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A DISTRIBUTIONAL APPROACH TO FRACTIONAL SOBOLEV

SPACES AND FRACTIONAL VARIATION: ASYMPTOTICS I

GIOVANNI E. COMI AND GIORGIO STEFANI

Abstract. We continue the study of the space BV α(Rn) of functions with bounded
fractional variation in Rn of order α ∈ (0, 1) introduced in our previous work [10], by
dealing with the asymptotic behaviour of the fractional operators involved. After some
technical improvements of certain results of [10], we prove that the fractional α-variation
converges to the standard De Giorgi’s variation both pointwise and in the Γ-limit sense
as α → 1−. We also prove that the fractional β-variation converges to the fractional
α-variation both pointwise and in the Γ-limit sense as β → α− for any given α ∈ (0, 1).
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1. Introduction

1.1. A distributional approach to fractional variation. In our previous work [10],
we introduced the space BV α(Rn) of functions with bounded fractional variation in R

n

of order α ∈ (0, 1). Precisely, a function f ∈ L1(Rn) belongs to the space BV α(Rn) if its
fractional α-variation

|Dαf |(Rn) := sup
{∫

Rn
f divαϕdx : ϕ ∈ C∞

c (Rn;Rn), ‖ϕ‖L∞(Rn;Rn) ≤ 1
}

(1.1)

is finite. Here

divαϕ(x) := µn,α

∫

Rn

(y − x) · (ϕ(y) − ϕ(x))
|y − x|n+α+1

dy, x ∈ R
n, (1.2)

is the fractional α-divergence of ϕ ∈ C∞
c (Rn;Rn), where

µn,α := 2απ− n
2

Γ
(

n+α+1
2

)

Γ
(

1−α
2

) (1.3)

for any given α ∈ (0, 1). The operator divα was introduced in [35] as the natural dual
operator of the much more studied fractional α-gradient

∇αf(x) := µn,α

∫

Rn

(y − x)(f(y) − f(x))
|y − x|n+α+1

dy, x ∈ R
n, (1.4)

defined for all f ∈ C∞
c (Rn). For an account on the existing literature on the operator ∇α,

see [31, Section 1]. Here we only refer to [29–33,35–37] for the articles tightly connected
to the present work and to [27, Section 15.2] for an agile presentation of the fractional op-
erators defined in (1.2) and in (1.4) and of some of their elementary properties. According
to [33, Section 1], it is interesting to notice that [20] seems to be the earliest reference for
the operator defined in (1.4).

The operators in (1.2) and in (1.4) are dual in the sense that
∫

Rn
f divαϕdx = −

∫

Rn
ϕ · ∇αf dx (1.5)

for all f ∈ C∞
c (Rn) and ϕ ∈ C∞

c (Rn;Rn), see [35, Section 6] and [10, Lemma 2.5].
Moreover, both operators have good integrability properties when applied to test func-
tions, namely ∇αf ∈ Lp(Rn) and divαϕ ∈ Lp(Rn;Rn) for all p ∈ [1,+∞] for any given
f ∈ C∞

c (Rn) and ϕ ∈ C∞
c (Rn;Rn), see [10, Corollary 2.3].
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The integration-by-part formula (1.5) represents the starting point for the distributional
approach to fractional Sobolev spaces and fractional variation we developed in [10]. In
fact, similarly to the classical case, a function f ∈ L1(Rn) belongs to BV α(Rn) if and
only if there exists a finite vector-valued Radon measure Dαf ∈ M (Rn;Rn) such that

∫

Rn
f divαϕdx = −

∫

Rn
ϕ · dDαf (1.6)

for all ϕ ∈ C∞
c (Rn;Rn), see [10, Theorem 3.2].

Motivated by (1.6) and similarly to the classical case, we can define the weak fractional
α-gradient of a function f ∈ Lp(Rn), with p ∈ [1,+∞], as the function ∇α

wf ∈ L1
loc(R

n;Rn)
satisfying

∫

Rn
f divαϕdx = −

∫

Rn
∇α

wf · ϕdx

for all ϕ ∈ C∞
c (Rn;Rn). For α ∈ (0, 1) and p ∈ [1,+∞], we can thus define the distribu-

tional fractional Sobolev space

Sα,p(Rn) := {f ∈ Lp(Rn) : ∃ ∇α
wf ∈ Lp(Rn;Rn)} (1.7)

naturally endowed with the norm

‖f‖Sα,p(Rn) := ‖f‖Lp(Rn) + ‖∇α
wf‖Lp(Rn;Rn) ∀f ∈ Sα,p(Rn). (1.8)

It is interesting to compare the distributional fractional Sobolev spaces Sα,p(Rn) with
the well-known fractional Sobolev space W α,p(Rn), that is, the space

W α,p(Rn) :=







f ∈ Lp(Rn) : [f ]W α,p(Rn) :=

(

∫

Rn

∫

Rn

|f(x) − f(y)|p
|x− y|n+pα

dx dy

)
1

p

< +∞






endowed with the norm

‖f‖W α,p(Rn) := ‖f‖Lp(Rn) + [f ]W α,p(Rn) ∀f ∈ W α,p(Rn).

If p = +∞, then W α,∞(Rn) naturally coincides with the space of bounded α-Hölder
continuous functions endowed with the usual norm (see [14] for a detailed account on the
spaces W α,p).

For the case p = 1, starting from the very definition of the fractional gradient ∇α,
it is plain to see that W α,1(Rn) ⊂ Sα,1(Rn) ⊂ BV α(Rn) with both (strict) continuous
embeddings, see [10, Theorems 3.18 and 3.25].

For the case p ∈ (1,+∞), instead, it is known that Sα,p(Rn) ⊃ Lα,p(Rn) with continuous
embedding, where Lα,p(Rn) is the Bessel potential space of parameters α ∈ (0, 1) and
p ∈ (1,+∞), see [10, Section 3.9] and the references therein. In the forthcoming paper [9],
it will be proved that also the inclusion Sα,p(Rn) ⊂ Lα,p(Rn) holds continuously, so that
the spaces Sα,p(Rn) and Lα,p(Rn) coincide. In particular, we get the following relations:
Sα+ε,p(Rn) ⊂ W α,p(Rn) ⊂ Sα−ε,p(Rn) with continuous embeddings for all α ∈ (0, 1),
p ∈ (1,+∞) and 0 < ε < min{α, 1 − α}, see [32, Theorem 2.2]; Sα,2(Rn) = W α,2(Rn) for
all α ∈ (0, 1), see [32, Theorem 2.2]; W α,p(Rn) ⊂ Sα,p(Rn) with continuous embedding for
all α ∈ (0, 1) and p ∈ (1, 2], see [38, Chapter V, Section 5.3].

In the geometric regime p = 1, our distributional approach to the fractional variation
naturally provides a new definition of distributional fractional perimeter. Precisely, for
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any open set Ω ⊂ Rn, the fractional Caccioppoli α-perimeter in Ω of a measurable set
E ⊂ Rn is the fractional α-variation of χE in Ω, i.e.

|DαχE|(Ω) = sup
{∫

E
divαϕdx : ϕ ∈ C∞

c (Ω;Rn), ‖ϕ‖L∞(Ω;Rn) ≤ 1
}

.

Thus, E is a set with finite fractional Caccioppoli α-perimeter in Ω if |DαχE|(Ω) < +∞.
Similarly to the aforementioned embedding W α,1(Rn) ⊂ BV α(Rn), we have the in-

equality
|DαχE|(Ω) ≤ µn,αPα(E; Ω) (1.9)

for any open set Ω ⊂ R
n, see [10, Proposition 4.8], where

Pα(E; Ω) :=
∫

Ω

∫

Ω

|χE(x) − χE(y)|
|x− y|n+α

dx dy + 2
∫

Ω

∫

Rn\Ω

|χE(x) − χE(y)|
|x− y|n+α

dx dy (1.10)

is the standard fractional α-perimeter of a measurable set E ⊂ Rn relative to the open set
Ω ⊂ Rn (see [11] for an account on the fractional perimeter Pα). Note that, by definition,
the fractional α-perimeter of E in Rn is simply Pα(E) := Pα(E;Rn) = [χE ]W α,1(Rn). We
remark that inequality (1.9) is strict in most of the cases, as shown in Section 2.6 below.
This completely answers a question left open in our previous work [10].

1.2. Asymptotics and Γ-convergence in the standard fractional setting. The
fractional Sobolev space W α,p(Rn) can be understood as an ‘intermediate space’ between
the space Lp(Rn) and the standard Sobolev space W 1,p(Rn). In fact, W α,p(Rn) can be
recovered as a suitable (real) interpolation space between the spaces Lp(Rn) and W 1,p(Rn).
We refer to [5,40] for a general introduction on interpolation spaces and to [26] for a more
specific treatment of the interpolation space between Lp(Rn) and W 1,p(Rn).

One then naturally expects that, for a sufficiently regular function f , the fractional
Sobolev seminorm [f ]W α,p(Rn), multiplied by a suitable renormalising constant, should
tend to ‖f‖Lp(Rn) as α → 0+ and to ‖∇f‖Lp(Rn) as α → 1−. Indeed, for p ∈ [1,+∞) and
α ∈ (0, 1), it is known that

lim
α→0+

α [f ]pW α,p(Rn) = An,p ‖f‖p
Lp(Rn) (1.11)

for all f ∈ ⋃

α∈(0,1) W
α,p(Rn), while

lim
α→1−

(1 − α) [f ]pW α,p(Rn) = Bn,p ‖∇f‖p
Lp(Rn) (1.12)

for all f ∈ W 1,p(Rn). Here An,p, Bn,p > 0 are two constants depending only on n, p. The
limit (1.11) was proved in [23,24], while the limit (1.12) was established in [6]. As proved
in [13], when p = 1 the limit (1.12) holds in the more general case of BV functions, that
is,

lim
α→1−

(1 − α) [f ]W α,1(Rn) = Bn,1 |Df |(Rn) (1.13)

for all f ∈ BV (Rn). For a different approach to the limits in (1.11) and in (1.13) based
on interpolation techniques, see [26].

Concerning the fractional perimeter Pα given in (1.10), one has some additional infor-
mation besides equations (1.11) and (1.13).

On the one hand, thanks to [28, Theorem 1.2], the fractional α-perimeter Pα enjoys the
following fractional analogue of Gustin’s Boxing Inequality (see [19] and [16, Corollary
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4.5.4]): there exists a dimensional constant cn > 0 such that, for any bounded open set
E ⊂ Rn, one can find a covering

E ⊂
⋃

k∈N

Brk
(xk)

of open balls such that
∑

k∈N

rn−α
k ≤ cnα(1 − α)Pα(E). (1.14)

Inequality (1.14) bridges the two limiting behaviours given by (1.11) and (1.13) and
provides a useful tool for recovering Gagliardo–Nirenberg–Sobolev and Poincaré–Sobolev
inequalities that remain stable as the exponent α ∈ (0, 1) approaches the endpoints.

On the other hand, by [2, Theorem 2], the fractional α-perimeter Pα Γ-converges in
L1

loc(R
n) to the standard De Giorgi’s perimeter P as α → 1−, that is, if Ω ⊂ Rn is a

bounded open set with Lipschitz boundary, then

Γ(L1
loc) - lim

α→1−
(1 − α)Pα(E; Ω) = 2ωn−1P (E; Ω) (1.15)

for all measurable sets E ⊂ Rn, where ωn is the volume of the unit ball in Rn (it should
be noted that in [2] the authors use a slightly different definition of the fractional α-
perimeter, since they consider the functional Jα(E,Ω) := 1

2
Pα(E,Ω)). For a complete

account on Γ-convergence, we refer the reader to the monographs [7, 12] (throughout all
the paper, with the symbol Γ(X) - lim we denote the Γ-convergence in the ambient metric
space X). The convergence in (1.15), besides giving a Γ-convergence analogue of the limit
in (1.13), is tightly connected with the study of the regularity properties of non-local
minimal surfaces, that is, (local) minimisers of the fractional α-perimeter Pα.

1.3. Asymptotics and Γ-convergence for the fractional α-variation as α → 1−.

The main aim of the present work is to study the asymptotic behaviour of the fractional
α-variation (1.1) as α → 1−, both in the pointwise and in the Γ-convergence sense.

We provide counterparts of the limits (1.12) and (1.13) for the fractional α-variation.
Indeed, we prove that, if f ∈ W 1,p(Rn) for some p ∈ (1,+∞), then f ∈ Sα,p(Rn) for all
α ∈ (0, 1) and, moreover,

lim
α→1−

‖∇α
wf − ∇wf‖Lp(Rn;Rn) = 0. (1.16)

In the geometric regime p = 1, we show that if f ∈ BV (Rn) then f ∈ BV α(Rn) for all
α ∈ (0, 1) and, in addition,

Dαf ⇀ Df in M (Rn;Rn) and |Dαf | ⇀ |Df | in M (Rn) as α → 1− (1.17)

and
lim

α→1−
|Dαf |(Rn) = |Df |(Rn). (1.18)

We are also able to treat the case p = +∞. In fact, we prove that if f ∈ W 1,∞(Rn) then
f ∈ Sα,∞(Rn) for all α ∈ (0, 1) and, moreover,

∇α
wf ⇀ ∇wf in L∞(Rn;Rn) as α → 1− (1.19)

and
‖∇wf‖L∞(Rn;Rn) ≤ lim inf

α→1−
‖∇α

wf‖L∞(Rn;Rn). (1.20)
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We refer the reader to Theorem 4.9, Theorem 4.10 and Theorem 4.11 below for the precise
statements. We warn the reader that the symbol ‘⇀’ appearing in (1.17) and (1.19)
denotes the weak*-convergence, see Section 2.1 below for the notation.

Some of the above results were partially announced in [34]. In a similar perspective,
we also refer to the work [25], where the authors proved convergence results for non-local
gradient operators on BV functions defined on bounded open sets with smooth boundary.
The approach developed in [25] is however completely different from the asymptotic analy-
sis we presently perform for the fractional operator defined in (1.4), since the boundedness
of the domain of definition of the integral operators considered in [25] plays a crucial role.

Notice that the renormalising factor (1−α)
1

p is not needed in the limits (1.16) – (1.20),
contrarily to what happened for the limits (1.12) and (1.13). In fact, this difference should
not come as a surprise, since the constant µn,α in (1.3), encoded in the definition of the
operator ∇α, satisfies

µn,α ∼ 1 − α

ωn

as α → 1−, (1.21)

and thus plays a similar role of the factor (1 − α)
1

p in the limit as α → 1−. Thus,
differently from our previous work [10], the constant µn,α appearing in the definition of
the operators ∇α and divα is of crucial importance in the asymptotic analysis developed
in the present paper.

Another relevant aspect of our approach is that convergence as α → 1− holds true not
only for the total energies, but also at the level of differential operators, in the strong
sense when p ∈ (1,+∞) and in the weak* sense for p = 1 and p = +∞. In simpler terms,
the non-local fractional α-gradient ∇α converges to the local gradient ∇ as α → 1− in the
most natural way every time the limit is well defined.

We also provide a counterpart of (1.15) for the fractional α-variation as α → 1−.
Precisely, we prove that, if Ω ⊂ Rn is a bounded open set with Lipschitz boundary, then

Γ(L1
loc) - lim

α→1−
|DαχE|(Ω) = P (E; Ω) (1.22)

for all measurable set E ⊂ Rn, see Theorem 4.16. In view of (1.9), one may ask
whether the Γ - lim sup inequality in (1.22) could be deduced from the Γ - lim sup in-
equality in (1.15). In fact, by employing (1.9) together with (1.15) and (1.21), one can
estimate

Γ(L1
loc) - lim sup

α→1−

|DαχE|(Ω) ≤ Γ(L1
loc) - lim sup

α→1−

µn,αPα(E,Ω) =
2ωn−1

ωn

P (E,Ω).

However, we have 2ωn−1

ωn
> 1 for any n ≥ 2 and thus the Γ - lim sup inequality in (1.22)

follows from the Γ - lim sup inequality in (1.15) only in the case n = 1. In a similar way,
one sees that the Γ - lim inf inequality in (1.22) implies the Γ - lim inf inequality in (1.15)
only in the case n = 1.

Besides the counterpart of (1.15), our approach allows to prove that Γ-convergence
holds true also at the level of functions. Indeed, if f ∈ BV (Rn) and Ω ⊂ Rn is an open
set such that either Ω is bounded with Lipschitz boundary or Ω = Rn, then

Γ(L1) - lim
α→1−

|Dαf |(Ω) = |Df |(Ω). (1.23)
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We refer the reader to Theorem 4.13, Theorem 4.14 and Theorem 4.17 for the (even more
general) results in this direction. Again, similarly as before and thanks to the asymp-
totic behaviour (1.21), the renormalising factor (1 − α) is not needed in the limits (1.22)
and (1.23).

As a byproduct of the techniques developed for the asymptotic study of the fractional
α-variation as α → 1−, we are also able to characterise the behaviour of the fractional
β-variation as β → α−, for any given α ∈ (0, 1). On the one hand, if f ∈ BV α(Rn), then

Dβf ⇀ Dαf in M (Rn;Rn) and |Dβf | ⇀ |Dαf | in M (Rn) as β → α−

and, moreover,
lim

β→α−
|Dβf |(Rn) = |Dαf |(Rn),

see Theorem 5.4. On the other hand, if f ∈ BV α(Rn) and Ω ⊂ R
n is an open set such

that either Ω is bounded and |Dαf |(∂Ω) = 0 or Ω = Rn, then

Γ(L1) - lim
β→α−

|Dβf |(Ω) = |Dαf |(Ω),

see Theorem 5.5 and Theorem 5.6.

1.4. Future developments: asymptotics for the fractional α-variation as α → 0+.

Having in mind the limit (1.11), it would be interesting to understand what happens to
the fractional α-variation (1.1) as α → 0+. Note that

lim
α→0+

µn,α = π− n
2

Γ
(

n+1
2

)

Γ
(

1
2

) =: µn,0, (1.24)

so there is no renormalisation factor as α → 0+, differently from (1.21).
At least formally, as α → 0+ the fractional α-gradient in (1.4) is converging to the

operator

∇0f(x) := µn,0

∫

Rn

(y − x)(f(y) − f(x))
|y − x|n+1

dy, x ∈ R
n. (1.25)

The operator in (1.25) is well defined for all f ∈ C∞
c (Rn) and, actually, coincides with the

well-known vector-valued Riesz transform Rf , see [17, Section 5.1.4] and [38, Chapter 3].
Similarly, the fractional α-divergence in (1.2) is formally converging to the operator

div0ϕ(x) := µn,0

∫

Rn

(y − x) · (ϕ(y) − ϕ(x))
|y − x|n+1

dy, x ∈ R
n, (1.26)

which is well defined for all ϕ ∈ C∞
c (Rn;Rn).

In perfect analogy with what we did before, we can introduce the space BV 0(Rn) as
the space of functions f ∈ L1(Rn) such that the quantity

|D0f |(Rn) := sup
{∫

Rn
f div0ϕdx : ϕ ∈ C∞

c (Rn;Rn), ‖ϕ‖L∞(Rn;Rn) ≤ 1
}

is finite. Surprisingly (and differently from the fractional α-variation, recall [10, Sec-
tion 3.10]), it turns out that |D0f | ≪ L n for all f ∈ BV 0(Rn). More precisely, one can
actually prove that BV 0(Rn) = H1(Rn), in the sense that f ∈ BV 0(Rn) if and only if
f ∈ H1(Rn), with D0f = RfL n in M (Rn;Rn). Here

H1(Rn) :=
{

f ∈ L1(Rn) : Rf ∈ L1(Rn;Rn)
}
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is the (real) Hardy space, see [39, Chapter III] for the precise definition. Thus, it would
be interesting to understand for which functions f ∈ L1(Rn) the fractional α-gradient
∇αf tends (in a suitable sense) to the Riesz transform Rf as α → 0+. Of course, if
Rf /∈ L1(Rn;Rn), that is, f /∈ H1(Rn), then one cannot expect strong convergence in L1

and, instead, may consider the asymptotic behaviour of the rescaled fractional gradient
α∇αf as α → 0+, in analogy with the limit in (1.11). This line of research, as well as
the identifications BV 0 = H1 and Sα,p = Lα,p mentioned above, will be the subject of the
forthcoming paper [9].

1.5. Organisation of the paper. The paper is organised as follows. In Section 2,
after having briefly recalled the definitions and the main properties of the operators ∇α

and divα, we extend certain technical results of [10]. In Section 3, we prove several
integrability properties of the fractional α-gradient and two useful representation formulas
for the fractional α-variation of functions with bounded De Giorgi’s variation. We are
also able to prove similar results for the fractional β-gradient of functions with bounded
fractional α-variation, see Section 3.4. In Section 4, we study the asymptotic behaviour of
the fractional α-variation as α → 1− and prove pointwise-convergence and Γ-convergence
results, dealing separately with the integrability exponents p = 1, p ∈ (1,+∞) and
p = +∞. In Section 5, we show that the fractional β-variation weakly converges and Γ-
converges to the fractional α-variation as β → α− for any α ∈ (0, 1). In Appendix A, for
the reader’s convenience, we state and prove two known results on the truncation and the
approximation of BV functions and sets with finite perimeter that are used in Section 3
and in Section 4.

2. Preliminaries

2.1. General notation. We start with a brief description of the main notation used in
this paper. In order to keep the exposition the most reader-friendly as possible, we retain
the same notation adopted in our previous work [10].

Given an open set Ω, we say that a set E is compactly contained in Ω, and we write
E ⋐ Ω, if the E is compact and contained in Ω. We denote by L n and H α the n-
dimensional Lebesgue measure and the α-dimensional Hausdorff measure on Rn respec-
tively, with α ≥ 0. Unless otherwise stated, a measurable set is a L n-measurable set.
We also use the notation |E| = L n(E). All functions we consider in this paper are
Lebesgue measurable, unless otherwise stated. We denote by Br(x) the standard open
Euclidean ball with center x ∈ Rn and radius r > 0. We let Br = Br(0). Recall that
ωn := |B1| = π

n
2 /Γ

(

n+2
2

)

and H n−1(∂B1) = nωn, where Γ is Euler’s Gamma function,
see [4].

We let GL(n) ⊃ O(n) ⊃ SO(n) be the general linear group, the orthogonal group and
the special orthogonal group respectively. We tacitly identify GL(n) ⊂ Rn2

with the space
of invertible n× n - matrices and we endow it with the usual Euclidean distance in R

n2

.
For k ∈ N0 ∪{+∞} and m ∈ N, we denote by Ck

c (Ω;Rm) and Lipc(Ω;Rm) the spaces of
Ck-regular and, respectively, Lipschitz-regular, m-vector-valued functions defined on Rn

with compact support in Ω.
For any exponent p ∈ [1,+∞], we denote by

Lp(Ω;Rm) :=
{

u : Ω → R
m : ‖u‖Lp(Ω;Rm) < +∞

}
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the space of m-vector-valued Lebesgue p-integrable functions on Ω. For p ∈ [1,+∞], we
say that (fk)k∈N ⊂ Lp(Ω;Rm) weakly converges to f ∈ Lp(Ω;Rm), and we write fk ⇀ f
in Lp(Ω;Rm) as k → +∞, if

lim
k→+∞

∫

Ω
fk · ϕdx =

∫

Ω
f · ϕdx (2.1)

for all ϕ ∈ Lq(Ω;Rm), with q ∈ [1,+∞] the conjugate exponent of p, that is, 1
p
+ 1

q
= 1 (with

the usual convention 1
+∞

= 0). Note that in the case p = +∞ we make a little abuse of
terminology, since the limit in (2.1) actually defines the weak*-convergence in L∞(Ω;Rm).

We denote by

W 1,p(Ω;Rm) :=
{

u ∈ Lp(Ω;Rm) : [u]W 1,p(Ω;Rm) := ‖∇u‖Lp(Ω;Rn+m) < +∞
}

the space of m-vector-valued Sobolev functions on Ω, see for instance [21, Chapter 10] for
its precise definition and main properties. We also let

w1,p(Ω;Rm) :=
{

u ∈ L1
loc(Ω;Rm) : [u]W 1,p(Ω;Rm) < +∞

}

.

We denote by

BV (Ω;Rm) :=
{

u ∈ L1(Ω;Rm) : [u]BV (Ω;Rm) := |Du|(Ω) < +∞
}

the space of m-vector-valued functions of bounded variation on Ω, see for instance [3,
Chapter 3] or [15, Chapter 5] for its precise definition and main properties. We also let

bv(Ω;Rm) :=
{

u ∈ L1
loc(Ω;Rm) : [u]BV (Ω;Rm) < +∞

}

.

For α ∈ (0, 1) and p ∈ [1,+∞), we denote by

W α,p(Ω;Rm) :=







u ∈ Lp(Ω;Rm) : [u]W α,p(Ω;Rm) :=

(

∫

Ω

∫

Ω

|u(x) − u(y)|p
|x− y|n+pα

dx dy

)
1

p

< +∞






the space of m-vector-valued fractional Sobolev functions on Ω, see [14] for its precise
definition and main properties. We also let

wα,p(Ω;Rm) :=
{

u ∈ L1
loc(Ω;Rm) : [u]W α,p(Ω;Rm) < +∞

}

.

For α ∈ (0, 1) and p = +∞, we simply let

W α,∞(Ω;Rm) :=

{

u ∈ L∞(Ω;Rm) : sup
x,y∈Ω, x 6=y

|u(x) − u(y)|
|x− y|α < +∞

}

,

so that W α,∞(Ω;Rm) = C0,α
b (Ω;Rm), the space of m-vector-valued bounded α-Hölder

continuous functions on Ω.
We let M (Ω;Rm) be the space of m-vector-valued Radon measures with finite total

variation, precisely

|µ|(Ω) := sup
{∫

Ω
ϕ · dµ : ϕ ∈ C0

c (Ω;Rm), ‖ϕ‖L∞(Ω;Rm) ≤ 1
}

for µ ∈ M (Ω;Rm). We say that (µk)k∈N ⊂ M (Ω;Rm) weakly converges to µ ∈ M (Ω;Rm),
and we write µk ⇀ µ in M (Ω;Rm) as k → +∞, if

lim
k→+∞

∫

Ω
ϕ · dµk =

∫

Ω
ϕ · dµ (2.2)
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for all ϕ ∈ C0
c (Ω;Rm). Note that we make a little abuse of terminology, since the limit

in (2.2) actually defines the weak*-convergence in M (Ω;Rm).
In order to avoid heavy notation, if the elements of a function space F (Ω;Rm) are

real-valued (i.e. m = 1), then we will drop the target space and simply write F (Ω).

2.2. Basic properties of ∇α and divα. We recall the non-local operators ∇α and divα

introduced by Šilhavý in [35] (see also our previous work [10]).
Let α ∈ (0, 1) and set

µn,α := 2απ− n
2

Γ
(

n+α+1
2

)

Γ
(

1−α
2

) .

We let

∇αf(x) := µn,α lim
ε→0

∫

{|z|>ε}

zf(x+ z)
|z|n+α+1

dz

be the fractional α-gradient of f ∈ Lipc(R
n) at x ∈ Rn. We also let

divαϕ(x) := µn,α lim
ε→0

∫

{|z|>ε}

z · ϕ(x+ z)
|z|n+α+1

dz

be the fractional α-divergence of ϕ ∈ Lipc(R
n;Rn) at x ∈ Rn. The non-local operators ∇α

and divα are well defined in the sense that the involved integrals converge and the limits
exist, see [35, Section 7] and [10, Section 2]. Moreover, since

∫

{|z|>ε}

z

|z|n+α+1
dz = 0, ∀ε > 0,

it is immediate to check that ∇αc = 0 for all c ∈ R and

∇αf(x) = µn,α lim
ε→0

∫

{|y−x|>ε}

(y − x)
|y − x|n+α+1

f(y) dy

= µn,α lim
ε→0

∫

{|x−y|>ε}

(y − x)(f(y) − f(x))
|y − x|n+α+1

dy

= µn,α

∫

Rn

(y − x)(f(y) − f(x))
|y − x|n+α+1

dy, ∀x ∈ R
n,

for all f ∈ Lipc(R
n). Analogously, we also have

divαϕ(x) = µn,α lim
ε→0

∫

{|x−y|>ε}

(y − x) · ϕ(y)
|y − x|n+α+1

dy,

= µn,α lim
ε→0

∫

{|x−y|>ε}

(y − x) · (ϕ(y) − ϕ(x))
|y − x|n+α+1

dy,

= µn,α

∫

Rn

(y − x) · (ϕ(y) − ϕ(x))
|y − x|n+α+1

dy, ∀x ∈ R
n,

for all ϕ ∈ Lipc(R
n).

Given α ∈ (0, n), we let

Iαf(x) :=
µn,1−α

n− α

∫

Rn

u(y)
|x− y|n−α

dy, x ∈ R
n, (2.3)
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be the Riesz potential of order α ∈ (0, n) of a function u ∈ C∞
c (Rn;Rm). We recall that,

if α, β ∈ (0, n) satisfy α + β < n, then we have the following semigroup property

Iα(Iβu) = Iα+βu (2.4)

for all u ∈ C∞
c (Rn;Rm). In addition, if 1 < p < q < +∞ satisfy

1
q

=
1
p

− α

n
,

then there exists a constant Cn,α,p > 0 such that the operator in (2.3) satisfies

‖Iαu‖Lq(Rn;Rm) ≤ Cn,α,p‖u‖Lp(Rn;Rm) (2.5)

for all u ∈ C∞
c (Rn; Rm). As a consequence, the operator in (2.3) extends to a linear

continuous operator from Lp(Rn;Rm) to Lq(Rn;Rm), for which we retain the same nota-
tion. For a proof of (2.4) and (2.5), we refer the reader to [38, Chapter V, Section 1] and
to [18, Section 1.2.1].

We can now recall the following result, see [10, Proposition 2.2 and Corollary 2.3].

Proposition 2.1. Let α ∈ (0, 1). If f ∈ Lipc(R
n), then

∇αf = I1−α∇f = ∇I1−αf (2.6)

and ∇αf ∈ L1(Rn;Rn) ∩ L∞(Rn;Rn), with

‖∇αf‖L1(Rn;Rn) ≤ µn,α[f ]W α,1(Rn) (2.7)

and

‖∇αf‖L∞(Rn;Rn) ≤ Cn,α,U‖∇f‖L∞(Rn;Rn) (2.8)

for any bounded open set U ⊂ Rn such that supp(f) ⊂ U , where

Cn,α,U :=
nµn,α

(1 − α)(n+ α − 1)

(

ωn diam(U)1−α +
(

nωn

n+ α − 1

)
n+α−1

n |U | 1−α
n

)

. (2.9)

Analogously, if ϕ ∈ Lipc(R
n;Rn) then

divαϕ = I1−αdivϕ = divI1−αϕ (2.10)

and divαϕ ∈ L1(Rn) ∩ L∞(Rn), with

‖divαϕ‖L1(Rn) ≤ µn,α[ϕ]W α,1(Rn;Rn) (2.11)

and
‖divαϕ‖L∞(Rn) ≤ Cn,α,U‖divϕ‖L∞(Rn) (2.12)

for any bounded open set U ⊂ Rn such that supp(ϕ) ⊂ U , where Cn,α,U is as in (2.9).

2.3. Extension of ∇α and divα to Lipb-regular tests. In the following result, we
extend the fractional α-divergence to Lipb-regular vector fields.

Lemma 2.2 (Extension of divα to Lipb). Let α ∈ (0, 1). The operator

divα : Lipb(R
n;Rn) → L∞(Rn)

given by

divαϕ(x) := µn,α

∫

Rn

(y − x) · (ϕ(y) − ϕ(x))
|y − x|n+α+1

dy, x ∈ R
n, (2.13)
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for all ϕ ∈ Lipb(R
n;Rn), is well defined, with

‖divαϕ‖L∞(Rn) ≤ 21−αnωnµn,α

α(1 − α)
Lip(ϕ)α‖ϕ‖1−α

L∞(Rn;Rn), (2.14)

and satisfies

divαϕ(x) = µn,α lim
ε→0+

∫

{|y−x|>ε}

(y − x) · (ϕ(y) − ϕ(x))
|y − x|n+α+1

dy

= µn,α lim
ε→0+

∫

{|y−x|>ε}

(y − x) · ϕ(y)
|y − x|n+α+1

dy

(2.15)

for all x ∈ Rn. Moreover, if in addition I1−α|divϕ| ∈ L1
loc(R

n), then

divαϕ(x) = I1−αdivϕ(x) (2.16)

for a.e. x ∈ Rn.

Proof. We split the proof in two steps.

Step 1: proof of (2.13), (2.14) and (2.15). Given x ∈ Rn and r > 0, we can estimate
∫

{|y−x|≤r}

∣

∣

∣

∣

∣

(y − x) · (ϕ(y) − ϕ(x))
|y − x|n+α+1

∣

∣

∣

∣

∣

dy ≤ nωnLip(ϕ)
∫ r

0
̺−α d̺

and
∫

{|y−x|>r}

∣

∣

∣

∣

∣

(y − x) · (ϕ(y) − ϕ(x))
|y − x|n+α+1

∣

∣

∣

∣

∣

dy ≤ 2nωn‖ϕ‖L∞(Rn;Rn)

∫ +∞

r
̺−(1+α) d̺.

Hence the function in (2.13) is well defined for all x ∈ Rn and

‖divαϕ‖L∞(Rn) ≤ nωn

(

Lip(ϕ)
1 − α

r1−α +
2‖ϕ‖L∞(Rn;Rn)

α
r−α

)

,

so that (2.14) follows by optimising the right-hand side in r > 0. Moreover, since
∣

∣

∣

∣

∣

(y − x) · (ϕ(y) − ϕ(x))
|y − x|n+α+1

χ(ε,+∞)(|y − x|)
∣

∣

∣

∣

∣

≤ Lip(ϕ)
χ(0,1)(|y − x|)
|y − x|n+α−1

+ 2‖ϕ‖L∞(Rn;Rn)

χ[1,+∞)(|y − x|)
|y − x|n+α

∈ L1
x,y(Rn)

and
∫

{|z|>ε}

z

|z|n+α+1
dy = 0

for all ε > 0, by Lebesgue’s Dominated Convergence Theorem we immediately get the
two equalities in (2.15) for all x ∈ R

n.

Step 2: proof of (2.16). Assume that I1−α|divϕ| ∈ L1
loc(R

n). Then

|divϕ(y)|
|y − x|n+α−1

∈ L1
y(Rn) (2.17)

for a.e. x ∈ Rn. Hence, by Lebesgue’s Dominated Convergence Theorem, we can write

I1−αdivϕ(x) = µn,α lim
ε→0+

∫

{|y−x|>ε}

divϕ(y)
|y − x|n+α−1

dy
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for a.e. x ∈ Rn. Now let ε > 0 be fixed and let R > 0. Again by (2.17) and Lebesgue’s
Dominated Convergence Theorem, we have

lim
R→+∞

∫

{R>|y−x|>ε}

divϕ(y)
|y − x|n+α−1

dy =
∫

{|y−x|>ε}

divϕ(y)
|y − x|n+α−1

dy

for a.e. x ∈ R
n. Moreover, integrating by parts, we get

∫

{R>|y−x|>ε}

divϕ(y)
|y − x|n+α−1

dy =
∫

{R>|y|>ε}

divyϕ(y + x)
|y|n+α−1

dy

=
∫

{|y|=R}

y

|y|
ϕ(y + x)
|y|n+α−1

dH n−1(y) −
∫

{|y|=ε}

y

|y|
ϕ(y + x)
|y|n+α−1

dH n−1(y)

+
∫

{R>|y|>ε}

y · ϕ(y + x)
|y|n+α+1

dy

for all R > 0 and for a.e. x ∈ R
n. Since ϕ ∈ L∞(Rn;Rn), by Lebesgue’s Dominated

Convergence Theorem we have

lim
R→+∞

∫

{R>|y|>ε}

y · ϕ(y + x)
|y|n+α+1

dy =
∫

{|y|>ε}

y · ϕ(y + x)
|y|n+α+1

dy

for all ε > 0 and all x ∈ Rn. We can also estimate
∣

∣

∣

∣

∣

∫

{|y|=R}

y

|y|
ϕ(y + x)
|y|n+α−1

dH n−1(y)

∣

∣

∣

∣

∣

≤ nωn‖ϕ‖L∞(Rn;Rn)R
−α

for all R > 0 and all x ∈ Rn. We thus have that
∫

{|y−x|>ε}

divϕ(y)
|y − x|n+α−1

dy =
∫

{|y|>ε}

y · ϕ(y + x)
|y|n+α+1

dy −
∫

{|y|=ε}

y

|y|
ϕ(y + x)
|y|n+α−1

dH n−1(y)

for all ε > 0 and a.e. x ∈ Rn. Since also
∣

∣

∣

∣

∣

∫

{|y|=ε}

y

|y|
ϕ(y + x)
|y|n+α−1

dH n−1(y)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

{|y|=ε}

y

|y|
ϕ(y + x) − ϕ(x)

|y|n+α−1
dH n−1(y)

∣

∣

∣

∣

∣

≤ nωn Lip(ϕ) ε1−α

for all ε > 0 and x ∈ Rn, we conclude that

lim
ε→0+

∫

{|y−x|>ε}

divϕ(y)
|y − x|n+α−1

dy = lim
ε→0+

∫

{|y−x|>ε}

(y − x) · ϕ(y)
|y − x|n+α+1

dy

for a.e. x ∈ Rn, proving (2.16). �

We can also extend the fractional α-gradient to Lipb-regular functions. The proof is
very similar to the one of Lemma 2.2 and is left to the reader.

Lemma 2.3 (Extension of ∇α to Lipb). Let α ∈ (0, 1). The operator

∇α : Lipb(R
n) → L∞(Rn;Rn)

given by

∇αf(x) := µn,α

∫

Rn

(y − x) · (f(y) − f(x))
|y − x|n+α+1

dy, x ∈ R
n,
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for all f ∈ Lipb(R
n), is well defined, with

‖∇αf‖L∞(Rn;Rn) ≤ 21−αnωnµn,α

α(1 − α)
Lip(f)α‖f‖1−α

L∞(Rn),

and satisfies

∇αf(x) = µn,α lim
ε→0+

∫

{|y−x|>ε}

(y − x) · (f(y) − f(x))
|y − x|n+α+1

dy

= µn,α lim
ε→0+

∫

{|y−x|>ε}

(y − x) · f(y)
|y − x|n+α+1

dy

for all x ∈ Rn. Moreover, if in addition I1−α|∇f | ∈ L1
loc(R

n), then

∇αf(x) = I1−α∇f(x)

for a.e. x ∈ R
n.

2.4. Extended Leibniz’s rules for ∇α and divα. The following two results extend the
validity of Leibniz’s rules proved in [10, Lemmas 2.6 and 2.7] to Lipb-regular functions
and Lipb-regular vector fields. The proofs are very similar to the ones given in [10] and
to those of Lemma 2.2 and Lemma 2.3, and thus are left to the reader.

Lemma 2.4 (Extended Leibniz’s rule for ∇α). Let α ∈ (0, 1). If f ∈ Lipb(R
n) and

η ∈ Lipc(R
n), then

∇α(ηf) = η∇αf + f ∇αη + ∇α
NL(η, f),

where

∇α
NL(η, f)(x) = µn,α

∫

Rn

(y − x) · (f(y) − f(x))(η(y) − η(x))
|y − x|n+α+1

dy

for all x ∈ Rn, with

‖∇α
NL(η, f)‖L∞(Rn;Rn) ≤ 22−αnωnµn,α‖f‖L∞(Rn)

α(1 − α)
Lip(η)α‖η‖1−α

L∞(Rn)

and

‖∇α
NL(η, f)‖L1(Rn;Rn) ≤ µn,α‖f‖L∞(Rn)[η]W α,1(Rn).

Lemma 2.5 (Extended Leibniz’s rule for divα). Let α ∈ (0, 1). If ϕ ∈ Lipb(R
n;Rn) and

η ∈ Lipc(R
n), then

divα(ηϕ) = η divαϕ+ ϕ · ∇αη + divα
NL(η, ϕ),

where

divα
NL(η, ϕ)(x) = µn,α

∫

Rn

(y − x) · (ϕ(y) − ϕ(x))(η(y) − η(x))
|y − x|n+α+1

dy

for all x ∈ Rn, with

‖divα
NL(η, ϕ)‖L∞(Rn) ≤ 22−αnωnµn,α‖ϕ‖L∞(Rn;Rn)

α(1 − α)
Lip(η)α‖η‖1−α

L∞(Rn)

and

‖divα
NL(η, ϕ)‖L1(Rn) ≤ µn,α‖ϕ‖L∞(Rn;Rn)[η]W α,1(Rn).



A DISTRIBUTIONAL APPROACH TO FRACTIONAL VARIATION: ASYMPTOTICS I 15

2.5. Extended integration-by-part formulas. We now recall the definition of the
space of functions with bounded fractional α-variation. Given α ∈ (0, 1), we let

BV α(Rn) :=
{

f ∈ L1(Rn) : |Dαf |(Rn) < +∞
}

,

where

|Dαf |(Rn) = sup
{∫

Rn
f divαϕdx : ϕ ∈ C∞

c (Rn;Rn), ‖ϕ‖L∞(Rn;Rn) ≤ 1
}

is the fractional α-variation of f ∈ L1(Rn). We refer the reader to [10, Section 3] for the
basic properties of this function space. Here we just recall the following result, see [10,
Theorem 3.2 and Proposition 3.6] for the proof.

Theorem 2.6 (Structure theorem for BV α functions). Let α ∈ (0, 1). If f ∈ L1(Rn),
then f ∈ BV α(Rn) if and only if there exists a finite vector-valued Radon measure Dαf ∈
M (Rn;Rn) such that

∫

Rn
f divαϕdx = −

∫

Rn
ϕ · dDαf (2.18)

for all ϕ ∈ Lipc(R
n;Rn).

Thanks to Lemma 2.5, we can actually prove that a function in BV α(Rn) can be tested
against any Lipb-regular vector field.

Proposition 2.7 (Lipb-regular test for BV α functions). Let α ∈ (0, 1). If f ∈ BV α(Rn),
then (2.18) holds for all ϕ ∈ Lipb(R

n;Rn).

Proof. We argue similarly as in the proof of [10, Theorem 3.8]. Fix ϕ ∈ Lipb(R
n;Rn) and

let (ηR)R>0 ⊂ C∞
c (Rn) be a family of cut-off functions as in [10, Section 3.3]. On the one

hand, since
∣

∣

∣

∣

∫

Rn
fηR divαϕdx−

∫

Rn
f divαϕdx

∣

∣

∣

∣

≤ ‖divαϕ‖L∞(Rn)

∫

Rn
|f | (1 − ηR) dx

for all R > 0, by Lebesgue’s Dominated Convergence Theorem we have

lim
R→+∞

∫

Rn
fηR divαϕdx =

∫

Rn
f divαϕdx.

On the other hand, by Lemma 2.5 we can write
∫

Rn
fηR divαϕdx =

∫

Rn
f divα(ηRϕ) dx−

∫

Rn
f ϕ · ∇αηR dx−

∫

Rn
f divα

NL(ηR, ϕ) dx

for all R > 0. By [10, Proposition 3.6], we have
∫

Rn
f divα(ηRϕ) dx = −

∫

Rn
ηRϕ · dDαf

for all R > 0. Since
∣

∣

∣

∣

∫

Rn
ηRϕ · dDαf −

∫

Rn
ϕ · dDαf

∣

∣

∣

∣

≤ ‖ϕ‖L∞(Rn;Rn)

∫

Rn
(1 − ηR) d|Dαf |

for all R > 0, by Lebesgue’s Dominated Convergence Theorem (with respect to the finite
measure |Dαf |) we have

lim
R→+∞

∫

Rn
ηRϕ · dDαf =

∫

Rn
ϕ · dDαf.
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Finally, we can estimate
∣

∣

∣

∣

∫

Rn
f ϕ · ∇αηR dx

∣

∣

∣

∣

≤ ‖ϕ‖L∞(Rn;Rn)

∫

Rn
|f(x)|

∫

Rn

|ηR(y) − ηR(x)|
|y − x|n+α

dy dx

and, similarly,
∣

∣

∣

∣

∫

Rn
f divα

NL(ηR, ϕ) dx
∣

∣

∣

∣

≤ 2‖ϕ‖L∞(Rn;Rn)

∫

Rn
|f(x)|

∫

Rn

|ηR(y) − ηR(x)|
|y − x|n+α

dy dx.

By Lebesgue’s Dominated Convergence Theorem, we thus get that

lim
R→+∞

(∫

Rn
f ϕ · ∇αηR dx+

∫

Rn
f divα

NL(ηR, ϕ) dx
)

= 0

and the conclusion follows. �

Thanks to Lemma 2.4, we can prove that a function in Lipb(R
n) can be tested against

any Lipc-regular vector field. The proof is very similar to the one of Proposition 2.7 and
is thus left to the reader.

Proposition 2.8 (Integration by parts for Lipb-regular functions). Let α ∈ (0, 1). If
f ∈ Lipb(R

n), then
∫

Rn
f divαϕdx = −

∫

Rn
ϕ · ∇αf dx

for all ϕ ∈ Lipc(R
n;Rn).

2.6. Comparison between W α,1 and BV α seminorms. In this section, we completely
answer a question left open in [10, Section 1.4]. Given α ∈ (0, 1) and an open set Ω ⊂ Rn,
we want to study the equality cases in the inequalities

‖∇αf‖L1(Rn;Rn) ≤ µn,α[f ]W α,1(Rn), |DαχE|(Ω) ≤ µn,αPα(E; Ω),

as long as f ∈ W α,1(Rn) and Pα(E; Ω) < +∞. The key idea to the solution of this
problem lies in the following simple result.

Lemma 2.9. Let A ⊂ Rn be a measurable set with L n(A) > 0. If F ∈ L1(A;Rm), then
∣

∣

∣

∣

∣

∫

A
F (x) dx

∣

∣

∣

∣

∣

≤
∫

A
|F (x)| dx,

with equality if and only if F = fν a.e. in A for some constant direction ν ∈ Sm−1 and
some scalar function f ∈ L1(A) with f ≥ 0 a.e. in A.

Proof. The inequality is well known and it is obvious that it is an equality if F = fν
a.e. in A for some constant direction ν ∈ S

m−1 and some scalar function f ∈ L1(A) with
f ≥ 0 a.e. in A. So let us assume that

∣

∣

∣

∣

∣

∫

A
F (x) dx

∣

∣

∣

∣

∣

=
∫

A
|F (x)| dx.

If
∫

A F (x) dx = 0, then also
∫

A |F (x)| dx = 0. Thus F = 0 a.e. in A and there is nothing
to prove. If

∫

A F (x) dx 6= 0 instead, then we can write
∫

A
|F (x)| − F (x) · ν dx = 0,
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with

ν =
∫

A F (x) dx
| ∫A F (x) dx | ∈ S

m−1.

Therefore, we obtain |F (x)| = F (x) · ν for a.e. x ∈ A, so that F (x)
|F (x)|

· ν = 1 for a.e. x ∈ A

such that |F (x)| 6= 0. This implies that F = fν a.e. in A with f = |F | ∈ L1(A) and the
conclusion follows. �

As an immediate consequence of Lemma 2.9, we have the following result.

Corollary 2.10. Let α ∈ (0, 1). If f ∈ W α,1(Rn), then

‖∇αf‖L1(Rn;Rn) ≤ µn,α[f ]W α,1(Rn), (2.19)

with equality if and only if f = 0 a.e. in Rn.

Proof. Inequality (2.19) was proved in [10, Theorem 3.18]. Note that, given f ∈ L1(Rn),
[f ]W α,1(Rn) = 0 if and only if f = 0 a.e. and thus, in this case, (2.19) is trivially an equality.

If (2.19) holds as an equality and f is not equivalent to the zero function, then
∫

Rn

(

|∇αf(x)| − µn,α

∫

Rn

|f(y) − f(x)|
|y − x|n+α

dy

)

dx = 0

and thus
∣

∣

∣

∣

∣

∫

Rn

(f(y) − f(x)) · (y − x)
|y − x|n+α+1

dy

∣

∣

∣

∣

∣

=
∫

Rn

|f(y) − f(x)|
|y − x|n+α

dy (2.20)

for all x ∈ U , for some measurable set U ⊂ Rn such that L n(Rn \U) = 0. Now let x ∈ U
be fixed. By Lemma 2.9 (applied with A = Rn), (2.20) implies that the (non-identically
zero) vector field

y 7→ (f(y) − f(x)) (y − x), y ∈ R
n,

has constant direction for all y ∈ Vx, for some measurable set Vx ⊂ Rn such that
L n(Rn \ Vx) = 0. Thus, given y, y′ ∈ Vx, the two vectors y − x and y′ − x are lin-
early dependent, so that the three points x, y and y′ are collinear. If n ≥ 2, then this
immediately gives L n(Vx) = 0, a contradiction, so that (2.19) must be strict. If instead
n = 1, then we know that

x ∈ U =⇒ y 7→ (f(y) − f(x)) (y − x) has constant sign for all y ∈ Vx. (2.21)

We claim that (2.21) implies that the function f is (equivalent to) a (non-constant)
monotone function. If so, then f /∈ L1(R), in contrast with the fact that f ∈ W α,1(R),
so that (2.19) must be strict and the proof is concluded. To prove the claim, we argue as
follows. Fix x ∈ U and assume that

(f(y) − f(x)) (y − x) > 0 (2.22)

for all y ∈ Vx without loss of generality. Now pick x′ ∈ U ∩ Vx such that x′ > x. Then,
choosing y = x′ in (2.22), we get (f(x′) − f(x)) (x′ − x) > 0 and thus f(x′) > f(x).
Similarly, if x′ ∈ U ∩ Vx is such that x′ < x, then f(x′) < f(x). Hence

ess sup
z<x

f(z) ≤ f(x) ≤ ess inf
z>x

f(z)

for all x ∈ U (where ess sup and ess inf refer to the essential supremum and the essential
infimum respectively) and thus f must be equivalent to a (non-constant) non-decreasing
function. �



18 G. E. COMI AND G. STEFANI

Given an open set Ω ⊂ Rn and a measurable set E ⊂ Rn, we define

P̃α(E; Ω) :=
∫

Ω

∫

Ω

|χE(y) − χE(x)|
|y − x|n+α

dx dy +
∫

Rn\Ω

∫

Ω

|χE(y) − χE(x)|
|y − x|n+α

dx dy.

It is obvious to see that

P̃α(E; Ω) ≤ Pα(E; Ω) ≤ 2P̃α(E; Ω),

where Pα is the fractional perimeter introduced in (1.10). Arguing similarly as in the
proof of [10, Proposition 4.8], it is immediate to see that

‖∇αχE‖L1(Ω;Rn) ≤ µn,αP̃α(E; Ω), (2.23)

an inequality stronger than that in (1.9). In analogy with Corollary 2.10, we have the
following result.

Corollary 2.11. Let α ∈ (0, 1), Ω ⊂ Rn be an open set and E ⊂ Rn be a measurable set
such that P̃α(E; Ω) < +∞.

(i) If n ≥ 2, L n(E) > 0 and L n(Rn \ E) > 0, then inequality (2.23) is strict.
(ii) If n = 1, then (2.23) is an equality if and only if the following hold:

(a) for a.e. x ∈ Ω ∩ E, L 1((−∞, x) \ E) = 0 vel L 1((x,+∞) \ E) = 0;
(b) for a.e. x ∈ Ω \ E, L 1((−∞, x) ∩E) = 0 vel L 1((x,+∞) ∩E) = 0.

Proof. We prove the two statements separately.

Proof of (i). Assume n ≥ 2. Since L n(E) > 0, for a given x ∈ Ω \ E the map

y 7→ (y − x), for y ∈ E,

does not have constant orientation. Similarly, since L n(Rn \E) > 0, for a given x ∈ Ω∩E
also the map

y 7→ (y − x), for y ∈ R
n \ E,

does not have constant orientation. Hence, by Lemma 2.9, we must have
∣

∣

∣

∣

∣

∫

E

y − x

|y − x|n+α+1
dy

∣

∣

∣

∣

∣

<
∫

E

dy

|y − x|n+α
, for x ∈ Ω \ E,

and, similarly,
∣

∣

∣

∣

∣

∫

Rn\E

y − x

|y − x|n+α+1
dy

∣

∣

∣

∣

∣

<
∫

Rn\E

dy

|y − x|n+α
, for x ∈ Ω ∩E.

We thus get

‖∇αχE‖L1(Ω;Rn) = µn,α

∫

Ω

∣

∣

∣

∣

∣

∫

Rn

(χE(y) − χE(x)) · (y − x)
|y − x|n+α+1

dy

∣

∣

∣

∣

∣

dx

= µn,α

∫

Ω\E

∣

∣

∣

∣

∣

∫

E

y − x

|y − x|n+α
dy

∣

∣

∣

∣

∣

dx+ µn,α

∫

Ω∩E

∣

∣

∣

∣

∣

∫

Rn\E

y − x

|y − x|n+α
dy

∣

∣

∣

∣

∣

dx

< µn,α

∫

Ω\E

∫

E

dy dx

|y − x|n+α
+ µn,α

∫

Ω∩E

∫

Rn\E

dy dx

|y − x|n+α
= µn,αP̃α(E; Ω),

proving (i).
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Proof of (ii). Assume n = 1. We argue as in the proof of [10, Proposition 4.12]. Let

fE(y, x) :=
χE(y) − χE(x)

|y − x|1+α
, for x, y ∈ R, y 6= x.

Then we can write

P̃α(E; Ω) =
∫

Ω

∫

R

|fE(y, x)| dy dx

=
∫

Ω

(

∫ x

−∞
|fE(y, x)| dy +

∫ +∞

x
|fE(y, x)| dy

)

dx

and

‖∇αχE‖L1(Ω;R) = µ1,α

∫

Ω

∣

∣

∣

∣

∣

∫

R

fE(y, x) sgn(y − x) dy

∣

∣

∣

∣

∣

dx

= µ1,α

∫

Ω

∣

∣

∣

∣

∣

∫ x

−∞
fE(y, x) dy −

∫ +∞

x
fE(y, x) dy

∣

∣

∣

∣

∣

dx.

Hence (2.23) is an equality if and only if
∣

∣

∣

∣

∣

∫ x

−∞
fE(y, x) dy −

∫ +∞

x
fE(y, x) dy

∣

∣

∣

∣

∣

=
∫ x

−∞
|fE(y, x)| dy +

∫ +∞

x
|fE(y, x)| dy (2.24)

for a.e. x ∈ Ω. Observing that
∣

∣

∣

∣

∣

∫ x

−∞
fE(y, x) dy −

∫ +∞

x
fE(y, x) dy

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫ x

−∞
fE(y, x) dy

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ +∞

x
fE(y, x) dy

∣

∣

∣

∣

∣

≤
∫ x

−∞
|fE(y, x)| dy +

∫ +∞

x
|fE(y, x)| dy

for a.e. x ∈ Ω, we deduce that (2.23) is an equality if and only if
∣

∣

∣

∣

∣

∫ x

−∞
fE(y, x) dy −

∫ +∞

x
fE(y, x) dy

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ x

−∞
fE(y, x) dy

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ +∞

x
fE(y, x) dy

∣

∣

∣

∣

∣

(2.25)

=
∫ x

−∞
|fE(y, x)| dy +

∫ +∞

x
|fE(y, x)| dy (2.26)

for a.e. x ∈ Ω. Now, on the one hand, squaring both sides of (2.25) and simplifying, we
get that (2.23) is an equality if and only if

(

∫ x

−∞
fE(y, x) dy

)(

∫ +∞

x
fE(y, x) dy

)

= 0 (2.27)

for a.e. x ∈ Ω. On the other hand, we can rewrite (2.26) as

0 ≤
∫ x

−∞
|fE(y, x)| dy −

∣

∣

∣

∣

∣

∫ x

−∞
fE(y, x) dy

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ +∞

x
fE(y, x) dy

∣

∣

∣

∣

∣

−
∫ +∞

x
|fE(y, x)| dy ≤ 0

for a.e. x ∈ Ω, so that we must have
∣

∣

∣

∣

∣

∫ x

−∞
fE(y, x) dy

∣

∣

∣

∣

∣

=
∫ x

−∞
|fE(y, x)| dy
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and
∣

∣

∣

∣

∣

∫ +∞

x
fE(y, x) dy

∣

∣

∣

∣

∣

=
∫ +∞

x
|fE(y, x)| dy

for a.e. x ∈ Ω. Hence (2.27) can be equivalently rewritten as
(

∫ x

−∞
|fE(y, x)| dy

)(

∫ +∞

x
|fE(y, x)| dy

)

= 0 (2.28)

for a.e. x ∈ Ω. Thus (2.23) is an equality if and only if at least one of the two integrals in
the left-hand side of (2.28) is zero, and the reader can check that (ii) readily follows. �

Remark 2.12 (Half-lines in Corollary 2.11(ii)). In the case n = 1, it is worth to stress
that (2.23) is always an equality when the set E ⊂ R is (equivalent to) an half-line, i.e.,

‖∇αχ(a,+∞)‖L1(Ω;R) = µ1,αP̃α((a,+∞); Ω)

for any α ∈ (0, 1), any a ∈ R and any open set Ω ⊂ R such that P̃α((a,+∞); Ω) < +∞.
However, the equality cases in (2.23) are considerably richer. Indeed, on the one side,

‖∇αχ(−5,−4)∪(−1,+∞)‖L1((0,1); R) = µ1,αP̃α((−5,−4) ∪ (−1,+∞); (0, 1))

and, on the other side,

‖∇αχ(−5,−4)∪(0,+∞)‖L1((−1,1); R) < µ1,αP̃α((−5,−4) ∪ (0,+∞); (−1, 1))

for any α ∈ (0, 1). We leave the simple computations to the interested reader.

3. Estimates and representation formulas for the fractional α-gradient

3.1. Integrability properties of the fractional α-gradient. We begin with the fol-
lowing technical local estimate on the W α,1-seminorm of a function in BVloc.

Lemma 3.1. Let α ∈ (0, 1) and let f ∈ BVloc(Rn). Then f ∈ W α,1
loc (Rn) with

[f ]W α,1(BR) ≤ nωn(2R)1−α

1 − α
|Df |(B3R) (3.1)

for all R > 0.

Proof. Fix R > 0 and let f ∈ BVloc(Rn) be such that f ∈ C1(B3R). We can estimate

[f ]W α,1(BR) =
∫

BR

∫

BR

|f(y) − f(x)|
|y − x|n+α

dy dx

=
∫

BR

∫

BR∩{|y−x|<2R}

|f(y) − f(x)|
|y − x|n+α

dy dx

≤
∫

{|h|<2R}

1
|h|n+α

∫

BR

|f(x+ h) − f(x)| dx dh.

Since
∫

BR

|f(x+ h) − f(x)| dx ≤
∫

BR

∫ 1

0
|∇f(x+ th) · h| dt dx

≤ |h|
∫ 1

0

∫

BR

|∇f(x+ th)| dx dt

≤ |h|
∫

BR+|h|

|∇f(z)| dz
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for all h ∈ Rn, we have

[f ]W α,1(BR) ≤
∫

{|h|<2R}

1
|h|n+α−1

∫

BR+|h|

|∇f(z)| dz dh

≤
∫

{|h|<2R}

|Df |(B3R)
|h|n+α−1

dh

=
nωn(2R)1−α

1 − α
|Df |(B3R)

proving (3.1) for all f ∈ BVloc(Rn) ∩ C1(B3R). Now fix R > 0 and let f ∈ BVloc(Rn).
By [15, Theorem 5.3], there exists (fk)k∈N ⊂ BV (B3R)∩C∞(B3R) such that |Dfk|(B3R) →
|Df |(B3R) and fk → f a.e. in B3R as k → +∞. Hence, by Fatou’s Lemma, we get

[f ]W α,1(BR) ≤ lim inf
k→+∞

[fk]W α,1(BR)

≤ nωn(2R)1−α

1 − α
lim

k→+∞
|Dfk|(B3R)

=
nωn(2R)1−α

1 − α
|Df |(B3R)

and the proof is complete. �

In the following result, we collect several local integrability estimates involving the
fractional α-gradient of a function satisfying various regularity assumptions.

Proposition 3.2. The following statements hold.

(i) If f ∈ BV (Rn), then f ∈ BV α(Rn) for all α ∈ (0, 1) with Dαf = ∇αfL n and

∇αf = I1−αDf a.e. in R
n. (3.2)

In addition, for any bounded open set U ⊂ Rn, we have

‖∇αf‖L1(U ;Rn) ≤ Cn,α,U |Df |(Rn) (3.3)

for all α ∈ (0, 1), where Cn,α,U is as in (2.9). Finally, given an open set A ⊂ R
n,

we have

‖∇αf‖L1(A;Rn) ≤ nωn µn,α

n+ α − 1

(

|Df |(Ar)
1 − α

r1−α +
n + 2α− 1

α
‖f‖L1(Rn) r

−α

)

(3.4)

for all r > 0 and α ∈ (0, 1), where Ar := {x ∈ Rn : dist(x,A) < r}. In particular,
we have

‖∇αf‖L1(Rn;Rn) ≤ nωn µn,α(n + 2α− 1)1−α

α(1 − α)(n+ α − 1)
‖f‖1−α

L1(Rn) [f ]αBV (Rn). (3.5)

(ii) If f ∈ L∞(Rn) ∩W α,1
loc (Rn), then the weak fractional α-gradient Dαf ∈ Mloc(Rn;Rn)

exists and satisfies Dαf = ∇αfL n with ∇αf ∈ L1
loc(R

n;Rn) and

‖∇αf‖L1(BR;Rn) ≤ µn,α

∫

BR

∫

Rn

|f(x) − f(y)|
|x− y|n+α

dx dy

≤ µn,α

(

[f ]W α,1(BR) + Pα(BR) ‖f‖L∞(Rn)

)

(3.6)

for all R > 0 and α ∈ (0, 1).
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(iii) If f ∈ L∞(Rn)∩BVloc(Rn), then the weak fractional α-gradient Dαf ∈ Mloc(Rn;Rn)
exists and satisfies Dαf = ∇αfL n with ∇αf ∈ L1

loc(R
n;Rn) and

‖∇αf‖L1(BR;Rn) ≤ µn,α

(

nωn(2R)1−α

1 − α
|Df |(B3R) +

2(nωn)2Rn−α

αΓ(1 − α)−1
‖f‖L∞(Rn)

)

. (3.7)

for all R > 0 and α ∈ (0, 1).

Proof. We prove the three statements separately.

Proof of (i). Thanks to [10, Theorem 3.18], we just need to prove (3.3) and (3.4).
We prove (3.3). By (3.2), by Tonelli’s Theorem and by [10, Lemma 2.4], we get

∫

U
|∇αf | dx ≤

∫

U
I1−α|Df | dx ≤ Cn,α,U |Df |(Rn),

where Cn,α,U is defined as in (2.9).
We now prove (3.4) in two steps.

Proof of (3.4), Step 1. Assume f ∈ C∞
c (Rn) and fix r > 0. We have

∫

A
|∇αf | dx =

∫

A
|I1−α∇f | dx

≤ µn,α

n+ α − 1

(

∫

A

∫

{|h|≤r}

|∇f(x+ h)|
|h|n+α−1

dh dx+
∫

A

∣

∣

∣

∣

∣

∫

{|h|>r}

∇f(x+ h)
|h|n+α−1

dh

∣

∣

∣

∣

∣

dx

)

.

We estimate the two double integrals appearing in the right-hand side separately. By
Tonelli’s Theorem, we have

∫

A

∫

{|h|≤r}

|∇f(x+ h)|
|h|n+α−1

dh dx =
∫

{|h|≤r}

∫

A
|∇f(x+ h)| dx dh

|h|n+α−1

≤ ‖∇f‖L1(Ar ;Rn)

∫

{|h|≤r}

dh

|h|n+α−1

= nωn
r1−α

1 − α
‖∇f‖L1(Ar ;Rn).

Concerning the second double integral, integrating by parts we get
∫

{|h|>r}

∇f(x+ h)
|h|n+α−1

dh = (n + α− 1)
∫

{|h|>r}

hf(x+ h)
|h|n+α+1

dh

−
∫

{|h|=r}

h

|h|
f(x+ h)
|h|n+α−1

dH n−1(h)

for all x ∈ A. Hence, we can estimate
∫

A

∣

∣

∣

∣

∣

∫

{|h|>r}

∇f(x+ h)
|h|n+α−1

dh

∣

∣

∣

∣

∣

dx ≤ (n + α− 1)
∫

A

∫

{|h|>r}

|f(x+ h)|
|h|n+α

dh dx

+
∫

A

∫

{|h|=r}

|f(x+ h)|
|h|n+α−1

dH n−1(h) dx

≤ nωn‖f‖L1(Rn) r
−α
(

n+ α − 1
α

+ 1
)

= nωn

(

n + 2α− 1
α

)

‖f‖L1(Rn) r
−α.
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Thus (3.4) follows for all f ∈ C∞
c (Rn) and r > 0.

Proof of (3.4), Step 2. Let f ∈ BV (Rn) and fix r > 0. Combining [15, Theorem 5.3]
with a standard cut-off approximation argument, we find (fk)k∈N ⊂ C∞

c (Rn) such that
fk → f in L1(Rn) and |Dfk|(Rn) → |Df |(Rn) as k → +∞. By Step 1, we have that

‖∇αfk‖L1(A;Rn) ≤ nωn µn,α

n+ α − 1

(

|Dfk|(Ar)
1 − α

r1−α +
n + 2α− 1

α
‖fk‖L1(Rn) r

−α

)

(3.8)

for all k ∈ N. We claim that

(∇αfk) L
n ⇀ (∇αf) L

n as k → +∞. (3.9)

Indeed, if ϕ ∈ Lipc(R
n;Rn), then divαϕ ∈ L∞(Rn) by (2.12) and thus

∣

∣

∣

∣

∫

Rn
ϕ · ∇αfk dx−

∫

Rn
ϕ · ∇αf dx

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

Rn
fk divαϕdx−

∫

Rn
f divαϕdx

∣

∣

∣

∣

≤ ‖divαϕ‖L∞(Rn;Rn) ‖fk − f‖L1(Rn)

for all k ∈ N, so that

lim
k→+∞

∫

Rn
ϕ · ∇αfk dx =

∫

Rn
ϕ · ∇αf dx.

Now fix ϕ ∈ C0
c (Rn;Rn). Let U ⊂ R

n be a bounded open set such that suppϕ ⊂ U . For
each ε > 0 sufficiently small, pick ψε ∈ Lipc(R

n;Rn) such that ‖ϕ−ψε‖L∞(Rn;Rn) < ε and
suppψε ⊂ U . Then

∣

∣

∣

∣

∣

∫

Rn
ϕ · ∇αfk dx−

∫

Rn
ϕ · ∇αf dx

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

Rn
ψε · ∇αfk dx−

∫

Rn
ψε · ∇αf dx

∣

∣

∣

∣

+ ‖ψε − ϕ‖L∞(Rn;Rn)

(

‖∇αfk‖L1(U ;Rn) + ‖∇αf‖L1(U ;Rn)

)

≤
∣

∣

∣

∣

∫

Rn
ψε · ∇αfk dx−

∫

Rn
ψε · ∇αf dx

∣

∣

∣

∣

+ ε Cn,α,U

(

|Dfk|(Rn) + |Df |(Rn)
)

,

so that
lim

k→+∞

∣

∣

∣

∣

∫

Rn
ϕ · ∇αfk dx−

∫

Rn
ϕ · ∇αf dx

∣

∣

∣

∣

≤ 2ε Cn,α,U |Df |(Rn).

Thus, (3.9) follows passing to the limit as ε → 0+. Thanks to (3.9), by [22, Proposi-
tion 4.29] we get that

‖∇αf‖L1(A;Rn) ≤ lim inf
k→+∞

‖∇αfk‖L1(A;Rn).

Since
|Df |(U) ≤ lim inf

k→+∞
|Dfk|(U)

for any open set U ⊂ Rn by [15, Theorem 5.2], we can estimate

lim sup
k→+∞

|Dfk|(Ar) ≤ lim
k→+∞

|Dfk|(Rn) − lim inf
k→+∞

|Dfk|(Rn \ Ar)

≤ |Df |(Rn) − |Df |(Rn \ Ar)

= |Df |(Ar).

Thus, (3.4) follows taking limits as k → +∞ in (3.8). Finally, (3.5) is easily deduced by
optimising the right-hand side of (3.4) in the case A = Rn with respect to r > 0.



24 G. E. COMI AND G. STEFANI

Proof of (ii). Assume f ∈ L∞(Rn) ∩W α,1
loc (Rn). Given R > 0, we can estimate

∫

BR

|∇αf(x)| dx ≤ µn,α

∫

BR

∫

Rn

|f(x) − f(y)|
|x− y|n+α

dx dy

= µn,α

∫

BR

∫

BR

|f(x) − f(y)|
|x− y|n+α

dx dy + µn,α

∫

BR

∫

Rn\BR

|f(x) − f(y)|
|x− y|n+α

dx dy

≤ µn,α[f ]W α,1(BR) + 2µn,α‖f‖L∞(Rn)

∫

BR

∫

Rn\BR

1
|x− y|n+α

dx dy

= µn,α[f ]W α,1(BR) + µn,α‖f‖L∞(Rn)Pα(BR)

and (3.6) follows. To prove that Dαf = ∇αfL n, we argue as in the proof of [10, Propo-
sition 4.8]. Let ϕ ∈ Lipc(R

n;Rn). Since f ∈ L∞(Rn), we have

x 7→ |f(x)|
∫

Rn

|ϕ(y) − ϕ(x)|
|y − x|n+α

dy ∈ L1(Rn).

Hence, by the definition of divα on Lipc-regular vector fields (see [10, Section 2.2]) and by
Lebesgue’s Dominated Convergence Theorem, we have

∫

Rn
f divαϕdx = lim

ε→0+

∫

Rn
f(x)

∫

{|y−x|>ε}

(y − x) · ϕ(y)
|y − x|n+α+1

dy dx.

Since
∫

Rn

∫

{|y−x|>ε}

|f(x)| |ϕ(y)|
|y − x|n+α

dy dx ≤ ‖f‖L∞(Rn)

∫

Rn
|ϕ(y)|

∫

{|y−x|>ε}
|y − x|−n−α dx dy

≤ nωn

αεα
‖f‖L∞(Rn)‖ϕ‖L1(Rn;Rn)

for all ε > 0, by Fubini’s Theorem we can compute
∫

Rn
f(x)

∫

{|y−x|>ε}

(y − x) · ϕ(y)
|y − x|n+α+1

dy dx = −
∫

Rn
ϕ(y)

∫

{|x−y|>ε}

(x− y) f(x)
|x− y|n+α+1

dx dy

= −
∫

Rn
ϕ(y)

∫

{|x−y|>ε}

(x− y) (f(x) − f(y))
|x− y|n+α+1

dx dy.

Since

|ϕ(y)|
∣

∣

∣

∣

∣

∫

{|x−y|>ε}

(x− y) (f(x) − f(y))
|x− y|n+α+1

dx

∣

∣

∣

∣

∣

≤ |ϕ(y)|
∫

Rn

|f(x) − f(y)|
|x− y|n+α

dx

for all y ∈ Rn and ε > 0, and

y 7→
∫

Rn

|f(x) − f(y)|
|x− y|n+α

dx ∈ L1
loc(R

n)

by (3.6), again by Lebesgue’s Dominated Convergence Theorem we conclude that
∫

Rn
f(x) divαϕ(x) dx = − lim

ε→0

∫

Rn
ϕ(y)

∫

{|x−y|>ε}

(x− y) (f(x) − f(y))
|x− y|n+α+1

dx dy

= −
∫

Rn
ϕ(y) lim

ε→0

∫

{|x−y|>ε}

(x− y) (f(x) − f(y))
|x− y|n+α+1

dx dy

= −
∫

Rn
ϕ(y) · ∇αf(y) dy
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for all ϕ ∈ Lipc(R
n;Rn). Thus Dαf ∈ Mloc(Rn;Rn) is well defined and Dαf = ∇αfL n−1.

Proof of (iii). Assume f ∈ L∞(Rn) ∩ BVloc(Rn). By Lemma 3.1, we know that f ∈
L∞(Rn) ∩ W α,1

loc (Rn) for all α ∈ (0, 1), so that Dαf ∈ Mloc(Rn;Rn) exists by (ii). Hence,
inserting (3.1) in (3.6), we find

‖∇αf‖L1(BR;Rn) ≤ µn,α

(

nωn(2R)1−α

1 − α
|Df |(B3R) + Pα(B1)Rn−α ‖f‖L∞(Rn)

)

.

Since for all x ∈ B1 we have
∫

Rn\B1

dy

|y − x|n+α
=
∫

Rn\B1(−x)

dz

|z|n+α
≤
∫

Rn\B1−|x|

dz

|z|n+α
=

nωn

α(1 − |x|)α
,

being Γ increasing on (0,+∞) (see [4]), we can estimate

Pα(B1) = 2
∫

B1

∫

Rn\B1

dy dx

|y − x|n+α
≤ 2nωn

α

∫

B1

dx

(1 − |x|)α

=
2(nωn)2

α

∫ 1

0

tn−1

(1 − t)α
dt =

2(nωn)2

α

Γ(n) Γ(1 − α)
Γ(n+ 1 − α)

≤ 2(nωn)2

α
Γ(1 − α),

so that

‖∇αf‖L1(BR;Rn) ≤ µn,α

(

nωn(2R)1−α

1 − α
|Df |BV (B3R) +

2(nωn)2Rn−α

αΓ(1 − α)−1
‖f‖L∞(Rn)

)

,

proving (3.7). �

Note that Proposition 3.2(i), in particular, applies to any f ∈ W 1,1(Rn). In the following
result, we prove that a similar result holds also for any f ∈ W 1,p(Rn) with p ∈ (1,+∞).

Proposition 3.3 (W 1,p(Rn) ⊂ Sα,p(Rn) for p ∈ (1,+∞)). Let α ∈ (0, 1) and p ∈ (1,+∞).
If f ∈ W 1,p(Rn), then f ∈ Sα,p(Rn) with

‖∇α
wf‖Lp(A;Rn) ≤ nωnµn,α

n + α− 1

(‖∇wf‖Lp(Ar ;Rn)

1 − α
r1−α +

n + 2α− 1
α

‖f‖Lp(Rn) r
−α

)

(3.10)

for any r > 0 and any open set A ⊂ Rn, where Ar := {x ∈ Rn : dist(x,A) < r}. In
particular, we have

‖∇α
wf‖Lp(Rn;Rn) ≤ (n + 2α− 1)1−α

n+ α − 1
nωnµn,α

α(1 − α)
‖∇wf‖α

Lp(Rn;Rn)‖f‖1−α
Lp(Rn). (3.11)

In addition, if p ∈
(

1, n
1−α

)

and q = np
n−(1−α)p

, then

∇α
wf = I1−α∇wf a.e. in R

n (3.12)

and ∇α
wf ∈ Lq(Rn;Rn).

Proof. We argue similarly as in the proof of Proposition 3.2(i).
Proof of (3.10), Step 1. Assume f ∈ C∞

c (Rn) and fix an open set A ⊂ Rn and r > 0.
Arguing as in the proof of (3.4), we can write

I1−α∇f(x) =
µn,α

n + α − 1

(

∫

{|h|≤r}

∇f(x+ h)
|h|n+α−1

dh+
∫

{|h|>r}

∇f(x+ h)
|h|n+α−1

dh

)
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=
µn,α

n + α − 1

(

∫

{|h|≤r}

∇f(x+ h)
|h|n+α−1

dh+ (n + α− 1)
∫

{|h|>r}

h · f(x+ h)
|h|n+α+1

dh

−
∫

{|h|=r}

h

|h|
f(x+ h)
|h|n+α−1

dH n−1(h)

)

for all x ∈ A. By (2.6) and Minkowski’s Integral Inequality (see [38, Section A.1], for
example), we thus have

‖∇αf‖Lp(A;Rn) ≤ µn,α

n + α − 1

(

∫

{|h|≤r}

‖∇f(· + h)‖Lp(A;Rn)

|h|n+α−1
dh

+ (n + α− 1)
∫

{|h|>r}

‖f(· + h)‖Lp(A)

|h|n+α
dh

+
∫

{|h|=r}

‖f(· + h)‖Lp(A)

|h|n+α−1
dH n−1(h)

)

≤ µn,α

n − α + 1

(

nωn

1 − α
‖∇f‖Lp(Ar ;Rn) r

1−α + nωn
n + 2α− 1

α
‖f‖Lp(Rn) r

−α

)

,

proving (3.10) for all f ∈ C∞
c (Rn) and r > 0.

Proof of (3.10), Step 2. Let f ∈ W 1,p(Rn) and fix an open set A ⊂ R
n and r > 0.

Combining [15, Theorem 4.2] with a standard cut-off approximation argument, we find
(fk)k∈N ⊂ C∞

c (Rn) such that fk → f in W 1,p(Rn) as k → +∞. By Step 1, we have that

‖∇αfk‖Lp(A;Rn) ≤ nωn µn,α

n+ α − 1

(‖∇fk‖Lp(Ar ;Rn)

1 − α
r1−α +

n+ 2α − 1
α

‖fk‖Lp(Rn) r
−α

)

(3.13)

for all k ∈ N. Hence, choosing A = Rn, we get that the sequence (∇αfk)k∈N is uniformly
bounded in Lp(Rn;Rn). Up to pass to a subsequence (which we do not relabel for simplic-
ity), there exists g ∈ Lp(Rn;Rn) such that ∇αfk ⇀ g in Lp(Rn;Rn) as k → +∞. Given
ϕ ∈ C∞

c (Rn;Rn), we have
∫

Rn
fk divαϕdx = −

∫

Rn
ϕ · ∇αfk dx

for all k ∈ N. Passing to the limit as k → +∞, by Proposition 2.1 we get that
∫

Rn
f divαϕdx = −

∫

Rn
ϕ · g dx

for any ϕ ∈ C∞
c (Rn;Rn), so that g = ∇α

wf and hence f ∈ Sα,p(Rn) according to [10,
Definition 3.19]. We thus have that

‖∇α
wf‖Lp(A;Rn) ≤ lim inf

k→+∞
‖∇αfk‖Lp(A;Rn)

for any open set A ⊂ R
n, since

∫

Rn
ϕ · ∇α

wf dx = lim
k→+∞

∫

Rn
ϕ · ∇αfk dx ≤ ‖ϕ‖

L
p

p−1 (A;Rn)
lim inf
k→+∞

‖∇αfk‖Lp(A;Rn)

for all ϕ ∈ C∞
c (A;Rn). Therefore, (3.10) follows by taking limits as k → +∞ in (3.13).

Proof of (3.11). Inequality (3.11) follows by applying (3.10) with A = Rn and minimis-
ing the right-hand side with respect to r > 0.
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Proof of (3.12). Now assume p ∈
(

1, n
1−α

)

and let q = np
n−(1−α)p

. Let ϕ ∈ C∞
c (Rn;Rn)

be fixed. Recalling inequality (2.5), since ϕ ∈ L
q

q−1 (Rn;Rn) we have that

|ϕ| I1−α|f | ∈ L1(Rn), |ϕ| I1−α|∇wf | ∈ L1(Rn).

In particular, Fubini’s Theorem implies that

f I1−αϕ ∈ L1(Rn;Rn), I1−αϕ · ∇wf ∈ L1(Rn).

Since divαϕ ∈ L
p

p−1 (Rn) by Proposition 2.1, we also get that

f divI1−αϕ = f divαϕ ∈ L1(Rn).

Therefore, observing that I1−αϕ ∈ Lipb(R
n;Rn) because ∇I1−αϕ = ∇αϕ ∈ L∞(Rn;Rn2

)
again by Proposition 2.1 and performing a standard cut-off approximation argument, we
can integrate by parts and obtain
∫

Rn
ϕ · I1−α∇wf dx =

∫

Rn
I1−αϕ · ∇wf dx = −

∫

Rn
f divI1−αϕdx = −

∫

Rn
f divαϕdx.

Therefore
∫

Rn
ϕ · I1−α∇wf dx = −

∫

Rn
f divαϕdx

for all ϕ ∈ C∞
c (Rn;Rn), proving (3.12). In particular, notice that ∇α

wf ∈ Lq(Rn;Rn) by
inequality (2.5). The proof is complete. �

For the case p = +∞, we have the following immediate consequence of Lemma 2.4 and
Proposition 2.8.

Corollary 3.4 (W 1,∞(Rn) ⊂ Sα,∞(Rn)). Let α ∈ (0, 1). If f ∈ W 1,∞(Rn), then f ∈
Sα,∞(Rn) with

‖∇αf‖L∞(Rn;Rn) ≤ 21−α nωnµn,α

α(1 − α)
‖∇wf‖α

L∞(Rn;Rn)‖f‖1−α
L∞(Rn). (3.14)

3.2. Two representation formulas for the α-variation. In this section, we prove two
useful representation formulas for the α-variation.

We begin with the following weak representation formula for the fractional α-variation
of functions in BVloc(Rn)∩L∞(Rn). Here and in the following, we denote by f ⋆ the precise
representative of f ∈ L1

loc(R
n), see (A.1) for the definition.

Proposition 3.5. Let α ∈ (0, 1) and f ∈ BVloc(Rn)∩L∞(Rn). Then ∇αf ∈ L1
loc(R

n;Rn)
and

∫

Rn
ϕ · ∇αf dx = lim

R→+∞

∫

Rn
ϕ · I1−α(χ⋆

BR
Df) dx (3.15)

for all ϕ ∈ Lipc(R
n;Rn).

Proof. By Proposition 3.2(iii), we know that ∇αf ∈ L1
loc(R

n;Rn) for all α ∈ (0, 1). By
Theorem A.1, we also know that fχBR

∈ BV (Rn) ∩ L∞(Rn) with D(χBR
f) = χ⋆

BR
Df +

f ⋆DχBR
for all R > 0. Now fix ϕ ∈ Lipc(R

n;Rn) and take R > 0 such that suppϕ ⊂ BR/2.
By [10, Theorem 3.18], we have that

∫

Rn
χBR

f divαϕdx = −
∫

Rn
ϕ · ∇α(χBR

f) dx = −
∫

Rn
ϕ · I1−αD(χBR

f) dx.
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Moreover, we can split the last integral as
∫

Rn
ϕ · I1−αD(χBR

f) dx =
∫

Rn
ϕ · I1−α(χ⋆

BR
Df) dx+

∫

Rn
ϕ · I1−α(f ⋆DχBR

) dx. (3.16)

For all x ∈ BR/2, we can estimate

|I1−α(f ⋆DχBR
)(x)| =

∣

∣

∣

∣

∣

∫

∂BR

f ⋆(y)
|x− y|n+α−1

y

|y| dH
n−1(y)

∣

∣

∣

∣

∣

=
1
Rα

∣

∣

∣

∣

∣

∣

∣

∫

∂B1

f ⋆(Ry)
∣

∣

∣y − x
R

∣

∣

∣

n+α−1

y

|y| dH
n−1(y)

∣

∣

∣

∣

∣

∣

∣

≤ nωn

Rα
(

1 − |x|
R

)n+α−1 ‖f‖L∞(Rn)

≤ 2n+α−1nωn

Rα
‖f‖L∞(Rn)

and so, since suppϕ ⊂ BR/2, we get that
∣

∣

∣

∣

∫

Rn
ϕ · I1−α(f ⋆DχBR

) dx
∣

∣

∣

∣

≤ 2n+α−1nωn

Rα
‖ϕ‖L1(Rn;Rn) ‖f‖L∞(Rn). (3.17)

Therefore, by (2.11), Lebesgue’s Dominated Convergence Theorem, (3.16) and (3.17), we
get that

∫

Rn
f divαϕdx = lim

R→+∞

∫

Rn
χBR

f divαϕdx = lim
R→+∞

∫

Rn
ϕ · I1−α(χ⋆

BR
Df) dx

and the conclusion follows. �

In the following result, we show that for all functions in bv(Rn) ∩ L∞(Rn) one can
actually pass to the limit as R → +∞ inside the integral in the right-hand side of (3.15).

Corollary 3.6. If either f ∈ BV (Rn) or f ∈ bv(Rn) ∩ L∞(Rn), then

∇αf = I1−αDf a.e. in R
n. (3.18)

Proof. If f ∈ BV (Rn), then (3.18) coincides with (3.2) and there is nothing to prove. So
let us assume that f ∈ bv(Rn) ∩L∞(Rn). Writing Df = νf |Df | with νf ∈ Sn−1 |Df |-a.e.
in Rn, for all x ∈ Rn we have

lim
R→+∞

χ⋆
BR

(y)
νf(y)

|y − x|n+α−1
=

νf (y)
|y − x|n+α−1

for |Df |-a.e. y 6= x.

Moreover, for a.e. x ∈ R
n, we have

∣

∣

∣

∣

∣

χ⋆
BR

(y)
νf(y)

|y − x|n+α−1

∣

∣

∣

∣

∣

≤ 1
|y − x|n+α−1

∈ L1
y(Rn, |Df |) ∀R > 0,

because I1−α|Df | ∈ L1
loc(R

n) by [10, Lemma 2.4]. Therefore, by Lebesgue’s Dominated
Convergence Theorem (applied with respect to the finite measure |Df |), we get that

lim
R→+∞

I1−α(χ∗
BR
Df)(x) = (I1−αDf)(x) for all x ∈ R

n.

Now let ϕ ∈ Lipc(R
n;Rn). Since

|ϕ · I1−α(χ⋆
BR
Df)| ≤ |ϕ| I1−α|Df | ∈ L1(Rn) ∀R > 0,
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again by Lebesgue’s Dominated Convergence Theorem we get that

lim
R→+∞

∫

Rn
ϕ · I1−α(χ∗

BR
Df) dx =

∫

Rn
ϕ · I1−αDf dx. (3.19)

The conclusion thus follows combining (3.15) with (3.19). �

3.3. Relation between BV β and BV α,p for β < α and p > 1. Let us recall the
following result, see [10, Lemma 3.28].

Lemma 3.7. Let α ∈ (0, 1). The following properties hold.

(i) If f ∈ BV α(Rn), then u := I1−αf ∈ bv(Rn) with Du = Dαf in M (Rn;Rn).
(ii) If u ∈ BV (Rn), then f := (−∆)

1−α
2 u ∈ BV α(Rn) with

‖f‖L1(Rn) ≤ cn,α‖u‖BV (Rn) and Dαf = Du in M (Rn;Rn).

As a consequence, the operator (−∆)
1−α

2 : BV (Rn) → BV α(Rn) is continuous.

We can thus relate functions with bounded α-variation and functions with bounded
variation via Riesz potential and the fractional Laplacian. We would like to prove a
similar result between functions with bounded α-variation and functions with bounded
β-variation, for any couple of exponents 0 < β < α < 1.

However, although the standard variation of a function f ∈ L1
loc(R

n) is well define, it
is not clear whether the functional

ϕ 7→
∫

Rn
f divαϕdx (3.20)

is well posed for all ϕ ∈ C∞
c (Rn;Rn), since divαϕ does not have compact support. Nev-

ertheless, thanks to Proposition 2.1, the functional in (3.20) is well defined as soon as
f ∈ Lp(Rn) for some p ∈ [1,+∞]. Hence, it seems natural to define the space

BV α,p(Rn) := {f ∈ Lp(Rn) : |Dαf |(Rn) < ∞} (3.21)

for any α ∈ (0, 1) and p ∈ [1,+∞]. In particular, BV α,1(Rn) = BV α(Rn). Similarly, we
let

BV 1,p(Rn) := {f ∈ Lp(Rn) : |Df |(Rn) < +∞}
for all p ∈ [1,+∞]. In particular, BV 1,1(Rn) = BV (Rn).

A further justification for the definition of these new spaces comes from the following
fractional version of the Gagliardo–Nirenberg–Sobolev embedding: if n ≥ 2 and α ∈
(0, 1), then BV α(Rn) is continuously embedded in Lp(Rn) for all p ∈

[

1, n
n−α

]

, see [10,
Theorem 3.9]. Hence, thanks to (3.21), we can equivalently write

BV α(Rn) ⊂ BV α,p(Rn)

with continuous embedding for all n ≥ 2, α ∈ (0, 1) and p ∈
[

1, n
n−α

]

.

Incidentally, we remark that the continuous embedding BV α(Rn) ⊂ L
n

n−α (Rn) for n ≥ 2
and α ∈ (0, 1) can be improved using the main result of the recent work [36] (see also [37]).
Indeed, if n ≥ 2, α ∈ (0, 1) and f ∈ C∞

c (Rn), then, by taking F = ∇αf in [36, Theo-
rem 1.1], we have that

‖f‖
L

n
n−α

,1
(Rn)

≤ cn,α‖Iα∇αf‖
L

n
n−α

,1
(Rn;Rn)

≤ c′
n,α‖∇αf‖L1(Rn;Rn)
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thanks to the boundedness of the Riesz transform R : L
n

n−α
,1(Rn) → L

n
n−α

,1(Rn;Rn), where
cn,α, c

′
n,α > 0 are two constants depending only on n and α, and L

n
n−α

,1(Rn) is the Lorentz
space of exponents n

n−α
, 1 (we refer to [17, 18] for an account on Lorentz spaces and on

the properties of Riesz transform). Thus, recalling [10, Theorem 3.8], we readily deduce
the continuous embedding BV α(Rn) ⊂ L

n
n−α

,1(Rn) for n ≥ 2 and α ∈ (0, 1) using Fatou’s
Lemma in Lorentz spaces (see [17, Exercise 1.4.11] for example). This suggests that the
spaces defined in (3.21) may be further enlarged by considering functions belonging to
some Lorentz space, but we do not need this level of generality here.

In the case n = 1, the space BV α(R) does not embed in L
1

1−α (R) with continuity,
see [10, Remark 3.10]. However, somehow completing the picture provided by [36], we
can prove that the space BV α(R) continuously embeds in the Lorentz space L

1

1−α
,∞(R).

Although this result is truly interesting only for n = 1, we prove it below in all dimensions
for the sake of completeness.

Theorem 3.8 (Weak Gagliardo–Nirenberg–Sobolev inequality). Let α ∈ (0, 1). There
exists a constant cn,α > 0 such that

‖f‖
L

n
n−α

,∞
(Rn)

≤ cn,α|Dαf |(Rn) (3.22)

for all f ∈ BV α(Rn). As a consequence, BV α(Rn) is continuously embedded in Lq(Rn)
for any q ∈ [1, n

n−α
).

Proof. Let f ∈ C∞
c (Rn). By [35, Theorem 3.5] (see also [10, Section 3.6]), we have

f(x) = −div−α∇αf(x) = −µn,−α

∫

Rn

(y − x) · ∇αf(y)
|y − x|n+1−α

dy, x ∈ R
n,

so that

|f(x)| ≤ µn,−α

∫

Rn

|∇αf(y)|
|y − x|n−α

dy =
µn,−α

µn,1−α

(n− α) Iα|∇αf |(x), x ∈ R
n.

Since Iα : L1(Rn) → L
n

n−α
,∞(Rn) is a continuous operator by Hardy–Littlewood–Sobolev

inequality (see [38, Theorem 1, Chapter V] or [17, Theorem 1.2.3]), we can estimate

‖f‖
L

n
n−α

,∞
(Rn)

≤ nµn,−α

µn,1−α

‖Iα|∇αf |‖
L

n
n−α

,∞
(Rn)

≤ cn,α‖|∇αf |‖L1(Rn) = cn,α |Dαf |(Rn),

where cn,α > 0 is a constant depending only on n and α. Thus, inequality (3.22) follows
for all f ∈ C∞

c (Rn). Now let f ∈ BV α(Rn). By [10, Theorem 3.8], there exists (fk)k∈N ⊂
C∞

c (Rn) such that fk → f a.e. in Rn and |Dαfk|(Rn) → |Dαf |(Rn) as k → +∞. By
Fatou’s Lemma in Lorentz spaces (see [17, Exercise 1.4.11] for example), we thus get

‖f‖
L

n
n−α

,∞
(Rn)

≤ lim inf
k→+∞

‖fk‖
L

n
n−α

,∞
(Rn)

≤ cn,α lim
k→+∞

|Dαfk|(Rn) = cn,α|Dαf |(Rn)

and so (3.22) readily follows. Finally, thanks to [17, Proposition 1.1.14], we obtain the
continuous embedding of BV α(Rn) in Lq(Rn) for all q ∈ [1, n

n−α
). �

Remark 3.9 (The embedding BV α(R) ⊂ L
1

1−α
,∞(R) is sharp). Let α ∈ (0, 1). The

continuous embedding BV α(R) ⊂ L
1

1−α
,∞(R) is sharp at the level of Lorentz spaces, in

the sense that BV α(Rn) \ L 1

1−α
,q(R) 6= ∅ for any q ∈ [1,+∞). Indeed, if we let

fα(x) = |x− 1|α−1 sgn(x− 1) − |x|α−1 sgn(x), x ∈ R \ {0, 1},
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then fα ∈ BV α(R) by [10, Theorem 3.26], and it is not difficult to prove that fα ∈
L

1

1−α
,∞(R). However, we can find a constant cα > 0 such that

|fα(x)| ≥ cα|x|α−1χ(− 1

4
, 1

4)(x) =: gα(x), x ∈ R \ {0, 1},
so that dfα

≥ dgα
, where dfα

and dgα
are the distribution functions of fα and gα. A simple

calculation shows that

dgα
(s) =























1
2

if 0 < s ≤ cα41−α

2
(

cα

t

) 1

1−α

if s > cα41−α,

so that, by [17, Proposition 1.4.9], we obtain

‖fα‖q

L
1

1−α
,q

(R)
≥ ‖gα‖q

L
1

1−α
,q

(R)
=

1
1 − α

∫ +∞

0
[dgα

(s)]q(1−α) sq−1 ds

≥ 2q(1−α)

1 − α

∫ +∞

cα41−α
s−qsq−1 ds = +∞

and thus fα /∈ L
1

1−α
,q(R) for any q ∈ [1,+∞).

We collect the above continuous embeddings in the following statement.

Corollary 3.10 (The embedding BV α ⊂ BV α,p). Let α ∈ (0, 1) and p ∈
[

1, n
n−α

)

. We

have BV α(Rn) ⊂ BV α,p(Rn) with continuous embedding. In addition, if n ≥ 2, then also

BV α(Rn) ⊂ BV α, n
n−α (Rn) with continuous embedding.

With Corollary 3.10 at hands, we are finally ready to investigate the relation between
α-variation and β-variation for 0 < β < α < 1.

Lemma 3.11. Let 0 < β < α < 1. The following hold.

(i) If f ∈ BV β(Rn), then u := Iα−βf ∈ BV α,p(Rn) for any p ∈
(

n
n−α+β

, n
n−α

)

(including

p = n
n−α

if n ≥ 2), with Dαu = Dβf in M (Rn;Rn).

(ii) If u ∈ BV α(Rn), then f := (−∆)
α−β

2 u ∈ BV β(Rn) with

‖f‖L1(Rn) ≤ cn,α,β ‖u‖BV α(Rn) and Dβf = Dαu in M (Rn;Rn).

As a consequence, the operator (−∆)
α−β

2 : BV α(Rn) → BV β(Rn) is continuous.

Proof. We begin with the following observation. Let ϕ ∈ C∞
c (Rn;Rn) and let U ⊂ Rn

be a bounded open set such that suppϕ ⊂ U . By Proposition 2.1 and the semigroup
property (2.4) of the Riesz potential, we can write

divβϕ = I1−βdivϕ = Iα−βI1−αdivϕ = Iα−βdivαϕ.

Similarly, we also have

Iα−β|divαϕ| = Iα−β |I1−αdivϕ| ≤ Iα−βI1−α|divϕ| = I1−β |divϕ|,
so that Iα−β|divαϕ| ∈ L∞(Rn) with

‖Iα−β|divαϕ|‖L∞(Rn) ≤ ‖I1−β|divϕ|‖L∞(Rn) ≤ Cn,β,U‖divϕ‖L∞(Rn)

by [10, Lemma 2.4]. We now prove the two statements separately.
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Proof of (i). Let f ∈ BV β(Rn) and ϕ ∈ C∞
c (Rn;Rn). Thanks to Corollary 3.10, if n ≥ 2,

then f ∈ BV β,q(Rn) for any q ∈ [1, n
n−β

] and so Iα−βf ∈ Lp(Rn) for any p ∈
(

n
n−α+β

, n
n−α

]

by (2.5). If instead n = 1, then f ∈ BV β,q(R) for any q ∈ [1, 1
1−β

) and so Iα−βf ∈ Lp(R)

for any p ∈
(

1
1−α+β

, 1
1−α

)

. Since f ∈ L1(Rn) and Iα−β|divαϕ| ∈ L∞(Rn), by Fubini’s
Theorem we have

∫

Rn
f divβϕdx =

∫

Rn
f Iα−βdivαϕdx =

∫

Rn
u divαϕdx, (3.23)

proving that u := Iα−βf ∈ BV α,p(Rn) for any p ∈
(

n
n−α+β

, n
n−α

)

(including p = n
n−α

if

n ≥ 2), with Dαu = Dβf in M (Rn;Rn).
Proof of (ii). Let u ∈ BV α(Rn). By [10, Theorem 3.32], we know that u ∈ W α−β,1(Rn),

so that f := (−∆)
α−β

2 u ∈ L1(Rn) with ‖f‖L1(Rn) ≤ cn,α,β ‖u‖BV α(Rn), see [10, Section 3.10].
Then, arguing as before, for any ϕ ∈ C∞

c (Rn;Rn) we get (3.23), since we have Iα−βf = u
in L1(Rn) (see [10, Section 3.10]). The proof is complete. �

3.4. The inclusion BV α ⊂ W β,1 for β < α: a representation formula. In [10,
Theorem 3.32], we proved that the inclusion BV α ⊂ W β,1 is continuous for β < α. In the
following result we prove a useful representation formula for the fractional β-gradient of
any f ∈ BV α(Rn), extending the formula obtained in Corollary 3.6.

Proposition 3.12. Let α ∈ (0, 1). If f ∈ BV α(Rn), then f ∈ W β,1(Rn) for all β ∈ (0, α)
with

∇βf = Iα−βD
αf a.e. in R

n. (3.24)

In addition, for any bounded open set U ⊂ R
n, we have

‖∇βf‖L1(U ;Rn) ≤ Cn,(1−α+β),U |Dαf |(Rn) (3.25)

for all β ∈ (0, α), where Cn,α,U is as in (2.9). Finally, given an open set A ⊂ R
n, we have

‖∇βf‖L1(A;Rn) ≤ µn,1+α−β

n + β − α

(

ωn,1|Dαf |(Ar)
α − β

rα−β +
ωn,α(n+ 2β − α)

β
‖f‖L1(Rn) r

−β

)

(3.26)
for all r > 0 and all β ∈ (0, α), where ωn,α := ‖∇αχB1

‖L1(Rn;Rn), ωn,1 := |DχB1
|(Rn) =

nωn, and, as above, Ar := {x ∈ Rn : dist(x,A) < r}. In particular, we have

‖∇βf‖L1(Rn;Rn) ≤ αµn,1+α−βω
β

α
n,1ω

1− β

α
n,α (n+ 2β − α)1− β

α

β(n+ β − α)(α− β)
‖f‖1− β

α

L1(Rn) |Dαf |(Rn)
β

α . (3.27)

Proof. Fix β ∈ (0, α). By [10, Theorem 3.32] we already know that f ∈ W β,1(Rn), with
Dβf = ∇βfL n according to [10, Theorem 3.18]. We thus just need to prove (3.24), (3.25)
and (3.26).

We prove (3.24). Let ϕ ∈ C∞
c (Rn;Rn). Note that Iα−βϕ ∈ Lipb(R

n;Rn) is such that
divIα−βϕ = Iα−βdivϕ, so that

I1−αdivIα−βϕ = I1−αIα−βdivϕ = I1−βdivϕ = divβϕ

by the semigroup property (2.4) of the Riesz potential. Moreover, in a similar way, we
have

I1−α|divIα−βϕ| = I1−α|Iα−βdivϕ| ≤ I1−αIα−β|divϕ| = I1−β|divϕ| ∈ L1
loc(R

n).
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By Lemma 2.2, we thus have that divαIα−βϕ = divβϕ. Consequently, by Proposition 2.7,
we get

∫

Rn
f divβϕdx =

∫

Rn
f divαIα−βϕdx = −

∫

Rn
Iα−βϕ · dDαf.

Since |Dαf |(Rn) < +∞, we have Iα−β|Dαf | ∈ L1
loc(R

n) and thus, by Fubini’s Theorem,
we get that

∫

Rn
Iα−βϕ · dDαf =

∫

Rn
ϕ · Iα−βD

αf dx.

We conclude that
∫

Rn
f divβϕdx = −

∫

Rn
ϕ · Iα−βD

αf dx

for any ϕ ∈ C∞
c (Rn;Rn), proving (3.24).

We prove (3.25). By (3.24), by Tonelli’s Theorem and by [10, Lemma 2.4], we get
∫

U
|∇βf | dx ≤

∫

U
Iα−β|Dαf | dx ≤ Cn,(1−α+β),U |Dαf |(Rn)

where Cn,α,U is as in (2.9).
We now prove (3.26) in two steps. We argue similarly as in the proof of (3.4).

Proof of (3.26), Step 1. Assume f ∈ C∞
c (Rn) and fix r > 0. We have

∫

A
|∇βf |dx =

∫

A
|Iα−β∇αf | dx

≤ µn,1+β−α

n + β − α

(

∫

A

∫

{|h|<r}

|∇αf(x+ h)|
|h|n+β−α

dhdx+
∫

A

∣

∣

∣

∣

∣

∫

{|h|≥r}

∇αf(x+ h)
|h|n+β−α

dh

∣

∣

∣

∣

∣

dx

)

.

We estimate the two double integrals appearing in the right-hand side separately. By
Tonelli’s Theorem, we have

∫

A

∫

{|h|<r}

|∇αf(x+ h)|
|h|n+β−α

dh dx =
∫

{|h|<r}

∫

A
|∇αf(x+ h)| dx dh

|h|n+β−α

≤ |Dαf |(Ar)
∫

{|h|<r}

dh

|h|n+β−α

=
nωn |Dαf |(Ar)

α − β
rα−β.

Concerning the second double integral, we apply [1, Lemma 3.1.1(c)] to each component
of the measure Dαf ∈ M (Rn;Rn) and get

∫

{|h|≥r}

∇αf(x+ h)
|h|n+β−α

dh = (n+ β − α)
∫ +∞

r

Dαf(B̺(x))
̺n+β−α+1

d̺− Dαf(Br(x))
rn+β−α

for all x ∈ A. Since

Dαf(B̺(x)) =
∫

Rn
χB̺

(y) ∇αf(x+ y) dy

= −
∫

Rn
f(x+ y) ∇αχB̺

(y) dy

= −̺n−α
∫

Rn
f(x+ ̺y) ∇αχB1

(y) dy,
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we can compute

(n+ β − α)
∫ +∞

r

Dαf(B̺(x))
̺n+β−α+1

d̺− Dαf(Br(x))
rn+β−α

= −(n + β − α)
∫ +∞

r

1
̺β+1

∫

Rn
f(x+ ̺y) ∇αχB1

(y) dy d̺

+
1
rβ

∫

Rn
f(x+ ry) ∇αχB1

(y) dy

=
∫

Rn

(

f(x+ ry)
rβ

− (n+ β − α)
∫ +∞

r

f(x+ ̺y)
̺β+1

d̺

)

∇αχB1
(y) dy

for all x ∈ A. Hence, we have
∫

A

∣

∣

∣

∣

∣

∫

{|h|>r}

∇αf(x+ h)
|h|n+β−α

dh

∣

∣

∣

∣

∣

dx ≤
∫

Rn

∣

∣

∣

∣

∣

∫

{|h|>r}

∇αf(x+ h)
|h|n+β−α

dh

∣

∣

∣

∣

∣

dx

≤
∫

Rn

∫

Rn

|f(x+ ry)|
rβ

|∇αχB1
(y)| dx dy

+ (n+ β − α)
∫

Rn

∫ +∞

r

∫

Rn

|f(x+ ̺y)|
̺β+1

|∇αχB1
(y)| dx d̺ dy

=
ωn,α(n+ 2β − α)

β
‖f‖L1(Rn) r

−β.

Thus (3.4) follows for all f ∈ C∞
c (Rn) and r > 0.

Proof of (3.4), Step 2. Let f ∈ BV α(Rn) and fix r > 0. By [10, Theorem 3.8], we
find (fk)k∈N ⊂ C∞

c (Rn) such that fk → f in L1(Rn) and |Dαfk|(Rn) → |Dαf |(Rn) as
k → +∞. By Step 1, we have that

‖∇βfk‖L1(A;Rn) ≤ µn,1+β−α

n + β − α

(

nωn|Dαfk|(Ar)
α − β

rα−β +
ωn,α(n+ 2β − α)

β
‖fk‖L1(Rn) r

−β

)

(3.28)
for all k ∈ N. We have that

(∇βfk) L
n ⇀ (∇βf) L

n as k → +∞. (3.29)

This can be proved arguing similarly as in the proof of (3.9) using (3.25). We leave the
details to the reader. Thanks to (3.29), by [22, Proposition 4.29] we get that

‖∇βf‖L1(A;Rn) ≤ lim inf
k→+∞

‖∇βfk‖L1(A;Rn).

Since
|Dαf |(U) ≤ lim inf

k→+∞
|Dαfk|(U)

for any open set U ⊂ Rn by [10, Theorem 3.3], we can estimate

lim sup
k→+∞

|Dαfk|(Ar) ≤ lim
k→+∞

|Dαfk|(Rn) − lim inf
k→+∞

|Dαfk|(Rn \ Ar)

≤ |Dαf |(Rn) − |Dαf |(Rn \ Ar)

= |Dαf |(Ar).

Thus, (3.26) follows taking limits as k → +∞ in (3.28). Finally, (3.27) follows by consid-
ering A = Rn in (3.26) and optimising the right-hand side in r > 0. �
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4. Asymptotic behaviour of fractional α-variation as α → 1−

4.1. Convergence of ∇α and divα as α → 1−. We begin with the following simple
result about the asymptotic behaviour of the constant µn,α as α → 1−.

Lemma 4.1. Let n ∈ N. We have

µn,α

1 − α
≤ π− n

2

√

3
2

Γ
(

n
2

+ 1
)

Γ
(

3
2

) =: Cn ∀α ∈ (0, 1) (4.1)

and
lim

α→1−

µn,α

1 − α
= ω−1

n . (4.2)

Proof. Since Γ(1) = 1 and Γ(1 + x) = xΓ(x) for x > 0 (see [4]), we have Γ(x) ∼ x−1 as
x → 0+. Thus as α → 1− we find

µn,α = 2απ− n
2

Γ
(

n+α+1
2

)

Γ
(

1−α
2

) ∼ π− n
2 (1 − α) Γ

(

n

2
+ 1

)

= ω−1
n (1 − α)

and (4.2) follows.
Since Γ is log-convex on (0,+∞) (see [4]), for all x > 0 and a ∈ (0, 1) we have

Γ(x+ a) = Γ((1 − a)x+ a(x+ 1)) ≤ Γ(x)1−a Γ(x+ 1)a = xa Γ(x).

For x = n
2

and a = α+1
2

, we can estimate

Γ
(

n+ α + 1
2

)

≤
(

n

2

)
α+1

2

Γ
(

n

2

)

≤ Γ
(

n

2
+ 1

)

for all n ≥ 2. Also, for n = 1, we trivially have Γ
(

2+α
2

)

≤ Γ
(

3
2

)

, because Γ is increasing

on (1,+∞) (see [4]). For x = 1 + 1−α
2

and a = α
2
, we can estimate

Γ
(3

2

)

≤
(

1 +
1 − α

2

)
α
2

Γ
(

1 +
1 − α

2

)

≤
√

3
2

1 − α

2
Γ
(1 − α

2

)

.

We thus get

µn,α(1 − α)−1 = 2α−1 π− n
2

Γ
(

n+α+1
2

)

Γ
(

1−α
2

+ 1
) ≤ π− n

2

√

3
2

Γ
(

n
2

+ 1
)

Γ
(

3
2

)

and (4.1) follows. �

In the following technical result, we show that the constant Cn,α,U defined in (2.9) is
uniformly bounded as α → 1− in terms of the volume and the diameter of the bounded
open set U ⊂ Rn.

Lemma 4.2 (Uniform upper bound on Cn,α,U as α → 1−). Let n ∈ N and α ∈ (1
2
, 1). Let

U ⊂ Rn be bounded open set. If Cn,α,U is as in (2.9), then

Cn,α,U ≤ nωnCn
(

n− 1
2

)





n
(

n − 1
2

) max

{

1,
|U |
ωn

} 1

n

+ max
{

1,
√

diam(U)
}



 =: κn,U , (4.3)

where Cn is as in (4.1).
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Proof. By (4.1), for all α ∈ (1
2
, 1) we have

nµn,α

(n + α− 1)(1 − α)
≤ nCn

n+ α − 1
≤ nCn

n− 1
2

.

Since t1−α ≤ max
{

1,
√
t
}

for any t ≥ 0 and α ∈ (1
2
, 1), we have

ωn(diam(U))1−α ≤ ωn max
{

1,
√

diam(U)
}

and
(

nωn

n + α − 1

)
n+α−1

n |U | 1−α
n =

nωn

n+ α − 1

(

|U |(n+ α − 1)
nωn

)
1−α

n

≤ nωn
(

n− 1
2

) max

{

1,
|U |
ωn

} 1

n

.

Combining these inequalities, we get the conclusion. �

As consequence of Proposition 2.1 and Lemma 4.2, we prove that ∇α and divα converge
pointwise to ∇ and div respectively as α → 1−.

Proposition 4.3. If f ∈ C1
c (Rn), then for all x ∈ Rn we have

lim
α→0−

Iαf(x) = f(x). (4.4)

As a consequence, if f ∈ C2
c (Rn) and ϕ ∈ C2

c (Rn;Rn), then for all x ∈ Rn we have

lim
α→1−

∇αf(x) = ∇f(x), lim
α→1−

divαϕ(x) = divϕ(x). (4.5)

Proof. Let f ∈ C1
c (Rn) and fix x ∈ Rn. Writing (2.6) in spherical coordinates, we find

Iαf(x) =
µn,1−α

n− α
lim
δ→0

∫

∂B1

∫ +∞

δ
̺−1+αf(x+ ̺v) d̺ dH n−1(v).

Since f ∈ C1
c (Rn), for each fixed v ∈ ∂B1 we can integrate by parts in the variable ̺ and

get
∫ +∞

δ
̺−1+αf(x+ ̺v) d̺ =

[

̺α

α
f(x+ ̺v)

]̺→+∞

̺=δ
− 1
α

∫ +∞

δ
̺α ∂̺(f(x+ ̺v)) d̺

= −δα

α
f(x+ δv) − 1

α

∫ +∞

δ
̺α ∂̺(f(x+ ̺v)) d̺.

Clearly, we have

lim
δ→0+

δα
∫

∂B1

f(x+ δv) dH n−1(v) = 0.

Thus, by Fubini’s Theorem, we conclude that

Iαf(x) = − µn,1−α

α(n− α)

∫ ∞

0

∫

∂B1

̺α ∂̺(f(x+ ̺v)) dH n−1(v) d̺. (4.6)

Since f has compact support and recalling (4.2), we can pass to the limit in (4.6) and get

lim
α→0+

Iαf(x) = − 1
nωn

∫

∂B1

∫ ∞

0
∂̺(f(x+ ̺v)) d̺ dH n−1(v) = f(x),

proving (4.4). The pointwise limits in (4.5) immediately follows by Proposition 2.1. �

In the following crucial result, we improve the pointwise convergence obtained in Propo-
sition 4.3 to strong convergence in Lp(Rn) for all p ∈ [1,+∞].
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Proposition 4.4. Let p ∈ [1,+∞]. If f ∈ C2
c (Rn) and ϕ ∈ C2

c (Rn;Rn), then

lim
α→1−

‖∇αf − ∇f‖Lp(Rn;Rn) = 0, lim
α→1−

‖divαϕ− divϕ‖Lp(Rn) = 0.

Proof. Let f ∈ C2
c (Rn). Since

∫

B1

dy

|y|n+α−1
= nωn

∫ 1

0

d̺

̺α
=

nωn

1 − α
,

for all x ∈ Rn we can write
nωnµn,α

(1 − α)(n+ α − 1)
∇f(x) =

µn,α

n+ α − 1

∫

B1

∇f(x)
|y|n+α−1

dy.

Therefore, by (2.6), we have

∇αf(x) − nωnµn,α

(1 − α)(n+ α− 1)
∇f(x)

=
µn,α

n+ α − 1

(

∫

B1

∇f(x+ y) − ∇f(x)
|y|n+α−1

dy +
∫

Rn\B1

∇f(x+ y)
|y|n+α−1

dy

)

for all x ∈ Rn. We now distinguish two cases.
Case 1: p ∈ [1,+∞). Using the elementary inequality |v+w|p ≤ 2p−1(|v|p + |w|p) valid

for all v, w ∈ Rn, we have
∫

Rn

∣

∣

∣

∣

∣

∇αf(x)− nωnµn,α

(1 − α)(n+ α − 1)
∇f(x)

∣

∣

∣

∣

∣

p

dx

≤ 2p−1µn,α

n + α − 1

∫

Rn

∣

∣

∣

∣

∣

∫

B1

∇f(x+ y) − ∇f(x)
|y|n+α−1

dy

∣

∣

∣

∣

∣

p

dx

+
2p−1µn,α

n + α − 1

∫

Rn

∣

∣

∣

∣

∣

∫

Rn\B1

∇f(x+ y)
|y|n+α−1

dy

∣

∣

∣

∣

∣

p

dx.

We now estimate the two double integrals appearing in the right-hand side separately.
For the first double integral, similarly as in the proof of Proposition 4.3, we pass in

spherical coordinates to get
∫

B1

∇f(x+ y) − ∇f(x)
|y|n+α−1

dy =
∫

∂B1

∫ 1

0
̺−α (∇f(x+ ̺v) − ∇f(x)) d̺ dH n−1(v)

=
1

1 − α

∫

∂B1

(∇f(x+ v) − ∇f(x)) dH n−1(v)

−
∫

∂B1

∫ 1

0

̺1−α

1 − α
∂̺(∇f(x+ ̺v)) d̺ dH n−1(v)

(4.7)

for all x ∈ Rn. Hence, by (4.2), we find

lim
α→1−

µn,α

(1 − α)(n+ α − 1)

∫

∂B1

(∇f(x+ v) − ∇f(x)) dH n−1(v)

=
1
nωn

∫

∂B1

(∇f(x+ v) − ∇f(x)) dH n−1(v)

and

lim
α→1−

µn,α

(1 − α)(n+ α − 1)

∫

∂B1

∫ 1

0
̺1−α ∂̺(∇f(x+ ̺v)) d̺ dH n−1(v)
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=
1
nωn

∫

∂B1

∫ 1

0
∂̺(∇f(x+ ̺v)) d̺ dH n−1(v)

=
1
nωn

∫

∂B1

(∇f(x+ v) − ∇f(x)) dH n−1(v)

for all x ∈ Rn. Therefore, we get

lim
α→1−

µn,α

n+ α − 1

∫

B1

∇f(x+ y) − ∇f(x)
|y|n+α−1

dy = 0

for all x ∈ Rn. Recalling (4.1), we also observe that

µn,α

n + α− 1
|∇f(x+ y) − ∇f(x)|

|y|n+α−1
≤ Cn

|∇f(x+ y) − ∇f(x)|
|y|n

for all α ∈ (0, 1), x ∈ R
n and y ∈ B1. Moreover, letting R > 0 be such that supp f ⊂ BR,

we can estimate
∫

B1

|∇f(x+ y) − ∇f(x)|
|y|n dy ≤ nωn‖∇f‖L∞(Rn;Rn)χBR+1

(x)

for all x ∈ Rn, so that

x 7→
(

∫

B1

|∇f(x+ y) − ∇f(x)|
|y|n dy

)p

∈ L1(Rn).

In conclusion, applying Lebesgue’s Dominated Convergence Theorem, we find

lim
α→1−

µn,α

n + α− 1

∫

Rn

∣

∣

∣

∣

∣

∫

B1

∇f(x+ y) − ∇f(x)
|y|n+α−1

dy

∣

∣

∣

∣

∣

p

dx = 0.

For the second double integral, note that
∫

Rn\B1

∇f(x+ y)
|y|n+α−1

dy =
∫

Rn\B1

∇(f(x+ y) − f(x))
|y|n+α−1

dy

for all x ∈ Rn. Now let R > 0. Integrating by parts, we have that
∫

BR\B1

∇(f(x+ y) − f(x))
|y|n+α−1

dy = (n + α − 1)
∫

BR\B1

y (f(x+ y) − f(x))
|y|n+α+1

dy

+
1

Rn+α−1

∫

∂BR

(f(x+ y) − f(x)) dH n−1(y)

−
∫

∂B1

(f(x+ y) − f(x)) dH n−1(y)

for all x ∈ Rn. Since
∫

Rn\BR

|f(x+ y) − f(x)|
|y|n+α

dy ≤ 2nωn

αRα
‖f‖L∞(Rn)

and
1

Rn+α−1

∫

∂BR

|f(x+ y) − f(x)| dH n−1(y) ≤ 2nωn

Rα
‖f‖L∞(Rn)
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for all R > 0, we conclude that
∫

Rn\B1

∇f(x+ y)
|y|n+α−1

dy = lim
R→+∞

∫

BR\B1

∇f(x+ y)
|y|n+α−1

dy

= (n+ α − 1)
∫

Rn\B1

y (f(x+ y) − f(x))
|y|n+α+1

dy

−
∫

∂B1

(f(x+ y) − f(x)) dH n−1(y)

(4.8)

for all x ∈ Rn. Hence, by Minkowski’s Integral Inequality (see [38, Section A.1], for
example), we can estimate

∥

∥

∥

∥

∥

∫

Rn\B1

∇f(· + y)
|y|n+α−1

dy

∥

∥

∥

∥

∥

Lp(Rn;Rn)

≤ (n+ α − 1)

∥

∥

∥

∥

∥

∫

Rn\B1

|f(· + y) − f(·)|
|y|n+α

dy

∥

∥

∥

∥

∥

Lp(Rn)

+

∥

∥

∥

∥

∥

∫

∂B1

|f(· + y) − f(·)| dH n−1(y)

∥

∥

∥

∥

∥

Lp(Rn)

≤ n+ 2α − 1
α

2nωn‖f‖Lp(Rn).

Thus, by (4.2), we get that

lim
α→1−

µn,α

n+ α − 1

∫

Rn

∣

∣

∣

∣

∣

∫

Rn\B1

∇f(x+ y)
|y|n+α−1

dy

∣

∣

∣

∣

∣

p

dx = 0.

Case 2: p = +∞. We have

sup
x∈Rn

∣

∣

∣

∣

∣

∇αf(x) − nωnµn,α

(1 − α)(n+ α − 1)
∇f(x)

∣

∣

∣

∣

∣

≤ µn,α

n+ α − 1

(

sup
x∈Rn

∣

∣

∣

∣

∣

∫

B1

∇f(x+ y) − ∇f(x)
|y|n+α−1

dy

∣

∣

∣

∣

∣

+ sup
x∈Rn

∣

∣

∣

∣

∣

∫

Rn\B1

∇f(x+ y)
|y|n+α−1

dy

∣

∣

∣

∣

∣

)

.

Again we estimate the two integrals appearing in the right-hand side separately. We note
that

∫

∂B1

(∇f(x+ v) − ∇f(x)) dH n−1(v) −
∫

∂B1

∫ 1

0
̺1−α ∂̺(∇f(x+ ̺v)) d̺ dH n−1(v)

=
∫

∂B1

∫ 1

0
(1 − ̺1−α) ∂̺(∇f(x+ ̺v)) d̺ dH n−1(v),

so that we can rewrite (4.7) as
∫

B1

∇f(x+ y) − ∇f(x)
|y|n+α−1

dy =
1

1 − α

∫

∂B1

∫ 1

0
(1 − ̺1−α) ∂̺(∇f(x+ ̺v)) d̺ dH n−1(v).

Hence, we can estimate

sup
x∈Rn

∣

∣

∣

∣

∣

∫

B1

∇f(x+ y) − ∇f(x)
|y|n+α−1

dy

∣

∣

∣

∣

∣

≤ 1
1 − α

∫

∂B1

∫ 1

0
(1 − ̺1−α) sup

x∈Rn

|∂̺(∇f(x+ ̺v))| d̺ dH n−1(v)

≤ 1
2 − α

nωn ‖∇2f‖L∞(Rn;R2n),
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so that

lim
α→1−

µn,α

n+ α − 1
sup
x∈Rn

∣

∣

∣

∣

∣

∫

B1

∇f(x+ y) − ∇f(x)
|y|n+α−1

dy

∣

∣

∣

∣

∣

= 0.

For the second integral, by (4.8) we can estimate

sup
x∈Rn

∣

∣

∣

∣

∣

∫

Rn\B1

∇f(x+ y)
|y|n+α−1

dy

∣

∣

∣

∣

∣

dx

≤ (n + α − 1) sup
x∈Rn

∣

∣

∣

∣

∣

∫

Rn\B1

|f(x+ y) − f(x)|
|y|n+α

dy

∣

∣

∣

∣

∣

+ sup
x∈Rn

∣

∣

∣

∣

∣

∫

∂B1

|f(x+ y) − f(x)| dH n−1(y)

∣

∣

∣

∣

∣

≤ n + 2α− 1
α

2nωn‖f‖L∞(Rn).

Thus, by (4.2), we get that

lim
α→1−

µn,α

n + α − 1
sup
x∈Rn

∣

∣

∣

∣

∣

∫

Rn\B1

∇f(x+ y)
|y|n+α−1

dy

∣

∣

∣

∣

∣

= 0.

We can now conclude the proof. Again recalling (4.2), we thus find that

lim
α→1−

‖∇αf − ∇f‖Lp(Rn;Rn)

≤ lim
α→1−

∥

∥

∥

∥

∥

∇αf − nωnµn,α

(1 − α)(n+ α− 1)
∇f

∥

∥

∥

∥

∥

Lp(Rn;Rn)

+ ‖∇f‖Lp(Rn;Rn) lim
α→1−

(

nωnµn,α

(1 − α)(n+ α − 1)
− 1

)

= 0

for all p ∈ [1,+∞] and the conclusion follows. The Lp-convergence of divαϕ to divϕ
as α → 1− for all p ∈ [1,+∞] follows by a similar argument and is left to the reader. �

Remark 4.5. Note that the conclusion of Proposition 4.4 still holds if instead one assumes
that f ∈ S (Rn) and ϕ ∈ S (Rn;Rn), where S (Rn;Rm) is the space of m-vector-valued
Schwartz functions. We leave the proof of this assertion to the reader.

4.2. Weak convergence of α-variation as α → 1−. In Theorem 4.7 below, we prove
that the fractional α-variation weakly converges to the standard variation as α → 1− for
functions either in BV (Rn) or in BVloc(Rn) ∩ L∞(Rn). In the proof of Theorem 4.7, we
are going to use the following technical result.

Lemma 4.6. There exists a dimensional constant cn > 0 with the following property. If
f ∈ L∞(Rn) ∩ BVloc(Rn), then

‖∇αf‖L1(BR;Rn) ≤ cn

(

R1−α|Df |(B3R) +Rn−α ‖f‖L∞(Rn)

)

(4.9)

for all R > 0 and α ∈ (1
2
, 1).

Proof. Since Γ(x) ∼ x−1 as x → 0+ (see [4]), inequality (4.9) follows immediately com-
bining (3.7) with Lemma 4.1. �
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Theorem 4.7. If either f ∈ BV (Rn) or f ∈ BVloc(Rn) ∩ L∞(Rn), then

Dαf ⇀ Df as α → 1−.

Proof. We divide the proof in two steps.

Step 1. Assume f ∈ BV (Rn). By [10, Theorem 3.18], we have
∫

Rn
ϕ · ∇αf dx = −

∫

Rn
f divαϕdx

for all ϕ ∈ Lipc(R
n;Rn). Thus, given ϕ ∈ C2

c (Rn;Rn), recalling Proposition 4.3 and the
estimates (2.12) and (4.3), by Lebesgue’s Dominated Convergence Theorem we get that

lim
α→1−

∫

Rn
ϕ · ∇αf dx = − lim

α→1−

∫

Rn
f divαϕdx = −

∫

Rn
f divϕdx =

∫

Rn
ϕ · dDf.

Now fix ϕ ∈ C0
c (Rn;Rn). Let U ⊂ R

n be a fixed bounded open set such that suppϕ ⊂ U .
For each ε > 0 sufficiently small, pick ψε ∈ C2

c (Rn;Rn) such that ‖ϕ − ψε‖L∞(Rn;Rn) < ε
and suppψε ⊂ U . Then, by (3.3), we can estimate

∣

∣

∣

∣

∫

Rn
ϕ · ∇αf dx−

∫

Rn
ϕ · dDf

∣

∣

∣

∣

≤ ‖ϕ− ψε‖L∞(Rn;Rn)

(∫

U
|∇αf | dx+ |Df |(Rn)

)

+
∣

∣

∣

∣

∫

Rn
ψε · ∇αf dx−

∫

Rn
ψε · dDf

∣

∣

∣

∣

≤ ε(1 + Cn,α,U) |Df |(Rn)

+
∣

∣

∣

∣

∫

Rn
ψε · ∇αf dx−

∫

Rn
ψε · dDf

∣

∣

∣

∣

for all α ∈ (0, 1). Thus, by the uniform estimate (4.3) in Lemma 4.2, we get

lim
α→1−

∣

∣

∣

∣

∫

Rn
ϕ · ∇αf dx−

∫

Rn
ϕ · dDf

∣

∣

∣

∣

≤ ε(1 + κn,U) |Df |(Rn) (4.10)

and the conclusion follows passing to the limit as ε → 0+.

Step 2. Assume f ∈ BVloc(Rn) ∩ L∞(Rn). By Proposition 3.2(iii), we know that
Dαf = ∇αfL n with ∇αf ∈ L1

loc(R
n;Rn). By Proposition 4.4, we get that

lim
α→1−

∣

∣

∣

∣

∫

Rn
ϕ · ∇αf dx−

∫

Rn
ϕ · dDf

∣

∣

∣

∣

≤ ‖f‖L∞(Rn) lim
α→1−

‖divαϕ− divϕ‖L1(Rn;Rn) = 0

for all ϕ ∈ C2
c (Rn;Rn). Now fix ϕ ∈ C0

c (Rn;Rn) and choose R ≥ 1 such that suppϕ ⊂ BR.
For each ε > 0 sufficiently small, pick ψε ∈ C2

c (Rn;Rn) such that ‖ϕ − ψε‖L∞(Rn;Rn) < ε
and suppψε ⊂ BR. Then, by (4.9), we can estimate

∣

∣

∣

∣

∣

∫

Rn
ϕ · ∇αf dx−

∫

Rn
ϕ · dDf

∣

∣

∣

∣

∣

≤ ‖ϕ− ψε‖L∞(Rn;Rn)

(

‖∇αf‖L1(BR;Rn) + |Df |(BR)
)

+

∣

∣

∣

∣

∣

∫

Rn
ψε · ∇αf dx−

∫

Rn
ψε · dDf

∣

∣

∣

∣

∣

≤ εcnR
n
(

‖f‖L∞(Rn) + |Df |(B3R)
)

+

∣

∣

∣

∣

∣

∫

Rn
ψε · ∇αf dx−

∫

Rn
ψε · dDf

∣

∣

∣

∣

∣
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for all α ∈ (1
2
, 1). We thus get

lim
α→1−

∣

∣

∣

∣

∫

Rn
ϕ · ∇αf dx−

∫

Rn
ϕ · dDf

∣

∣

∣

∣

≤ εcnR
n
(

‖f‖L∞(Rn) + |Df |(B3R)
)

(4.11)

and the conclusion follows passing to the limit as ε → 0+. �

We are now going to improve the weak convergence of the fractional α-variation ob-
tained in Theorem 4.7 by establishing the weak convergence also of the total fractional
α-variation as α → 1−, see Theorem 4.9 below. To do so, we need the following prelimi-
nary result.

Lemma 4.8. Let µ ∈ M (Rn;Rn). We have (Iαµ)L n ⇀ µ as α → 0+.

Proof. Since Riesz potential is a linear operator and thanks to Hahn–Banach Decompo-
sition Theorem, without loss of generality we can assume that µ is a nonnegative finite
Radon measure.

Let now ϕ ∈ C1
c (Rn) and let U ⊂ Rn be a bounded open set such that suppϕ ⊂ U .

We have that ‖Iα|ϕ|‖L∞(Rn) ≤ κn,U‖ϕ‖L∞(Rn) for all α ∈ (0, 1
2
) by [10, Lemma 2.4] and

Lemma 4.2. Thus, by (4.4), Fubini’s Theorem and Lebesgue’s Dominated Convergence
Theorem, we get that

lim
α→0+

∫

Rn
ϕ Iαµ dx = lim

α→0+

∫

Rn
Iαϕdµ =

∫

Rn
ϕdµ.

Now fix ϕ ∈ C0
c (Rn;Rn). Let U ⊂ Rn be a fixed bounded open set such that suppϕ ⊂ U .

For each ε > 0 sufficiently small, pick ψε ∈ C1
c (Rn;Rn) such that ‖ϕ − ψε‖L∞(Rn;Rn) < ε

and suppψε ⊂ U . Then, since µ(Rn) < +∞, by [10, Lemma 2.4] and by (4.3), we can
estimate

∣

∣

∣

∣

∣

∫

Rn
ϕ Iαµ dx−

∫

Rn
ϕdµ

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫

Rn
ψε Iαµ dx−

∫

Rn
ψε dµ

∣

∣

∣

∣

∣

+ ε‖Iαµ‖L1(U) + εµ(U)

≤
∣

∣

∣

∣

∣

∫

Rn
Iαψε dµ−

∫

Rn
ψε dµ

∣

∣

∣

∣

∣

+ ε(1 + Cn,α,U)µ(Rn)

≤
∣

∣

∣

∣

∣

∫

Rn
Iαψε dµ−

∫

Rn
ψε dµ

∣

∣

∣

∣

∣

+ ε(1 + κn,U)µ(Rn)

for all α ∈ (0, 1
2
), so that

lim sup
α→0+

∣

∣

∣

∣

∣

∫

Rn
ϕ Iαµ dx−

∫

Rn
ϕdµ

∣

∣

∣

∣

∣

≤ ε(1 + κn,U)µ(Rn).

The conclusion thus follows passing to the limit as ε → 0+. �

Theorem 4.9. If either f ∈ BV (Rn) or f ∈ bv(Rn) ∩ L∞(Rn), then

|Dαf | ⇀ |Df | as α → 1−. (4.12)

Moreover, if f ∈ BV (Rn), then also

lim
α→1−

|Dαf |(Rn) = |Df |(Rn). (4.13)
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Proof. We prove (4.12) and (4.13) separately.

Proof of (4.12). By Theorem 4.7, we know that Dαf ⇀ Df as α → 1−. By [22,
Proposition 4.29], we thus have that

|Df |(A) ≤ lim inf
α→1−

|Dαf |(A) (4.14)

for any open set A ⊂ Rn. Now let K ⊂ Rn be a compact set. By the representation
formula (3.18) in Corollary 3.6, we can estimate

|Dαf |(K) = ‖∇αf‖L1(K;Rn) ≤ ‖I1−α|Df |‖L1(K) = (I1−α|Df | L n)(K).

Since |Df |(Rn) < +∞, by Lemma 4.8 and [22, Proposition 4.26] we can conclude that

lim sup
α→1−

|Dαf |(K) ≤ lim sup
α→1−

(I1−α|Df | L n)(K) ≤ |Df |(K),

and so (4.12) follows, thanks again to [22, Proposition 4.26].

Proof of (4.13). Now assume f ∈ BV (Rn). By (3.4) applied with A = Rn and r = 1,
we have

|Dαf |(Rn) ≤ nωn µn,α

n+ α − 1

(

|Df |(Rn)
1 − α

+
n+ 2α − 1

α
‖f‖L1(Rn)

)

.

By (4.2), we thus get that

lim sup
α→1−

|Dαf |(Rn) ≤ |Df |(Rn). (4.15)

Thus (4.13) follows combining (4.14) for A = Rn with (4.15). �

Note that Theorem 4.7 and Theorem 4.9 in particular apply to any f ∈ W 1,1(Rn).
In the following result, by exploiting Proposition 3.3, we prove that a stronger property
holds for any f ∈ W 1,p(Rn) with p ∈ (1,+∞).

Theorem 4.10. Let p ∈ (1,+∞). If f ∈ W 1,p(Rn), then

lim
α→1−

‖∇α
wf − ∇wf‖Lp(Rn;Rn) = 0. (4.16)

Proof. By Proposition 3.3 we know that f ∈ Sα,p(Rn) for any α ∈ (0, 1). We now divide
the proof in two steps.

Step 1. We claim that

lim
α→1−

‖∇α
wf‖Lp(Rn;Rn) = ‖∇wf‖Lp(Rn;Rn). (4.17)

Indeed, on the one hand, by Proposition 4.4, we have
∫

Rn
ϕ · ∇wf dx = −

∫

Rn
f divϕdx = − lim

α→1−

∫

Rn
f divαϕdx = lim

α→1−

∫

Rn
ϕ · ∇α

wf dx (4.18)

for all ϕ ∈ C∞
c (Rn;Rn), so that

∫

Rn
ϕ · ∇wf dx ≤ ‖ϕ‖

L
p

p−1 (Rn;Rn)
lim inf
α→1−

‖∇α
wf‖Lp(Rn;Rn)

for all ϕ ∈ C∞
c (Rn;Rn). We thus get that

‖∇wf‖Lp(Rn;Rn) ≤ lim inf
α→1−

‖∇α
wf‖Lp(Rn;Rn). (4.19)
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On the other hand, applying (3.10) with A = Rn and r = 1, we have

‖∇α
wf‖Lp(Rn;Rn) ≤ nωn µn,α

n+ α − 1

(

‖∇wf‖Lp(Rn;Rn)

1 − α
+
n+ 2α − 1

α
‖f‖Lp(Rn)

)

.

By (4.2), we conclude that

lim sup
α→1−

‖∇α
wf‖Lp(Rn;Rn) ≤ ‖∇wf‖Lp(Rn;Rn). (4.20)

Thus, (4.17) follows combining (4.19) and (4.20).

Step 2. We now claim that

∇α
wf ⇀ ∇wf in Lp(Rn;Rn) as α → 1−. (4.21)

Indeed, let ϕ ∈ L
p

p−1 (Rn;Rn). For each ε > 0, let ψε ∈ C∞
c (Rn;Rn) be such that

‖ψε − ϕ‖
L

p
p−1 (Rn;Rn)

< ε. By (4.18) and (4.17), we can estimate

lim sup
α→1−

∣

∣

∣

∣

∣

∫

Rn
ϕ · ∇α

wf dx−
∫

Rn
ϕ · ∇wf dx

∣

∣

∣

∣

∣

≤ lim sup
α→1−

∣

∣

∣

∣

∣

∫

Rn
ψε · ∇α

wf dx−
∫

Rn
ψε · ∇wf dx

∣

∣

∣

∣

∣

+
∫

Rn
|ϕ− ψε| |∇α

wf | dx+
∫

Rn
|ϕ− ψε| |∇wf | dx

≤ ε

(

lim
α→1−

‖∇α
wf‖Lp(Rn;Rn) + ‖∇wf‖Lp(Rn;Rn)

)

= 2ε ‖∇wf‖Lp(Rn;Rn)

so that (4.21) follows passing to the limit as ε → 0+.

Since Lp(Rn;Rn) is uniformly convex (see [8, Section 4.3] for example), the limit
in (4.16) follows from (4.17) and (4.21) by [8, Proposition 3.32], and the proof is com-
plete. �

For the case p = +∞, we have the following result.

Theorem 4.11. If f ∈ W 1,∞(Rn), then

∇α
wf ⇀ ∇wf in L∞(Rn;Rn) as α → 1− (4.22)

and

‖∇wf‖L∞(Rn;Rn) ≤ lim inf
α→1−

‖∇α
wf‖L∞(Rn;Rn). (4.23)

Proof. We argue similarly as in the proof of Theorem 4.10, in two steps.

Step 1: proof of (4.22). By Proposition 2.8 and Proposition 4.4, we have

lim
α→1−

∫

Rn
ϕ · ∇αf dx = − lim

α→1−

∫

Rn
f divαϕdx = −

∫

Rn
f divϕdx =

∫

Rn
ϕ · ∇wf dx (4.24)

for all ϕ ∈ C∞
c (Rn;Rn), so that

∫

Rn
ϕ · ∇wf dx ≤ ‖ϕ‖L1(Rn;Rn) lim inf

α→1−
‖∇αf‖L∞(Rn;Rn)

for all ϕ ∈ C∞
c (Rn;Rn). We thus get (4.23).
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Step 2: proof of (4.23). Let ϕ ∈ L1(Rn;Rn). For each ε > 0, let ψε ∈ C∞
c (Rn;Rn) be

such that ‖ψε − ϕ‖L1(Rn;Rn) < ε. By (4.24) and (3.14), we can estimate

lim sup
α→1−

∣

∣

∣

∣

∣

∫

Rn
ϕ · ∇α

wf dx−
∫

Rn
ϕ · ∇wf dx

∣

∣

∣

∣

∣

≤ lim sup
α→1−

∣

∣

∣

∣

∣

∫

Rn
ψε · ∇α

wf dx−
∫

Rn
ψε · ∇wf dx

∣

∣

∣

∣

∣

+
∫

Rn
|ϕ− ψε||∇α

wf | dx+
∫

Rn
|ϕ− ψε||∇wf | dx

≤ ε

(

lim sup
α→1−

‖∇αf‖L∞(Rn;Rn) + ‖∇f‖L∞(Rn;Rn)

)

≤ ε (n+ 1) ‖∇wf‖L∞(Rn;Rn)

so that (4.21) follows passing to the limit as ε → 0+. �

Remark 4.12. We notice that Theorem 4.7 and Theorem 4.9, in the case f = χE ∈
BV (Rn) with E ⊂ Rn bounded, and Theorem 4.10, were already announced in [34,
Theorems 16 and 17].

4.3. Γ-convergence of α-variation as α → 1−. In this section, we study the Γ-
convergence of the fractional α-variation to the standard variation as α → 1−.

We begin with the Γ - lim inf inequality.

Theorem 4.13 (Γ - lim inf inequalities as α → 1−). Let Ω ⊂ Rn be an open set.

(i) If (fα)α∈(0,1) ⊂ L1
loc(R

n) satisfies supα∈(0,1) ‖fα‖L∞(Rn) < +∞ and fα → f in L1
loc(R

n)
as α → 1−, then

|Df |(Ω) ≤ lim inf
α→1−

|Dαfα|(Ω). (4.25)

(ii) If (fα)α∈(0,1) ⊂ L1(Rn) satisfies fα → f in L1(Rn) as α → 1−, then (4.25) holds.

Proof. We prove the two statements separately.
Proof of (i). Let ϕ ∈ C∞

c (Ω;Rn) be such that ‖ϕ‖L∞(Ω;Rn) ≤ 1. Since we can estimate
∣

∣

∣

∣

∣

∫

Rn
fα divαϕdx−

∫

Rn
f divϕdx

∣

∣

∣

∣

∣

≤
∫

Rn
|fα − f | |divϕ| dx+

∫

Rn
|fα| |divαϕ− divϕ| dx

≤ ‖divϕ‖L∞(Rn;Rn)

∫

supp ϕ
|fα − f | dx+

(

sup
α∈(0,1)

‖fα‖L∞(Rn)

)

‖divαϕ− divϕ‖L1(Rn),

by Proposition 4.4 we get that
∫

Rn
f divϕdx = lim

α→1−

∫

Rn
fα divαϕdx ≤ lim inf

α→1−
|Dαf |(Ω)

and the conclusion follows.
Proof of (ii). Let ϕ ∈ C∞

c (Ω;Rn) be such that ‖ϕ‖L∞(Ω;Rn) ≤ 1. Since we can estimate
∣

∣

∣

∣

∣

∫

Rn
fα divαϕdx−

∫

Rn
f divϕdx

∣

∣

∣

∣

∣

≤
∫

Rn
|fα − f | |divϕ| dx+

∫

Rn
|fα| |divαϕ− divϕ| dx

≤ ‖divϕ‖L∞(Rn)‖fα − f‖L1(Rn) + ‖divαϕ− divϕ‖L∞(Rn)‖fα‖L1(Rn),

by Proposition 4.4 we get that
∫

Rn
f divϕdx = lim

α→1−

∫

Rn
fα divαϕdx ≤ lim inf

α→1−
|Dαfα|(Ω)

and the conclusion follows. �



46 G. E. COMI AND G. STEFANI

We now pass to the Γ - lim sup inequality.

Theorem 4.14 (Γ - lim sup inequalities as α → 1−). Let Ω ⊂ Rn be an open set.

(i) If f ∈ BV (Rn) and either Ω is bounded or Ω = Rn, then

lim sup
α→1−

|Dαf |(Ω) ≤ |Df |(Ω). (4.26)

(ii) If f ∈ BVloc(Rn) and Ω is bounded, then

Γ(L1
loc) - lim sup

α→1−

|Dαf |(Ω) ≤ |Df |(Ω).

In addition, if f = χE, then the recovering sequences (fα)α∈(0,1) in (i) and (ii) can be
taken such that fα = χEα

for some measurable sets (Eα)α∈(0,1).

Proof. Assume f ∈ BV (Rn). By Theorem 4.9, we know that |Dαf | ⇀ |Df | as α → 1−.
Thus, by [22, Proposition 4.26], we get that

lim sup
α→1−

|Dαf |(Ω) ≤ lim sup
α→1−

|Dαf |(Ω) ≤ |Df |(Ω) (4.27)

for any bounded open set Ω ⊂ Rn. If Ω = Rn, then (4.26) follows immediately from (4.13).
This concludes the proof of (i).

Now assume that f ∈ BVloc(Rn) and Ω is bounded. Let (Rk)k∈N ⊂ (0,+∞) be a
sequence such that Rk → +∞ as k → +∞ and set fk := fχBRk

for all k ∈ N. By
Theorem A.1, we can choose the sequence (Rk)k∈N such that, in addition, fk ∈ BV (Rn)
with Dfk = χ⋆

BRk
Df + f ⋆DχBRk

for all k ∈ N. Consequently, fk → f in L1
loc(R

n) as k →
+∞ and, moreover, since Ω is bounded, |Dfk|(Ω) = |Df |(Ω) and |Dfk|(∂Ω) = |Df |(∂Ω)
for all k ∈ N sufficiently large. By (4.27), we have that

lim sup
α→1−

|Dαfk|(Ω) ≤ |Dfk|(Ω) (4.28)

for all k ∈ N sufficiently large. Hence, by [7, Proposition 1.28], by [12, Proposition 8.1(c)]
and by (4.28), we get that

Γ(L1
loc) - lim sup

α→1−

|Dαf |(Ω) ≤ lim inf
k→+∞

(

Γ(L1
loc) - lim sup

α→1−

|Dαfk|(Ω)
)

≤ lim
k→+∞

|Dfk|(Ω) = |Df |(Ω).

This concludes the proof of (ii).
Finally, if f = χE , then we can repeat the above argument verbatim in the metric spaces

{χF ∈ L1(Rn) : F ⊂ R
n} for (i) and {χF ∈ L1

loc(R
n) : F ⊂ R

n} for (ii) endowed with their
natural distances. �

Remark 4.15. Thanks to (4.26), a recovery sequence in Theorem 4.14(i) is the constant
sequence (also in the special case f = χE).

Combining Theorem 4.13(i) and Theorem 4.14(ii), we can prove that the fractional
Caccioppoli α-perimeter Γ-converges to De Giorgi’s perimeter as α → 1− in L1

loc(R
n). We

refer to [2] for the same result on the classical fractional perimeter.

Theorem 4.16 (Γ(L1
loc) - lim of perimeters as α → 1−). Let Ω ⊂ Rn be a bounded open

set with Lipschitz boundary. For every measurable set E ⊂ R
n, we have

Γ(L1
loc) - lim

α→1−
|DαχE|(Ω) = P (E; Ω).
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Proof. By Theorem 4.13(i), we already know that

Γ(L1
loc) - lim inf

α→1−
|DαχE|(Ω) ≥ P (E; Ω),

so we just need to prove the Γ(L1
loc) - lim sup inequality. Without loss of generality, we

can assume P (E; Ω) < +∞. Now let (Ek)k∈N be given by Theorem A.4. Since χEk
∈

BVloc(Rn) and P (Ek; ∂Ω) = 0 for all k ∈ N, by Theorem 4.14(ii) we know that

Γ(L1
loc) - lim sup

α→1−

|DαχEk
|(Ω) ≤ P (Ek; Ω)

for all k ∈ N. Since χEk
→ χE in L1

loc(R
n) and P (Ek; Ω) → P (E; Ω) as k → +∞,

by [7, Proposition 1.28] we get that

Γ(L1
loc) - lim sup

α→1−

|DαχE|(Ω) ≤ lim inf
k→+∞

(

Γ(L1
loc) - lim sup

α→1−

|DαχEk
|(Ω)

)

≤ lim
k→+∞

P (Ek; Ω) = P (E; Ω)

and the proof is complete. �

Finally, combining Theorem 4.13(ii) and Theorem 4.14, we can prove that the fractional
α-variation Γ-converges to De Giorgi’s variation as α → 1− in L1(Rn).

Theorem 4.17 (Γ(L1) - lim of variations as α → 1−). Let Ω ⊂ Rn be an open set such
that either Ω is bounded with Lipschitz boundary or Ω = Rn. For every f ∈ BV (Rn), we
have

Γ(L1) - lim
α→1−

|Dαf |(Ω) = |Df |(Ω).

Proof. The case Ω = Rn follows immediately by [12, Proposition 8.1(c)] combining The-
orem 4.13(ii) with Theorem 4.14(i). We can thus assume that Ω is a bounded open
set with Lipschitz boundary and argue similarly as in the proof of Theorem 4.16. By
Theorem 4.13(ii), we already know that

Γ(L1) - lim inf
α→1−

|Dαf |(Ω) ≥ |Df |(Ω),

so we just need to prove the Γ(L1) - lim sup inequality. Without loss of generality, we can
assume |Df |(Ω) < +∞. Now let (fk)k∈N ⊂ BV (Rn) be given by Theorem A.6. Since
|Dfk|(∂Ω) = 0 for all k ∈ N, by Theorem 4.14 we know that

Γ(L1) - lim sup
α→1−

|Dαfk|(Ω) ≤ |Dfk|(Ω) = |Dfk|(Ω)

for all k ∈ N. Since fk → f in L1(Rn) and |Dαfk|(Ω) → |Dαf |(Ω) as k → +∞,
by [7, Proposition 1.28] we get that

Γ(L1) - lim sup
α→1−

|Dαf |(Ω) ≤ lim inf
k→+∞

(

Γ(L1) - lim sup
α→1−

|Dαfk|(Ω)
)

≤ lim
k→+∞

|Dfk|(Ω) = |Df |(Ω)

and the proof is complete. �

Remark 4.18. Thanks to Theorem 4.17, we can slightly improve Theorem 4.16. Indeed,
if χE ∈ BV (Rn), then we also have

Γ(L1) - lim
α→1−

|DαχE|(Ω) = |DχE|(Ω)



48 G. E. COMI AND G. STEFANI

for any open set Ω ⊂ Rn such that either Ω is bounded with Lipschitz boundary or Ω = Rn.

5. Asymptotic behaviour of fractional β-variation as β → α−

5.1. Convergence of ∇β and divβ as β → α. We begin with the following simple result
about the L1-convergence of the operators ∇β and divβ as β → α with α ∈ (0, 1).

Lemma 5.1. Let α ∈ (0, 1). If f ∈ W α,1(Rn) and ϕ ∈ W α,1(Rn;Rn), then

lim
β→α−

‖∇βf − ∇αf‖L1(Rn;Rn) = 0, lim
β→α−

‖divβϕ− divαϕ‖L1(Rn) = 0. (5.1)

Proof. Given β ∈ (0, α), we can estimate
∫

Rn
|∇βf(x) − ∇αf(x)| dx ≤ |µn,β − µn,α| [f ]W α,1(Rn)

+ µn,β

∫

Rn

∫

Rn

|f(y) − f(x)|
|y − x|n

∣

∣

∣

∣

∣

1
|y − x|β − 1

|y − x|α

∣

∣

∣

∣

∣

dy dx.

Since the Γ function is continuous (see [4]), we clearly have

lim
β→α−

|µn,β − µn,α| [f ]W α,1(Rn) = 0.

Now write
∫

Rn

∫

Rn

|f(y) − f(x)|
|y − x|n

∣

∣

∣

∣

∣

1
|y − x|β − 1

|y − x|α

∣

∣

∣

∣

∣

dy dx

=
∫

Rn

∫

Rn

|f(y) − f(x)|
|y − x|n

∣

∣

∣

∣

∣

1
|y − x|β − 1

|y − x|α

∣

∣

∣

∣

∣

χ(0,1)(|y − x|) dy dx

+
∫

Rn

∫

Rn

|f(y) − f(x)|
|y − x|n

∣

∣

∣

∣

∣

1
|y − x|β − 1

|y − x|α

∣

∣

∣

∣

∣

χ[1,+∞)(|y − x|) dy dx.

On the one hand, since f ∈ W α,1(Rn), we have

|f(y) − f(x)|
|y − x|n

∣

∣

∣

∣

∣

1
|y − x|β − 1

|y − x|α

∣

∣

∣

∣

∣

χ(0,1)(|y − x|)

=
|f(y) − f(x)|

|y − x|n
(

1
|y − x|α − 1

|y − x|β
)

χ(0,1)(|y − x|)

≤ |f(y) − f(x)|
|y − x|n+α

χ(0,1)(|y − x|) ∈ L1
x,y(R2n)

and thus, by Lebesgue’s Dominated Convergence Theorem, we get that

lim
β→α−

∫

Rn

∫

Rn

|f(y) − f(x)|
|y − x|n

∣

∣

∣

∣

∣

1
|y − x|β − 1

|y − x|α

∣

∣

∣

∣

∣

χ(0,1)(|y − x|) dy dx = 0.

On the other hand, since one has

[f ]W β,1(Rn) =
∫

Rn

∫

{|h|<1}

|f(x+ h) − f(x)|
|h|n+β

dh dx+
∫

Rn

∫

{|h|≥1}

|f(x+ h) − f(x)|
|h|n+β

dh dx

≤ [f ]W α,1(Rn) +
∫

{|h|≥1}

1
|h|n+β

∫

Rn
|f(x+ h)| + |f(x)| dx dh



A DISTRIBUTIONAL APPROACH TO FRACTIONAL VARIATION: ASYMPTOTICS I 49

= [f ]W α,1(Rn) +
2nωn

β
‖f‖L1(Rn)

for all β ∈ (0, α), we can estimate

|f(y) − f(x)|
|y − x|n

∣

∣

∣

∣

∣

1
|y − x|β − 1

|y − x|α

∣

∣

∣

∣

∣

χ[1,+∞)(|y − x|)

=
|f(y) − f(x)|

|y − x|n
(

1
|y − x|β − 1

|y − x|α
)

χ[1,+∞)(|y − x|)

≤ |f(y) − f(x)|
|y − x|n+β

χ[1,+∞)(|y − x|)

≤ |f(y) − f(x)|
|y − x|n+ α

2

χ[1,+∞)(|y − x|) ∈ L1
x,y(R2n)

for all β ∈
(

α
2
, α
)

and thus, by Lebesgue’s Dominated Convergence Theorem, we get that

lim
β→α−

∫

Rn

∫

Rn

|f(y) − f(x)|
|y − x|n

∣

∣

∣

∣

∣

1
|y − x|β − 1

|y − x|α

∣

∣

∣

∣

∣

χ[1,+∞)(|y − x|) dy dx = 0

and the first limit in (5.1) follows. The second limit in (5.1) follows similarly and we leave
the proof to the reader. �

Remark 5.2. Let α ∈ (0, 1). If f ∈ W α+ε,1(Rn) and ϕ ∈ W α+ε,1(Rn) for some ε ∈
(0, 1 − α), then, arguing as in the proof of Lemma 5.1, one can also prove that

lim
β→α+

‖∇βf − ∇αf‖L1(Rn;Rn) = 0, lim
β→α+

‖divβϕ− divαϕ‖L1(Rn) = 0.

We leave the details of proof of this result to the interested reader.

If one deals with more regular functions, then Lemma 5.1 can be improved as follows.

Lemma 5.3. Let α ∈ (0, 1) and p ∈ [1,+∞]. If f ∈ Lipc(R
n) and ϕ ∈ Lipc(R

n;Rn), then

lim
β→α−

‖∇βf − ∇αf‖Lp(Rn;Rn) = 0, lim
β→α−

‖divβϕ− divαϕ‖Lp(Rn) = 0. (5.2)

Proof. Since clearly f ∈ W α,1(Rn) for any α ∈ (0, 1), the first limit in (5.2) for the case
p = 1 follows from Lemma 5.1. Hence, we just need to prove the validity of the same
limit for the case p = +∞, since then the conclusion simply follows by an interpolation
argument.

Let β ∈ (0, α) and x ∈ Rn. We have

|∇αf(x) − ∇βf(x)| ≤ |µn,β − µn,α|
∫

Rn

|f(x) − f(y)|
|x− y|n+α

dy

+ µn,β

∫

Rn

|f(x) − f(y)|
|x− y|n

∣

∣

∣

∣

∣

1
|x− y|β − 1

|x− y|α

∣

∣

∣

∣

∣

dy

= |µn,β − µn,α|
∫

Rn

|f(x+ z) − f(x)|
|z|n+α

dz

+ µn,β

∫

Rn

|f(x+ z) − f(x)|
|z|n

∣

∣

∣

∣

∣

1
|z|β − 1

|z|α

∣

∣

∣

∣

∣

dz.
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Since
∫

Rn

|f(x+ z) − f(x)|
|z|n+α

dz ≤
∫

{|z|≤1}

Lip(f)
|z|n+α−1

dz +
∫

{|z|>1}

2‖f‖L∞(Rn)

|z|n+α
dz

≤ nωn

(

Lip(f)
1 − α

+
2‖f‖L∞(Rn)

α

)

and
∫

Rn

|f(x+ z) − f(z)|
|z|n

∣

∣

∣

∣

∣

1
|z|β − 1

|z|α

∣

∣

∣

∣

∣

dz ≤
∫

{|z|≤1}

Lip(f)
|z|n−1

(

1
|z|α − 1

|z|β
)

dz

+
∫

{|z|>1}

2‖f‖L∞(Rn)

|z|n
(

1
|z|β − 1

|z|α
)

dz

≤ (α − β)nωn

(

Lip(f)
(1 − α)(1 − β)

+
2‖f‖L∞(Rn)

αβ

)

,

for all β ∈
(

α
2
, α
)

we obtain

‖∇αf − ∇βf‖L∞(Rn;Rn) ≤ cn,α max
{

Lip(f), ‖f‖L∞(Rn)

} (

|µn,β − µn,α| + (α − β)
)

,

for some constant cn,α > 0 depending only on n and α. Thus the conclusion follows since
µn,β → µn,α as β → α−. The second limit in (5.2) follows similarly and we leave the proof
to the reader. �

5.2. Weak convergence of β-variation as β → α−. In Theorem 5.4 below, we prove
the weak convergence of the β-variation as β → α−, extending the convergences obtained
in Theorem 4.7 and Theorem 4.9.

Theorem 5.4. Let α ∈ (0, 1). If f ∈ BV α(Rn), then

Dβf ⇀ Dαf and |Dβf | ⇀ |Dαf | as β → α−.

Moreover, we have

lim
β→α−

|Dβf |(Rn) = |Dαf |(Rn). (5.3)

Proof. We divide the proof in three steps.

Step 1: we prove that Dβf ⇀ Dαf as β → α−. We argue similarly as in Step 1 of the
proof of Theorem 4.7. By Proposition 3.12, we have

∫

Rn
ϕ · ∇βf dx = −

∫

Rn
f divβϕdx

for all β ∈ (0, α) and ϕ ∈ Lipc(R
n;Rn). Thus, thanks to (5.2) in the case p = ∞, we get

lim
β→α−

∫

Rn
ϕ · ∇βf dx = − lim

β→α−

∫

Rn
f divβϕdx = −

∫

Rn
f divαϕdx =

∫

Rn
ϕ · dDαf.

Now fix ϕ ∈ C0
c (Rn;Rn). Let U ⊂ Rn be a fixed bounded open set such that suppϕ ⊂ U .

For each ε > 0 sufficiently small, pick ψε ∈ Lipc(R
n;Rn) such that ‖ϕ− ψε‖L∞(Rn;Rn) < ε
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and suppψε ⊂ U . Then, by (3.25), we can estimate
∣

∣

∣

∣

∫

Rn
ϕ · ∇βf dx−

∫

Rn
ϕ · dDαf

∣

∣

∣

∣

≤ ‖ϕ− ψε‖L∞(Rn;Rn)

(∫

U
|∇βf | dx+ |Dαf |(Rn)

)

+
∣

∣

∣

∣

∫

Rn
ψε · ∇βf dx−

∫

Rn
ψε · dDαf

∣

∣

∣

∣

≤ ε(1 + Cn,(1−α+β),U) |Dαf |(Rn)

+
∣

∣

∣

∣

∫

Rn
ψε · ∇αf dx−

∫

Rn
ψε · dDf

∣

∣

∣

∣

for all β ∈ (0, α). Thus, by the uniform estimate (4.3) in Lemma 4.2, we get

lim
β→α−

∣

∣

∣

∣

∫

Rn
ϕ · ∇αf dx−

∫

Rn
ϕ · dDf

∣

∣

∣

∣

≤ ε(1 + κn,U) |Dαf |(Rn) (5.4)

and the conclusion follows passing to the limit as ε → 0+.

Step 2: we prove that |Dβf | ⇀ |Dαf | as β → α−. We argue similarly as in the first
part of the proof of Theorem 4.9. Since Dβf ⇀ Dαf as β → α− as proved in Step 1
above, by [22, Proposition 4.29], we have that

|Dαf |(A) ≤ lim inf
β→α−

|Dβf |(A) (5.5)

for any open set A ⊂ Rn. Now let K ⊂ Rn be a compact set. By the representation
formula (3.24) in Proposition 3.12, we can estimate

|Dβf |(K) = ‖∇βf‖L1(K;Rn) ≤ ‖Iα−β|Dαf |‖L1(K) = (Iα−β|Dαf | L n)(K).

Since |Dαf |(Rn) < +∞, by Lemma 4.8 and [22, Proposition 4.26] we conclude that

lim sup
β→α−

|Dβf |(K) ≤ lim sup
β→α−

(Iα−β |Dαf | L n)(K) ≤ |Dαf |(K). (5.6)

The conclusion thus follows thanks to [22, Proposition 4.26].

Step 3: we prove (5.3). We argue similarly as in the proof of (4.12). By (3.26) applied
with A = R

n and r = 1, we have

|Dβf |(Rn) ≤ µn,1+β−α

n+ β − α

(

nωn

α− β
|Dαf |(Rn) +

ωn,α(n+ 2β − α)
β

‖f‖L1(Rn)

)

.

By (4.2), we get that
lim sup

β→α−

|Dβf |(Rn) ≤ |Dαf |(Rn). (5.7)

Thus, (5.3) follows combining (5.5) for A = Rn with (5.7). �

5.3. Γ-convergence of β-variation as β → α−. In this section, we study the Γ-con-
vergence of the fractional β-variation as β → α−, partially extending the results obtained
in Section 4.3.

We begin with the Γ - lim inf inequality.

Theorem 5.5 (Γ - lim inf inequality for β → α−). Let α ∈ (0, 1) and let Ω ⊂ Rn be an
open set. If (fβ)β∈(0,α) ⊂ L1(Rn) satisfies fβ → f in L1(Rn) as β → α−, then

|Dαf |(Ω) ≤ lim inf
β→α−

|Dβfβ |(Ω). (5.8)
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Proof. We argue similarly as in the proof of Theorem 4.13(ii). Let ϕ ∈ C∞
c (Ω;Rn) be

such that ‖ϕ‖L∞(Ω;Rn) ≤ 1. Let U ⊂ Rn be a bounded open set such that suppϕ ⊂ U .
By (2.12), we can estimate
∣

∣

∣

∣

∣

∫

Rn
fβ divβϕdx−

∫

Rn
f divαϕdx

∣

∣

∣

∣

∣

≤
∫

Rn
|fβ − f | |divβϕ| dx+

∫

Rn
|f | |divβϕ− divαϕ| dx

≤ Cn,β,U‖divϕ‖L∞(Rn;Rn)‖fβ − f‖L1(Rn) +
∫

Rn
|f | |divβϕ− divαϕ| dx

for all β ∈ (0, α). Since divβϕ → divαϕ in L∞(Rn) as β → α− by (5.2), we easily obtain

lim
β→α−

∫

Rn
|f | |divβϕ− divαϕ| dx = 0.

Hence, we get
∫

Rn
f divαϕdx = lim

β→α−

∫

Rn
fβ divβϕdx ≤ lim inf

β→α−
|Dβfβ|(Ω)

and the conclusion follows. �

We now pass to the Γ - lim sup inequality.

Theorem 5.6 (Γ - lim sup inequality for β → α−). Let α ∈ (0, 1) and let Ω ⊂ Rn be an
open set. If f ∈ BV α(Rn) and either Ω is bounded or Ω = Rn, then

lim sup
β→α−

|Dβf |(Ω) ≤ |Dαf |(Ω). (5.9)

Proof. We argue similarly as in the proof of Theorem 4.14. By Theorem 5.4, we know
that |Dβf | ⇀ |Dαf | as β → α−. Thus, by [22, Proposition 4.26] and (5.3), we get that

lim sup
β→α−

|Dβf |(Ω) ≤ lim sup
β→α−

|Dβf |(Ω) ≤ |Dαf |(Ω) (5.10)

for any open set Ω ⊂ Rn such that either Ω is bounded or Ω = Rn. �

Corollary 5.7 (Γ(L1) - lim of variations in Rn as β → α−). Let α ∈ (0, 1). For every
f ∈ BV α(Rn), we have

Γ(L1) - lim
β→α−

|Dβf |(Rn) = |Dαf |(Rn).

In particular, the constant sequence is a recovery sequence.

Proof. The result follows easily by combining (5.8) and (5.9) in the case Ω = Rn. �

Remark 5.8. We recall that, by [10, Theorem 3.25], f ∈ BV α(Rn) satisfies |Dαf | ≪ L n

if and only if f ∈ Sα,1(Rn). Therefore, if f ∈ Sα,1(Rn), then |Dαf |(∂Ω) = 0 for any
bounded open set Ω ⊂ Rn such that L n(∂Ω) = 0 (for instance, Ω with Lipschitz
boundary). Thus, we can actually obtain the Γ-convergence of the fractional β-variation
as β → α− on bounded open sets with Lipschitz boundary for any f ∈ Sα,1(Rn) too. In-
deed, it is enough to combine (5.8) and (5.9) and then exploit the fact that |Dαf |(∂Ω) = 0
to get

Γ(L1) - lim
β→α−

|Dβf |(Ω) = |Dαf |(Ω)

for any f ∈ Sα,1(Rn).
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Appendix A. Truncation and approximation of BV functions

For the reader’s convenience, in this appendix we state and prove two known results on
BV functions and sets with locally finite perimeter.

A.1. Truncation of BV functions. Following [3, Section 3.6] and [15, Section 5.9],
given f ∈ L1

loc(R
n), we define its precise representative f ⋆ : Rn → [0,+∞] as

f ⋆(x) := lim
r→0+

1
ωnrn

∫

Br(x)
f(y) dy, x ∈ R

n, (A.1)

if the limit exists, otherwise we let f ⋆(x) = 0 by convention.

Theorem A.1 (Truncation of BV functions). If f ∈ BVloc(Rn), then

fχBr
∈ BV (Rn), with D(fχBr

) = χ⋆
Br
Df + f ⋆DχBr

, (A.2)

for L 1-a.e. r > 0. If, in addition, f ∈ L∞(Rn), then (A.2) holds for all r > 0.

Proof. Fix ϕ ∈ C∞
c (Rn;Rn) and let U ⊂ R

n be a bounded open set such that supp(ϕ) ⊂ U .
Let (̺ε)ε>0 ⊂ C∞

c (Rn) be a family of standard mollifiers as in [10, Section 3.3] and set
fε := f ∗̺ε for all ε > 0. Note that supp

(

̺ε ∗(χBr
ϕ)
)

⊂ U and supp
(

̺ε ∗(χBr
divϕ)

)

⊂ U

for all ε > 0 sufficiently small and for all r > 0. Given r > 0, by Leibniz’s rule and Fubini’s
Theorem, we have

∫

Rn
fεχBr

divϕdx =
∫

Rn
χBr

div(fεϕ) dx−
∫

Rn
χBr

ϕ · ∇fε dx

= −
∫

Rn
fεϕ · dDχBr

−
∫

Rn
̺ε ∗ (χBr

ϕ) · dDf.
(A.3)

Since fε → f a.e. in Rn as ε → 0+ and

|f | ̺ε ∗ (χBr
|divϕ|) ≤ |f |χU‖divϕ‖L∞(Rn) ∈ L1(Rn)

for all ε > 0, by Lebesgue’s Dominated Convergence Theorem we have

lim
ε→0+

∫

Rn
fεχBr

divϕdx =
∫

Rn
fχBr

divϕdx

for all r > 0. Thus, since ̺ε ∗ (χBr
ϕ) → χ⋆

Br
ϕ pointwise in R

n as ε → 0+ and

|̺ε ∗ (χBr
ϕ)| ≤ ‖ϕ‖L∞(Rn;Rn)χU ∈ L1(Rn, |Df |)

for all ε > 0 sufficiently small, again by Lebesgue’s Dominated Convergence Theorem we
have

lim
ε→0+

∫

Rn
̺ε ∗ (χBr

ϕ) · dDf =
∫

Rn
χ⋆

Br
ϕ · dDf

for all r > 0. Now, by [3, Theorem 3.78 and Corollary 3.80], we know that fε → f ⋆

H n−1-a.e. in Rn as ε → 0+. As a consequence, given any r > 0, we get that fε → f ⋆

|DχBr
|-a.e. in Rn as ε → 0+. Thus, if f ∈ L∞(Rn), then

|fεϕ| ≤ ‖f‖L∞(Rn)|ϕ| ∈ L1(Rn, |DχBr
|)

for all ε > 0 and so, again by Lebesgue’s Dominated Convergence Theorem, we have

lim
ε→0+

∫

Rn
fεϕ · dDχBr

=
∫

Rn
f ⋆ϕ · dDχBr
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for all r > 0. Therefore, if f ∈ L∞(Rn), then we can pass to the limit as ε → 0+ in (A.3)
and get

∫

Rn
fχBr

divϕdx = −
∫

Rn
f ⋆ϕ · dDχBr

−
∫

Rn
χ⋆

Br
ϕ · dDf

for all ϕ ∈ C∞
c (Rn;Rn) and for all r > 0. Since ‖f ⋆‖L∞(Rn) ≤ ‖f‖L∞(Rn), this proves (A.2)

for all r > 0. If f is not necessarily bounded, then we argue as follows. Without loss of
generality, assume that ‖ϕ‖L∞(Rn;Rn) ≤ 1. We can thus estimate

∣

∣

∣

∣

∫

Rn
fεϕ · dDχBr

−
∫

Rn
f ⋆ϕ · dDχBr

∣

∣

∣

∣

≤
∫

∂Br

|fε − f ⋆| dH n−1. (A.4)

Given any R > 0, by Fatou’s Lemma we thus get that
∫ R

0
lim inf

ε→0+

∣

∣

∣

∣

∫

Rn
fεϕ · dDχBr

−
∫

Rn
f ⋆ϕ · dDχBr

∣

∣

∣

∣

dr

≤
∫ R

0
lim inf

ε→0+

∫

∂Br

|fε − f ⋆| dH n−1 dr

≤ lim inf
ε→0+

∫ R

0

∫

∂Br

|fε − f ⋆| dH n−1 dr

= lim
ε→0+

∫

BR

|fε − f ⋆| dx = 0.

Hence, the set

Z :=
{

r > 0 : lim inf
ε→0+

∫

∂Br

|fε − f ⋆| dH n−1 = 0
}

(A.5)

satisfies L 1((0,+∞) \ Z) = 0 and depends neither on the choice of ϕ nor on the choice
of the L n-representative of f . Now fix r ∈ Z and let (εk)k∈N be any sequence realising
the lim inf in (A.5). By (A.4), we thus get

lim
k→+∞

∫

Rn
fεk
ϕ · dDχBr

=
∫

Rn
f ⋆ϕ · dDχBr

uniformly for all ϕ satisfying ‖ϕ‖L∞(Rn;Rn) ≤ 1. Passing to the limit along the sequence
(εk)k∈N as k → +∞ in (A.3), we get that

∫

Rn
fχBr

divϕdx = −
∫

Rn
f ⋆ϕ · dDχBr

−
∫

Rn
χ⋆

Br
ϕ · dDf

for all ϕ ∈ C∞
c (Rn;Rn) with ‖ϕ‖L∞(Rn;Rn) ≤ 1. Finally, since

∫ R

0

∫

∂Br

|f ⋆| dH n−1 dr =
∫

BR

|f ⋆| dx < +∞,

the set

W :=
{

r > 0 :
∫

∂Br

|f ⋆| dH n−1 dr < +∞
}

satisfies L 1((0,+∞)\W ) = 0 and does not depend on the choice of the L n-representative
of f . Thus (A.2) follows for all r ∈ W ∩ Z and the proof is concluded. �
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A.2. Approximation by sets with polyhedral boundary. In this section we state
and prove standard approximation results for sets with finite perimeter or, more generally,
BVloc(Rn) functions, in a sufficiently regular bounded open set.

We need the following two preliminary lemmas.

Lemma A.2. Let V,W ⊂ Sn−1, with V finite and W at most countable. For any ε > 0,
there exists R ∈ SO(n) with |R − I| < ε, where I is the identity matrix, such that
R(V ) ∩W = ∅.

Proof. Let N ∈ N be such that V = {vi ∈ S
n−1 : i = 1, . . . , N}. We divide the proof in

two steps.

Step 1. Assume that W is finite and set Ai := {R ∈ SO(n) : R(vi) /∈ W} for all i =
1, . . . , N . We now claim that Ai is an open and dense subset of SO(n) for all i = 1, . . . , N .
Indeed, given any i = 1, . . . , N , since W is finite, the set Ac

i = SO(n) \ Ai is closed
in SO(n). Moreover, we claim that int(Ac

i) = ∅. Indeed, by contradiction, let us assume
that int(Ac

i) 6= ∅. Then there exist ε > 0 and R ∈ Ac
i such that any S ∈ SO(n) with

|S − R| < ε satisfies S ∈ Ac
i . In particular, for these R ∈ Ac

i and ε > 0, we have
R+ ε

2k
I

|I|
∈ Ac

i for any k ≥ 1, which implies R(vi) + ε
2k |I|

vi ∈ W for any k ≥ 1, in contrast
with the fact that W is finite. Thus, Ai is an open and dense subset of SO(n) for all
i = 1, . . . , N , and so also the set

AW :=
N
⋂

i=1

Ai = {R ∈ SO(n) : R(vi) /∈ W ∀i = 1, . . . , N}

is an open and dense subset of SO(n). The result is thus proved for any finite set W .

Step 2. Now assume that W is countable, W = {wk ∈ Sn−1 : k ∈ N}. For all M ∈ N,
set WM := {wk ∈ W : k ≤ M}. By Step 1, we know that AWM is an open and dense
subset of SO(n) for all M ∈ N. Since SO(n) ⊂ Rn2

is compact, by Baire’s Theorem
A :=

⋂

M∈NA
WM is a dense subset of SO(n). This concludes the proof. �

Since det : GL(n) → R is a continuous map, there exists a dimensional constant δn ∈
(0, 1) such that det R ≥ 1

2
for all R ∈ GL(n) with |R − I| < δn.

Lemma A.3. Let ε ∈ (0, δn) and let E ⊂ R
n be a bounded set with P (E) < +∞. If

R ∈ SO(n) satisfies |R − I| < ε, then

|R(E) △E| ≤ 2εrE P (E),

where rE := sup{r > 0 : |E \Br| > 0}.

Proof. We divide the proof in two steps.

Step 1. Let r > 0 and let f ∈ C∞
c (Rn). Setting Rt := (1 − t)I + tR for all t ∈ [0, 1],

we can estimate
∫

Br

|f(R(x)) − f(x)| dx =
∫

Br

∣

∣

∣

∣

∫ 1

0
〈∇f(Rt(x)),R(x) − x〉 dt

∣

∣

∣

∣

dx

≤ |R − I| r
∫ 1

0

∫

Br

|∇f(Rt(x))| dx dt.
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Since |Rt − I| = t|R − I| < tε < δn for all t ∈ [0, 1], Rt is invertible with det(R−1
t ) ≤ 2

for all t ∈ [0, 1]. Hence we can estimate
∫

Br

|∇f(Rt(x))| dx =
∫

Rt(Br)
|∇f(y)| | det(R−1

t )| dy ≤ 2
∫

Rn
|∇f(y)| dy,

so that
∫

Br

|f(R(x)) − f(x)| dx ≤ 2εr‖∇f‖L1(Rn;Rn). (A.6)

Step 2. Since χE ∈ BV (Rn), combining [15, Theorem 5.3] with a standard cut-off
approximation argument, we find (fk)k∈N ⊂ C∞

c (Rn) such that fk → χE pointwise a.e.
in Rn and |∇fk|(Rn) → P (E) as k → +∞. Given any r > 0, by (A.6) in Step 1 we have

∫

Br

|fk(R(x)) − fk(x)| dx ≤ 2εr‖∇fk‖L1(Rn;Rn)

for all k ∈ N. Passing to the limit as k → +∞, by Fatou’s Lemma we get that

|(R(E) △ E) ∩Br| ≤ 2εr P (E).

Since E ⊂ BrE
up to L n-negligible sets, also R(E) ⊂ BrE

up to L n-negligible sets. Thus
we can choose r = rE and the proof is complete. �

We are now ready to prove the main approximation result, see also [2, Proposition 15].

Theorem A.4. Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary and let E ⊂ Rn

be a measurable set such that P (E; Ω) < +∞. There exists a sequence (Ek)k∈N of bounded
open sets with polyhedral boundary such that

P (Ek; ∂Ω) = 0 (A.7)

for all k ∈ N and

χEk
→ χE in L1

loc(R
n) and P (Ek; Ω) → P (E; Ω) (A.8)

as k → +∞.

Proof. We divide the proof in four steps.

Step 1: cut-off. Since Ω is bounded, we find R0 > 0 such that Ω ⊂ BR0
. Let us define

Rk = R0 + k and

Ck :=
{

x ∈ Ωc : dist(x, ∂Ω) ≤ 1
k

}

for all k ∈ N. We set E1
k := E ∩ BRk

∩ Cc
k for all k ∈ N. Note that E1

k is a bounded
measurable set such that

χE1
k

→ χE in L1
loc(R

n) as k → +∞
and

P (E1
k; Ω) = P (E; Ω) for all k ∈ N.

Step 2: extension. Let us define

Ak :=
{

x ∈ R
n : dist(x,Ω) <

1
4k

}
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for all k ∈ N. Since χE1
k

∩Ω ∈ BV (Ω) for all k ∈ N, by [3, Definition 3.20 and Proposi-
tion 3.21] there exists a sequence (vk)k∈N ⊂ BV (Rn) such that

vk = 0 a.e. in Ac
k, vk = χE1

k
in Ω, |Dvk|(∂Ω) = 0

for all k ∈ N. Let us define F t
k := {vk > t} for all t ∈ (0, 1). Given k ∈ N, by the coarea

formula [3, Theorem 3.40], for a.e. t ∈ (0, 1) the set F t
k has finite perimeter in Rn and

satisfies
F t

k ⊂ Ak, F t
k ∩ Ω = E1

k ∩ Ω, P (F t
k; ∂Ω) = 0

for all k ∈ N. We choose any such tk ∈ (0, 1) for each k ∈ N and define E2
k := E1

k ∪ F tk

k

for all k ∈ N. Note that E2
k is a bounded set with finite perimeter in Rn such that

χE2
k

→ χE in L1
loc(R

n) as k → +∞
and

P (E2
k ; Ω) = P (E; Ω) and P (E2

k; ∂Ω) = 0 for all k ∈ N.

Step 3: approximation. Let us define

Dk :=
{

x ∈ Ωc : dist(x, ∂Ω) ∈
[ 1
4k
,

3
4k

]}

for all k ∈ N. First arguing as in the first part of the proof of [22, Theorem 13.8] taking [22,
Remark 13.13] into account, and then performing a standard diagonal argument, we find
a sequence of bounded open sets (E3

k)k∈N with polyhedral boundary such that

E3
k ⊂ Dc

k for all k ∈ N

and
χE3

k
→ χE in L1

loc(R
n), P (E3

k ; Ω) → P (E; Ω) and P (E3
k ; ∂Ω) → 0

as k → +∞. If there exists a subsequence (E3
kj

)j∈N such that P (E3
kj

; ∂Ω) = 0 for all
j ∈ N, then we can set Ej := Ekj

for all j ∈ N and the proof is concluded. If this is not
the case, then we need to proceed with the next last step.

Step 4: rotation. We now argue as in the last part of the proof of [2, Proposition 15].
Fix k ∈ N and assume P (E3

k ; ∂Ω) > 0. Since E3
k has polyhedral boundary, we have

H n−1(∂E3
k ∩ ∂Ω) > 0 if and only if there exist ν ∈ S

n−1 and U ⊂ FΩ such that
H n−1(U) > 0, νΩ(x) = ν for all x ∈ U and U ⊂ ∂H for some half-space H satisfying
νH = ν. Since P (Ω) = H n−1(∂Ω) < +∞, the set

W : =
{

ν ∈ S
n−1 : H

n−1 ({x ∈ ∂Ω : νΩ(x) = ν}) > 0
}

=
⋃

h∈N

{

ν ∈ S
n−1 : P (Ω)

h
≥ H

n−1 ({x ∈ ∂Ω : νΩ(x) = ν}) > P (Ω)
h+1

)
}

is at most countable. Since E3
k has polyhedral boundary, the set

Vk :=
{

ν ∈ S
n−1 : H

n−1
({

x ∈ ∂E3
k : νE3

k
(x) = ν

})

> 0
}

is finite. By Lemma A.2, given εk > 0, there exists Rk ∈ SO(n) with |Rk − I| < εk such
that Rk(Vk) ∩ W = ∅. Hence the set E4

k := Rk(E3
k) must satisfy P (E4

k ; ∂Ω) = 0. By
Lemma A.3, we can choose εk > 0 sufficiently small in order to ensure that |E4

k △E3
k | < 1

k
.

Now choose ηk ∈
(

0, 1
2k

)

such that P (E3
k ;Qk) ≤ 2P (E3

k ; ∂Ω), where

Qk := {x ∈ R
n : dist(x, ∂Ω) < ηk}.
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Since Ω is bounded, possibly choosing εk > 0 even smaller, we can also ensure that
Ω △ R−1(Ω) ⊂ Qk. Hence we can estimate

|P (E4
k; Ω) − P (E3

k ; Ω)| = |H n−1(∂E3
k ∩ R−1(Ω)) − H

n−1(∂E3
k ∩ Ω)|

≤ H
n−1

(

∂E3
k ∩ (Ω △ R−1(Ω))

)

≤ H
n−1(∂E3

k ∩Qk).

We can thus set Ek := E4
k for all k ∈ N and the proof is complete. �

Remark A.5 (A minor gap in the proof of [2, Proposition 15]). We warn the reader
that the cut-off and the extension steps presented above were not mentioned in the proof
of [2, Proposition 15], although they are unavoidable for the correct implementation of
the rotation argument in the last step. Indeed, in general, one cannot expect the existence
of a rotation R ∈ SO(n) arbitrarily close to the identity map such that P (R(E); ∂Ω) = 0
and, at the same time, the difference between P (R(E); Ω) and P (E; Ω) is small. For
example, one can consider

Ω =
{

(x1, x2) ∈ A : x2
1 + x2

2 < 25
}

and

E =
{

(x1, x2) ∈ A : 1 < x2
1 + x2

2 < 4
}

∪
{

(x1, x2) ∈ Ac : 9 < x2
1 + x2

2 < 16
}

where A = {(x1, x2) ∈ R
2 : x1 > 0, x2 > 0}. In this case, for any rotation R ∈ SO(2)

arbitrarily close to the identity map, we have P (R(E); Ω) > 2 + P (E; Ω).

We conclude this section with the following result, establishing an approximation of
BVloc functions similar to that given in Theorem A.4.

Theorem A.6. Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary and let
f ∈ BVloc(Rn). There exists (fk)k∈N ⊂ BV (Rn) such that

|Dfk|(∂Ω) = 0

for all k ∈ N and

fk → f in L1
loc(R

n) and |Dfk|(Ω) → |Df |(Ω)

as k → +∞. If, in addition, f ∈ L1(Rn), then fk → f in L1(Rn) as k → +∞.

Proof. We argue similarly as in the proof of Theorem A.4, in two steps.

Step 1: cut-off at infinity. Since Ω is bounded, we find R0 > 0 such that Ω ⊂ BR0
.

Given (Rk)k ⊂ (R0,+∞), we set gk := fχBRk
for all k ∈ N. By Theorem A.1, we have

gk ∈ BV (Rn) for a suitable choice of the sequence (Rk)k∈N, with |Dgk|(Ω) = |Df |(Ω) for
all k ∈ N and gk → f in L1

loc(R
n) as k → +∞. If, in addition, f ∈ L1(Rn), then gk → f

in L1(Rn) as k → +∞.

Step 2: extension and cut-off near Ω. Let us define

Ak :=
{

x ∈ R
n : dist(x,Ω) <

1
k

}
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for all k ∈ N. Since gkχΩ ∈ BV (Ω) with |Dgk|(Ω) = |Df |(Ω) for all k ∈ N, by [3,
Definition 3.20 and Proposition 3.21] there exists a sequence (hk)k∈N ⊂ BV (Rn) such
that

supp hk ⊂ A2k, hk = gk in Ω, |Dhk|(∂Ω) = 0

for all k ∈ N and
lim

k→+∞

∫

A2k\Ω
|hk| dx = 0

(the latter property easily follows from the construction performed in the proof of [3,
Proposition 3.21]). Now let (vk)k∈N ⊂ C∞

c (Rn) be such that supp vk ⊂ Ac
k and 0 ≤ vk ≤ 1

for all k ∈ N and vk → χΩc pointwise in Rn as k → +∞. We can thus set fk := hk + vkgk

for all k ∈ N. By [3, Propositon 3.2(b)], we have vkgk ∈ BV (Rn) for all k ∈ N, so that
fk ∈ BV (Rn) for all k ∈ N. Since we can estimate

|fk − f | ≤ |hk − fχΩ| + |vk − χΩc | |gk| + |gk − f |χΩc

= |hk|χA2k\Ω + |vk − χΩc| |gk| + |gk − f |χΩc

for all k ∈ N, we have fk → f in L1
loc(R

n) as k → +∞, with fk → f in L1(Rn) as k → +∞
if f ∈ L1(Rn). By construction, we also have

|Dfk|(Ω) = |Dhk|(Ω) and |Dfk|(∂Ω) = |Dhk|(∂Ω)

for all k ∈ N. The proof is complete. �
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