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Abstract: We consider the differential-algebraic systems obtained by modified nodal analysis
of linear RLC circuits from a systems theoretic viewpoint. We derive expressions for the set of
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of the circuit. We further present circuit topological criteria for behavioral stabilizability.

Keywords: electrical circuits, stabilizability, system space, consistent initial values,
controllability at infinity, impulse controllability

1. INTRODUCTION

Modified nodal analysis (MNA) is a widely used technique
for modelling RLC circuits. It has been first introduced in
Ho et al. (1975). It is based on regarding a circuit as a
graph, and results in a differential-algebraic model. This
model provides a structure which allows a mathematically
elegant analysis of essential properties and their physical
interpretation. Among these properties is the index, i.e.,
the order of smoothness of perturbations entering the
solution of the differential-algebraic equation, see Lam-
our et al. (2013); Kunkel and Mehrmann (2006); it is
shown in Estévez Schwarz and Tischendorf (2000); Gün-
ther and Feldmann (1999a,b), see also Bächle (2007); März
et al. (2003); Estévez Schwarz (2002); Estévez Schwarz
and Lamour (2001); Freund (2005); Reis (2014); Riaza
(2013); Takamatsu and Iwata (2010), that the index is
not dependent on system parameters (such as values of
resistances, capacitances and inductances), but rather on
the interconnection structure, i.e., the topology, of the
circuit. Further important possible properties of the cir-
cuit system are stability and asymptotic stability. Whereas
MNA models of RLC circuits are always stable as long as
the parameter values of resistances, capacitances and in-
ductances are positive, asymptotic stability requires some
further conditions. It is shown in Riaza and Tischendorf
(2010, 2007); Riaza (2006) that asymptotical stability
is guaranteed, if certain parameter-independent criteria
on the circuit interconnection structure are fulfilled. The
general idea of these articles is used in Berger and Reis
(2014), where topological criteria for asymptotic stability
and autonomy of the zero dynamics are presented for the
purpose of adaptive tracking control of circuits.
In this article, we analyse further systems theoretic prop-
erties of the MNA equations. Besides presenting sufficient
topological criteria for behavioral stabilizability, we derive
expressions for the system space and the space of consis-

tent initial values, and conclude topological conditions for
controllability at infinity and impulse controllability.
In Sec. 2 we present the required tools from graph theory
and Sec. 3 collects the basics on RLC circuit models.
Sec. 4 and Sec. 5 contain the results on stability and
stabilizability of the circuit model and their topological
interpretation. Sec. 6 is devoted to the system space of
the MNA equations, whereas we specify the space of
consistent initial values and give topological conditions
for controllability at infinity and impulse controllability
in Sec. 7 and Sec. 8.

1.1 Nomenclature

N0 is the set of nonnegative integers, R(s) is the field of real
rational functions, and C+, C+ are, resp., the open and
closed complex right half planes. For a field K, Kn×m is
the set of n×m matrices with entries in K. We use rkK M ,
kerK M , imK M for the rank, kernel and image of a matrix
M over K. If K = R, we omit the subindex indicating
the underlying field. Further, M⊤ and M∗ resp. stand
for the transpose and conjugate transpose of a matrix
M , and by writing M > 0 (M ≥ 0), we mean that the
square matrix M is symmetric positive (semi-)definite.
The identity matrix of size n×n is denoted by In and the
zero matrix of size m×n by 0m,n. We omit the subindices,
if they are clear from context. V⊥ denotes the orthogonal
space of a subspace V ⊂ Rn, and we call the matrix Z
a basis matrix of V, if kerZ = {0} and imZ = V.

2. GRAPH THEORETIC PRELIMINARIES

For the purpose of this article, we consider finite and loop-
free directed graphs, see Diestel (2017). We present some
basics of graphs and incidence matrices along with some
results about the correspondence between the topological
structure of a graph and properties of its incidence matrix.



Definition 1. (Graph theoretic concepts). A directed graph
is a quadruple G = (V,E, init, ter) consisting of a vertex set
V , a edge set E and two maps init, ter : E → V assigning to
each edge e an initial vertex init(e) and a terminal vertex
ter(e). The edge e is said to be directed from init(e) to
ter(e). G is said to be loop-free, if init(e) ̸= ter(e) for all
e ∈ E. Let V ′ ⊂ V and E′ ⊂ E with

E′ ⊂ E|V ′ := {e ∈ E : init(e) ∈ V ′ ∧ ter(e) ∈ V ′}.
Then the triple (V ′, E′, init|E′ , ter|E′) is called a subgraph
of G. If E′ = E|′V , then the subgraph is called the induced
subgraph on V ′. If V ′ = V , then the subgraph is called
spanning. Additionally a proper subgraph is one where
E′ ̸= E. G is called finite, if V and E are finite.
For each e ∈ E define −e ̸∈ E as an edge with init(−e) =
ter(e) and ter(−e) = init(e). Define E to be the set which
contains all e ∈ E and all corresponding −e. An r-tuple
e = (e1, . . . , er) ∈ E

r is called a path from v to w, if
init(e1), . . . , init(er) are distinct,
ter(ei) = init(ei+1) ∀i ∈ {1, . . . , r − 1},
init(e1) = v ∧ ter(er) = w.

A cycle is a path from v to v. Two vertices v, w are
connected, if there is a path from v to w. This gives
is an equivalence relation on the vertex set. A graph is
called connected, if there is only one equivalence class.
The induced subgraph on an equivalence class of connected
vertices gives a connected component of the graph.
A spanning subgraph K = (V,E′, init|E′ , ter|E′) of a di-
rected graph G = (V,E, init, ter) is called a cut of G, if
G −K := (V,E\E′, init|E\E′ , ter|E\E′) has two connected
components.
Consider a directed graph G with spanning subgraph K.
We call a subgraph L of G a K-cut, if L is a cut of K.
Further, we call a path in G a K-cycle, if it is a cycle in K.
If K1 and K2 are two spanning subgraphs G, then K1K2

denotes the spanning subgraph obtained by taking the
union of the edges K1 and K2.

Essential ingredients of the circuit model are incidence
matrices.
Definition 2. (Incidence matrix). Let G = (V,E, init, ter)
be a finite and loop-free directed graph. Let E =
{e1, . . . , ene

} and V = {v1, . . . , vnv
}. Then the all-vertex

incidence matrix of G is A0 = (aij) ∈ Rne×nv with

aij =


1 if init(ej) = vi,

−1 if ter(ej) = vi,

0 otherwise.
The rows of A0 sum up to zero, so we can delete an
arbitrary row to obtain an incidence matrix A0 = (aij) ∈
R(ne−1)×nv of G.

Starting with an incidence matrix A of a finite and loop-
free directed graph G, along with a spanning subgraph K
of G, it is possible to obtain an incidence matrix of K by
deleting all of columns corresponding to edges of G − K.
By rearranging the columns, it follows that the matrix A
is of the form

A = [AK AG−K]. (1)
Next we collect some auxiliary results on incidence matri-
ces corresponding to subgraphs from Estévez Schwarz and
Tischendorf (2000). Note that this reference has wording

which slightly differs from ours, as, for instance, cycles
are called loops therein. Our notation is oriented by the
standard reference Diestel (2017) for graph theory.
Proposition 1. (Estévez Schwarz and Tischendorf, 2000,
Lem. 2.1 & 2.3) Let G be a finite and loop-free connected
graph with incidence matrix A. Furthermore let K be a
spanning subgraph, and assume that the incidence matrix
is partitioned as in (1). Then the following holds:
(i) G does not contain any K-cuts if, and only if,

kerA⊤
G−K = {0}.

(ii) G does not contain any K-cycles if, and only if,
kerAK = {0}.

Let G be a connected graph with incidence matrix A. Let K
be a spanning subgraph of G, and L a spanning subgraph
of K. Then, as in (1), we can, after possibly rearranging
the columns, assume that the incidence matrix of G reads

A = [AL AK−L AG−K], AK = [AL AK−L]. (2)
Proposition 2. [(Riaza and Tischendorf, 2007, Prop. 4.4 &
4.5)] Let G be a finite and loop-free connected graph with
incidence matrix A. Let K be a spanning subgraph of G,
and L a spanning subgraph of K. Further assume that the
incidence matrix A of G is partitioned as in (2). Then the
following holds:
(i) G does not contain K-cycles except for L-cycles if, and

only if, kerAK = kerAL × {0}.
(ii) G does not contain K-cuts except for L-cuts if, and

only if, kerA⊤
G−K = kerA⊤

G−L.

3. CIRCUIT EQUATIONS

The MNA of a linear RLC circuit is given by
d
dtEx(t) =Ax(t) +Bu(t) (3)

with state being composed of vertex potentials, inductive
currents, and currents through voltage sources, i.e., x =
(η⊤i⊤L i⊤V )⊤ and input consisting of voltages at voltage
sources and currents at current sources, i.e., u = (v⊤V i⊤I )⊤.
The matrices E, A, B in (3) are given by

sE −A =

sAC CA⊤
C +AR GA⊤

R AL AV

−A⊤
L sL 0

−A⊤
V 0 0

, B =

−AI 0

0 0

0 −InV

,
(4)

where s has to be regarded as a formal variable. The
expression sE − A is called a matrix pencil. Here, G ∈
RnG×nG , L ∈ RnL×nL , C ∈ RnC×nC are the conductance,
inductance and capacitance matrix, and

AR ∈Rne×nR , AL ∈Rne×nL , AC ∈Rne×nC ,

AV ∈Rne×nV , AI ∈Rne×nI

are the element-specific incidence matrices with sizes n =
ne + nL + nV , m = nI + nV . The matrices G , L, C contain
the parameters of capacitances, resistances, and induc-
tances. Further, AR is an incidence matrix of the span-
ning subgraph consisting of all vertices that contain re-
sistances. Similarly, the incidence matrices AL , AC , AV , AI

then resp. correspond to the spanning subgraphs with the
edges to inductances, capacitances, voltage and current
source. An incidence matrix of the finite and loop-free
directed graph modeling the circuit is consequently given
by A = [AR AL AC AV AI ]. It is also reasonable to assume



that the circuit graph is connected, as any connected com-
ponent corresponds to a subcircuit which does not physi-
cally interact with the remaining components, so one may
simply consider the connected components separately. We
consider circuits with passive devices. This leads to the
assumption that the conductance matrix is dissipative,
whereas the inductance and capacitance matrices are pos-
itive definite. Altogether, this means

rk[AR AL AC AV AI ] = ne, (5a)
G + G⊤ > 0, L = L⊤ > 0, C = C⊤ > 0. (5b)

4. REGULARITY AND STABILITY

This section will take a closer look at the properties of the
properties of the pencil sE − A with matrices as in (4).
First we recall some results from Berger and Reis (2014).
Proposition 3. Let E,A ∈ Rn×n as in (4) and assume that
(5) holds. Then there exist invertible W,T ∈ Rn×n with

W (sE −A)T = diag(sI − Ã, sN − I, 0n0,n0), (6)
where n0 ∈ N0, N is nilpotent with N2 = 0, and Ã is
a square matrix with the property that all its eigenvalues
have nonpositive real part. Further, all eigenvalues of Ã
on the imaginary axis are semi-simple (i.e., their respective
geometric and algebraic multiplicities coincide). The pencil
sE −A further fulfills

kerR(s)(sE −A)

= kerR(s)[AR AL AC AV ]
⊤ × {0} × kerR(s) AV ,

imR(s)(sE −A)

= imR(s)[AR AL AC AV ]× R(s)nL × imR(s) A
⊤
V .

(7)

Proof. Since (5) implies E = E⊤ ≥ 0 and A + A⊤ ≤ 0,
the existence of invertible W,T ∈ Rn×n with (6) follows
from (Berger and Reis, 2014, Lem. 2.6), whereas (7) is
a consequence of (Berger and Reis, 2014, Thm. 4.3). �

A direct consequence of Prop. 3 is that
∀λ ∈ C+ : kerC(λE −A)

= kerC[AR AL AC AV ]
⊤ × {0} × kerC AV ,

∀λ ∈ C+ : imC(λE −A)

= imC[AR AL AC AV ]× RnL × kerC A⊤
V .

(8)

We further characterize regularity, i.e., the invertibility
of sE − A in R(s)n×n. Note that regularity translates
to the property of a differential-algebraic equation having
a solution for all smooth right hand sides, which is more-
over unique by specification of the initial condition, see
Kunkel and Mehrmann (2006). Prop. 1 and Prop. 3 allow
to characterize regularity in terms of the circuit topology.
Corollary 4. Let E,A ∈ Rn×n as in (4) and assume that
(5) holds. Then the pencil sE−A is regular, if and only if,
the underlying circuit neither contains V -cycles nor I -cuts;
equivalently (by Prop. 1)

ker [AR AL AC AV ]
⊤
= {0} ∧ kerAV = {0}.

Next we consider generalized eigenvalues of sE − A. This
is a complex number λ with rkC λE − A < rkR(s) sE − A.
We see from Prop. 3 that all generalized eigenvalues of
sE − A have nonpositive real part. In the following we
discuss the possible absence of purely imaginary gener-

alized eigenvalues. The absence of generalized eigenvalues
on C+ corresponds to stabilizability of the circuit equation
d
dtEx(t) = Ax(t). The latter refers to the properties that
for all x0 ∈ Rn such that there exists a solution x of
d
dtEx(t) = Ax(t) with Ex(0) = Ex0, there also exists
a solution x of d

dtEx(t) = Ax(t) with Ex(0) = Ex0 which
vanishes at infinity, see (Berger and Reis, 2013, Sec. 5).
Proposition 5. [(Berger and Reis, 2014, Thm. 4.6)] Let
E,A ∈ Rn×n as in (4) and assume that (5) holds. Then all
generalized eigenvalues of sE −A have negative real part,
if at least one of the following two assertions holds:
(i) The circuit neither contains LV -cycles except for V -

cycles, nor LCI -cuts except for LI -cuts; equivalently
(by Prop. 2)

ker [AL AV ] = {0} × kerAV ,

∧ ker [AR AV ]
⊤
= ker [AR AC AV ]

⊤
.

(ii) The circuit neither contains CI -cuts except for I -cuts,
nor LCV -cycles except for CV -cycles; equivalently (by
Prop. 2)

ker [AR AL AC AV ]
⊤
= ker [AR AL AV ]

⊤
,

∧ ker [AL AC AV ] = {0} × ker [AC AV ] .

Prop. 5 slightly generalizes (Riaza and Tischendorf, 2007,
Thm. 5.2), where regularity (i.e., the absence of V -cycles
and I -cuts) is presumed. Now we combine Prop. 3 with
Prop. 5 to show a condition for kerC λE −A = {0} for all
λ ∈ C+. The latter refers to asymptotic stability, i.e., all
solutions of d

dtEx(t) = Ax(t) vanish at infinity.
Proposition 6. Let E,A ∈ Rn×n as in (4) and assume that
(5) holds. Then kerC λE − A = {0} for all λ ∈ C+, if at
least one of the following two assertions holds:
(i) The circuit neither contains LV -cycles, nor LCI -cuts

except for LI -cuts which are no I -cuts; equivalently
(by Prop. 1 & Prop. 2)

ker [AL AV ] = {0},
∧ ker [AR AC AV ]

⊤
= ker [AR AV ]

⊤
,

∧ ker [AR AL AC AV ]
⊤
= {0}.

(ii) The circuit neither contains CI -cuts, nor LCV -cycles
except for CV -cycles which are no V -cycles; equiva-
lently (by Prop. 1 & Prop. 2)

ker [AR AL AV ]
⊤
= {0},

∧ ker [AL AC AV ] = {0} × ker [AC AV ] ,
∧ kerAV = {0}.

5. BEHAVIORAL STABILIZABILITY

Loosely speaking, behavioral stabilizability of a differen-
tial-algebraic control system (3) means that x can always
be asymptotically steered to zero by a suitable choice of
the input u. More precisely, for any x0 ∈ Rn for which
there exists a control u such that a solution x of (3) with
initial conditions Ex(0) = Ex0 exists, there especially
exists some control u such that a solution x of (3) with
initial condition Ex(0) = Ex0 exists which vanishes at
infinity. It is proven in (Berger and Reis, 2013, Sec. 5)
that this is equivalent to

∀ λ ∈ C+ : rkC [λE −A B] = rkC [λE −A B] . (9)



Now consider the circuit model E,A ∈ Rn×n, B ∈ Rn×m

as in (4) and assume that (5) holds. Then
imR(s)[sE −A B] = imR(s)(sE −A) + imR(s) B

Prop.3
= imR(s)[AR AL AC AV ]× RnL × imR(s)

+ imR(s) AI × {0} × RnL

= imR(s)[AR AL AC AV AI ]× RnL × RnV
(5a)
= R(s)n.

Likewise, by using (8), the circuit model (4) with assump-
tion (5) fulfills

∀λ ∈ C+ : imC[λE −A B] = Cn. (10)
As a consequence, the circuit model is behaviorally stabi-
lizable if, and only if, rkC[ıωE − A B] = n for all ω ∈ R.
This is used in the following result, where we present
sufficient conditions for behavioral stabilizability in terms
of the circuit topology.
Proposition 7. Let E,A ∈ Rn×n, B ∈ Rn×m as in (4)
and assume that (5) holds. Then (3) is behaviorally
stabilizable, if at least one of the below two statements
holds:
(i) The circuit neither contains L-cycles, nor LC -cuts

except for L-cuts; equivalently (by Prop. 1 & Prop. 2)
kerAL = {0},

∧ ker [AR AC AV AI ]
⊤
= ker [AR AV AI ]

⊤
.

(ii) The circuit neither contains C -cuts, nor LC -cycles ex-
cept for C -cycles; equivalently (by Prop. 1 & Prop. 2)

ker [AR AL AV AI ]
⊤
= {0},

∧ ker [AL AC ] = {0} × kerAC .

Proof. By the findings prior to this proposition, it suffices
to show that the aforementioned topological conditions
imply that for all ω ∈ R

kerC

[
ıωE⊤−A⊤

B⊤

]
= {0}. (11)

Let ω ∈ R and x = (x⊤
1 x

⊤
2 x

⊤
3 )

⊤∈ kerC

[
ıωE⊤−A⊤

B⊤

]
be

partitioned according to the blocks in E and A, i.e.,
ıωAC CA⊤

C +AR GA⊤
R AL AV

−A⊤
L ıωL 0

−A⊤
V 0 0

−A⊤
I 0 0

0 0 InV

( x1

x2

x3

)
= 0.

This gives x3 = 0, x1 ∈ ker [AV AI ]
⊤ and[

ıωAC CA⊤
C +AR GA⊤

R AL

−A⊤
L ıωL

] ( x1

x2

)
= 0.

A multiplication of the latter equation with (x∗
1 x∗

2)
and taking the real part, one arrives at 0 = x∗

1AR (G +
G⊤)A⊤

R x1. Then G+G⊤ > 0 gives x1 ∈ kerA⊤
R . Altogether,

x ∈ kerC

[
ıωE⊤−A⊤

B⊤

]
leads to

x1 ∈

[
A⊤

R

A⊤
V

A⊤
I

]
∧ x3 = 0 ∧

[
ıωAC CA⊤

C AL

−A⊤
L ıωL

] ( x1

x2

)
= 0. (12)

First assume that (i) holds. Since we obtain from (12) that
x1 ∈ ker[AR AV AI ]

⊤, (i) leads to x1 ∈ kerA⊤
C , whence

(12) gives rise to ALx2 = 0. Again making use of (i), we
obtain x2 = 0, and thus A⊤

L x1 = 0. We altogether have
x2 = 0, x3 = 0 and x1 ∈ ker[AR AL AC AV AI ]

⊤, and we
again obtain x1 = 0 by (5a), whence x = 0.
Now assume that (ii) holds: We use (12) to see that

ıωAC CA⊤
C x1 +ALx2 = 0, i.e.,[

ıωCA⊤
C x1

x2

]
∈ ker[AC AL ] = kerAC × {0},

and thus x2 = 0. Then (12) gives A⊤
L x1 = 0, and we obtain

x1 ∈ ker[AR AL AV AI ]
⊤. The latter space is trivial by (ii).

Consequently, x1 = 0, and thus x = 0.

6. SYSTEM SPACE

A useful space to understand differential-algebraic systems
is the system space, which is the minimal subspace V ⊂
Rn+m in which all solutions (x(t)⊤ u(t)⊤)⊤ of (3) evolve
pointwisely. This space plays a crucial role, for instance in
optimal control and dissipativity analysis of differential-
algebraic systems, see Reis and Voigt (2015, 2019).
The main result in this section is an expression for the
system space of the MNA equations (4).
Theorem 8. Let E,A ∈ Rn×n, B ∈ Rn×m as in (4)
and assume that (5) holds. Let ZC and ZRCVI be basis
matrices of kerA⊤

C and, resp., ker[AC AR AL AV AI ]
⊤. Then

the system space of (3) is given by

ker

 Z⊤
C AR GA⊤

R ZCAL Z⊤
C AV Z⊤

C AI 0
A⊤

V 0 0 0 −InV

Z⊤
RCVIAL L−1A⊤

L 0 0 0 0

 .

Thm. 8 means that a vector (x⊤
1 x⊤

2 x⊤
3 u⊤

1 u⊤
2 )

⊤ parti-
tioned according to the blocks in [A B] as in (4) is in
the system space of (3) if, and only if, it satisfies

Z⊤
C (AR GA⊤

R x1 +ALx2 +AV x3 +AIu1) = 0,
A⊤

V x1 − u2 = 0,
Z⊤

RCVIAL L−1A⊤
C x1 = 0.

The remaining part is devoted to the proof of Thm. 8 along
with some preparatory results. We first recall a geometric
characterization of the system space.
Lemma 9. (Reis et al., 2015, Prop. 3.3) Let E,A ∈ Rk×n

and B ∈ Rk×m. Consider the sequence (Vi)i∈N0
of sub-

spaces of Rn+m with V0 = Rn+m and
Vi+1 =

{
( x
u ) ∈ Rn+m : Ax+Bu ∈ [E 0] · Vi

}
∀i ∈ N0.

Then Vi ⊃ Vi+1 for all i ∈ N0. Further, there exists some
i0 ∈ N0 Vi0 = Vi0+1 for some i0 ∈ N0. Then the system
space of (3) is Vi0 .
Remark 1. Consider the matrices A = [A B] ∈ Rn×(n+m),
E = [E 0] ∈ Rn×(n+m). Then Vi+1 is the preimage of EVi

under A, i.e., Vi+1 = A−1(EVi).

To determine the system space, we advance some helpful
results.
Lemma 10. ((Basile and Marro, 1992, Property 3.1.3)).
Let M ∈ Rk×l and V ⊂ Rk a subspace. Then

(M⊤V)⊥ = M−1(V⊥).

By taking V = Rk, Lem. 10 implies
imM⊤ = (kerM)⊥ ∀M ∈ Rk×l. (13)

Lemma 11. Let E,A ∈ Rk×n, B ∈ Rk×m and consider
the sequence (Vi) as in Lem. 9. Then (Wi) := (V⊤

i ) fulfills
W0 = {0} and

Wi+1 =
[
A⊤

B⊤

]
·
([

E⊤

0

]−1

Wi

)
∀i ∈ N0. (14)



Proof. We prove the statement via induction on i. The
induction start i = 0 is fulfilled by W0 = {0}. For the
induction step, assume that i ∈ N0 with Vi = W⊥

i . Then
Vi+1 = [A B]−1 ([E 0] · Vi) = [A B]−1

(
[E 0] · W⊥

i

)
Lem.10
= [A B]−1

([
E⊤

0

]−1

Wi

)⊥

Lem.10
=

([
A⊤

B⊤

] ((
[E 0]⊤

)−1 Wi

))⊥
= W⊥

i+1. �

Lemma 12. Consider an electrical circuit with incidence
matrices as in (4). Let ZC and ZRCVI be basis matrices of
kerA⊤

C and, resp., ker[AR AL AC AV AI ]
⊤. Then there

exists a basis matrix ZRVI−C of ker[AR AV AI ]
⊤ZC such

that ZRCVI = ZCZRVI−C .

Proof. We have imZRCVI ⊂ imZC by definition. Hence
there exists a matrix ZRVI−C with ZRCVI = ZCZRVI−C . Then
kerZRCVI = {0} implies kerZRVI−C = {0}. Then, with
k := dimkerA⊤

C , the result follows from
imZRVI−C ={z ∈ Rk : ZCz ∈ imZRCVI}

={z ∈ Rk : ZCz ∈ ker[AR AC AV AI ]
⊤}

=ker[AR AC AV AI ]
⊤ZC . �

Now we present a proof of Thm. 8. In doing so, we use the
subspace iteration in Lem. 9. Instead of a direct calcula-
tion, we determine the orthogonal space via Lem. 11.
Proof of Thm. 8. Let (Wi) be a sequence of subspaces
as in Lem. 11. For i ∈ N0, define

Zi+1 :=
[
E⊤

0

]−1

Wi.

Then Wi =
[
A⊤

B⊤

]
·Zi for all i ∈ N0 with i ≥ 1. Further, let

ZRVI−C be a basis matrix of ker[AC AR AV AI ]
⊤ZC , such

that ZRCVI = ZCZRVI−C (which exists by Lem. 12).
Step 1: We determine W1: By W0 = {0} and E = E⊤ , we
have Z1 =

[
E⊤

0

]−1 W0 = kerE. By incorporating C > 0,
we obtain that the latter space equals to imZC ×{0}×RnV ,
and thus

W1 =

[
A⊤

B⊤

]
· kerE = im


AR GA⊤

R ZC AV

A⊤
L ZC 0

A⊤
VZC 0

A⊤
I ZC 0
0 InV

 .

Step 2: We show that Z2 fulfills

Z2 = im

[
ZC 0 0

0 0 L−1A⊤
L ZRCVI

0 InV
0

]
: (15)

“⊃”: Let z be in the space on the right hand side of (15),
and partition z = (z⊤1 z⊤2 z⊤3 )⊤ with z1 ∈ Rne , z2 ∈
RnL , z3 ∈ RnV Then there exist vectors v1, v2 with z1 =
ZCv1 and z2 = L−1A⊤

L ZRCVIv2. By using AC CA⊤
C z1 =

AC CA⊤
C ZCv1 = 0, we obtain[
E⊤

0

]
z =

[
AC CA⊤

C 0 0
0 L 0
0 0 0
0 0 0
0 0 0

](
z1
z2
z3

)
=

( 0
A⊤

L ZRCVIv2
0
0
0

)

=


AR GA⊤

R ZC AL

A⊤
L ZC 0

A⊤
V ZC 0

A⊤
I ZC 0
0 InV

( ZRVI−Cv2

0

)
∈ W1.

“⊂”: Let z1 ∈ Rne , z2 ∈ RnL , z3 ∈ RnV with[
AC CA⊤

C 0 0
0 L 0
0 0 0
0 0 0
0 0 0

](
z1
z2
z3

)
∈ W1 = im


AR GA⊤

R ZC AV

A⊤
L ZC 0

A⊤
V ZC 0

A⊤
I ZC 0
0 InV

 . (16)

We have to show that z1 ∈ imZC and z2 ∈ imA⊤
L ZRCVI :

We obtain from (16) that there exist vectors w1, w2 withAC CA⊤
C z1

Lz2
0
0
0

 =


AR GA⊤

R ZCw1+AV w2

A⊤
L ZCw1

A⊤
V ZCw1

A⊤
I ZCw1

−w2

 . (17)

Hence w2 = 0 and AC CA⊤
C z1 = AR GA⊤

R ZCw1, and
a multiplication with Z⊤

C results in 0 = Z⊤
C AR (G +

G⊤)A⊤
R ZCw1. Then G + G⊤ > 0 gives A⊤

R ZCw1 = 0.
Thus w1 ∈ ker[AR AV AI ]

⊤ZC = imZRVI−C . That is,
w1 = ZRVI−Cy for a vector y, and (17) leads toAC CA⊤

C z1
Lz2
0
0
0

 =

( 0
A⊤

L ZCZRVI−Cy
0
0
0

)
.

Thus z1 ∈ kerA⊤
C = imZC and z2 ∈ imL−1A⊤

L ZRCVI .
Step 3: We conclude that

W2 =
[
A⊤

B⊤

]
Z2

=


−AR GA⊤

R AL AV

−A⊤
L 0 0

−A⊤
V 0 0

A⊤
I 0 0
0 0 InV

 · im
[
ZC 0 0

0 0 L−1A⊤
C ZRCVI

0 InV
0

]

= im


AR GA⊤

R ZC AV AL L−1A⊤
L ZRCVI

A⊤
L ZC 0 0

A⊤
V ZC 0 0

A⊤
I ZC 0 0
0 InV

0

 .

Step 4: We show that Z3 ⊂ Z2: Let z = (z⊤1 z⊤2 z⊤3 )⊤ ∈ Z3

with z1 ∈ Rne , z2 ∈ RnL , z3 ∈ RnV Then
[
A⊤

B⊤

]
z ∈ W2

together with Step 3, leads to the existence of vectors w1,
w2, w3 withAC CA⊤

C z1
Lz2
0
0
0

 =


AR GA⊤

R ZCw1+AV w2+AL L−1A⊤
L ZRCVIw3

A⊤
L ZCw1

A⊤
V ZCw1

A⊤
I ZCw1

−w2

 .

(18)
Then Z⊤

RCVIAL L−1A⊤
L ZRCVIw3 = 0 by a multiplication of

the first row with Z⊤
RCVI , and L > 0 gives A⊤

L ZRCVIw3 = 0.
Altogether, we haveAC CA⊤

C z1
Lz2
0
0
0

 =


AR GA⊤

R ZCw1+AV w2

A⊤
L ZCw1

A⊤
V ZCw1

A⊤
I ZCw1

−w2

 .

This is exactly the situation in (17), and we can follow the
argumentation in Step 2 to conclude z ∈ Z2.
Step 5: We conclude the statement of Thm. 8: We have
W3 =

[
A⊤

B⊤

]
Z3 ⊂

[
A⊤

B⊤

]
Z2 = W2 by Step 4. Thus, by

Lem. 11, V2 = W⊥
2 ⊂ W⊥

3 = V3, whence, by Lem. 9, the
system space reads V2 = W⊥

2 . Now using Step 3, we obtain



V2 = W⊥
2 =

im


AR GA⊤

R ZC AV AL L−1A⊤
L ZRCVI

A⊤
L ZC 0 0

A⊤
V ZC 0 0

A⊤
I ZC 0 0
0 InV

0




⊥

= ker

[
Z⊤

C AR GA⊤
R ZCAL Z⊤

C AV Z⊤
C AI 0

A⊤
V 0 0 0 −InV

Z⊤
RCVIAL L−1A⊤

L 0 0 0 0

]
,

which completes the proof.

7. CONSISTENT INITIAL VALUES AND
CONTROLLABILITY AT INFINITY

Here we analyze the space of consistent initial values,
which is the space of all x0 ∈ Rn for which there exists
some control u for which there is a weakly differentiable
solution x of (3) with initial condition x(0) = x0. If
this space is the entire Rn, then the system (3) is called
controllable at infinity. It is proven in (Berger and Reis,
2013, Sec. 5) that controllability at infinity is equivalent to
rk[E B] = rk[E A B]. For E,A ∈ Rn×n, B ∈ Rn×m as in
the circuit model (4) with assumption (5), we can conclude
from (10) that rk[E A B] = n, whence the analysis of
controllability at infinity for MNA equations reduces to
check whether rk[E B] = n. By using C > 0, L > 0, we
obtain that imE = imAC × RnL × {0}, whence

im[E B] = imAC × RnL × {0}+ imAI × {0} × RnV .

Controllability at infinity is therefore guaranteed if, and
only if, im[AC AI ] = Rne or, equivalently, ker[AC AI ]

⊤ =
{0}. We summarize these findings in the following result.
Proposition 13. Let E,A ∈ Rn×n, B ∈ Rn×m as in (4) and
assume that (5) holds. Then the system (3) is controllable
at infinity if, and only if, the underlying circuit does not
contain any RLV -cuts; equivalently (by Prop. 1)

ker [AC AI ]
⊤
= {0}.

It can be concluded from (Reis and Voigt, 2019, Lem. 3.7)
that the system space Vsys and the space Vinit of consistent
initial values of the system (3) fulfill the identity

Vinit = {x ∈ Rn : ∃u ∈ Rm s.t. ( x
u ) ∈ Vsys}. (19)

This identity is the essential ingredient in the proof of the
following result which contains an expression of the space
of consistent initial values for the MNA system.
Theorem 14. Let E,A ∈ Rn×n, B ∈ Rn×m as in (4) and
assume that (5) holds. Let ZRCVI and ZCI be basis matrices
of ker[AC AR AL AV AI ]

⊤ and, resp., ker[AC AI ]
⊤. Then the

space of consistent initial values of (3) is given by

ker

[
Z⊤

RCVIAL L−1A⊤
L 0 0

Z⊤
CIAR GA⊤

R Z⊤
CIAL Z⊤

CIAV

]
.

Proof. Analogous to Lem. 12, there exists a basis matrix
ZI−C of kerA⊤

I ZC , such that ZCI = ZCZI−C .
“⊂”: Let x = (x⊤

1 x⊤
2 x⊤

3 )
⊤ with x1 ∈ Rne , x2 ∈ RnL ,

x3 ∈ RnV be a consistent initial value. Then by (19), there
exist u1 ∈ RI , u2 ∈ RnV such that for u = ( u1

u2
) holds that

( x
u ) is in the system space of (3). Then Thm. 8 gives

Z⊤
C (AR GA⊤

R x1 +ALx2 +AV x3 +AIu1) = 0,
Z⊤

RCVIAL L−1A⊤
L x1 = 0.

(20)

Then a multiplication of the first equation with Z⊤
I−C gives

Z⊤
C−IZ

⊤
C︸ ︷︷ ︸

=Z⊤
CI

(AR GA⊤
R x1 +ALx2 +AV x3) = 0,

Z⊤
RCVIAL L−1A⊤

L x1 = 0.
(21)

“⊃”: Let x1 ∈ Rne , x2 ∈ RnL , x3 ∈ RnV such that (21)
holds. The second equation implies

Z⊤
C (AR GA⊤

R x1 +ALx2 +AV x3) ∈ kerZ⊤
C−I .

Using kerZ⊤
C−I = (imZC−I )

⊥ = (kerA⊤
I ZC )

⊥ = imZ⊤
C AI ,

we see that there exists some u1 ∈ RnI with
Z⊤

C (AR GA⊤
R x1 +ALx2 +AV x3) = −Z⊤

C AIu1.

Defining u2 = A⊤
V x1 and using Thm. 8, we see that for

u = ( u1
u2

), it holds that ( x
u ) is in the system space of (3),

and (19) implies that x is a consistent initial value. �

In the case where there are no RLV -cuts, we can conclude
from Prop. 1 that both ZIC and ZRCVI are trivial, i.e., these
matrices have zero columns. Consequently, we also obtain
from Thm. 14 that the absence of RLV -cuts causes that
any vector in Rn is a consistent initial value for the MNA
system (cf. Prop. 13).

8. CONSISTENT INITIAL DIFFERENTIAL VALUES
AND IMPULSE CONTROLLABILITY

We now consider another type of initialization, namely
(3) with initial condition Ex(0) = Ex0. x0 ∈ Rn is
called a consistent initial differential value, if there exists
a control u for which a solution x of (3) with initial
condition Ex(0) = Ex0 exists. If this space equals to Rn,
then the system (3) is called impulse controllable. It is
proven in (Berger and Reis, 2013, Sec. 5) that impulse
controllability is equivalent to rk[E AZ B] = rk[E A B]
for some (and hence any) basis matrix Z of kerE. By again
using that the circuit model (4) with assumption (5) has
the property rk[E A B] = n, it is impulse controllable if,
and only if, rk[E AZ B] = n. By using that C > 0 and
L > 0 by (5b), we obtain that a basis matrix of kerE is
given by Z = diag(ZC , 0, I), where ZC is a basis matrix of
kerA⊤

C . Then

rk[E AZ B] = rk

AC CA⊤
C 0 AR GA⊤

C ZC AV AI 0
0 L −A⊤

L ZC 0 0 0
0 0 −A⊤

V ZC 0 0 InV


= rk[AC AR GA⊤

R ZC AV AI ] + nL + nV .
(22)

If ker[AC AR AV AI ]
⊤̸= {0}, (22) implies rk[E AZ B] < n.

Conversely, if ker[AC AR AV AI ]
⊤ = {0} and x1 ∈

ker[AC AR GA⊤
R ZC AV AI ]

⊤, then x1 ∈ kerAC , i.e.,
x1 = ZCz1 for a vector z1, and thus Z⊤

C AR GA⊤
R ZCz1 = 0.

Then G + G > 0 leads to A⊤
R x1 = A⊤

R ZCz1 = 0, whence
x1 ∈ ker[AC AR AV AI ]

⊤ = {0}. We summarize these
finding in the following result.
Proposition 15. Let E,A ∈ Rn×n, B ∈ Rn×m as in (4)
and assume that (5) holds. Then the system (3) is impulse
controllable if, and only if, the underlying circuit does not
contain any L-cuts; equivalently (by Prop. 1)

ker [AR AC AV AI ]
⊤
= {0}.

It is shown in (Berger and Reis, 2013, Lem. 2.3) that the
space Vinit of consistent initial values and the space Vdiff of
consistent initial differential values of the system (3) fulfill

Vdiff = Vinit + kerE. (23)



This identity is the essential ingredient in the proof of
the following result on the space of consistent initial
differential values for the MNA system. We will make use
of the following preparatory result.
Lemma 16. For any subspace V ⊂ Rl and M ∈ Rk×l holds

M−1(MV) = V + kerM.

Proof. “⊂”: Let x ∈ M−1(MV). Then Mx = My for
some y ∈ Rl, whence x = (x− y) + y ∈ kerM + V.
“⊃”: Let x ∈ V+kerM , i.e., x = v+ e for some v ∈ V and
e ∈ kerM . Thus Mx = Mv, whence x ∈ M−1(MV). �
Theorem 17. Let E,A ∈ Rn×n, B ∈ Rn×m as in (4) and
assume that (5) holds. Let ZRCVI be a basis matrix of
ker[AC AR AL AV AI ]

⊤. Then the space of consistent initial
differential values of (3) is given by

ker
[
0 Z⊤

RCVIAL 0
]
.

Proof. Let ZCI be a basis matrix of ker[AC AI ]
⊤. Anal-

ogous to Lem. 12, there exists a basis matrix ZRV−CI of
ker[AR AV ]

⊤ZCI , such that ZRCVI = ZCIZRV−CI .
Step 1: We show that the space Vdiff of consistent initial
differential values fulfills

E−1V⊥
diff = kerA⊤

C × imL−1A⊤
L ZRCVI × RnV : (24)

“⊂”: let x = (x⊤
1 x⊤

2 x⊤
3 )

⊤ ∈ E−1V⊥ with x1 ∈ Rne ,
x2 ∈ RnL , x3 ∈ RnV . Now using Thm. 14 together with
(13), we obtain that there exist vectors z1, z2 with(

AC CA⊤
C x1

Lx2
0

)
=

(
AL L−1A⊤

L ZRCVIz1+AR GA⊤
R ZCIz2

A⊤
L ZCIz2

A⊤
V ZCIz2

)
. (25)

A multiplication of the first equation in (25) with Z⊤
RCVI

yields Z⊤
RCVIAL L−1A⊤

L ZRCVIz1 = 0, and the positive defi-
niteness of L now gives rise to A⊤

L ZRCVIz1 = 0. It follows
that ZRCVIz1 ∈ kerA⊤

L . Then

ZRCVIz1 ∈ ker[AR AC AL AV AI ]
⊤ (5a)

= {0},
and kerZRCVI = {0} gives z1 = 0. Then a multiplica-
tion of the first equation of (25) with Z⊤

CI gives 0 =
Z⊤

CIAR GA⊤
R ZCIz2, and we again make use of (5b) to infer

that A⊤
R ZCIz2 = 0. Then the first equation in (25) gives

AC CA⊤
C x1 = 0, and (5b) gives A⊤

C x1 = 0. The previous
findings imply z2 ∈ ker[AR AV ]

⊤ZCI . Hence, there exists
a vector y with ZR −CIy2 = z2. Plugging this into the
second equation of (25) and using ZRCVI = ZCIZRV−CI ,
it follows that x2 = L−1A⊤

L ZRCVIy2, and we obtain x ∈
kerA⊤

C × imL−1A⊤
L ZRCVI × RnV .

“⊃”: Consider x = (x⊤
1 x⊤

2 x⊤
3 )

⊤ with x1 ∈ kerA⊤
C , x2 ∈

imL−1A⊤
L ZRCVI , x3 ∈ RnV . Then x2 = L−1A⊤

L ZRCVIy2 for
a vector y2, and we obtain

Ex =

(
0

A⊤
L ZRCVIy

0

)
=

[
AL L−1A⊤

L ZRCVI AR GA⊤
R ZCI

0 A⊤
C ZCI

0 A⊤
V ZCI

] (
0

ZRV−CIy

)
.

By again applying (13), Thm. 14 leads to x ∈ E−1V⊥
diff .

Step 2: We conclude from Step 1 that
E · (E−1V⊥

diff)

(24)
= diag(AC CA⊤

C ,L, 0) ·
(
kerA⊤

C × L−1A⊤
L ZRCVI × RnV

)
= im

[
0

A⊤
L ZRCVI

0

]
.

Step 3: We conclude the statement of Thm. 17: By using
the symmetry of E, we obtain

ker
[
0 Z⊤

RCVIAL 0
] Step 2

=
(
E · (E−1V⊥

init)
)⊥

Lem. 10
= E−1 · (EVinit)

Lem. 16
= Vinit + kerE

(23)
= Vdiff . �

In the case where the circuit does not contain any L-cuts,
we can conclude from Prop. 1 that ZRCVI are trivial, i.e., it
has zero columns. As a consequence, we also obtain from
Thm. 17 that in the case of absence of L-cuts, any vector
in Rn is a consistent initial differential value for the MNA
system (cf. Prop. 15).
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