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Abstract

We consider a nonlinear reaction diffusion system of parabolic type known as
the monodomain equations, which model the interaction of the electric current
in a cell. Together with the FitzHugh-Nagumo model for the nonlinearity they
represent defibrillation processes of the human heart. We study a fairly gen-
eral type with co-located inputs and outputs describing both boundary and
distributed control and observation. The control objective is output trajectory
tracking with prescribed performance. To achieve this we employ the funnel con-

?Thomas Berger acknowledges support by the German Research Foundation (Deutsche
Forschungsgemeinschaft) via the grant BE 6263/1-1.

Email addresses: thomas.berger@math.upb.de (Thomas Berger),
tobias.breiten@uni-graz.at (Tobias Breiten), marc.puche@uni-hamburg.de (Marc Puche),
timo.reis@uni-hamburg.de (Timo Reis)

Preprint submitted to Journal of Differential Equations November 27, 2019



troller, which is model-free and of low complexity. The controller introduces a
nonlinear and time-varying term in the closed-loop system, for which we prove
existence and uniqueness of solutions. Additionally, exploiting the parabolic
nature of the problem, we obtain Hölder continuity of the state, inputs and
outputs. We illustrate our results by a simulation of a standard test example
for the termination of reentry waves.

Keywords: Adaptive control, funnel control, monodomain equations,
FitzHugh–Nagumo model
2010 MSC: 35K55, 93C40

1. Introduction

We study output trajectory tracking for a class of nonlinear reaction dif-
fusion equations such that a prescribed performance of the tracking error is
achieved. To this end, we utilize the method of funnel control which was de-
veloped in [1], see also the survey [2]. The funnel controller is a model-free5

output-error feedback of high-gain type. Therefore, it is inherently robust and
of striking simplicity. The funnel controller has been successfully applied e.g. in
temperature control of chemical reactor models [3], control of industrial servo-
systems [4] and underactuated multibody systems [5], speed control of wind
turbine systems [6, 7, 4], current control for synchronous machines [8, 4], DC-10

link power flow control [9], voltage and current control of electrical circuits [10],
oxygenation control during artificial ventilation therapy [11], control of peak
inspiratory pressure [12] and adaptive cruise control [13].

A funnel controller for a large class of systems described by functional differ-
ential equations with arbitrary (well-defined) relative degree has been developed15

in [14]. It is shown in [15] that this abstract class indeed allows for fairly gen-
eral infinite-dimensional systems, where the internal dynamics are modeled by a
(PDE). In particular, it was shown in [16] that the linearized model of a moving
water tank, where sloshing effects appear, belongs to the aforementioned system
class. On the other hand, not even every linear, infinite-dimensional system has20

a well-defined relative degree, in which case the results as in [14, 1] cannot be
applied. Instead, the feasibility of funnel control has to be investigated directly
for the (nonlinear) closed-loop system, see [17] for a boundary controlled heat
equation and [18] for a general class of boundary control systems.

The nonlinear reaction diffusion system that we consider in the present paper25

is known as the monodomain model and represents defibrillation processes of the
human heart [19]. The monodomain equations are a reasonable simplification
of the well accepted bidomain equations, which arise in cardiac electrophysiol-
ogy [20]. In the monodomain model the dynamics are governed by a parabolic
reaction diffusion equation which is coupled with a linear ordinary differential30

equation that models the ionic current.
It is discussed in [21] that, under certain initial conditions, reentry phenom-

ena and spiral waves may occur. From a medical point of view, these situations
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can be interpreted as fibrillation processes of the heart that should be termi-
nated by an external control, for instance by applying an external stimulus to35

the heart tissue, see [22].
The present paper is organized as follows: In Section 2 we introduce the

mathematical framework, which strongly relies on preliminaries on Neumann
elliptic operators. The control objective is presented in Section 3, where we
also state the main result on the feasibility of the proposed controller design in40

Theorem 3.3. The proof of this result is given in Section 4 and it uses several
auxiliary results derived in Appendices B and C. We illustrate our result by a
simulation in Section 5.

Nomenclature. The set of bounded operators from X to Y is denoted by
L(X,Y ), X ′ stands for the dual of a Banach space X, and B′ is the dual of an
operator B.
For a bounded and measurable set Ω ⊂ Rd, p ∈ [1,∞] and k ∈ N0, W k,p(Ω;Rn)
denotes the Sobolev space of equivalence classes of p-integrable and k-times
weakly differentiable functions f : Ω → Rn, W k,p(Ω;Rn) ∼= (W k,p(Ω))n, and
the Lebesgue space of equivalence classes of p-integrable functions is Lp(Ω) =
W 0,p(Ω). For r ∈ (0, 1) we further set

W r,p(Ω) :=

{
f ∈ Lp(Ω)

∣∣∣∣ ((x, y) 7→ |f(x)− f(y)|
|x− y|d/p+r

)
∈ Lp(Ω× Ω)

}
.

For a domain Ω with smooth boundary, W k,p(∂Ω) denotes the Sobolev space
at the boundary.
We identify functions with their restrictions, that is, for instance, if f ∈ Lp(Ω)
Ω0 ⊂ Ω, then the restriction f |Ω0

∈ Lp(Ω0) is again dentoted by f . For an
interval J ⊂ R, a Banach space X and p ∈ [1,∞], we denote by Lp(J ;X)
the vector space of equivalence classes of strongly measurable functions f :
J → X such that ‖f(·)‖X ∈ Lp(J). Note that if J = (a, b) for a, b ∈ R, the
spaces Lp((a, b);X), Lp([a, b];X), Lp([a, b);X) and Lp((a, b];X) coincide, since
the points at the boundary have measure zero. We will simply write Lp(a, b;X),
also for the case a = −∞ or b =∞. We refer to [23] for further details on Sobolev
and Lebesgue spaces.
In the following, let J ⊂ R be an interval, X be a Banach space and k ∈ N0.
Then Ck(J ;X) is defined as the space of k-times continuously differentiable
functions f : J → X. The space of bounded k-times continuously differentiable
functions with bounded first k derivatives is denoted by BCk(J ;X), and it is a
Banach space endowed with the usual supremum norm. The space of bounded
and uniformly continuous functions will be denoted by BUC(J ;X). The Banach
space of Hölder continuous functions C0,r(J ;X) with r ∈ (0, 1) is given by

C0,r(J ;X) :=

{
f ∈ BC(J ;X)

∣∣∣∣ [f ]r := sup
t,s∈J,s<t

‖f(t)− f(s)‖
(t− s)r

<∞
}
,

‖f‖r := ‖f‖∞ + [f ]r,

see [24, Chap. 0]. We like to note that for all 0 < r < q < 1 we have that

C0,q(J ;X) ⊆ C0,r(J ;X) ⊆ BUC(J ;X).
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For p ∈ [1,∞], the symbol W 1,p(J ;X) stands for the Sobolev space of X-
valued equivalance classes of weakly differentiable and p-integrable functions45

f : J → X with p-integrable weak derivative, i.e., f, ḟ ∈ Lp(J ;X). Thereby,
integration (and thus weak differentiation) has to be understood in the Bochner
sense, see [25, Sec. 5.9.2]. The spaces Lploc(J ;X) and W 1,p

loc (J ;X) consist of
all f whose restriction to any compact interval K ⊂ J are in Lp(K;X) or
W 1,p(K;X), respectively.50

2. The FitzHugh-Nagumo model

Throughout this paper we will frequently use the following assumption. For
d ∈ N we denote the scalar product in L2(Ω;Rd) by 〈·, ·〉 and the norm in L2(Ω)
by ‖ · ‖.

Assumption 2.1. Let d ≤ 3 and Ω ⊂ Rd be a bounded domain with Lipschitz
boundary ∂Ω. Further, let D ∈ L∞(Ω;Rd×d) be symmetric-valued and satisfy
the ellipticity condition

∃ δ > 0 : for a.e. ζ ∈ Ω ∀ ξ ∈ Rd : ξ>D(ζ)ξ =

d∑
i,j=1

Dij(ζ)ξiξj ≥ δ‖ξ‖2Rd . (1)

To formulate the model of interest, we consider the sesquilinear form

a : W 1,2(Ω)×W 1,2(Ω)→ R, (z1, z2) 7→ 〈∇z1, D∇z2〉 . (2)

We can associate a linear operator to a.55

Proposition 2.2. Let Assumption 2.1 hold. Then there exists exactly one op-
erator A : D(A) ⊂ L2(Ω)→ L2(Ω) with

D(A) =
{
z2 ∈W 1,2(Ω)

∣∣ ∃ y2 ∈ L2(Ω) ∀ z1 ∈W 1,2(Ω) : a(z1, z2) = −〈z1, y2〉
}
,

and
∀ z1 ∈W 1,2(Ω) ∀ z2 ∈ D(A) : a(z1, z2) = −〈z1,Az2〉 .

We call A the Neumann elliptic operator on Ω associated to D. The operator
A is closed, self-adjoint, and D(A) is dense in W 1,2(Ω).

Proof. Existence, uniqueness and closedness of A as well as the density of D(A)
in W 1,2(Ω) follow from Kato’s First Representation Theorem [26, Sec. VI.2,
Thm 2.1], whereas self-adjointness is an immediate consequence of the property60

a(z1, z2) = a(z2, z1) for all z1, z2 ∈W 1,2(Ω).

Note that the operator A in Proposition 2.2 is well-defined, independent
of any further smoothness requirements on ∂Ω. In particular, the classical
Neumann boundary trace, i.e., the derivative of a function in the direction of
the outward normal unit vector ν : ∂Ω → Rd does not need to exist. However,
if ∂Ω and the coefficient matrix D are sufficiently smooth, then

Az = divD∇z, z ∈ D(A) =
{
z ∈W 2,2(Ω)

∣∣ (ν> ·D∇z)|∂Ω = 0
}
,
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see [27, Thm. 2.2.2.5]. This justifies to call A a Neumann elliptic operator. We
collect some further properties of such operators in Appendix A.

Now we are in the position to introduce the model for the interaction of the
electric current in a cell, namely

v̇(t) = Av(t) + p3(v(t))− u(t) + Is,i(t) + BIs,e(t), v(0) = v0,

u̇(t) = c5v(t)− c4u(t), u(0) = u0,

y(t) = B′v(t),

(3)

where
p3(v) := −c1v + c2v

2 − c3v3,

with constants ci > 0 for i = 1, . . . , 5, initial values v0, u0 ∈ L2(Ω), the
Neumann elliptic operator A : D(A) ⊆ L2(Ω) → L2(Ω) on Ω associated to65

D ∈ L∞(Ω;Rd×d) and control operator B ∈ L(Rm,W 1,2(Ω)′), where W 1,2(Ω)′

is the dual of W 1,2(Ω) with respect to the pivot space L2(Ω); consequently,
B′ ∈ L(W 1,2(Ω),Rm).

System (3) is known as the FitzHugh-Nagumo model for the ionic cur-
rent [28], where

Iion(u, v) = p3(v)− u.

The functions Is,i ∈ L2
loc(0, T ;L2(Ω)), Is,e ∈ L2

loc(0, T ;Rm) are the intracellular
and extracellular stimulation currents, respectively. In particular, Is,e is the70

control input of the system, whereas y is the output.
Next we introduce the solution concept.

Definition 2.3. Let Assumption 2.1 hold and A be a Neumann elliptic opera-
tor on Ω associated to D (see Proposition 2.2), let B ∈ L(Rm,W 1,2(Ω)′), and
u0, v0 ∈ L2(Ω) be given. Further, let T ∈ (0,∞] and Is,i ∈ L2

loc(0, T ;L2(Ω)),75

Is,e ∈ L2
loc(0, T ;Rm). A triple of functions (u, v, y) is called solution of (3) on

[0, T ), if

(i) v ∈ L2(0, T ;W 1,2(Ω)) ∩ C([0, T );L2(Ω)) with v(0) = v0;

(ii) u ∈ C([0, T );L2(Ω)) with u(0) = u0;

(iii) for all χ ∈ L2(Ω), θ ∈ W 1,2(Ω), the scalar functions t 7→ 〈u(t), χ〉, t 7→
〈v(t), θ〉 are weakly differentiable on [0, T ), and for almost all t ∈ (0, T )
we have

d
dt 〈v(t), θ〉 = −a(v(t), θ) + 〈p3(v(t))− u(t) + Is,i(t), θ〉+ 〈Is,e(t),B′θ〉Rm ,
d
dt 〈u(t), χ〉 = 〈c5v(t)− c4u(t), χ〉 ,

y(t) = B′v(t),
(4)

where a : W 1,2(Ω)×W 1,2(Ω)→ R is the sesquilinear defined as in (2).80

Remark 2.4.

a) Weak differentiability of t 7→ 〈u(t), χ〉, t 7→ 〈v(t), θ〉 for all χ ∈ L2(Ω),
θ ∈ W 1,2(Ω) on (0, T ) further leads to v ∈ W 1,2(0, T ;W 1,2(Ω)′) and u ∈
W 1,2(0, T ;L2(Ω)).
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b) The Sobolev Embedding Theorem [23, Thm. 5.4] implies that the inclusion85

map W 1,2(Ω) ↪→ L6(Ω) is bounded. This guarantees that p3(v) ∈ L2(0, T ;L2(Ω)),
whence the first equation in (4) is well-defined.

c) Let w ∈ L2(Ω). An input operator of the form Bu = u · w corresponds to
distributed input, and we have B ∈ L(R, L2(Ω)). In this case, the output is
given by

y(t) =

∫
Ω

w(ξ) · (v(t))(ξ)dξ.

A typical situation is that w is an indicator function on a subset of Ω; such
choices have been considered in [29] for instance.

d) Let w ∈ L2(∂Ω). An input operator with

B′z =

∫
∂Ω

w(ξ) · z(ξ)dσ (5)

corresponds to a Neumann boundary control

ν(ξ)> · (∇v(t))(ξ) = w(ξ) · Is,e(t), ξ ∈ ∂Ω.

In this case, the output is given by a weighted integral of the Dirichlet bound-
ary values. More precisely

y(t) =

∫
∂Ω

w(ξ) · (v(t))(ξ)dσ.

Note that B′ is the composition of the trace operator

tr : z 7→ z|∂Ω

and the inner product in L2(∂Ω) with respect to w. The trace operator sat-90

isfies tr ∈ L(W 1/2+ε,2(Ω), L2(∂Ω)) for all ε > 0 by the Trace Theorem [30,
Thm. 1.39]. In particular, tr ∈ L(W 1,2(Ω), L2(∂Ω)), which implies that
B′ ∈ L(W 1,2(Ω),R) and B ∈ L(R,W 1,2(Ω)′).

3. Control objective

The objective is that the output y of the system (3) tracks a given reference
signal which is yref ∈ W 1,∞(0,∞;Rm) with a prescribed performance of the
tracking error e := y − yref , that is e evolves within the performance funnel

Fϕ := { (t, e) ∈ [0,∞)× Rm | ϕ(t)‖e‖Rm < 1 }

defined by a function ϕ belonging to

Φγ :=

{
ϕ ∈W 1,∞(0,∞;R)

∣∣∣∣ ϕ|[0,γ] ≡ 0, ∀δ > 0, inf
t>γ+δ

ϕ(t) > 0

}
,

for some γ > 0.95
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t

1/ϕ(t)

‖e(t)‖Rm

Figure 1: Error evolution in a funnel Fϕ

with boundary 1/ϕ(t).

The situation is illustrated in Fig. 1.
The funnel boundary given by 1/ϕ is
unbounded in a small interval [0, γ] to
allow for an arbitrary initial tracking
error. Since ϕ is bounded there exists
λ > 0 such that 1/ϕ(t) ≥ λ for all
t > 0. Thus, we seek practical track-
ing with arbitrary small accuracy λ > 0,
but asymptotic tracking is not required
in general.

The funnel boundary is not necessarily monotonically decreasing, while in
most situations it is convenient to choose a monotone funnel. Sometimes, widen-
ing the funnel over some later time interval might be beneficial, for instance in
the presence of periodic disturbances or strongly varying reference signals. For
typical choices of funnel boundaries see e.g. [31, Sec. 3.2].
A controller which achieves the above described control objective is the funnel
controller. In the present paper, it suffices to restrict ourselves to the simple
version developed in [1], which is the feedback law

Is,e(t) = − k0

1− ϕ(t)2‖B′v(t)− yref(t)‖2Rm
(B′v(t)− yref(t)), (6)

where k0 > 0 is some constant used for scaling and agreement of physical units.
Note that, by ϕ|[0,γ] ≡ 0, the controller satisfies

∀ t ∈ [0, γ] : Is,e(t) = −k0(B′v(t)− yref(t)).

We are interested in considering solutions of (7), which leads to the following
weak solution framework.

Definition 3.1. Use the assumptions from Definition 2.3. Furthermore, let
k0 > 0, yref ∈ W 1,∞(0,∞;Rm), γ > 0 and ϕ ∈ Φγ . A triple of functions
(u, v, y) is called solution of system (3) with feedback (6) on [0, T ), if (u, v, y)100

satisfies the conditions (i)–(iii) from Definition 2.3 with Is,e as in (6).

Remark 3.2.

a) Inserting the feedback law (6) into the system (3), we obtain the closed-loop
system

v̇(t) = Av(t) + p3(v)(t)− u(t) + Is,i(t)−
k0B(B′v(t)− yref(t))

1− ϕ(t)2‖B′v(t)− yref(t)‖2Rm
,

u̇(t) = c5v(t)− c4u(t).
(7)

Consequently, (u, v, y) is a solution of (3), (6) (resp. (7)) if, and only if,
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(i) v ∈ L2(0, T ;W 1,2(Ω)) ∩ C([0, T );L2(Ω))) with v(0) = v0;
(ii) u ∈ C([0, T );L2(Ω)) with u(0) = u0;105

(iii) for all χ ∈ L2(Ω), θ ∈ W 1,2(Ω), the scalar functions t 7→ 〈u(t), χ〉,
t 7→ 〈v(t), θ〉 are weakly differentiable on [0, T ), and it holds that, for
almost all t ∈ (0, T ),

d
dt 〈v(t), θ〉 = −a(v(t), θ) + 〈p3(v(t))− u(t) + Is,i(t), θ〉

−
k0 〈B′v(t)− yref(t),B′θ〉Rm

1− ϕ(t)2‖B′v(t)− yref(t)‖2Rm
,

d
dt 〈u(t), χ〉 = 〈c5v(t)− c4u(t), χ〉 ,

y(t) = B′v(t).

(8)

The system (7) is a nonlinear and non-autonomous PDE and any solution
needs to satisfy that the tracking error evolves in the prescribed performance
funnel Fϕ. Therefore, existence and uniqueness of solutions is a nontrivial
problem and even if a solution exists on a finite time interval [0, T ), it is not
clear that it can be extended to a global solution.110

b) For global solutions it is desirable that Is,e ∈ L∞(δ,∞;Rm) for all δ > 0.
Note that this is equivalent to

lim sup
t→∞

ϕ(t)2‖B′v(t)− yref(t)‖2Rm < 1.

It is as well desirable that y and Is,e have a certain smoothness.

In the following we state the main result of the present paper. We will show
that the closed-loop system (7) has a unique global solution so that all signals
remain bounded. Furthermore, the tracking error stays uniformly away from the
funnel boundary. We further show that we gain more regularity of the solution,
if B ∈ L(Rm,W r,2(Ω)′) for some r ∈ [0, 1) or even B ∈ L(Rm,W 1,2(Ω)). Recall
that B ∈ L(Rm,W r,2(Ω)′) if, and only if, B′ ∈ L(W r,2(Ω),Rm). Furthermore,
for any r ∈ (0, 1) we have the inclusions

L(Rm,W 1,2(Ω)) ⊂ L(Rm, L2(Ω)) ⊂ L(Rm,W r,2(Ω)′) ⊂ L(Rm,W 1,2(Ω)′).

Theorem 3.3. Use the assumptions from Definition 3.1. Furthermore, assume
that kerB = {0} and Is,i ∈ L∞(0,∞;L2(Ω)). Then there exists a unique solu-
tion of (7) on [0,∞) and we have

(i) u, u̇, v ∈ BC([0,∞);L2(Ω));115

(ii) for all δ > 0 we have

v ∈ BUC([δ,∞);W 1,2(Ω)) ∩ C0,1/2([δ,∞);L2(Ω)),

y, Is,e ∈ BUC([δ,∞);Rm);

(iii) ∃ ε0 > 0 ∀ δ > 0 ∀ t ≥ δ : ϕ(t)2‖B′v(t)− yref(t)‖2Rm ≤ 1− ε0.

Furthermore,
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a) if additionally B ∈ L(Rm,W r,2(Ω)′) for some r ∈ (0, 1), then for all δ > 0
we have that

v ∈ C0,1−r/2([δ,∞);L2(Ω)), y, Is,e ∈ C0,1−r([δ,∞);Rm).

b) if additionally B ∈ L(Rm, L2(Ω)), then for all δ > 0 and all λ ∈ (0, 1) we
have

v ∈ C0,λ([δ,∞);L2(Ω)), y, Is,e ∈ C0,λ([δ,∞);Rm).

c) if additionally B ∈ L(Rm,W 1,2(Ω)), then for all δ > 0 we have y, Is,e ∈
W 1,∞(δ,∞;Rm).

Remark 3.4.120

a) The condition kerB = {0} is equivalent to imB′ being dense in Rm. The
latter is equivalent to imB′ = Rm by the finite-dimensionality of Rm.
Note that surjectivity of B′ is mandatory for tracking control, since it is
necessary that any reference signal yref ∈ W 1,∞(0,∞;Rm) can actually be
generated by the output y(t) = B′v. This property is sometimes called right-125

invertibility, see e.g. [32, Sec. 8.2].

b) If the input operator corresponds to Neumann boundary control, i.e., B is as
in (5) for some w ∈ L2(∂Ω), then B ∈ L(R,W r,2(Ω)′) for some r ∈ (1/2, 1),
cf. Remark 2.4 d), and the assertions of Theorem 3.3 a) hold.

c) If the input operator corresponds to distributed control, that is Bu = u · w130

for some w ∈ L2(Ω), then B ∈ L(R, L2(Ω)), cf. Remark 2.4 c), and the
assertions of Theorem 3.3 b) hold.

4. Proof of Theorem 3.3

The proof is inspired by the results of [33] on existence and uniqueness
of (non-controlled) FitzHugh-Nagamo equations, which is based on a spectral135

approximation and subsequent convergence proofs by using arguments from [34].
We divide the proof in two major parts. First, we show that there exists a unique
solution on the interval [0, γ]. After that we show that the solution also exists
on (γ,∞), is continuous at t = γ and has the desired properties.

4.1. Solution on [0, γ]140

Assuming that t ∈ [0, γ], we have that ϕ(t) ≡ 0 so that we need to show
existence of a pair of functions (v, u) with the properties as in Definition 2.3 (i)–
(iii), where (4) simplifies to

d
dt 〈v(t), θ〉 = −a(v(t), θ) + 〈p3(v(t))− u(t) + Is,i(t), θ〉+ 〈Is,e(t),B′θ〉Rm ,
d
dt 〈u(t), χ〉 = 〈c5v(t)− c4u(t), χ〉 ,

Is,e(t) = −k0(B′v(t)− yref(t)),

y(t) = B′v(t).

(9)
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Recall that a : W 1,2(Ω)×W 1,2(Ω)→ R is the sesquilinear form (2).
Step 1: We show existence and uniqueness of a solution.

Step 1a: We show existence of a local solution on [0, γ]. To this end, let (θi)i∈N0

be the eigenfunctions of −A and αi be the corresponding eigenvalues, with
αi ≥ 0 for all i ∈ N0. Recall that (θi)i∈N0

form an orthonormal basis of L2(Ω)
by Proposition A.1 c). Hence, with ai := 〈v0, θi〉 and bi := 〈u0, θi〉 for i ∈ N0

and

vn0 :=

n∑
i=0

aiθi, un0 :=

n∑
i=0

biθi, n ∈ N,

we have that vn0 → v0 and un0 → u0 strongly in L2(Ω).
Fix n ∈ N0 and let γi := B′θi for i = 0, . . . , n. Consider, for j = 0, . . . , n, the
differential equations

µ̇j(t) = −αjµj(t)− νj(t)−

〈
k0

(
n∑
i=0

γiµi(t)− yref(t)

)
, γj

〉
Rm

+ 〈Is,i(t), θj〉

+

〈
p3

(
n∑
i=0

µi(t)θi

)
, θj

〉
,

ν̇j(t) = −c4νj(t) + c5µj(t), with µj(0) = aj , νj(0) = bj ,
(10)

defined on D := [0,∞) × R2(n+1). Since the functions on the right hand side
of (10) are continuous, it follows from ODE theory, see e.g. [35, § 10, Thm. XX],
that there exists a weakly differentiable solution (µn, νn) = (µ0, . . . , µn, ν0, . . . , νn) :
[0, Tn) → R2(n+1) of (10) such that Tn ∈ (0,∞] is maximal. Furthermore, the
closure of the graph of (µn, νn) is not a compact subset of D.
Now, set vn(t) :=

∑n
i=0 µi(t)θi and un(t) :=

∑n
i=0 νi(t)θi. Invoking (10) and

using the functions θj we have that for j = 0, . . . , n the functions (vn, un) satisfy

〈v̇n(t), θj〉 = −a(vn(t), θj)− 〈un(t), θj〉+ 〈p3(vn(t)), θj〉+ 〈Is,i(t), θj〉
− 〈k0(B′vn(t)− yref(t)),B′θj〉Rm ,

〈u̇n(t), θj〉 = −c4 〈un(t), θj〉+ c5 〈vn(t), θj〉 .
(11)

Step 1b: We show boundedness of (vn, un). Consider the Lyapunov function
candidate

V : L2(Ω)× L2(Ω)→ R, (v, u) 7→ 1

2
(c5‖v‖2 + ‖u‖2). (12)

Observe that, since (θi)i∈N0 are orthonormal, we have ‖vn‖2 =
∑n
j=0 µ

2
j and

10



‖un‖2 =
∑n
j=0 ν

2
j . Hence we find that, for all t ∈ [0, Tn),

d
dtV (vn(t), un(t))

(10)
= c5

n∑
j=0

µj(t)µ̇j(t) +

n∑
j=0

νj(t)ν̇j(t)

= −c5
n∑
j=0

αjµj(t)
2 − c4

n∑
j=0

νj(t)
2

− c5

〈
k0

(
n∑
i=0

γiµi(t)− yref(t)

)
,

n∑
j=0

γjµj(t)

〉
Rm

+ c5 〈p3 (vn(t)) , vn(t)〉+ c5 〈Is,i(t), vn(t)〉

hence, omitting the argument t for brevity in the following,

d
dtV (vn, un) =− c5a(vn, vn)− c4‖un‖2 + c5 〈Is,i, vn〉

− c5k0‖en‖2Rm + c5k0 〈en, yref〉Rm + c5 〈p3(vn), vn〉 ,
(13)

where

en(t) :=

n∑
i=0

γiµi(t)− yref(t) = B′vn(t)− yref(t).

Before proceeding, recall Young’s inequality for products, i.e., for a, b ≥ 0 and
p, q ≥ 1 such that 1/p+ 1/q = 1 we have that

ab ≤ ap

p
+
bq

q
,

which will be frequently used in the following. Note that

〈p3(vn), vn〉 = −c1‖vn‖2 + c2
〈
v2
n, vn

〉
− c3‖vn‖4L4 ,

c2|
〈
v2
n, vn

〉
| = |

〈
εv3
n, ε
−1c2

〉
| ≤ 3ε4/3

4
‖vn‖4L4 +

c42
4ε4
|Ω|,

where the latter follows from Young’s inequality with p = 4
3 and q = 4. Choosing

ε =
(

2
3c3
) 3

4 we obtain

〈p3(vn), vn〉 ≤
27c42
32c33

|Ω| − c1‖vn‖2 −
c3
2
‖vn‖4L4 .

Moreover,

〈en, yref〉Rm ≤
1

2
‖en‖2Rm +

1

2
‖yref‖2Rm

and

〈Is,i, vn〉 ≤
c1
2
‖vn‖2 +

1

2c1
‖Is,i‖2,

11



such that (13) can be estimated by

d
dtV (vn, un) ≤− c5a(vn, vn)− c1c5

2
‖vn‖2 −

c5k0

2
‖en‖2Rm −

c3c5
2
‖vn‖4L4

+
k0c5

2
‖yref‖2Rm +

1

2c1
‖Is,i‖2 +

27c42
32c33

|Ω|

≤ − c5a(vn, vn)− c1c5
2
‖vn‖2 −

c5k0

2
‖en‖2Rm −

c3c5
2
‖vn‖4L4

+
k0c5

2
‖yref‖2∞ +

1

2c1
‖Is,i‖22,∞ +

27c42
32c33

|Ω|,

where ‖Is,i‖2,∞ = ess supt≥0

(∫
Ω
|Is,i(ζ, t)|2 dζ

)1/2
. Setting

C∞ :=
k0c5

2
‖yref‖2∞ +

1

2c1
‖Is,i‖22,∞ +

27c42
32c33

|Ω|,

we obtain that, for all t ∈ [0, Tn),

V (vn(t), un(t)) + c5

∫ t

0

a(vn(s), vn(s)) ds +
c1c5

2

∫ t

0

‖vn(s)‖2 ds

+
c5k0

2

∫ t

0

‖en(s)‖2Rm ds +
c3c5

2

∫ t

0

‖vn(s)‖4L4 ds ≤ V (vn0 , u
n
0 ) + C∞t.

Since (u0
n, v

0
n)→ (u0, v0) strongly in L2(Ω) and we have for all p ∈ L2(Ω) that∥∥∥∥∥

n∑
i=0

〈p, θi〉 θi

∥∥∥∥∥
2

=

n∑
i=0

〈p, θi〉2 ≤
∞∑
i=0

〈p, θi〉2 =

∥∥∥∥∥
∞∑
i=1

〈p, θi〉 θi

∥∥∥∥∥
2

= ‖p‖2,

it follows that, for all t ∈ [0, Tn),

c5‖vn(t)‖2 + ‖un(t)‖2 + 2c5

∫ t

0

a(vn(s), vn(s)) ds + c1c5

∫ t

0

‖vn(s)‖2 ds

+ c5k0

∫ t

0

‖en(s)‖2Rm ds + c3c5

∫ t

0

‖vn(s)‖4L4 ds ≤ 2C∞t+ c5‖u0‖2 + ‖v0‖2.

(14)
Step 1c: We show that Tn =∞. Assume that Tn <∞, then it follows from (14)
together with (2) that (vn, un) is bounded, thus the solution (µn, νn) of (10) is
bounded on [0, Tn). But this implies that the closure of the graph of (µn, νn)
is a compact subset of D, a contradiction. Therefore, Tn =∞ and in particular
the solution is defined for all t ∈ [0, γ].
Step 1d: We show convergence of (vn, un) to a solution of (9) on [0, γ]. First
note that it follows from (14) that

∀ t ∈ [0, γ] : ‖vn(t)‖2 ≤ Cv, ‖un(t)‖2 ≤ Cu (15)

12



for some Cv, Cu > 0. From (14) and condition (1) in Assumption 2.1 it follows
that there is a constant Cδ > 0 such that∫ γ

0

‖∇vn(t)‖2 dt ≤ δ−1

∫ γ

0

a(vn(t), vn(t)) dt ≤ Cδ.

This together with (14) and (15) implies that there exist constants C1, C2 > 0
with

‖vn‖4L4(0,γ;L4(Ω)) ≤ C1, ‖vn‖L2(0,γ;W 1,2(Ω)) ≤ C2. (16)

Note that (16) directly implies that

‖v2
n‖2L2(0,γ;L2(Ω)) ≤C1,

‖v3
n‖L4/3(0,γ;L4/3(Ω)) =

(
‖v2
n‖2L2(0,γ;L2(Ω))

)3/4

≤ C3/4
1 .

(17)

Multiplying the second equation in (11) by ν̇j and summing up over j ∈ {0, . . . , n}
leads to

‖u̇n‖2 = −c4
2

d
dt‖un‖

2 + c5 〈vn, u̇n〉

≤ −c4
2

d
dt‖un‖

2 +
c25
2
‖vn‖2 +

1

2
‖u̇n‖2,

thus
‖u̇n‖2 ≤ −c4 d

dt‖un‖
2 + c25‖vn‖2.

Upon integration over [0, γ] and using (15) this yields that∫ γ

0

‖u̇n(t)‖2 dt ≤ c4Cu + c25

∫ γ

0

‖vn(t)‖2 dt ≤ Ĉ3

for some Ĉ3 > 0, where the last inequality is a consequence of (14). This
together with (15) implies that there is C3 > 0 such that ‖un‖W 1,2(0,γ;L2(Ω)) ≤
C3.

Now, let Pn be the orthogonal projection of L2(Ω) onto the subspace gener-
ated by the set { θi | i = 1, . . . , n }. Consider the norm

‖v‖W 1,2 =

(
n∑
i=0

(1 + αi)| 〈v, θi〉 |2
)1/2

on W 1,2(Ω) according to Proposition B.3 and Remark B.4. By duality we have
that

‖v̂‖(W 1,2)′ =

(
n∑
i=0

(1 + αi)
−1| 〈v̂, θi〉 |2

)1/2

is a norm on W 1,2(Ω)′, cf. [36, Prop. 3.4.8]. Note that we can consider Pn :
W 1,2(Ω)′ →W 1,2(Ω)′, which is a bounded linear operator with norm one, inde-
pendent of n. Using this together with the fact that the injection from L2(Ω)
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into W 1,2(Ω)′ is continuous and A ∈ L(W 1,2(Ω),W 1,2(Ω)′), we can rewrite the
weak formulation (11) as

v̇n = PnAvn + Pnp3(vn)− Pnun + PnIs,i − PnBk0(B′vn − yref). (18)

Since vn ∈ L2(0, γ;W 1,2(Ω)) and hence, by the Sobolev Embedding Theorem,
vn ∈ L2(0, γ;Lp(Ω)) for all 2 ≤ p ≤ 6, we find that p3(vn) ∈ L2(0, γ;L2(Ω)). We
also have Avn ∈ L2(0, γ;W 1,2(Ω)′) and Bk0(B′vn − yref) ∈ L2(0, γ;W 1,2(Ω)′)
so that by using the previously derived estimates and (18), there exists C4 > 0
independent of n and t with

‖v̇n‖L2(0,γ;W 1,2(Ω)′) ≤ C4.

Now, by Lemma C.6 we have that there exist subsequences of (un), (vn) and
(v̇n), resp., again denoted in the same way, for which

un → u ∈W 1,2(0, γ;L2(Ω)) weakly,

un → u ∈W 1,∞(0, γ;L2(Ω)) weak?,

vn → v ∈ L2(0, γ;W 1,2(Ω)) weakly,

vn → v ∈ L∞(0, γ;L2(Ω)) weak?,

vn → v ∈ L4(0, γ;L4(Ω)) weakly,

v̇n → v̇ ∈ L2(0, γ;W 1,2(Ω)′) weakly.

(19)

Moreover, let p0 = p1 = 2 and X = W 1,2(Ω), Y = L2(Ω), Z = W 1,2(Ω)′. Then,
[34, Chap. 1, Thm. 5.1] implies that

W := { u ∈ Lp0(0, γ;X) | u̇ ∈ Lp1(0, γ;Z) }

with norm ‖u‖Lp0 (0,γ;X)+‖u̇‖Lp1 (0,γ;Y ) has a compact injection into Lp0(0, γ;Y ),
so that the weakly convergent sequence vn → v ∈ W converges strongly in
L2(0, γ;L2(Ω)) by [37, Lem. 1.6]. Further, (u(0), v(0)) = (u0, v0) and by v ∈
W 1,2(0, γ;L2(Ω)), v ∈ L2(0, γ;W 1,2(Ω)) and v̇ ∈ L2(0, γ;W 1,2(Ω)′) it follows
that u, v ∈ C([0, γ];L2(Ω)), see for instance [37, Thm. 1.32]. Moreover, note
that B′v − yref ∈ L2(0, γ;Rm). Hence, (u, v) is a solution of (7) in [0, γ] and

v̇(t) = Av(t) + p3(v(t))− u(t) + Is,i(t)− Bk0(B′v(t)− yref(t)) (20)

is satisfied in W 1,2(Ω)′. Moreover, by (17), [34, Chap. 1, Lem. 1.3] and vn → v in
L4(0, γ;L4(Ω)) we have that v3

n → v3 weakly in L4/3(0, γ;L4/3(Ω)) and v2
n → v2

weakly in L2(0, γ;L2(Ω)).
Step 1e: We show uniqueness of the solution (v, u). To this end, we separate
the linear part of p3 so that

p3(v) = −c1v − c3p̂3(v), p̂3(v) := v2 (v − c) , c := c2/c3.

Assume that (v1, u1) and (v2, u2) are two solutions of (7) on [0, γ] with the same
initial values, v1(0) = v2(0) = v0 and u1(0) = u2(0) = u0. Let t0 ∈ (0, γ] be
given. Let Q0 := (0, t0)× Ω. Define

Σ(t, ζ) := |v1(t, ζ)|+ |v2(t, ζ)|,
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and let
QΛ := {(t, ζ) ∈ Q0 | Σ(t, ζ) ≤ Λ}, Λ > 0.

Note that, by convexity of the map x 7→ xp on [0,∞) for p > 1, we have that

∀ a, b ≥ 0 :
(

1
2a+ 1

2b)
p ≤ 1

2a
p + 1

2b
p.

Therefore, since v1, v2 ∈ L4(0, γ;L4(Ω)), we find that Σ ∈ L4(0, γ;L4(Ω)).
Hence, by the monotone convergence theorem, for all ε > 0 we may choose
Λ large enough such that∫

Q0\QΛ

|Σ(ζ, t)|4 d(ζ, t) < ε.

Note that without loss of generality we may assume that Λ > c
3 . Let V := v2−v1

and U := u2 − u1, then, by (7),

V̇ = (A− c1I)V − c3(p̂3(v2)− p̂3(v1))− U − k0BB′V,
U̇ = c5V − c4U.

By [37, Thm. 1.32], we have for all t ∈ (0, γ) that

1
2

d
dt‖V (t)‖2 =

〈
V̇ (t), V (t)

〉
, 1

2
d
dt‖U(t)‖2 =

〈
U̇(t), U(t)

〉
,

thus we may compute that

c5
2

d
dt‖V ‖

2 + 1
2

d
dt‖U‖

2 = 〈(A− c1I)V − U − k0BB′V, c5V 〉 − c4‖U‖2 + c5〈U, V 〉
− c5c3 〈p̂3(v2)− p̂3(v1), V 〉

= c5 〈(A− c1I)V, V 〉 − c5k0 〈B′V,B′V 〉 − c4‖U‖2

− c5c3 〈p̂3(v2)− p̂3(v1), V 〉
≤ −c5c3 〈p̂3(v2)− p̂3(v1), V 〉 .

Integration over [0, t0] and using (U(0), V (0)) = (0, 0) leads to

c5
2 ‖V (t0)‖2 + 1

2‖U(t0)‖2 = −c5c3
∫ t0

0

∫
Ω

(p̂3(v2(ζ, t))− p̂3(v1(ζ, t)))V (ζ, t) dζ dt

= −c5c3
∫
QΛ

(p̂3(v2(ζ, t))− p̂3(v1(ζ, t)))V (ζ, t) dζ dt

− c5c3
∫
Q0\QΛ

(p̂3(v2(ζ, t))− p̂3(v1(ζ, t)))V (ζ, t) dζ dt .

Note that on QΛ we have −Λ ≤ v1 ≤ Λ and −Λ ≤ v2 ≤ Λ. Let a, b ∈ [−Λ,Λ],
then the mean value theorem implies

(p̂3(b)− p̂3(a))(b− a) = p̂′3(ξ)(b− a)2
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for some ξ ∈ (−Λ,Λ). Since p̂′3(ξ) = 3ξ2 − 2cξ has a minimum at

ξ∗ =
c

3

we have that

(p̂3(b)− p̂3(a))(b− a) = p̂′3(ξ)(b− a)2 ≥ −c
2

3
(b− a)2.

Using that in the above inequality leads to

c5
2 ‖V (t0)‖2 + 1

2‖U(t0)‖2 ≤ c5c3
c2

3

∫
QΛ

V (ζ, t)2 dζ dt

− c5c3
∫
Q0\QΛ

(p̂3(v2(ζ, t))− p̂3(v1(ζ, t)))V (ζ, t) dζ dt

≤ c5c3
c2

3

∫
Q0

V (ζ, t)2 dζ dt

+ c5c3

∫
Q0\QΛ

|p̂3(v2(ζ, t))− p̂3(v1(ζ, t))||V (ζ, t)|dζ dt

≤ c5c3
c2

3

∫ t0

0

‖V (t)‖2 dt + 2c5c3

∫
Q0\QΛ

|Σ(ζ, t)|4 d(ζ, t)

≤ c3
c2

3

∫ t0

0

c5‖V (t)‖2 + ‖U(t)‖2 dt + 2c5c3ε.

Since ε > 0 was arbitrary we may infer that

c5
2 ‖V (t0)‖2 + 1

2‖U(t0)‖2 ≤ 2c3c
2

3

∫ t0

0

c5
2 ‖V (t)‖2 + 1

2‖U(t)‖2 dt .

Hence, by Gronwall’s lemma and U(0) = 0, V (0) = 0 it follows that U(t0) = 0145

and V (t0) = 0. Since t0 was arbitrary, this shows that v1 = v2 and u1 = u2 on
[0, γ].

Step 2: We show that for all ε ∈ (0, γ) and all t ∈ [ε, γ] we have v(t) ∈
W 1,2(Ω).
Fix ε ∈ (0, γ). First we show that v ∈ BUC([ε, γ];W 1,2(Ω)). Multiplying the
first equation in (11) by µ̇j and summing up over j ∈ {0, . . . , n} we obtain

‖v̇n‖2 = − 1
2

d
dta(vn, vn)− 〈un, v̇n〉+ 〈p3(vn), v̇n〉+ 〈Is,i, v̇n〉

− k0 〈B′vn − yref ,B′v̇n〉Rm
= − 1

2
d
dta(vn, vn)− 〈un, v̇n〉+ 〈p3(vn), v̇n〉+ 〈Is,i, v̇n〉

− k0 〈B′vn − yref ,B′v̇n − ẏref〉Rm − k0 〈B′vn − yref , ẏref〉Rm

Furthermore, we may derive that

d
dtv

4
n = 4v3

nv̇n = − 4

c3

(
p3(vn)− c2v2

n + c1vn
)
v̇n, thus

p3(vn)v̇n = −c3
4

d
dtv

4
n + c2v

2
nv̇n − c1vnv̇n,
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and this implies, for any δ > 0,

〈p3(vn), v̇n〉 ≤ −
c3
4

d
dt‖vn‖

4
L4 + c2

〈
v2
n, v̇n

〉
− c1 〈vn, v̇n〉

≤ −c3
4

d
dt‖vn‖

4
L4 +

c2
2

(
δ‖vn‖4L4 +

1

δ
‖v̇n‖2

)
+
c1
2

(
δ‖vn‖2 +

1

δ
‖v̇n‖2

)
(15)

≤ −c3
4

d
dt‖vn‖

4
L4 +

c2
2

(
δ‖vn‖4L4 +

1

δ
‖v̇n‖2

)
+
c1
2

(
δCv +

1

δ
‖v̇n‖2

)
.

Moreover, we find that, recalling en = B′vn − yref

〈un, v̇n〉 ≤
δ

2
‖un‖2 +

1

2δ
‖v̇n‖2

(15)

≤ δCu
2

+
1

2δ
‖v̇n‖2,

〈Is,i, v̇n〉 ≤
δ

2
‖Is,i‖22,∞ +

1

2δ
‖v̇n‖2,

〈en, ẏref〉Rm ≤
1

2
‖en‖2Rm +

1

2
‖ẏref‖2∞.

Therefore, choosing δ large enough, we obtain that there exist constantsQ1, Q2 >
0 independent of n such that

‖v̇n‖2 ≤−
1

2
d
dta(vn, vn)− c3

4
d
dt‖vn‖

4
L4 −

k0

2
d
dt‖en‖

2
Rm +

1

2
‖v̇n‖2

+Q1‖vn‖4L4 +Q2 +
k0

2
‖en‖2Rm ,

thus,

‖v̇n‖2 + d
dt

(
a(vn, vn) +

c3
2
‖vn‖4L4 + k0‖en‖2Rm

)
≤ 2Q1‖vn‖4L4 + 2Q2 + k0‖en‖2Rm .

(21)

As a consequence, we find that for all t ∈ [0, γ] we have

t‖v̇n(t)‖2 + d
dt

(
ta(vn(t), vn(t)) +

c3t

2
‖vn(t)‖4L4 + k0t‖en(t)‖2Rm

)
(21)

≤
(

2Q1t+
c3
2

)
‖vn(t)‖4L4 + a(vn(t), vn(t)) + 2Q2t+ k0(t+ 1)‖en(t)‖2Rm .

Since t‖v̇n(t)‖2 ≥ 0 and t ≤ γ for all t ∈ [0, γ], it follows that

d
dt

(
ta(vn(t), vn(t)) +

c3t

2
‖vn(t)‖4L4 + k0t‖en(t)‖2Rm

)
≤
(

2Q1γ +
c3
2

)
‖vn(t)‖4L4 + a(vn(t), vn(t)) + 2Q2γ + k0(γ + 1)‖en(t)‖2Rm .

Integrating the former and using (14), there exist P1, P2 > 0 independent of n
such that for t ∈ [0, γ] we have

ta(vn(t), vn(t)) +
c3t

2
‖vn(t)‖4L4 + k0t‖en(t)‖2Rm ≤ P1 + P2t.
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Thus, there exist constants C5, C6 > 0 independent of n such that

∀ t ∈ [0, γ] : ta(vn(t), vn(t)) ≤ C5 ∧ t‖en(t)‖Rm ≤ C6.

Hence, for all ε ∈ (0, γ), it follows from the above estimates together with (14)
that vn ∈ L∞(ε, γ;W 1,2(Ω)) and en ∈ L∞(ε, γ;Rm), so that in addition to (19),
from Lemma C.6 we further have that there exists a subsequence such that

vn → v ∈ L∞(ε, γ;W 1,2(Ω)) weak?

and B′v ∈ L∞(ε, γ;Rm) for all ε ∈ (0, γ), hence Is,e ∈ L2(0, γ;Rm)∩L∞(ε, γ;Rm).
By the Sobolev Embedding Theorem, W 1,2(Ω) ↪→ Lp(Ω) for 2 ≤ p ≤ 6 we have
that p3(v) ∈ L∞(ε, γ;L2(Ω)). Moreover, since (20) holds, we can rewrite it as

v̇(t) = (A− c1I)v(t) + Ir(t) + BIs,e(t),

where Ir := c2v
2 − c3v

3 − u + Is,i ∈ L2(0, γ;L2(Ω)) ∩ L∞(ε, γ;L2(Ω)) and
Proposition C.5 (recall that W 1,2(Ω)′ = X−1/2 and hence B ∈ L(Rm, X−1/2))
with c = c1 implies that v ∈ BUC([ε, γ];W 1,2(Ω)). Hence, for all ε ∈ (0, γ),150

v(t) ∈W 1,2(Ω) for t ∈ [ε, γ], so that in particular v(γ) ∈W 1,2(Ω).

4.2. Solution on (γ,∞)

The crucial step in this part of the proof is to show that the error remains uni-
formly bounded away from the funnel boundary while v ∈ L∞(γ,∞;W 1,2(Ω)).
The proof is divided into several steps.155

Step 1: We show existence of an approximate solution by means of a time-
varying state-space transformation.
Again, let (θi)i∈N0

be the eigenfunctions of −A and let αi be the corresponding
eigenvalues, with αi ≥ 0 for all i ∈ N0. Recall that (θi)i∈N0

form an orthonormal
basis of L2(Ω) by Proposition A.1c). Let (uγ , vγ) := (u(γ), v(γ)), ai := 〈vγ , θi〉
and bi := 〈uγ , θi〉 for i ∈ N0 and

vnγ :=

n∑
i=0

aiθi, unγ :=

n∑
i=0

biθi, n ∈ N.

Then we have that vnγ → vγ strongly in W 1,2(Ω) and unγ → uγ strongly in
L2(Ω). As stated in Remark 3.4 a) we have that kerB = {0} implies B′D(A) =
Rm. As a consequence, there exist q1, . . . , qm ∈ D(A) such that B′qk = ek for
k = 1, . . . ,m. By Proposition A.1 a), we further have qk ∈ C0,ν(Ω) for some
ν ∈ (0, 1).
Note that U :=

⋃
n∈N Un, where Un = span{θi}ni=0, satisfies U = W 1,2(Ω) with

the respective norm. Moreover, B′U = Rm. Since Rm is complete and finite
dimensional and B′ is linear and continuous it follows that B′U = Rm. By
the surjectivity of B′ we have that for all k ∈ {1, . . . ,m} there exist nk ∈ N
and qk ∈ Unk such that B′qk = ek. Thus, there exists n0 ∈ N with qk ∈ Un0

for all k = {1, . . . ,m}, hence the qk are a (finite) linear combination of the
eigenfunctions θi.
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Define q ∈W 1,2(Ω;Rm)∩C0,ν(Ω;Rm) by q(ζ) =
(
q1(ζ), . . . , qm(ζ)

)>
and q ·yref

by

(q · yref)(t, ζ) :=

m∑
k=1

qk(ζ)yref,k(t), ζ ∈ Ω, t ≥ 0.

We may define q · ẏref analogously. Note that we have (q ·yref) ∈ BC([0,∞)×Ω),
because

|(q · yref)(t, ζ)| ≤
m∑
k=1

‖qk‖∞ ‖yref,k‖∞

for all ζ ∈ Ω and t ≥ 0, where we write ‖ · ‖∞ for the supremum norm. We
define qk,j := 〈qk, θj〉 for k = 1, . . . ,m, j ∈ N0 and qnk :=

∑n
j=0 qk,j for n ∈ N0.

Similarly, qn := (qn1 , . . . , q
n
m)> for n ∈ N, so that qn → q strongly in W 1,2(Ω).

In fact, since qk ∈ Un0
for all k = 1, . . . ,m, it follows that qn = q for all n ≥ n0.

Since B′ : W r,2(Ω)→ Rm is continuous for some r ∈ [0, 1], it follows that for all
θ ∈W r,2(Ω) there exists Γr > 0 such that

‖B′θ‖Rm ≤ Γr‖θ‖W r,2 .

For n ∈ N0, let

κn :=
(
(n+ 1)Γr(1 + ‖vnγ − qn · yref(γ)‖2W r,2)

)−1
.

Note that for vγ ∈ W 1,2(Ω) it holds that κn > 0 for all n ∈ N0, (κn)n∈N0
is

bounded by Γ−1
r (and monotonically decreasing) and κn → 0 as n→∞ and by

construction
∀n ∈ N0 : κn‖B′(vnγ − qn · yref(γ))‖Rm < 1.

Consider a modification of ϕ induced by κn, namely

ϕn := ϕ+ κn, n ∈ N0.

It is clear that for each n ∈ N0 we have ϕn ∈ W 1,∞([γ,∞);R), the estimates
‖ϕn‖∞ ≤ ‖ϕ‖∞ + Γ−1

r and ‖ϕ̇n‖∞ = ‖ϕ̇‖∞ are independent of n, and ϕn →
ϕ ∈ Φγ uniformly. Moreover, inft>γ ϕn(t) > 0.
Now, fix n ∈ N0. For t ≥ γ, define

φ(e) :=
k0

1− ‖e‖2Rm
e, e ∈ Rm, ‖e‖Rm < 1,

ω0(t) := ϕ̇n(t)ϕn(t)−1,

F (t, z) := ϕn(t)f−1(t) + ϕn(t)f0(t) + f1(t)z + ϕn(t)−1f2(t)z2

− c3ϕn(t)−2z3, z ∈ R,

f−1(t) := Is,i(t) +

m∑
k=1

yref,k(t)Aqk,

f0(t) := −q · (ẏref(t) + c1yref(t)) + c2(q · yref(t))
2 − c3(q · yref(t))

3,

f1(t) := (q · yref(t))(2c2 − 3c3(q · yref(t))),

f2(t) := c2 − 3c3(q · yref(t)),

g(t) := c5(q · yref(t)).
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We have that f−1 ∈ L∞(γ,∞;L2(Ω)), since

‖f−1‖2,∞ := ess supt≥γ

(∫
Ω

f−1(ζ, t)2 dλ

)1/2

≤ ‖Is,i‖2,∞ +

m∑
k=1

‖yref,k‖∞ ‖Aqk‖L2 <∞.

Furthermore, we have that f0 ∈ L∞((γ,∞)× Ω), because

|f0(ζ, t)| ≤ (‖ẏref‖∞ + c1‖yref‖∞)

m∑
k=1

‖qk‖∞ + c2‖yref‖2∞

(
m∑
k=1

‖qk‖∞

)2

+ c3‖yref‖3∞

(
m∑
k=1

‖qk‖∞

)3

for a.a. (ζ, t) ∈ Ω× [γ,∞),

whence
‖f0‖∞,∞ := ess supt≥γ,ζ∈Ω |f0(ζ, t)| <∞.

Similarly ‖f1‖∞,∞ <∞, ‖f2‖∞,∞ <∞ and ‖g‖∞,∞ <∞.
Consider the system of 2(n+ 1) ODEs

µ̇j(t) = −αjµj(t)− (c1 − ω0(t))µj(t)− νj(t)−

〈
φ

(
n∑
i=0

B′θiµi(t)

)
,B′θj

〉
Rm

+

〈
F

(
t,

n∑
i=0

µi(t)θi

)
, θj

〉
,

ν̇j(t) = −(c4 − ω0(t))νj(t) + c5µj(t) + ϕn(t) 〈g(t), θj〉
(22)

defined on

D :=

{
(t, µ0, . . . , µn, ν0, . . . , νn) ∈ [γ,∞)× R2(n+1)

∣∣∣∣∣
∥∥∥∥∥
n∑
i=0

γiµi

∥∥∥∥∥
Rm

< 1

}
,

with initial value

µj(γ) = κn

(
aj −

m∑
k=1

qk,jyref,k(γ)

)
, νj(γ) = κnbj , j ∈ N0.

Since the functions on the right hand side of (22) are continuous, the set D
is relatively open in [γ,∞) × R2(n+1) and by construction the initial condition
satisfies (γ, µ0(γ), . . . , µn(γ), ν0(γ), . . . , νn(γ)) ∈ D it follows from ODE theory,
see e.g. [35, § 10, Thm. XX], that there exists a weakly differentiable solution

(µn, νn) = (µ0, . . . , µn, ν0, . . . , νn) : [γ, Tn)→ R2(n+1)
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such that Tn ∈ (γ,∞] is maximal. Furthermore, the closure of the graph
of (µn, νn) is not a compact subset of D.
With that, we may define

zn(t) :=

n∑
i=0

µi(t)θi, wn(t) :=

n∑
i=0

νi(t)θi, en(t) :=

n∑
i=0

B′θiµi(t), t ∈ [γ, Tn)

and note that

znγ := zn(γ) = κn(vnγ − qn · yref(γ)), wnγ := wn(γ) = κnu
n
γ .

From the orthonormality of the θi we have that

〈żn(t), θj〉 = −a(zn(t), θj)− (c1 − ω0(t)) 〈zn(t), θj〉 − 〈wn(t), θj〉
− 〈φ (B′zn(t)) ,B′θj〉Rm + 〈F (t, zn(t)) , θj〉 ,

〈ẇn(t), θj〉 = −(c4 − ω0(t)) 〈wn(t), θj〉+ c5 〈zn(t), θj〉+ ϕn 〈g(t), θj〉 .
(23)

Define now
vn(t) := ϕn(t)−1zn(t) + qn · yref(t),

un(t) := ϕn(t)−1wn(t),

µ̃i(t) := ϕn(t)−1µi(t) +

m∑
k=1

qk,iyref,k(t),

ν̃i(t) := ϕn(t)−1νi(t),

(24)

then vn(t) =
∑n
i=0 µ̃i(t)θi and un(t) =

∑n
i=0 ν̃i(t)θi. With this transformation

we obtain that (vn, un) satisfies, for all θ ∈ W 1,2(Ω), χ ∈ L2(Ω) and all t ∈
[γ, Tn) that

d
dt 〈vn(t), θ〉 =− a(vn(t), θ) + 〈p3(vn(t) + (q − qn) · yref(t))− un(t), θ〉

+

〈
Is,i(t)− (q − qn) · ẏref(t) +

m∑
k=1

yref,k(t)A(qk − qnk ), θ

〉
+
〈
Ins,e(t),B′θ

〉
Rm ,

d
dt 〈un(t), χ〉 = 〈c5(vn(t) + (q − qn) · yref(t))− c4un(t), χ〉 ,

Ins,e(t) =− k0

1− ϕn(t)2‖B′(vn(t)− qn · yref(t))‖2Rm
(B′(vn(t)− qn · yref(t))),

with (un(γ), vn(γ)) = (uγ , vγ). Since there exists some n0 ∈ N with qn = q for
all n ≥ n0, we have for all n ≥ n0, θ ∈W 1,2(Ω) and χ ∈ L2(Ω) that

d
dt 〈vn(t), θ〉 =− a(vn(t), θ) + 〈p3(vn(t))− un(t), θ〉

+ 〈Is,i(t), θ〉+
〈
Ins,e(t),B′θ

〉
Rm ,

d
dt 〈un(t), χ〉 = 〈c5vn(t)− c4un(t), χ〉 ,

Ins,e(t) =− k0

1− ϕn(t)2‖B′vn(t)− yref(t)‖2Rm
(B′vn(t)− yref(t)),

(25)

21



Step 2: We show boundedness of (zn, wn) in terms of ϕn.
Consider again the Lyapunov function (12) and observe that ‖zn(t)‖2 =

∑n
j=0 µj(t)

2

and ‖wn(t)‖2 =
∑n
j=0 νj(t)

2. We find that, for all t ∈ [γ, Tn),

d
dtV (zn(t), wn(t)) = c5

n∑
j=0

µj(t)µ̇j(t) +

n∑
j=0

νj(t)ν̇j(t)

= −c5
n∑
j=0

αjµj(t)
2 − c5(c1 − ω0(t))

n∑
j=0

µj(t)
2

− (c4 − ω0(t))

n∑
j=0

νj(t)
2 − c5 〈φ(en(t)), en(t)〉Rm

+ ϕn(t)

〈
g(t),

n∑
i=0

νi(t)θi

〉

+ c5

〈
F

(
t,

n∑
i=0

µi(t)θi

)
,

n∑
i=0

µi(t)θi

〉
,

hence, omitting the argument t for brevity in the following,

d
dtV (zn, wn) =− c5a(zn, zn)− c5(c1 − ω0)‖zn‖2 − (c4 − ω0)‖wn‖2

− c5
k0‖en‖2Rm

1− ‖en‖2Rm
+ c5 〈F (t, zn), zn〉+ ϕn 〈g, wn〉 .

(26)

Next we use some Young and Hölder inequalities to estimate the term

〈F (t, zn), zn〉 = ϕn(t) 〈f−1(t), zn〉︸ ︷︷ ︸
I−1

+ϕn(t) 〈f0(t), zn〉︸ ︷︷ ︸
I0

+ 〈f1(t)zn, zn〉︸ ︷︷ ︸
I1

+ ϕn(t)−1
〈
f2(t)z2

n, zn
〉︸ ︷︷ ︸

I2

−c3ϕn(t)−2
〈
z3
n, zn

〉︸ ︷︷ ︸
=‖zn‖4

L4

.

For the first term we derive, using Young’s inequality for products with p = 4/3
and q = 4, that

I−1 ≤

〈
21/2ϕ

3/2
n |Is,i|
c
1/4
3

,
c
1/4
3 |zn|

21/2ϕ
1/2
n

〉
+

m∑
k=1

〈
(4m)1/4ϕ

3/2
n ‖yref‖∞|Aqk|
c
1/4
3

,
c
1/4
3 |zn|

(4m)1/4ϕ
1/2
n

〉

≤
22/33ϕ2

n‖Is,i‖
4/3
2,∞|Ω|1/3

4c
1/3
3

+

m∑
k=1

3(4m)1/3ϕ2
n‖yref‖4/3∞ ‖Aqk‖4/3|Ω|1/3

4c
1/3
3

+
c3‖zn‖4L4

8ϕ2
n

and with the same choice we obtain for the second term

I0 ≤

〈
21/4ϕ

3/2
n ‖f0‖∞,∞
c
1/4
3

,
c
1/4
3 |zn|

21/4ϕ
1/2
n

〉
≤ 21/33ϕ2

n‖f0‖4/3∞,∞|Ω|
4c

1/3
3

+
c3‖zn‖4L4

8ϕ2
n

.
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Using p = q = 2 we find that the third term satisfies

I1 ≤
〈

2ϕn‖f1‖∞,∞√
c3

,

√
c3|zn|2

2ϕn

〉
≤

2ϕ2
n‖f1‖2∞,∞|Ω|

c3
+
c3‖zn‖4L4

8ϕ2
n

,

and finally, with p = 4 and q = 4/3,

I2 ≤
〈
ϕ−1
n ‖f2‖∞,∞, |zn|3

〉
=

〈
33/2ϕ

1/2
n ‖f2‖∞,∞
c
3/4
3

,

∣∣∣∣∣ c1/43 zn

ϕ
1/2
n

√
3

∣∣∣∣∣
3〉

≤
93ϕ2

n‖f2‖4∞,∞|Ω|
4c33

+
c3

12ϕ2
n

‖zn‖4L4 .

Summarizing, we have shown that

〈F (t, zn), zn〉 ≤ K0ϕ
2
n −

13c3
24ϕ2

n

‖zn‖4L4 ≤ K0ϕ
2
n −

c3
2ϕ2

n

‖zn‖4L4 ,

where

K0 :=
22/33‖Is,i‖4/32,∞|Ω|1/3

4c
1/3
3

+

m∑
k=1

3(4m)1/3‖yref‖4/3∞ ‖Aqk‖4/3|Ω|1/3

4c
1/3
3

+
21/33‖f0‖4/3∞,∞|Ω|

4c
1/3
3

+
2‖f1‖2∞,∞|Ω|

c3
+

93‖f2‖4∞,∞|Ω|
4c33

.

Finally, using Young’s inequality with p = q = 2, we estimate the last term
in (26) as follows

ϕn 〈g, wn〉 ≤
ϕ2
n‖g‖2∞,∞|Ω|

2c4
+
c4
2
‖wn‖2.

We have thus obtained the estimate

d
dtV (zn, wn) ≤− (σ − 2ω0)V (zn, wn)

− c5a(zn, zn)− c5
k0‖en‖2Rm

1− ‖en‖2Rm
− c3c5

2ϕ2
n

‖zn‖4L4 + ϕ2
nK1,

(27)

where

σ := 2 min{c1, c4}, K1 := c5K0 +
‖g‖2∞,∞|Ω|

2c4
.

In particular, we have the conservative estimate

d
dtV (zn, wn) ≤ −(σ − 2ω0)V (zn, wn) + ϕ2

nK1

on [γ, Tn), which implies that

V (zn(t), wn(t)) ≤ e−K(t,γ)V (zn(γ), wn(γ)) +

∫ t

γ

e−K(t,s)ϕn(s)2K1 ds ,
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where

K(t, s) =

∫ t

s

σ−2ω0(τ) dτ = σ(t−s)−2 lnϕn(t)+2 lnϕn(s), γ ≤ s ≤ t < Tn.

Therefore, invoking ϕn(γ) = κn, for all t ∈ [γ, Tn) we have

c5‖zn(t)‖2 + ‖wn(t)‖2 = 2V (zn(t), wn(t))

≤ 2e−σ(t−γ)ϕn(t)2

κ2
n

V (zn(γ), wn(γ)) +
2K1

σ
ϕn(t)2

= ϕn(t)2
(

(c5‖vnγ − qn · yref(γ)‖2 + ‖unγ‖2)e−σ(t−γ) + 2K1σ
−1
)

≤ ϕn(t)2
(
c5‖vγ − q · yref(γ)‖2 + ‖uγ‖2 + 2K1σ

−1
)
.

Thus there exist M,N > 0 which are independent of n and t such that

∀ t ∈ [γ, Tn) : ‖zn(t)‖2 ≤Mϕn(t)2 and ‖wn(t)‖2 ≤ Nϕn(t)2, (28)

and, as a consequence,

∀ t ∈ [γ, Tn) : ‖vn(t)− qn · yref(t)‖2 ≤M and ‖un(t)‖2 ≤ N. (29)

Step 3: We show Tn = ∞ and that en is uniformly bounded away from 1
on [γ,∞).
Step 3a: We derive some estimates for d

dt‖zn‖
2 and for an integral involving

‖zn‖4L4 . In a similar way in which we have derived (27) we can obtain the
estimate

1
2

d
dt‖zn‖

2 ≤− a(zn, zn)− (c1 − ω0)‖zn‖2 + ‖zn‖‖wn‖

− k0‖en‖2Rm
1− ‖en‖2Rm

− c3
2ϕ2

n

‖zn‖4L4 +K0ϕ
2
n.

(30)

Using (28) and −c1‖zn‖2 ≤ 0 leads to

1
2

d
dt‖zn‖

2 ≤− a(zn, zn)− k0‖en‖2Rm
1− ‖en‖2Rm

− c3
2ϕ2

n

‖zn‖4L4

+ ‖ϕ̇‖∞Mϕn + (K0 +
√
MN)ϕ2

n.

Hence,

1
2

d
dt‖zn‖

2 ≤− a(zn, zn)− k0‖en‖2Rm
1− ‖en‖2Rm

− c3
2ϕ2

n

‖zn‖4L4 +K1ϕn +K2ϕ
2
n (31)

on [γ, Tn), where K1 := M‖ϕ̇‖∞ and K2 := K0 +
√
MN . Observe that

c3
2
ϕ−3
n ‖zn‖4L4 ≤ −

ϕ−1
n

2
d
dt‖zn‖

2 +K3,
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where K3 := K1 +K2‖ϕ‖∞. Therefore,

c3
2

∫ t

γ

esϕn(s)−3‖zn(s)‖4L4 ds

≤ K3(et − eγ)− 1

2

∫ t

γ

esϕn(s)−1 d
dt‖zn(s)‖2 ds

= K3(et − eγ)− 1

2

(
etϕn(t)−1‖zn(t)‖2 −

‖znγ ‖2

κn
eγ

)

+
1

2

∫ t

γ

esϕn(s)−2(ϕn(s)− ϕ̇n(s))‖zn(s)‖2 ds

≤ et

2
(2K3 + (‖ϕ‖∞ + Γ−1

r + ‖ϕ̇‖∞)M) + κneγ(‖vγ‖2 + ‖q · yref(γ)‖2),

and hence there exist D0, D1 > 0 independent of n and t such that

∀ t ∈ [γ, Tn) :

∫ t

γ

esϕn(s)−3‖zn(s)‖4L4 ds ≤ D1et + κnD0. (32)

Step 3b: We derive an estimate for ‖żn‖2. Multiplying the first equation in (23)
by µ̇j and summing up over j ∈ {0, . . . , n} we obtain

‖żn‖2 =− 1

2
d
dta(zn, zn)− c1

2
d
dt‖zn‖

2 +
k0

2
d
dt ln(1− ‖en‖2Rm)

+ 〈ω0zn + F (t, zn)− wn, żn〉 .

We can estimate the last term above by

〈ω0zn, żn〉 ≤
7

2
‖ϕ̇‖2∞ϕ−2

n ‖zn‖2 +
1

14
‖żn‖2

(28)

≤ 7

2
‖ϕ̇‖2∞M +

1

14
‖żn‖2,

〈−wn, żn〉 ≤
7

2
‖wn‖2 +

1

14
‖żn‖2,

〈F (t, zn) , żn〉 ≤
7

2
ϕ2
n

(
m

m∑
k=1

‖yref,k‖2∞‖Aqk‖2 + ‖Is,i‖22,∞ + ‖f0‖2∞,∞|Ω|

)

+
7

2
‖f1‖2∞,∞‖zn‖2 +

7

2
ϕ−2
n ‖f2‖2∞,∞‖zn‖4L4

+
5

14
‖żn‖2 −

c3
4ϕ2

n

d
dt‖zn‖

4
L4 .

Inserting these inequalities, substracting 1
2‖żn‖

2 and then multiplying by 2 gives

‖żn‖2 =− d
dta(zn, zn)− c1 d

dt‖zn‖
2 + k0

d
dt ln(1− ‖en‖2Rm)− c3

2ϕ2
n

d
dt‖zn‖

4
L4

+ 7ϕ2
n

(
m

m∑
k=1

‖yref,k‖2∞‖Aqk‖2 + ‖Is,i‖22,∞+ ‖f0‖2∞,∞|Ω|+ ‖f1‖2∞,∞M+N

)
+ 7‖ϕ̇‖2∞M + 7ϕ−2

n ‖f2‖2∞,∞‖zn‖4L4 .

25



Now we add and subtract 1
2

d
dt‖zn‖

2, thus we obtain

‖żn‖2 ≤− d
dta(zn, zn)−

(
c1 +

1

2

)
d
dt‖zn‖

2 + k0
d
dt ln(1− ‖en‖2Rm)− c3

2ϕ2
n

d
dt‖zn‖

4
L4

+ 7(‖ϕ‖∞ + Γ−1
r )2

(
m

m∑
k=1

‖yref,k‖2∞‖Aqk‖2 + ‖Is,i‖22,∞ + ‖f0‖2∞,∞|Ω|

+ ‖f1‖2∞,∞M

)
+ 7(N(‖ϕ‖∞ + Γ−1

r )2 + ‖ϕ̇‖2∞M) + 7ϕ−2
n ‖f2‖2∞,∞‖zn‖4L4

+
1

2
d
dt‖zn‖

2.

By the product rule we have

− c3
2ϕ2

n

d
dt‖zn‖

4
L4 = − d

dt

(
c3

2ϕ2
n

‖zn‖4L4

)
− c3ϕ−3

n ϕ̇n‖zn‖4L4 ,

thus we find that

‖żn‖2 + d
dta(zn, zn)− k0

d
dt ln(1− ‖en‖2Rm) + d

dt

(
c3

2ϕ2
n

‖zn‖4L4

)
≤−

(
c1 +

1

2

)
d
dt‖zn‖

2 + E1 + E2ϕ
−3
n ‖zn‖4L4 +

1

2
d
dt‖zn‖

2,

(33)

where

E1 := 7(‖ϕ‖∞ + Γ−1
r )2

(
m

m∑
k=1

‖yref,k‖2∞‖Aqk‖2 + ‖Is,i‖22,∞ + ‖f0‖2∞,∞|Ω|

+ ‖f1‖2∞,∞M

)
+ 7
(
N(‖ϕ‖∞ + Γ−1

r )2 + ‖ϕ̇‖2∞M
)
,

E2 := 7‖f2‖2∞,∞(‖ϕ‖∞ + Γ−1
r ) + c3‖ϕ̇‖∞

are independent of n and t.
Step 3c: We show uniform boundedness of en. Using (31) in (33) we obtain

‖żn‖2 + ρ̇n ≤−
(
c1 +

1

2

)
d
dt‖zn‖

2 + E1 + E2ϕ
−3
n ‖zn‖4L4

− a(zn, zn)− k0‖en‖2Rm
1− ‖en‖2Rm

− c3
2ϕ2

n

‖zn‖4L4 +K1ϕn +K2ϕ
2
n

=−
(
c1 +

1

2

)
d
dt‖zn‖

2 + E2ϕ
−3
n ‖zn‖4L4

− a(zn, zn)− k0

1− ‖en‖2Rm
− c3

2ϕ2
n

‖zn‖4L4 + Λ,
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where

ρn := a(zn, zn)− k0 ln(1− ‖en‖2Rm) +
c3

2ϕ2
n

‖zn‖4L4 ,

Λ := E1 +K1(‖ϕ‖∞ + Γ−1
r ) +K2(‖ϕ‖∞ + Γ−1

r )2 + k0,

and we have used the equality

‖en‖2Rm
1− ‖en‖2Rm

= −1 +
1

1− ‖en‖2Rm
.

Adding and subtracting k0 ln(1− ‖en‖2Rm) leads to

‖żn‖2 + ρ̇n ≤− ρn −
(
c1 +

1

2

)
d
dt‖zn‖

2 + E2ϕ
−3
n ‖zn‖4L4

− k0

(
1

1− ‖en‖2Rm
+ ln(1− ‖en‖2Rm)

)
+ Λ

≤− ρn −
(
c1 +

1

2

)
d
dt‖zn‖

2 + E2ϕ
−3
n ‖zn‖4L4 + Λ, (34)

where for the last inequality we have used that

∀ p ∈ (−1, 1) :
1

1− p2
≥ ln

(
1

1− p2

)
= − ln(1− p2).

We may now use the integrating factor et to obtain

d
dt

(
etρn

)
= et(ρn+ρ̇n) ≤ −et

(
c1 +

1

2

)
d
dt‖zn‖

2+E2etϕ−3
n ‖zn‖4L4+Λet−et‖żn‖2︸ ︷︷ ︸

≤0

.

Integrating and using (32) yields that for all t ∈ [γ, Tn) we have

etρn(t)− ρn(γ)eγ ≤ (E2D1 + Λ)et + κnE2D0 −
∫ t

γ

es
(
c1 +

1

2

)
d
dt‖zn(s)‖2 ds

≤ (E2D1 + Λ)et + κnE2D0 +

(
c1 +

1

2

)
‖znγ ‖2eγ

+

(
c1 +

1

2

)∫ t

γ

es‖zn(s)‖2 ds

(28)

≤ (E2D1 + Λ)et + κnE2D0 +

(
c1 +

1

2

)
κ2
neγ(‖vγ − q · yref(γ)‖2)

+

(
c1 +

1

2

)
(‖ϕ‖∞ + Γ−1

r )2Met.

Thus, there exit Ξ1,Ξ2,Ξ3 > 0 independent of n and t, such that

ρn(t) ≤ ρn(γ)e−(t−γ) + Ξ1 + κn(Ξ2 + κnΞ3)e−(t−γ).

27



Invoking the definition of ρn and that e−(t−γ) ≤ 1 for t ≥ γ we find that

∀ t ∈ [γ, Tn) : ρn(t) ≤ ρ0
n + Ξ1 + κnΞ2 + κ2

nΞ3, (35)

where

ρ0
n := κ2

na(vnγ−qn · yref(γ), vnγ−qn · yref(γ))−k0 ln(1−κ2
n‖B′(vnγ−qn · yref(γ))‖2Rm)

+ κ2
n‖vnγ − qn · yref(γ)‖4L4 = ρn(γ).

Note that by construction of κn and the Sobolev Embedding Theorem, (ρ0
n)n∈N

is bounded, ρ0
n → 0 as n→∞, so that ρ0

n can be bounded independently of n.
Again using the definition of ρn and (35) we find that

k0 ln

(
1

1− ‖en‖2Rm

)
= ρn − a(zn, zn)− c3

2ϕ2
n

‖zn‖4L4 ≤ ρ0
n + Ξ1 + κnΞ2 + κ2

nΞ3,

and hence

1

1− ‖en‖2Rm
≤ exp

(
1

k0

(
ρ0
n + Ξ1 + κnΞ2 + κ2

nΞ3

))
=: ε(n).

We may thus conclude that

∀ t ∈ [γ, Tn) : ‖en(t)‖2Rm ≤ 1− ε(n), (36)

or, equivalently,

∀ t ∈ [γ, Tn) : ϕn(t)2‖B′(vn(t)− qn · yref(t))‖2Rm ≤ 1− ε(n). (37)

Moreover, from (35), the definition of ρ, k0 ln(1 − ‖en‖2Rm) ≤ 0 and Assump-
tion 2.1 we have that

δ‖∇zn‖2 +
c3

2ϕ2
n

‖zn‖4L4 ≤ ρ0
n + Ξ1 + κnΞ2 + κ2

nΞ3.

Reversing the change of variables leads to

∀ t ∈ [γ, Tn) : δϕn(t)2‖∇(vn(t)− qn · yref(t))‖2 + ϕn(t)2‖vn(t)− qn · yref(t)‖4L4

≤ ρ0
n + Ξ1 + κnΞ2 + κ2

nΞ3,
(38)

which implies that for all t ∈ [γ, Tn) we have vn(t) ∈W 1,2(Ω).
Step 3d: We show that Tn = ∞. Assuming Tn < ∞ it follows from (36) that
the graph of the solution (µn, νn) from Step 2 would be a compact subset of D,
a contradiction. Therefore, we have Tn =∞.

Step 4: We show convergence of the approximate solution, uniqueness and
regularity of the solution in [γ,∞)× Ω.
Step 4a: we prove some inequalities for later use. From (35) we have that, on
[γ,∞),

ϕ−2
n ‖zn‖4L4 ≤ ρ0

n + Ξ1 + κnΞ2 + κ2
nΞ3.
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Using a similar procedure as for the derivation of (32) we may obtain the esti-
mate

∀ t ≥ 0 :

∫ t

γ

ϕn(s)−3‖zn(s)‖4L4 ds ≤ κnd0 + d1t (39)

for d0, d1 > 0 independent of n and t. Further, we can integrate (34) on the
interval [γ, t] to obtain, invoking ρn(t) ≥ 0 and (39),∫ t

γ

‖żn(s)‖2 ds ≤ ρ0
n +

(
c1 +

1

2

)
κ2
n(‖vγ − q · yref(γ)‖2) + E2(κnd0 + d1t) + Λt

for all t ≥ γ. Hence, there exist S0, S1, S2 > 0 independent of n and t such that

∀ t ≥ γ :

∫ t

γ

‖żn(s)‖2 ds ≤ ρ0
n + S0κn + S1κ

2
n + S2t. (40)

This implies existence of S3, S4 > 0 such that

∀ t ≥ γ :

∫ t

γ

∥∥ d
dt (ϕnvn)

∥∥2
ds ≤ ρ0

n + S0κn + S1κ
2
n + S3t+ S4. (41)

In order to improve (39), we observe that from (30) it follows

1
2

d
dt‖zn‖

2 ≤− a(zn, zn)− (c1 − ω0)‖zn‖2 + ‖zn‖‖wn‖

− k0‖en‖2Rm
1− ‖en‖2Rm

− c3
2ϕ2

n

‖zn‖4L4 +K0ϕ
2
n

≤ ω0‖zn‖2 −
c3

2ϕ2
n

‖zn‖4L4 +K2ϕ
2
n − a(zn, zn)− k0‖en‖2Rm

1− ‖en‖2Rm
,

which gives

d
dtϕ
−2
n ‖zn‖2 ≤ 2K2 − c3ϕ−4

n ‖zn‖4L4 − 2ϕ−2
n a(zn, zn)− 2k0ϕ

−2
n ‖en‖2Rm

1− ‖en‖2Rm
.

This implies that for all t ≥ γ we have∫ t

γ

c3ϕn(s)−4‖zn(s)‖4L4 + 2ϕn(s)−2a(zn(s), zn(s)) +
2k0ϕn(s)−2‖en(s)‖2Rm

1− ‖en(s)‖2Rm
ds

≤ 2K2t+ ‖vγ − q · yref(γ)‖2,
(42)

which is bounded independently of n. This shows that for all t ≥ γ we have

c3

∫ t

γ

‖vn(s)− qn · yref(s)‖4L4 ds +

∫ t

γ

2a(vn(s)− qn · yref(s), vn(s)− qn · yref(s)) ds

+

∫ t

γ

2k0‖B′(vn(s)− qn · yref(s))‖2Rm
1− ϕn(s)2‖B′(vn(s)− qn · yref(s))‖2Rm

ds ≤ 2K2t+ ‖vγ − q · yref(γ)‖2.

(43)
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In order to prove that ‖ẇn‖2 is bounded independently of n and t, a last calcu-
lation is required. Multiply the second equation in (23) by ν̇j and sum over j
to obtain

‖ẇn‖2 = −(c4 − ω0) 〈wn, ẇn〉+ c5 〈zn, ẇn〉+ ϕn 〈g, ẇn〉 .

Using (ω0 − c4)wn = (ϕ̇n − c4ϕn)ϕ−1
n wn and the inequalities

−(c4 − ω0) 〈wn, ẇn〉 ≤
3

2
‖ϕ̇− c4ϕ‖2∞ϕ−2

n ‖wn‖2 +
‖ẇn‖2

6

≤ 3

2
(‖ϕ̇‖∞ + c4(‖ϕ‖∞ + Γ−1

r ))2N +
‖ẇn‖2

6
,

c5 〈zn, ẇn〉 ≤
3c25
2
‖zn‖2 +

1

6
‖ẇn‖2

≤ 3c25M

2
(‖ϕ‖∞ + Γ−1

r )2 +
1

6
‖ẇn‖2,

ϕn 〈g, ẇn〉 ≤
3

2
(‖ϕ‖∞ + Γ−1

r )2‖g‖2∞,∞|Ω|+
1

6
‖ẇn‖2,

it follows that for all t ≥ γ we have

‖ẇn(t)‖2 ≤3‖(‖ϕ̇‖∞ + c4(‖ϕ‖∞ + Γ−1
r ))2N

+ 3c25M(‖ϕ‖∞ + Γ−1
r )2 + 3(‖ϕ‖∞ + Γ−1

r )2‖g‖2∞,∞|Ω|,
(44)

which is bounded independently of n and t. Multiplying the second equation
in (23) by ϕ−1

n and θi and summing up over i ∈ {0, . . . , n} leads to

d
dt (ϕ

−1
n wn) = −ϕ−2ϕ̇nwn + ϕ−1

n ẇn = −c4ϕ−1
n wn + c5ϕ

−1
n zn + gn,

where

gn :=

n∑
i=0

〈g, θi〉 θi.

Taking the norm of the latter gives∥∥ d
dt (ϕ

−1
n wn)

∥∥ ≤ c4ϕ−1
n ‖wn‖+ c5ϕ

−1
n ‖zn‖+ ‖gn‖

≤ c4N + c5M + ‖g‖∞,∞,

thus
∀ t ≥ γ : ‖u̇n(t)‖ ≤ c4N + c5M + ‖g‖∞,∞. (45)

Step 4b: We show that (vn, un) converges weakly. Let T > γ be given. Using
a similar argument as in Section 4.1, we have that vn ∈ L2(γ, T ;W 1,2(Ω))
and v̇n ∈ L2(γ, T ;W 1,2(Ω)′), since (43) together with (37) implies that Ins,e ∈
L2(γ, T ;Rm) and vn ∈ L2(γ, T ;W 1,2(Ω)).
Furthermore, analogously to Section 4.1, we have that there exist subsequences
such that

un → u ∈W 1,2(γ, T ;L2(Ω)) weakly,

vn → v ∈ L2(γ, T ;W 1,2(Ω)) weakly,

v̇n → v̇ ∈ L2(γ, T ; (W 1,2(Ω))′) weakly,
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so that u, v ∈ C([γ, T ];L2(Ω)). Also v2
n → v2 weakly in L2((γ, T ) × Ω) and

v3
n → v3 weakly in L4/3((γ, T )× Ω).

We may infer further properties of u and v. By (29), (38), (41) & (45) we have
that un, u̇n lie in a bounded subset of L∞(γ,∞;L2(Ω)) and that vn lie in a
bounded subset of L∞(γ,∞;L2(Ω)). Moreover, d

dt (ϕnvn) ∈ L2
loc(γ,∞;L2(Ω)).

Then, using Lemma C.6, we find a subsequence such that

un → u ∈ L∞(γ, T ;L2(Ω)) weak?,

u̇n → u̇ ∈ L∞(γ, T ;L2(Ω)) weak?,

vn → v ∈ L∞(γ, T ;L2(Ω)) weak?,

ϕnvn → ϕv ∈ L∞(γ, T ;W 1,2(Ω)) weak?,

v̇n → v̇ ∈ L2(γ, T ;W 1,2(Ω)′) weakly,

ϕnv̇n → ϕv̇ ∈ L2(γ, T ;L2(Ω)) weakly,

since ϕn → ϕ in BC([γ, T ];R). Moreover, by inft>γ+δ ϕ(t) > 0, we also have
that v ∈ L∞(γ + δ, T ;W 1,2(Ω)) and v̇ ∈ L2(γ + δ, T ;L2(Ω)) for all δ > 0.
Further, κn, ρ

0
n → 0 and

ε(n) →
n→∞

ε0 := exp
(
−k−1

0 Ξ1

)
.

Thus, by (29), (37), (38) & (43) we have v ∈ L4((γ, T )× Ω) and for almost all
t ∈ [γ, T ) the following estimates hold:

‖v(t)− q · yref(t)‖ ≤
√
M,

‖u(t)‖ ≤
√
N,

ϕ(t)2‖B′v(t)− yref(t)‖2Rm ≤ 1− ε0,

δϕ(t)2‖∇(v(t)− q · yref(t))‖2 + ϕ(t)2‖v(t)− q · yref(t)‖4L4 ≤ Ξ1,∫ t

γ

‖v(s)− q · yref(s)‖4L4 ds ≤ 2K2t+ ‖vγ − q · yref(γ)‖2.

(46)

Moreover, as in Section 4.1, vn → v strongly in L2(γ, T ;L2(Ω)) and u, v ∈
C([γ, T );L2(Ω)) with (u(γ), v(γ)) = (uγ , vγ).
Hence, for χ ∈ L2(Ω) and θ ∈ W 1,2(Ω) we have that (un, vn) satisfy the inte-
grated version of (25), thus we obtain that for t ∈ (γ, T )

〈v(t), θ〉 = 〈vγ , θ〉+

∫ t

γ

−a(v(s), θ) + 〈p3(v(s))− u(s) + Is,i(s), θ〉 ds ,

+

∫ T

γ

〈Is,e(s),B′θ〉Rm ds ,

〈u(t), χ〉 = 〈uγ , χ〉+

∫ t

γ

〈c5v(s)− c4u(s), χ〉 ds ,

Is,e(t) = − k0

1− ϕ(t)2‖B′v(t)− yref(t)‖2Rm
(B′v(t)− yref(t))
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by bounded convergence [38, Thm. II.4.1]. Hence, (u, v) is a solution of (7) in
(γ, T ). Moreover, (20) also holds in W 1,2(Ω)′ for t ≥ γ, that is

v̇(t) = Av(t) + p3(v(t)) + BIs,e(t)− u(t) + Is,i(t). (47)

Step 5: We show uniqueness of the solution on [0,∞).160

Using the same arguments as in Step 1e of Section 4.1 together with v, u ∈
L4((γ, T ) × Ω), it can be shown that the solution (v, u) of (7) is unique on
(γ, T ) for any T > 0. Combining this with uniqueness on [0, γ] we obtain a
unique solution on [0,∞).

Step 6: We show the regularity properties of the solution.
To this end, note that for all δ > 0 we have that

v ∈ L2
loc(γ,∞;W 1,2(Ω)) ∩ L∞(γ + δ,∞;W 1,2(Ω)),

so that Ir := Is,i + c2v
2 − c3v3 − u ∈ L2

loc(γ,∞;L2(Ω)) ∩ L∞(γ + δ,∞;L2(Ω)),
and the application of Proposition C.5 yields that v ∈ BC([γ,∞);L2(Ω)) ∩
BUC((γ,∞);W 1,2(Ω)). By the uniform continuity of v and the completeness
of W 1,2(Ω), v has a limit at t = γ, see for instance [39, Thm. II.13.D]. Thus,
v ∈ L∞(γ,∞;W 1,2(Ω)). From Section 4.1 and the latter we have that v ∈
L2

loc(0,∞;W 1,2(Ω)) ∩ L∞(δ,∞;W 1,2(Ω)) for all δ > 0, so we have

Is,e ∈ L2
loc(0,∞;Rm) ∩ L∞(δ,∞;Rm),

v ∈ L2
loc(0,∞;W 1,2(Ω)) ∩ L∞(δ,∞;W 1,2(Ω))

∩BC([0,∞);L2(Ω)) ∩BUC([δ,∞);W 1,2(Ω)),

so that Ir := Is,i + c2v
2 − c3v3 − u ∈ L2

loc(0,∞;L2(Ω)) ∩ L∞(δ,∞;L2(Ω)).
Recall that by assumption we have B ∈ L(Rm,W r,2(Ω)′) for some r ∈ [0, 1].
Applying Proposition C.5 we have that for all δ > 0 the unique solution of (47)
satisfies

if r = 0: ∀λ ∈ (0, 1) : v ∈ C0,λ([δ,∞);L2(Ω));

if r ∈ (0, 1): v ∈ C0,1−r/2([δ,∞);L2(Ω));

if r = 1: v ∈ C0,1/2([δ,∞);L2(Ω)).

(48)

Since u, v ∈ BC([0,∞);L2(Ω)) and u̇ = c4v−c5u, we also have u̇ ∈ BC([0,∞);L2(Ω)).165

Now, from (48) and B′ ∈ L(W r,2(Ω),Rm) for r ∈ [0, 1] we obtain that

• for r = 0 and λ ∈ (0, 1): y = B′v ∈ C0,λ([δ,∞);Rm);

• for r ∈ (0, 1): y = B′v ∈ C0,1−r([δ,∞);Rm);

• for r = 1: y = B′v ∈ BUC([δ,∞);Rm).

Further, from (46) we have

∀ t ≥ δ : ϕ(t)2‖B′v(t)− yref(t)‖2Rm ≤ 1− ε0,

hence Is,e ∈ L∞(δ,∞;Rm) and Is,e has the same regularity properties as y,170

since we have that ϕ ∈ Φγ and yref ∈ W 1,∞(0,∞;Rm). Therefore, we have
proved statements (i)–(iii) in Theorem 3.3 as well as a) and b).
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It remains to show c), for which we additionally require that B ∈ L(Rm,W 1,2(Ω)).
Then there exist b1, . . . , bm ∈ W 1,2(Ω) such that (B′x)i = 〈x, bi〉 for all i =
1, . . . ,m and x ∈ L2(Ω). Using the bi in the weak formulation for i = 1, . . . ,m,
we have

d
dt 〈v(t), bi〉 = −a(v(t), bi) + 〈p3(v(t))− u(t) + Is,i(t), bi〉+ 〈Is,e(t),B′bi〉Rm .

Since (B′v(t))i = 〈v(t), bi〉, this leads to

d
dt (B

′v(t)i) = −a(v(t), bi) + 〈p3(v(t))− u(t) + Is,i(t), bi〉+ 〈Is,e(t),B′bi〉Rm .

Taking the absolute value and using the Cauchy-Schwarz inequality yields∣∣ d
dt (B

′v(t))i
∣∣ ≤ ‖D‖L∞‖v(t)‖W 1,2‖bi‖W 1,2 + ‖p3(v(t))− u(t) + Is,i(t)‖L2‖bi‖L2

+ ‖Is,e(t)‖Rm‖B′bi‖Rm ,

and therefore

∀ i = 1, . . . ,m ∀ δ >:
∥∥ d

dt (B
′v)i
∥∥
L∞(δ,∞;Rm)

<∞,

by which y = B′v ∈ W 1,∞(δ,∞;Rm) as well as Is,e ∈ W 1,∞(δ,∞;Rm). This
completes the proof of the theorem. �

5. A numerical example175

In this section, we illustrate the practical applicability of the funnel controller
by means of a numerical example. The setup chosen here is a standard test
example for termination of reentry waves and has been considered similarly
e.g. in [40, 21]. All simulations are generated on an AMD Ryzen 7 1800X @
3.68 GHz x 16, 64 GB RAM, MATLAB R© Version 9.2.0.538062 (R2017a). The
solutions of the ODE systems are obtained by the MATLAB R© routine ode23.
The parameters for the FitzHugh-Nagumo model (3) used here are as follows:

Ω = (0, 1)2, D =

[
0.015 0

0 0.015

]
,


c1
c2
c3
c4
c5

 ≈


1.614
0.1403
0.012

0.00015
0.015

 .

The spatially discrete system of ODEs corresponds to a finite element discretiza-
tion with piecewise linear finite elements on a uniform 64 × 64 mesh. For the
control action, we assume that B ∈ L(R4,W 1,2(Ω)′), where the Neumann con-
trol operator is defined by

B′z =
(∫

Γ1
z(ξ) dσ,

∫
Γ2
z(ξ) dσ,

∫
Γ3
z(ξ) dσ,

∫
Γ4
z(ξ) dσ

)>
,

Γ1 = {1} × [0, 1], Γ2 = [0, 1]× {1}, Γ3 = {0} × [0, 1], Γ = [0, 1]× {0}.
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Figure 2: Snapshots of reentry waves for t = 100 (left) and t = 200 (right).

The purpose of the numerical example is to model a typical defibrillation pro-
cess as a tracking problem as discussed above. In this context, system (3) is
initialized with (v(0), u(0)) = (v∗0 , u

∗
0) and Is,i = 0 = Is,e, where (v∗0 , u

∗
0) is

an arbitrary snapshot of a reentry wave. The resulting reentry phenomena are
shown in Fig. 2 and resemble a dysfunctional heart rhythm which impedes the
intracellular stimulation current Is,i. The objective is to design a stimulation
current Is,e such that the dynamics return to a natural heart rhythm modeled
by a reference trajectory yref. The trajectory yref = B′vref corresponds to a
solution (vref, uref) of (3) with (vref(0), uref(0)) = (0, 0), Is,e = 0 and

Is,i(t) = 101 · w(ξ)(χ[49,51](t) + χ[299,301](t)),

where the excitation domain of the intracellular stimulation current Is,i is de-
scribed by

w(ξ) =

{
1, if (ξ1 − 1

2 )2 + (ξ2 − 1
2 )2 ≤ 0.0225,

0, otherwise.

The smoothness of the signal is guaranteed by convoluting the original signal
with a triangular function. The function ϕ characterizing the performance fun-
nel (see Fig. 3) is chosen as

ϕ(t) =

{
0, t ∈ [0, 0.05],

tanh( t
100 ), t > 0.05.

Fig. 4 shows the results of the closed-loop system for (v(0), u(0)) = (v∗0 , u
∗
0)

and the control law

Is,e(t) = − 0.75

1− ϕ(t)2‖B′v(t)− yref(t)‖2Rm
(B′v(t)− yref(t)),

which is visualized in Fig. 5. Let us note that the sudden changes in the feedback
law are due to the jump discontinuities of the intracellular stimulation current
Is,i used for simulating a regular heart beat.
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Figure 3: Error dynamics and funnel boundary.

We see from Fig. 4 that the controlled system tracks the desired reference
signal with the prescribed performance. Also note that the performance con-180

straints are not active on the interval [0, 0.05]. Fig. 5 further shows that the
tracking is achieved with a comparably small control effort.

Appendices
A. Neumann elliptic operators

We collect some further facts on Neumann elliptic operators as introduced185

in Proposition 2.2.

Proposition A.1. If Assumption 2.1 holds, then the Neumann elliptic operator
A on Ω associated to D has the following properties:

a) there exists ν ∈ (0, 1) such that D(A) ⊂ C0,ν(Ω);

b) A has compact resolvent;190

c) there exists a real-valued and monotonically increasing sequence (αj)j∈N0

such that
(i) α0 = 0, α1 > 0 and limj→∞ αj =∞, and
(ii) the spectrum of A reads σ(A) = { −αj | j ∈ N0 }

and an orthonormal basis (θj)j∈N0
of L2(Ω), such that

∀x ∈ D(A) : Ax = −
∞∑
j=0

αj 〈x, θj〉 θj , (49)

and the domain of A reads

D(A) =


∞∑
j=0

λjθj

∣∣∣∣∣∣ (λj)j∈N0
with

∞∑
j=1

α2
j |λj |2 <∞

 . (50)
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Figure 4: Reference signals and outputs of the funnel controlled system.

Proof. Statement a) follows from [41, Prop. 3.6].
To prove b), we first use that the ellipticity condition (1) implies

δ‖z‖+ ‖Az‖ ≥ ‖z‖W 1,2 . (51)

Since ∂Ω is Lipschitz, Ω has the cone property [23, p. 66], and we can apply
the Rellich-Kondrachov Theorem [23, Thm. 6.3], which states that W 1,2(Ω) is
compactly embedded in L2(Ω). Combining this with (51), we obtain that A has
compact resolvent.
We show c). Since A has compact resolvent and is self-adjoint by Proposi-
tion 2.2, we obtain from [36, Props. 3.2.9 & 3.2.12] that there exists a real
valued sequence (αj)j∈N0 with limj→∞ |αj | = ∞ and (49), and the domain of
A has the representation (50). Further taking into account that

∀ z ∈ D(A) : 〈z,Az〉 = −a(z, z) ≤ 0,

we obtain that αj ≥ 0 for all j ∈ N0. Consequently, it is no loss of generality
to assume that (αj)j∈N0

is monotonically increasing. It remains to prove that
α0 = 0 and α1 > 0: On the one hand, we have that the constant function
1Ω ∈ L2(Ω) satisfies A1Ω = 0, since

∀ z ∈W 1,2(Ω) : 〈z,A1Ω〉 = −a(z, 1Ω) = −〈∇z1, D∇1Ω〉 = 0.
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Figure 5: Funnel control laws.

On the other hand, if z ∈ kerA, then

0 = 〈z,Az〉 = −a(z, z) = −〈∇z,D∇z〉 ,

and the pointwise positive definiteness of D implies ∇z = 0, whence z is a195

constant function. This gives dim kerA = 1, by which α0 = 0 and α1 > 0.

B. Interpolation spaces

We collect some results on interpolation spaces, which are necessary for the
proof of Theorem 3.3. For a (more) general interpolation theory, we refer to
[42].200

Definition B.1. Let X,Y be Hilbert spaces and let α ∈ [0, 1]. Consider the
function

K : (0,∞)× (X + Y )→ R, (t, x) 7→ inf
a∈X, b∈Y,
x=a+b

‖a‖X + t‖b‖Y .

The interpolation space (X,Y )α is defined by

(X,Y )α :=
{
x ∈ X + Y

∣∣∣ (t 7→ t−αK(t, x)
)
∈ L2(0,∞)

}
,
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and it is a Hilbert space with the norm

‖x‖(X,Y )α = ‖t 7→ t−αK(t, x)‖L2 .

Note that interpolation can be performed in a more general fashion for
Banach spaces X, Y . More precise, we may utilize the Lp-norm of the map
t 7→ t−αK(t, x) for some p ∈ [1,∞) instead of the L2-norm in the above defini-
tion. However, this does not lead to Hilbert spaces (X,Y )α, not even when X
and Y are Hilbert spaces.205

For a self-adjoint operator A : D(A) ⊂ X → X, X a Hilbert space and
n ∈ N, we may define the space Xn := D(An) by X0 = X and Xn+1 :=
{ x ∈ Xn | Ax ∈ Xn }. This is a Hilbert space with norm ‖z‖Xn+1

= ‖ − λz +
Az‖Xn , where λ ∈ C is in the resolvent set of A. Likewise, we introduce X−n
as the completion of X with respect to the norm ‖z‖X−n = ‖(−λI + A)−nz‖.210

Note that X−n is the dual of Xn with respect to the pivot space X, cf. [36,
Sec. 2.10]. Using interpolation theory, we may further introduce the spaces Xα

for any α ∈ R as follows.

Definition B.2. Let α ∈ R, X a Hilbert space and A : D(A) ⊂ X → X be
self-adjoint. Further, let n ∈ Z be such that α ∈ [n, n + 1). The space Xα is
defined as the interpolation space

Xα = (Xn, Xn+1)α−n.

The Reiteration Theorem, see [42, Cor. 1.24], together with [42, Prop. 3.8]
yields that for all α ∈ [0, 1] and α1, α2 ∈ R with α1 ≤ α2 we have that

(Xα1
, Xα2

)α = Xα1+α(α2−α1). (52)

Next we characterize interpolation spaces associated with the Neumann elliptic
operator A.215

Proposition B.3. Let Assumption 2.1 hold and A be the Neumann elliptic
operator on Ω associated to D. Further let Xα, α ∈ R, be the corresponding
interpolation spaces with, in particular, X = X0 = L2(Ω). Then

Xr/2 = W r,2(Ω) for all r ∈ [0, 1].

Proof. The equation X1/2 = W 1,2(Ω) is an immediate consequence of Kato’s
Second Representation Theorem [26, Sec. VI.2, Thm. 2.23]. For general r ∈ [0, 1]
equation (52) implies

Xr/2 = (X0, X1/2)r.

Now using that X0 = L2(Ω) by definition and, as already stated, X1/2 =
W 1,2(Ω), it follows from [30, Thm. 1.35] that

(L2(Ω),W 1,2(Ω))r = W r,2(Ω),

and thus Xr/2 = W r,2(Ω).

38



Remark B.4. In terms of the spectral decomposition (49), the space Xα has
the representation

Xα =


∞∑
j=0

λjθj

∣∣∣∣∣∣ (λj)j∈N0
with

∞∑
j=1

α2α
j |λj |2 <∞

 . (53)

This follows from a combination of [42, Thm. 4.33] with [42, Thm. 4.36].

C. Abstract Cauchy problems and regularity

We consider mild solutions of certain abstract Cauchy problems and the
concept of admissible control operators. This notion is well-known in infinite-220

dimensional linear systems theory with unbounded control and observation op-
erators and we refer to [36] for further details.

Let X be a real Hilbert space and recall that a semigroup (Tt)t≥0 on X is
a L(X,X)-valued map satisfying T0 = IX and Tt+s = TtTs, s, t ≥ 0, where
IX denotes the identity operator, and t 7→ Ttx is continuous for every x ∈ X.225

Semigroups are characterized by their generator A, which is a, not necessarily
bounded, operator on X. If A : D(A) ⊂ X → X is self-adjoint with 〈x,Ax〉 ≤ 0
for all x ∈ D(A), then it generates a contractive, analytic semigroup (Tt)t≥0

on X, cf. [43, Thm. 4.2]. Furthermore, if additionally there exists ω0 > 0
such that 〈x,Ax〉 ≤ −ω0‖x‖2 for all x ∈ D(A), then the semigroup (Tt)t≥0230

generated by A satisfies ‖Tt‖ ≤ e−ω0t for all t ≥ 0; the smallest number ω0 for
which this is true is called growth bound of (Tt)t≥0. We can further conclude
from [44, Thm. 6.13 (b)] that, for all α ∈ R, (Tt)t≥0 restricts (resp. extends) to
an analytic semigroup ((T|α)t)t≥0 on Xα with same growth bound as (Tt)t≥0.
Furthermore, we have imTt ⊂ Xr for all t > 0 and r ∈ R, see [44, Thm. 6.13(a)].235

In the following we present an estimate for the corresponding operator norm.

Lemma C.1. Assume that A : D(A) ⊂ X → X, X a Hilbert space, is self-
adjoint and there exists ω0 > 0 with 〈x,Ax〉 ≤ −ω0‖x‖2 for all x ∈ D(A). Then
there exist M,ω > 0 such that the semigroup (Tt)t≥0 generated by A satisfies

∀α ∈ [0, 2] ∀ t > 0 : ‖Tt‖L(X,Xα) ≤M(1 + t−α)e−ωt.

Thus, for each α ∈ [0, 2] there exists K > 0 such that

sup
t∈[0,∞)

tα‖Tt‖L(X,Xα) < K.

Proof. Since A with the above properties generates an exponentially stable
analytic semigroup (Tt)t≥0, the cases α ∈ [0, 1] and α = 2 follow from [45,
Cor. 3.10.8 & Lem. 3.10.9]. The result for α ∈ [1, 2] is a consequence of [45,
Lem 3.9.8] and interpolation between X1 and X2, cf. Appendix B.240

Next we consider the abstract Cauchy problem with source term.

39



Definition C.2. Let X be a Hilbert space, A : D(A) ⊂ X → X be self-adjoint
with 〈x,Ax〉 ≤ 0 for all x ∈ D(A), T ∈ (0,∞], and α ∈ [0, 1]. Let (Tt)t≥0 be
the semigroup on X generated by A, and let B ∈ L(Rm, X−α). For x0 ∈ X,
p ∈ [1,∞], f ∈ Lploc(0, T ;X) and u ∈ Lploc(0, T ;Rm), we call x : [0, T ) → X a
mild solution of

ẋ(t) = Ax(t) + f(t) +Bu(t), x(0) = x0 (54)

on [0, T ), if it satisfies

∀ t ∈ [0, T ) : x(t) = Ttx0 +

∫ t

0

Tt−sf(s) ds +

∫ t

0

(T|−α)t−sBu(s) ds . (55)

We further call x : [0, T )→ X a strong solution of (54) on [0, T ), if x in (55)
satisfies x ∈ C([0, T );X) ∩W 1,p

loc (0, T ;X−1).

Definition C.2 requires that the integral
∫ t

0
(T|−α)t−sBu(s) ds is in X, whilst

the integrand is not necessarily in X. This motivates the definition of admissi-245

bility, which is now introduced for self-adjoint A. Note that admissibility can
also be defined for arbitrary generators of semigroups, see [36].

Definition C.3. Let X be a Hilbert space, A : D(A) ⊂ X → X be self-adjoint
with 〈x,Ax〉 ≤ 0 for all x ∈ D(A), T ∈ (0,∞], α ∈ [0, 1] and p ∈ [1,∞]. Let
(Tt)t≥0 be the semigroup on X generated by A, and let B ∈ L(Rm, X−α). Then
B is called an Lp-admissible (control operator) for (Tt)t≥0, if for some (and
hence any) t > 0 we have

∀u ∈ Lp(0, t;Rm) : Φtu :=

∫ t

0

(T|−α)t−sBu(s) ds ∈ X.

By a closed graph theorem argument this implies that Φt ∈ L(Lp(0, t;Rm), X)
for all t > 0. We call B an infinite-time Lp-admissible (control operator) for
(Tt)t≥0, if

sup
t>0
‖Φt‖ <∞.

In the following we show that for p ≥ 2 and α ≤ 1/2 any B is admissible and
the mild solution of the abstract Cauchy problem is indeed a strong solution.

Lemma C.4. Let X be a Hilbert space, A : D(A) ⊂ X → X be self-adjoint250

with 〈x,Ax〉 ≤ 0 for all x ∈ D(A), B ∈ L(Rm, X−α) for some α ∈ [0, 1/2], and
(Tt)t≥0 be the analytic semigroup generated by A. Then for all p ∈ [2,∞] we
have that B is Lp-admissible for (Tt)t≥0.

Furthermore, for all x0 ∈ X, T ∈ (0,∞], f ∈ Lploc(0, T ;X) and u ∈
Lploc(0, T ;Rm), the function x in (55) is a strong solution of (54) on [0, T ).255

Proof. For the case p = 2, there exists a unique strong solution in X−1 (that
is, we replace X by X−1 and X−1 by X−2 in the definition) given by (55) and
at most one strong solution in X, see for instance [45, Thm. 3.8.2 (i) & (ii)],

40



so we only need to check that all the elements are in the correct spaces. Since
A is self-adjoint, the semigroup generated by A is self-adjoint as well. Further,
by combining [36, Prop. 5.1.3] with [36, Thm. 4.4.3], we find that B is an L2-
admissible control operator for (Tt)t≥0. Moreover, by [36, Prop. 4.2.5] we have
that(

t 7→ Ttx0 +

∫ t

0

(T|−α)t−sBu(s) ds

)
∈ C([0, T );X) ∩W 1,2

loc (0, T ;X−1)

and from [45, Thm. 3.8.2 (iv)],(
t 7→

∫ t

0

Tt−sf(s) ds

)
∈ C([0, T );X) ∩W 1,2

loc (0, T ;X−1),

whence x ∈ C([0, T );X) ∩ W 1,2
loc (0, T ;X−1), which proves that x is a strong

solution of (54) on [0, T ).
Since B is L2-admissible, it follows from the nesting property of Lp on finite

intervals that B is an Lp-admissible control operator for (Tt)t≥0 for all p ∈
[2,∞]. Furthermore, for p > 2, set f̃ := f + Bu and apply [45, Thm. 3.10.10]260

with f̃ ∈ L∞loc(0, T ;X−α) to conclude that x is a strong solution.

Next we show the regularity properties of the solution of (54), if A = A
and B = B are as in the model (3). Note that this result also holds when
considering some t0 ≥ 0, T ∈ (t0,∞], and the initial condition x(t0) = x0

(instead of x(0) = x0) by some straightforward modifications, cf. [45, Sec. 3.8].265

Proposition C.5. Let Assumption 2.1 hold, A be the Neumann elliptic op-
erator on Ω associated to D, T ∈ (0,∞] and c > 0. Further let X = X0 =
L2(Ω) and Xr, r ∈ R, be the interpolation spaces corresponding to A accord-
ing to Definition B.2. Define A0 := A − cI with D(A0) = D(A) and con-
sider B ∈ L(Rm, X−α) for α ∈ [0, 1/2], u ∈ L2

loc(0, T ;Rm) ∩ L∞(δ, T ;Rm) and270

f ∈ L2
loc(0, T ;X)∩L∞(δ, T ;X) for all δ > 0. Then for all x0 ∈ X and all δ > 0

the mild solution of (54) (with A = A0 and B = B) on [0, T ), given by x as
in (55), satisfies

(i) if α = 0, then

∀λ ∈ (0, 1) : x ∈ BC([0, T );X) ∩ C0,λ([δ, T );X);

(ii) if α ∈ (0, 1/2), then

x ∈ BC([0, T );X) ∩ C0,1−α([δ, T );X) ∩ C0,1−2α([δ, T );Xα);

(iii) if α = 1/2, then

x ∈ BC([0, T );X) ∩ C0,1/2([δ, T );X) ∩BUC([δ, T );X1/2).

Proof. First observe that by Proposition 2.2 the assumptions of Lemma C.4 are
satisfied with p = 2, hence x as in (55) is a strong solution of (54) on [0, T ) in the
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sense of Definition C.2. In the following we restrict ourselves to the case T =∞,
and the assertions for T < ∞ follow from these arguments by considering the
restrictions to [0, T ). Define, for t ≥ 0, the functions

xh(t) := Ttx0, xf (t) :=

∫ t

0

Tt−sf(s) ds , xu(t) :=

∫ t

0

(T|−α)t−sBu(s) ds ,

(56)

so that x = xh + xf + xu.
Step 1 : We show that x ∈ BC([0,∞);X). The definition of A in Propo-

sition 2.2 implies that for all z ∈ D(A) we have 〈z,Az〉 ≤ −c‖z‖2. The self-
adjointness of A moreover implies that A0 is self-adjoint, whence [43, Thm. 4.2]
gives that A0 generates an analytic, contractive semigroup (Tt)t≥0 on X, which
satisfies

∀ t ≥ 0 ∀x ∈ X : ‖Ttx‖ ≤ e−ct‖x‖. (57)

Since, by Lemma C.4, x is a strong solution, we have x ∈ C([0,∞);X) ∩
W 1,2

loc (0,∞;X−1). Further observe that B is L∞-admissible by Lemma C.4.
Then it follows from (57) and [46, Lem. 2.9 (i)] that B is infinite-time L∞-
admissible, which implies that for xu as in (56) we have

‖xu‖∞ ≤
(

sup
t>0
‖Φt‖

)
‖u‖∞ <∞,

thus xu ∈ BC([0,∞);X). A direct calculation using (57) further shows that275

xh, xf ∈ BC([0,∞);X), whence x ∈ BC([0,∞);X).

Step 2 : We show (i). Let δ > 0 and set f̃ := f + Bu ∈ L2
loc(0,∞;X) ∩

L∞(δ,∞;X), then we may infer from [24, Props. 4.2.3 & 4.4.1 (i)] that

∀λ ∈ (0, 1) : x ∈ C0,λ([δ,∞);X).

From this together with Step 1 we may infer (i).
Step 3 : We show (ii). Let δ > 0, then it follows from [24, Props. 4.2.3 & 4.4.1 (i)]

together with x0 ∈ X and f ∈ L∞(δ,∞;X), that

xh + xf ∈ C0,1−α([δ,∞);Xα) ∩ C1([δ,∞);X)

= C0,1−2α([δ,∞);Xα) ∩ C0,1−α([δ,∞);X).

Since we have shown in Step 1 that x ∈ BC([0,∞), X), it remains to show that
xu ∈ C0,1−2α([δ,∞);Xα) ∩ C0,1−α([δ,∞);X).
To this end, consider the space Y := X−α. Then (Tt)t≥0 extends to a semi-
group

(
(T|−α)t

)
t≥0

on Y with generator A0,α : D(A0,α) = X−α+1 ⊂ X−α = Y ,

cf. [24, pp. 50]. Now, for r ∈ R, consider the interpolation spaces Yr as in
Definition B.2 by means of the operator A0,α. Then it is straightforward to
show that Yn = D(An0,α) = Xn−α for all n ∈ N using the representation (53).
Similarly, we may show that Yn = Xn−α for all n ∈ Z. Then the Reiteration
Theorem, see [42, Cor. 1.24] and also (52), gives

∀ r ∈ R : Yr = Xr−α.
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Since B ∈ L(Rm, Y ), [24, Props. 4.2.3 & 4.4.1 (i)] now imply

xu ∈ C0,1−2α([δ,∞);Y2α) ∩ C0,1−α([δ,∞);Yα)

= C0,1−2α([δ,∞);Xα) ∩ C0,1−α([δ,∞);X),

which completes the proof of (ii).
Step 4 : We show (iii). The proof of x ∈ C0,1/2([δ,∞);X) is analogous to that

of x ∈ C0,1−α([δ,∞);X) in Step 3. Boundedness and continuity of x on [0,∞)280

was proved in Step 1. Hence, it remains to show that x is uniformly continuous:
Again consider the additive decomposition of x into xh, xf and xu as in (56).
Similar to Step 3 it can be shown that xh, xf ∈ C0,1/2([δ,∞);X1/2), whence
xh, xf ∈ BUC([δ,∞);X1/2). It remains to show that xu ∈ BUC([δ,∞);X1/2).

Note that Lemma C.4 gives that xδ := x(δ) ∈ X. Then xu solves ż(t) =
A0z(t) + Bu(t) with z(δ) = xu(δ) and hence, for all t ≥ δ we have

xu(t) =Tt−δxu(δ) +

∫ t

δ

(T|−α)t−sBu(s) ds︸ ︷︷ ︸
=:xδu(t)

(58)

Since xu(δ) ∈ X by Lemma C.4, it remains to show that xδu ∈ BUC([δ,∞);X1/2).
We obtain from Proposition A.1 c) thatA0 has an eigendecomposition of type (49)
with eigenvalues (−βj)j∈N0

, βj := αj + c, and eigenfunctions (θj)j∈N0
. More-

over, there exist bi ∈ X−1/2 for i = 1, . . . ,m such that Bξ =
∑m
i=1 bi · ξi for all

ξ ∈ Rm. Therefore,

xδu(t) =

∫ t

δ

∞∑
j=0

e−βj(t−τ)θj

m∑
i=1

〈bi · ui(τ), θj〉 dτ

=

∫ t

δ

∞∑
j=0

e−βj(t−τ)θj

m∑
i=1

ui(τ) 〈bi, θj〉 dτ ,

where the last equality holds since ui(τ) ∈ R and can be treated as a constant
in X. By considering each of the factors in the sum over i = 1, . . . ,m, we can
assume without loss of generality that m = 1 and b := b1, so that

xδu(t) =

∫ t

δ

∞∑
j=0

e−βj(t−τ)u(τ) 〈b, θj〉 θj dτ .

Define bj := 〈b, θj〉 for j ∈ N0. Since b ∈ X−1/2 we have that
∑∞
j=0 b

2
j/βj

converges, which implies

S :=

∞∑
j=0

(bj)2

βj
<∞. (59)

Recall that the spaces Xα, α ∈ R, are defined by using λ ∈ C belonging to the
resolvent set of A, and they are independent of the choice of λ. Since c > 0
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in the statement of the proposition is in the resolvent set of A, the spaces Xα

coincide for A and A0 = A− cI.
Using the diagonal representation from Remark B.4 and [36, Prop. 3.4.8], we
may infer that xδu(t) ∈ X1/2 for a.e. t ≥ δ, namely,

‖xδu(t)‖2X1/2
≤
∞∑
j=0

βj(b
j)2‖u‖2L∞(δ,∞)

(∫ t

δ

e−βj(t−s) ds

)2

= ‖u‖2L∞(δ,∞)

∞∑
j=0

(bj)2

βj

(
1− e−βj(t−δ)

)2

≤ ‖u‖2L∞(δ,∞)

∞∑
j=0

(bj)2

βj
<∞.

Hence,
‖xδu(t)‖X1/2

≤ ‖u‖L∞(δ,∞)

√
S. (60)

Now let t > s > δ and σ > 0 such that t − s < σ. By dominated convergence
[38, Thm. II.2.3], summation and integration can be interchanged, so that

‖xδu(t)− xδu(s)‖2X1/2

≤‖u‖2L∞(δ,∞)

∞∑
j=0

βj(b
j)2

(∫ s

δ

e−βj(s−τ) − e−βj(t−τ) dτ +

∫ t

s

e−βj(t−τ) dτ

)2

≤ 4‖u‖2L∞(δ,∞)

∞∑
j=0

(bj)2

βj

(
1− e−βj(t−s)

)2

≤ 4‖u‖2L∞(δ,∞)

∞∑
j=0

(bj)2

βj

(
1− e−βjσ

)2
.

We can conclude from (59) that the series F : (0,∞)→ (0, S) with

F (σ) :=

∞∑
j=0

(bj)2

βj
(1− e−βjσ)2

converges uniformly to a strictly monotone, continuous and surjective function.285

Therefore, F has an inverse. The function xδu is thus uniformly continuous
on [δ,∞) and by (57) we obtain boundedness, i.e., xδu ∈ BUC([δ,∞);X1/2).

Finally we present a consequence of the Banach-Alaoglu Theorem, see e.g. [47,
Thm. 3.15].

Lemma C.6. Let T > 0 and Z be a reflexive and separable Banach space. Then290

(i) every bounded sequence (wn)n∈N in L∞(0, T ;Z) has a weak? convergent
subsequence in L∞(0, T ;Z);
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(ii) every bounded sequence (wn)n∈N in Lp(0, T ;Z) with p ∈ (1,∞) has a
weakly convergent subsequence in Lp(0, T ;Z).

Proof. Let p ∈ [1,∞). Then W := Lp(0, T ;Z ′) is a separable Banach space,295

see [38, Sec. IV.1]. Since Z is reflexive, by [38, Cor. III.4] it has the Radon-
Nikodým property. Then it follows from [38, Thm. IV.1] that W ′ = Lq(0, T ;Z)
is the dual of W , where q ∈ (1,∞] such that p−1 + q−1 = 1. Assertion (i)
now follows from [47, Thm. 3.17] with p = 1 and q = ∞. On the other hand,
statement (ii) follows from [48, Thm. V.2.1] by further using that W is reflexive300

for p ∈ (1,∞).
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