
R™ R™ R™ Rn

< |ldivell poorieny | |fa— fldz+ ( sup || fallen) [divie — divel| g,
supp ¢ ae(0,1)

by Proposition 4] we get that
/ fdivpds = lim / fadivegdz < liminf | DOf|(Q)
Rn R™ a—1—

a—1—

and the conclusion follows.
Proof of (). Let ¢ € CF(Q2;R"™) be such that ||¢]|ze@rr) < 1. Since we can estimate

|/ f”‘diva@d:c—/ Fdive dr g/ fo — f] |div<p|da:—|—/ | £l [divee — divep| dz
R™ R™ Rn R”

< |ldiveell oo | fa = fllzr@n) + [|divee — dive| poo@e | fall 21 ey,
by Proposition 4] we get that

/ fdivods = lim / fadiveedz < liminf |Df,|(Q)
Rn a—1— JR» a—1—

and the conclusion follows. O
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We now pass to the I'-lim sup inequality.

Theorem 4.14 (I'-limsup inequalities as a« — 17). Let Q C R" be an open set.
(i) If f € BV(R"™) and either Q is bounded or Q = R", then

limsup | D f|(2) < |Df|(Q). (4.26)

a—1~

(77) If f € BVioe(R™) and 2 is bounded, then
I(Lyge) -limsup [D*f[(Q) < [Df|(Q).

loc
a—1-
In addition, if f = xg, then the recovering sequences (fo)ac(o,1) ™ (1) and (@) can be
taken such that fo = xg, for some measurable sets (Eq)ac(0,1)-

Proof. Assume f € BV(R"). By Theorem L9, we know that |D*f| — |Df| as a — 17.
Thus, by [22, Proposition 4.26], we get that
lim sup [ D £](©) < limsup | D*F|(@) < | DF|(©) (4.27)
a—1- a—1-
for any bounded open set 2 C R™. If Q = R", then ([£.28]) follows immediately from (£13).
This concludes the proof of (f).

Now assume that f € BVj,(R") and Q is bounded. Let (Ry)ren C (0,+00) be a
sequence such that Ry — 400 as k — +oo and set f; = fXBRk for all £ € N. By
Theorem [A.1l we can choose the sequence (Ry)ren such that, in addition, f; € BV (R")
with Dfy = xp, Df + f*Dxay, for all k € N. Consequently, fi — f in Li (R") as k —
+o00 and, moreover, since €2 is bounded, |D f|(Q2) = |Df|(2) and | D fx|(0Q2) = | D f|(09)
for all k£ € N sufficiently large. By (£27), we have that

lim sup |D* fyl(9) < [Dfl (@) (4.28)

a—1-
for all k£ € N sufficiently large. Hence, by [7, Proposition 1.28], by [12, Proposition 8.1(c)]
and by (Z28)), we get that

I (Lige) -limsup | D*f(©2) < lim inf (P(Lie) - lim sup [ D* £ () )
—+00

foc a—1— a—1—
< Jim D@ = |DfI(©).

This concludes the proof of ().

Finally, if f = xg, then we can repeat the above argument verbatim in the metric spaces
{xr € L} R") : F C R"} for () and {xr € LL.(R") : F C R"} for (i) endowed with their
natural distances. O

Remark 4.15. Thanks to (£20), a recovery sequence in Theorem L T4f) is the constant
sequence (also in the special case f = xg).

Combining Theorem EI3|{) and Theorem ZI4([{), we can prove that the fractional
Caccioppoli a-perimeter I'-converges to De Giorgi’s perimeter as o — 17 in L, (R"). We
refer to [2] for the same result on the classical fractional perimeter.

Theorem 4.16 (T'(L{.)-lim of perimeters as o — 17). Let Q C R"™ be a bounded open
set with Lipschitz boundary. For every measurable set E C R™, we have

D(Lhe) - lim |D*xpl(©) = P(E; ).



A DISTRIBUTIONAL APPROACH TO FRACTIONAL VARIATION: ASYMPTOTICS I 47

Proof. By Theorem [L.13|({), we already know that
D(LL)- i inf [ D6 () > P(E;Q),
a— 1"

so we just need to prove the I'(L}.)-limsup inequality. Without loss of generality, we
can assume P(E;Q) < +oo. Now let (Ej)ren be given by Theorem [A4l Since yg, €
BVioe(R™) and P(Ey;02) = 0 for all k € N, by Theorem ET4({) we know that
[(Lige) - limsup [ D*x g, [(Q) < P(Ep; Q)
a—1-
for all k € N. Since xp, — xr in Li.(R") and P(E; Q) — P(E;Q) as k — +oo,
by [7, Proposition 1.28] we get that

[(Li,.)-limsup [D*yg|(©2) < liminf (F(Llloc) -lim sup |DQXEk|(Q))
a—1— k—+o0 a—s1—
< lim P(Eg; Q) = P(E;Q)
k—+o00
and the proof is complete. O

Finally, combining Theorem [ZI3|({l) and Theorem [£I4], we can prove that the fractional
a-variation T-converges to De Giorgi’s variation as o — 17 in L!'(R").

Theorem 4.17 (I'(L')-lim of variations as « — 17). Let Q C R"™ be an open set such

that either Q0 is bounded with Lipschitz boundary or Q = R™. For every f € BV (R"), we
have

D(L) - Tim [D*f](©) = |DfI(©)

Proof. The case 2 = R" follows immediately by [12, Proposition 8.1(c)] combining The-
orem AT3|[{) with Theorem EIZ[). We can thus assume that €2 is a bounded open
set with Lipschitz boundary and argue similarly as in the proof of Theorem [Z16. By
Theorem ZT3|([{), we already know that

D(L)-tim inf | D f1(©) > [DS](),

so we just need to prove the I'(L!) - lim sup inequality. Without loss of generality, we can
assume |Df|(Q2) < 4o00. Now let (fi)ren € BV(R"™) be given by Theorem [A.6l Since
| D fi|(0€2) = 0 for all k € N, by Theorem .14 we know that
F(Ll)-limiup 1D fi|(2) < [Dfil(2) = |Dfil ()
a—1—
for all k € N. Since fr — f in L'(R") and |Df|(2) — |[D*f|(Q) as k — +oo,
by [7, Proposition 1.28] we get that
[(L')-limsup| D |(€2) < lim inf (P(L")-Tim sup | D* £i|(2) )
—+00

a—1~ a—1-

< lm_[Df|() = |DFI(©)
and the proof is complete. O

Remark 4.18. Thanks to Theorem [£.17], we can slightly improve Theorem [£.16. Indeed,
if xg € BV(R"™), then we also have

D(LY)- lim [Dys|() = | Dxs|(©)
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for any open set 2 C R" such that either €2 is bounded with Lipschitz boundary or {2 = R™.

5. ASYMPTOTIC BEHAVIOUR OF FRACTIONAL [3-VARIATION AS 3 — a~

5.1. Convergence of V” and div® as § — a. We begin with the following simple result
about the L'-convergence of the operators V? and div? as f — o with a € (0,1).

Lemma 5.1. Let a € (0,1). If f € W*'(R") and ¢ € W*1(R™;R"), then
Hm [|[VPf — Vf|l pi@nimny = 0, lim_[|div’e — div¥ep]| 1 (rny = 0. (5.1)
B—a B—a

Proof. Given 5 € (0, ), we can estimate

L V2 (@) = Vo F @) d < s = pinal [l e

fy) = flo)] 1 1
+/~Ln75/n/n |y—x|" >|y—x|5_|y—x|a dyda:

Since the T" function is continuous (see [4]), we clearly have

li — “l(Rr) = Y
Jim. |tn,g — tnal [flwar@ny =0
Now write

1 1

\f(y) — f(x)
v T e
_ |f(y) — f()] 1 1
_// \Z—x\” |\y—r\5_ly—fc\°‘

[ [ o)

ly—al® ly—al
On the one hand, since f € W*!(R"), we have

~|dydz

Xo)(|y — z|) dy dx

X[1,400) (| — 2]) dy da.

[/ (y) = f(=)| 1 —
|y—x|" ‘|y—x|5 ly — x| xonlly =)
_ ) — =) 1 1
oy —al <|y—:c\°‘ - Iy—x|5> on 9=l

and thus, by Lebesgue’s Dominated Convergence Theorem, we get that

x)| 1
lim / / - 5~ -
f—a= Jrn JRn Iy—wl Iy—wl ly — |

On the other hand, since one has

|f(z + 1) flz 4 h) — f(z)]
) N ana / / dhd
Fwsan) /n/h|<1} |h|"+5 T |h\>1} | o[t )

< a,l n h d dh
< [flw @)+AMEHMHBRJﬂx+)%Hﬂ@\x

X1 (Jy — z|) dy dz = 0.




A DISTRIBUTIONAL APPROACH TO FRACTIONAL VARIATION: ASYMPTOTICS I 49

2nwy,

= [f]wa’l(Rn) + 3 If |1z

for all 8 € (0, a), we can estimate

fy) = fl@)l]_ 1 1
- X[t +00) |y — )
el |y—aP  Tg—al
[f(y) — f(z)] < 1 1 )
= - X[, 400 ([y — )
y—al \ly—af [y —af) "
< ) = f(=@)]
= WX[1+00 (|?/ )
< ) = f(=)] n
< ir X (ly —al) € L, (B*)
for all g € (g a) and thus, by Lebesgue s Dominated Convergence Theorem, we get that
i [, [ OO - el s =0
fra= Jrn JR w—xW |y — x| w |
and the first limit in (5.0]) follows. The second limit in (5.1]) follows similarly and we leave
the proof to the reader. O

Remark 5.2. Let a € (0,1). If f € W*™I(R") and ¢ € W*TH(R") for some ¢ €
(0,1 — «), then, arguing as in the proof of Lemma [5.I] one can also prove that

li Bf — VS| 1 @nirny = lim,_||div’e — div*e]| 1 gny = 0.
Jm VO =V gy =0, Tim [ldivie = divYel sy = 0
We leave the details of proof of this result to the interested reader.
If one deals with more regular functions, then Lemma [5.1] can be improved as follows.
Lemma 5.3. Let o € (0,1) and p € [1,400]. If f € Lip.(R™) and ¢ € Lip.(R"; R™), then
lim ||VPf — V*f| 1o@n ) = 0, lim ||divPe — div®ep|| o) = 0. (5.2)
B—a B—a
Proof. Since clearly f € W*!(R") for any o € (0,1), the first limit in (5.2) for the case
p = 1 follows from Lemma [5.Il Hence, we just need to prove the validity of the same

limit for the case p = 400, since then the conclusion simply follows by an interpolation
argument.

Let § € (0,«) and = € R". We have

|Vaf(x) - Vﬂf(:[” < |Mn75 - :un,oc| /R” W dy

ORNONE !
MY S el e e
|Mn5 — Hn a|/ |f xTZT"""O‘ f(l')| dz

flatz)—f@l| 1 1
+,unﬁ/ BE 2P T2
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Since
JRLCETEY TPy T I S T/
" |z [t {lzl<1} 2] re~ {lz>13  [z[nte
< num/<1Ap(f)_+_2HfHLa%Rn)>
1—« Q
and
/ flz+2)—fz)| 1 1 zg/ Llp(f1)< I 1>dz
n |2]" 2] 2| {lzl<1y |2["71 \z|* |2]?

+/ 1flz (R)( - )dz
(z>1y |2 2P |z|*

< (a — B)nw, ( Lip(f) n 2”f”L°°(R”)>’

(1—a)(1-p) af

for all g € (%, a) we obtain

IV f = V2 Fllioeriny < Cnamax{Lip(f), [|f |z } (Iitnp = tinal + (@ = B)),

for some constant ¢, , > 0 depending only on n and «. Thus the conclusion follows since
fng = Pna @ — a~. The second limit in (5.2) follows similarly and we leave the proof
to the reader. U

5.2. Weak convergence of j-variation as § — a~. In Theorem [5.4] below, we prove

the weak convergence of the S-variation as § — o, extending the convergences obtained
in Theorem [4.7] and Theorem

Theorem 5.4. Let a € (0,1). If f € BV*(R"™), then
DPf ~D*f and |D°f| — |D°f| asf —a .
Moreover, we have

lim [D7f|(R") = |D°f|(R") (5.3)

Proof. We divide the proof in three steps.

Step 1: we prove that D°f — D*f as 8 — a~. We argue similarly as in Step 1 of the
proof of Theorem [£7. By Proposition 3.12], we have

/ @-Vﬁfd:c:—/ fdivPedz
R R

for all g € (0,a) and ¢ € Lip,(R™;R™). Thus, thanks to (5.2) in the case p = oo, we get

lim [ o -VPfdr=— lim fdiv%dx:—/ fdivo‘goda::/ o dD°f.
Boa— Jrn Rn Rn

B—a~ JRn

Now fix ¢ € C?(R™;R"). Let U C R" be a fixed bounded open set such that supp o C U.
For each ¢ > 0 sufficiently small, pick 1. € Lip,(R"; R") such that || — el poc@nrn) < €
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and supp ¢, C U. Then, by (3:25]), we can estimate
Lo Virdn— [ o-aps| <l = bulliememn ([ IV21dz +1D°f1(RY))
| [ v vipdo= [ w.-apey
0 R"
< e(1+ Coa-aspv) DV fI(R")
#|[ veverda— [ w.-aps|
1 R"
for all 8 € (0,«). Thus, by the uniform estimate (£3) in Lemma L2 we get

¢V fdo— [ o-dDf| < e+ rnp) D fI(RY) (5.4)

lim
B—a~

R?’L
and the conclusion follows passing to the limit as ¢ — 0.

Step 2: we prove that |[DPf| — |D*f| as B — a~. We argue similarly as in the first
part of the proof of Theorem B9 Since D°f — D%f as 3 — a~ as proved in Step 1
above, by [22, Proposition 4.29], we have that

[D°1(4) < liminf | D°1|(4) (5.5)

for any open set A C R". Now let K C R™ be a compact set. By the representation
formula (3:24]) in Proposition 312, we can estimate

IDPFI(K) = IV7 fllresrny < Mgl D flllraey = (Ta-s| D f| L) (K).
Since |Df|(R™) < +o00, by Lemma .8 and [22, Proposition 4.26] we conclude that
lim sup | D? F|(K) < limsup (In_s| D* f| £7)(K) < |D°F|(K). (56)

B—a~ B—a~
The conclusion thus follows thanks to [22, Proposition 4.26].

Step 3: we prove (B.3]). We argue similarly as in the proof of (£12). By (326 applied
with A = R" and r = 1, we have

n ﬂn,l - nwp, a n wn,a(n + 25 - a)
D) < e (B ey o Sna B gy, ).
By (A2)), we get that
i sup [D°|(®) < D], 67)
—a
Thus, (53) follows combining (B.5) for A = R™ with (5.7). O

5.3. I'-convergence of (-variation as § — «a~. In this section, we study the I'-con-
vergence of the fractional S-variation as  — o, partially extending the results obtained
in Section

We begin with the I'-lim inf inequality.

Theorem 5.5 (I'-liminf inequality for 5 — a7). Let « € (0,1) and let Q@ C R™ be an
open set. If (f3)pe(0,0) C L*(R") satisfies fz — f in L'(R™) as § — o, then

D°£1(9) < liminf [ D 5/(5) (53)
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Proof. We argue similarly as in the proof of Theorem LI3(M). Let p € C°(2;R™) be
such that [|¢]|ze@mrry < 1. Let U C R™ be a bounded open set such that suppy C U.
By (2.12)), we can estimate

| / fadivipdr — / fdivipdz
R Rn

< [ 1= flldivielda+ [ 1f]]divie - divog|do

< Crpolldivel e 15 = fllosgn + [ 1£11div’p - dive| da

for all 3 € (0,a). Since divPp — div®yp in L®°(R") as f — o~ by ([5.2), we easily obtain

lim / f]1div®e — divey| da = 0.

B—a~ Jrn
Hence, we get

/ fdivipde = lim | fsdivode < limint D% f5|()
R” B—a~ JR» B—a~

and the conclusion follows. O

We now pass to the I'-lim sup inequality.

Theorem 5.6 (T'-limsup inequality for § — a7). Let a € (0,1) and let Q C R™ be an
open set. If f € BVY(R™) and either Q) is bounded or 2 = R"™, then

lim sup [ D7 1(©) < D |(R), (59)
B—a~
Proof. We argue similarly as in the proof of Theorem [£.14. By Theorem (.4, we know
that |DP f| — |D*f| as 8 — a~. Thus, by [22, Proposition 4.26] and (5.3), we get that
limsup |D?f|(2) < limsup |D?f|(Q) < |D*f|(Q) (5.10)
B—a~ B—a~

for any open set 2 C R"™ such that either €) is bounded or 2 = R™. O

Corollary 5.7 (I'(L')-1lim of variations in R™ as 3 — a7). Let a € (0,1). For every
f € BVYR"), we have

D(L)- lim [D7f|(R") = [D°f(R).
In particular, the constant sequence is a recovery sequence.
Proof. The result follows easily by combining (5.8)) and (5.9) in the case 2 = R™. O

Remark 5.8. We recall that, by [10, Theorem 3.25], f € BV*(R") satisfies | D f| < £"
if and only if f € S*!(R"). Therefore, if f € S*!(R"), then |D*f|(02) = 0 for any
bounded open set @ C R" such that £"(0Q) = 0 (for instance, 2 with Lipschitz
boundary). Thus, we can actually obtain the I'-convergence of the fractional S-variation
as 8 — a~ on bounded open sets with Lipschitz boundary for any f € S®!(R") too. In-
deed, it is enough to combine (B.8) and (5.9) and then exploit the fact that | D*f|(02) = 0
to get
DL Jim |D77](©) = D7 1(9)

for any f € S“H(R").
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APPENDIX A. TRUNCATION AND APPROXIMATION OF BV FUNCTIONS

For the reader’s convenience, in this appendix we state and prove two known results on
BV functions and sets with locally finite perimeter.

A.1. Truncation of BV functions. Following [3, Section 3.6] and [I5, Section 5.9],
given f € Li (R"), we define its precise representative f*: R™ — [0, +00] as

Fla)i=lim = [ fw)dy, aeR (A1)
if the limit exists, otherwise we let f*(z) = 0 by convention.
Theorem A.1 (Truncation of BV functions). If f € BVio.(R"), then
fxs, € BV(R"), with D(fxs,) = X3,Df+ [*Dxs,, (A.2)
for Lt-a.e. v > 0. If, in addition, f € L®(R"), then (A2) holds for all r > 0.

Proof. Fix p € C*(R™; R™) and let U C R™ be a bounded open set such that supp(yp) C U.
Let (0:)es0 € C°(R™) be a family of standard mollifiers as in [10, Section 3.3] and set

f- = fxo-forall e > 0. Note that supp (Qa* (XBTQD)) C U and supp (ge* (XBTdivcp)) cU
for all ¢ > 0 sufficiently small and for all » > 0. Given r > 0, by Leibniz’s rule and Fubini’s
Theorem, we have

/Rn fexs, divp dx = /Rn xg,.div(fep) de — /Rn XB, ¢ Vf.dx

= —/Rn fep - dDxp, - /R 0 * (xB,%) - dDf.
Since f. — f a.e. in R" as ¢ — 0" and

| f] 0= * (xm, |dive]) < |flxvlldive||zeomn) € L' (R™)

for all € > 0, by Lebesgue’s Dominated Convergence Theorem we have

lim / fexn, divpdr = / fxs, divpdz
R™ R™

e—0t

(A.3)

for all 7 > 0. Thus, since g, * (xB,¢) = X5, ¢ pointwise in R" as ¢ — 07 and

0= * (x5,%)| < @l L=(@nizmyxv € L'(R", |Df])

for all € > 0 sufficiently small, again by Lebesgue’s Dominated Convergence Theorem we
have

lim [ o.x (x.9)-dDf = [ Xp¢-dDf

e—0t

for all » > 0. Now, by [3, Theorem 3.78 and Corollary 3.80], we know that f. — f*
A" ae in R as ¢ — 0. As a consequence, given any r > 0, we get that f. — f*
|Dxg,|-a.e. in R™ as ¢ — 0F. Thus, if f € L>°(R"), then

[fepl < NI fllze@n ol € LY(R™, |Dxs, 1)

for all € > 0 and so, again by Lebesgue’s Dominated Convergence Theorem, we have

lim [ fip-dDxs = [ fo- dDxs,

e—0t
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for all » > 0. Therefore, if f € L°°(R"), then we can pass to the limit as ¢ — 0" in (A.3))
and get

/ fxs, divpdr = —/ [T¢ - dDxp, —/ Xp,¢ - dDf
Rn Rn R™

for all ¢ € C°(R™;R") and for all 7 > 0. Since || f*|| peomny < || f]| oo (mny, this proves (A.2))
for all » > 0. If f is not necessarily bounded, then we argue as follows. Without loss of
generality, assume that ||¢||@n;rn) < 1. We can thus estimate

‘/ Jep - dDxB, —/ f*o- dDxp,
Rn R»

< [ 1=l (A4)

Given any R > 0, by Fatou’s Lemma we thus get that

R
lim inf / fep - dDxp, —/ f*o - dDxg,|dr
0 &0t |JRrn R™
R
< / lim inf \fe — f*lds" " dr
0 e—=0t JoB,
R
< liminf/ / . — f*|da" "t dr
e—=0t Jo B,
= li — f* =0.
A Jp, Ve = Pl e =0
Hence, the set
7 = {r > 0 : liminf \fg — f*| A" = 0} (A-5>
e—0t JoB,

satisfies -Z1((0,400) \ Z) = 0 and depends neither on the choice of ¢ nor on the choice
of the #"-representative of f. Now fix r € Z and let (ex)reny be any sequence realising

the liminf in (A.5). By (A.4), we thus get
lim /R ferp - dDxp, = /R fre- dDxs,

k—+o00

uniformly for all ¢ satisfying ||¢||pe(mn;mny < 1. Passing to the limit along the sequence
(er)ren as k — +oo in ([A.3]), we get that

| Ixs diveds == [ fo-dDxs, — [y dDS

for all ¢ € C(R™;R™) with ||| L@, rn) < 1. Finally, since

R
[ Ararentar = [ |pde < +oc,
0 JoB, Br

the set
W = {r >0 :/a |f*| do™ "t dr < +oo}
By

satisfies Z1((0, +00)\W) = 0 and does not depend on the choice of the £ "-representative
of f. Thus ([A.2)) follows for all » € W N Z and the proof is concluded. O
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A.2. Approximation by sets with polyhedral boundary. In this section we state
and prove standard approximation results for sets with finite perimeter or, more generally,
BViee(R™) functions, in a sufficiently regular bounded open set.

We need the following two preliminary lemmas.

Lemma A.2. Let V,W C S* !, with V finite and W at most countable. For any e > 0,
there exists R € SO(n) with |R — I| < e, where I is the identity matriz, such that
RV)NW =@.

Proof. Let N € N be such that V = {v; e S"':i=1,...,N}. We divide the proof in
two steps.

Step 1. Assume that W is finite and set A; := {R € SO(n) : R(v;) ¢ W} for all i =
1,..., N. We now claim that A; is an open and dense subset of SO(n) foralli =1,..., N.
Indeed, given any i = 1,..., N, since W is finite, the set A = SO(n) \ A; is closed
in SO(n). Moreover, we claim that int(A§) = &. Indeed, by contradiction, let us assume
that int(AS) # @. Then there exist ¢ > 0 and R € Af such that any S € SO(n) with
|S — R| < ¢ satisfies S € Af. In particular, for these R € Af and ¢ > 0, we have
R+ 2%% € A¢ for any k > 1, which implies R(v;) + 2%\I\vi € W for any k > 1, in contrast
with the fact that W is finite. Thus, A; is an open and dense subset of SO(n) for all
1=1,..., N, and so also the set

N
AV =N A ={R€SO(n):R(v;) ¢ WVi=1,...,N}
i=1
is an open and dense subset of SO(n). The result is thus proved for any finite set W.

Step 2. Now assume that W is countable, W = {w, € S ! : k € N}. For all M € N,
set Wy = {wp, € W: k< M}. By Step 1, we know that A" is an open and dense
subset of SO(n) for all M € N. Since SO(n) C R" is compact, by Baire’s Theorem
A== Npren AV is a dense subset of SO(n). This concludes the proof. 0

Since det: GL(n) — R is a continuous map, there exists a dimensional constant ¢,, €
(0,1) such that det R > 1 for all R € GL(n) with |R — Z| < 4.

Lemma A.3. Let ¢ € (0,0,) and let E C R™ be a bounded set with P(E) < +oo. If
R € SO(n) satisfies |R —I| < e, then

IR(E) A E| < 2erp P(E),
where rg :=sup{r > 0: |E\ B,| > 0}.

Proof. We divide the proof in two steps.

Step 1. Let v > 0 and let f € C°(R™). Setting R; := (1 —t)Z + tR for all ¢ € [0, 1],
we can estimate

|1 (R@) = f@)lde = |

T T

< |7z—z|7»/01 /B IV F(Ru(x))] da dt.

/01<Vf(72t(:c)),7€(a:) _ 2y dt|da
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Since |R; — I| = t|R — I| < te < §, for all t € [0,1], R, is invertible with det(R; ") < 2
for all ¢ € [0,1]. Hence we can estimate

[ VIR @)de= [ V@) detRT)dy <2 [ VF(0)]dy,

t(Br)

so that
/B |f(R(x)) — f(2)] dv < 2er||V f|| L1 @ngn). (A.6)

Step 2. Since xg € BV(R™), combining [I5, Theorem 5.3] with a standard cut-off
approximation argument, we find (fx)gen C C°(R™) such that fy — xp pointwise a.e.
in R" and |V f¢|(R") — P(FE) as k — +o00. Given any r > 0, by (A.G]) in Step 1 we have

| 1fu(R@) = ful@) do < 267V fella e
for all £ € N. Passing to the limit as k — +o00, by Fatou’s Lemma we get that
(R(E) A E)N B,| <2er P(E).

Since E C B, up to .£™-negligible sets, also R(E) C B, up to .£"-negligible sets. Thus
we can choose r = rg and the proof is complete. O

We are now ready to prove the main approximation result, see also [2, Proposition 15].

Theorem A.4. Let ) C R" be a bounded open set with Lipschitz boundary and let E C R™
be a measurable set such that P(E;Q) < +o0o. There exists a sequence (Ej)ren of bounded
open sets with polyhedral boundary such that

P(Ey;00) =0 (A.7)
for all k € N and
XB, — XE in L (R")  and P(Ey; Q) — P(E;Q) (A.8)
as k — +oo.

Proof. We divide the proof in four steps.

Step 1: cut-off. Since € is bounded, we find Ry > 0 such that Q C Bg,. Let us define
Rr = Ry + k and

C), = {;1: € Q° : dist(z,00) < %}

for all k € N. We set E} := EN Bg, NC; for all k € N. Note that E} is a bounded
measurable set such that

Xg! — X In L (R™) as k — +o0

and
P(EL;Q) = P(E;Q) for all k € N.

Step 2: extension. Let us define

1
Ay = R™ : dist(z, Q) < —
k {x € ist(z, ) < 4k}
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for all k € N. Since xging € BV(Q) for all k € N, by [3, Definition 3.20 and Proposi-
tion 3.21] there exists a sequence (vg)reny C BV (R™) such that

vp =0ae in AY, vy =xp inQ, [Dy|(092) =0

for all £k € N. Let us define F} := {v, >t} for all ¢ € (0,1). Given k € N, by the coarea
formula [3, Theorem 3.40], for a.e. t € (0,1) the set F} has finite perimeter in R” and
satisfies

FlC A, FNQ=ENQ, P(F;00) =0
for all k € N. We choose any such t;, € (0,1) for each k € N and define E? := E} U F}*
for all £ € N. Note that E? is a bounded set with finite perimeter in R™ such that

Xg2 — XE in L (R™) as k — +00

loc
and
P(E:Q)=P(E;Q) and P(E;;0Q) =0 forall k€ N.
Step 3: approximation. Let us define
Dy = {;1: € Q° : dist(z, 00) € [ﬁ, %H
for all £ € N. First arguing as in the first part of the proof of [22, Theorem 13.8] taking [22]

Remark 13.13] into account, and then performing a standard diagonal argument, we find
a sequence of bounded open sets (E})reny with polyhedral boundary such that

E} C D§ for all k € N
and
Xg: — XE In LL.(R™), P(E;Q) — P(E;Q) and P(E}00) — 0
as k — +4o00. If there exists a subsequence (E;?J_)jeN such that P(E,‘Z’j;@@) = 0 for all

J € N, then we can set F; := Ej; for all j € N and the proof is concluded. If this is not
the case, then we need to proceed with the next last step.

Step 4: rotation. We now argue as in the last part of the proof of [2, Proposition 15].
Fix k € N and assume P(E};0Q) > 0. Since E; has polyhedral boundary, we have
HAHOE} N 0N) > 0 if and only if there exist v € S*! and U C .ZQ such that
A HU) > 0, vg(z) = v for all € U and U C dH for some half-space H satisfying
vy = v. Since P(Q) = 2" 1(09Q) < +o0, the set

We={ves ! ({z €09 vo(x) = v}) > 0}

— Ufres B > ot ({a € 09 wg(a) = v)) > 2]
heN

is at most countable. Since E} has polyhedral boundary, the set
Vi = {y csm ! ({x c OE} : v (z) = 1/}) > 0}

is finite. By Lemma [A.2] given ¢ > 0, there exists Ry, € SO(n) with |Ry — Z| < &, such
that Ry (Vi) N W = &. Hence the set E} := Ry(FE}) must satisfy P(E};00Q) = 0. By
Lemma [A3] we can choose &; > 0 sufficiently small in order to ensure that |Ef A Ef| < +.

Now choose 7, € (0, 2—1k) such that P(E}; Q) < 2P(E}; 09Q), where
Qr = {z € R" : dist(x,0Q) < ng}.
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Since 2 is bounded, possibly choosing ¢, > 0 even smaller, we can also ensure that
QA RHO) C Q. Hence we can estimate

P(ES Q) — P(ES Q)] = |7 0B} N R™(Q)) — A" (0B} N )|
<" 0EEN(QART(Q))
< A"HOER N Qy).
We can thus set Ej := E} for all k € N and the proof is complete. U

Remark A.5 (A minor gap in the proof of [2, Proposition 15]). We warn the reader
that the cut-off and the extension steps presented above were not mentioned in the proof
of [2, Proposition 15], although they are unavoidable for the correct implementation of
the rotation argument in the last step. Indeed, in general, one cannot expect the existence
of a rotation R € SO(n) arbitrarily close to the identity map such that P(R(FE);0Q) =0
and, at the same time, the difference between P(R(E);2) and P(E;€) is small. For
example, one can consider

Q:{(xl,xg) cA:x?+ad <25}
and
E:{(l‘l,l‘z) €A: 1<x%+x§<4}u{(x1,x2) € A°: 9 < a1t + 73 <16}

where A = {(z1,72) € R* : 2y >0, x5 > 0}. In this case, for any rotation R € SO(2)
arbitrarily close to the identity map, we have P(R(E);2) > 2+ P(E;Q).

We conclude this section with the following result, establishing an approximation of
BV, functions similar to that given in Theorem [A 4]

Theorem A.6. Let Q0 C R™ be a bounded open set with Lipschitz boundary and let
f € BVioe(R™). There ezists (fx)ren C BV (R™) such that

| Dfil(962) = 0
for all k € N and
Jie = [ in Ligo(R") and  [Dfi|(Q) — [Df|(Q)
as k — +oo. If, in addition, f € LY(R™), then fy — f in L'(R™) as k — +oo.

Proof. We argue similarly as in the proof of Theorem [A.4] in two steps.

Step 1: cut-off at infinity. Since Q is bounded, we find Ry > 0 such that Q C Bg,.
Given (Ry) C (Ro,+00), we set gy := fxp, for all k € N. By Theorem [A.T we have
gr € BV(R™) for a suitable choice of the sequence (Ry)gen, with |Dgg|(Q2) = |Df|(€2) for
all k € Nand g, — f in L _(R") as k — +oo. If, in addition, f € L*(R"), then g — f
in L'(R™) as k — +o0.

Step 2: extension and cut-off near €. Let us define

1
Ap = {x € R" : dist(x,Q2) < E}
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for all £ € N. Since grxa € BV(2) with |Dgi|(©2) = |Df|(?) for all £ € N, by [3]
Definition 3.20 and Proposition 3.21] there exists a sequence (hg)rey C BV (R™) such
that
supp hy C Ag, hp = gp in Q,  |Dhg|(0Q) =0
for all £ € N and
lim |hi| dz =0

k——4o00 A \Q

(the latter property easily follows from the construction performed in the proof of [3,
Proposition 3.21]). Now let (vg)ren C C2°(R™) be such that suppvx, C Af and 0 < vy, < 1
for all £ € N and v, — xqc pointwise in R™ as k — 4+00. We can thus set fi := hy + vrgs
for all £ € N. By [3, Propositon 3.2(b)], we have vygr € BV (R") for all k& € N, so that
fr € BV(R") for all k € N. Since we can estimate

[fe = f1 < 1P — fxel + vk — xael l9x] + |9 — f] xac
= | Al xan\0 F+ [k — xae| |9k] + |96 — f| xae

for all k € N, we have f, — fin L] .(R") as k — +oo, with fy — fin L'(R") as k — +o00
if f € L'(R™). By construction, we also have

D fil(Q2) = |Dhy|(2) and D fi[(952) = [Dhy|(952)
for all £ € N. The proof is complete. O
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