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INPUT-TO-STATE STABILITY OF UNBOUNDED BILINEAR

CONTROL SYSTEMS

RENÉ HOSFELD, BIRGIT JACOB, AND FELIX L. SCHWENNINGER

Abstract. We study input-to-state stability of bilinear control systems with
possibly unbounded control operators. Natural sufficient conditions for inte-
gral input-to-state stability are given. The obtained results are applied to a
bilinearly controlled Fokker-Planck equation.

1. Introduction

In this note we continue recent developments on input-to-state stability (ISS)
for systems governed by evolution equations. This concept unifies both asymptotic
stability with respect to the initial values and robustness with respect to the external
inputs such as controls or disturbances. Loosely, if a system Σ is viewed as a
mapping which sends initial values x0 ∈ X and inputs u : [0,∞) → U to the time
evolution x : [0, T ) → X for some maximal T > 0, then Σ is ISS if T = ∞ and for
all t ∈ [0,∞),

‖x(t)‖X ≤ β(‖x0‖X , t) + γ( sup
s∈[0,t]

‖u(s)‖U ), ∀x0, u, (1)

where the continuous functions β : R
+
0 × R

+
0 → R

+
0 and γ : R

+
0 → R

+
0 are of

Lyapunov class KL and K respectively1. Here X is called the state space and U
the input space equipped with norms ‖ · ‖X and ‖ · ‖U . For linear systems

ẋ(t) = Ax(t) +Bu(t),

where A is the infinitesimal generator of a C0-semigroup (T (t))t≥0 on a Banach
space X and B : U → X is a bounded linear operator, ISS is equivalent to uniform
exponential stability of the semigroup [6, 12]. If B is not bounded as operator form
U to X , which is typically the case for boundary controlled PDEs, the property
of being ISS becomes non-trivial even for linear systems. In fact, this is closely
related to suitable solution concepts see e.g. [12, 21, 29]. Along with the recent
developments in ISS theory for infinite-dimensional systems [6, 7, 10, 16, 27], several
partial results have been derived in the (semi)linear context, with a slight focus on
parabolic equations, see e.g. [14, 17, 22, 23, 25, 36]. We refer to recent surveys on
ISS for infinite-dimensional systems [26, 29] and the book [18]. The origin of ISS
theory, introduced by Sontag in 1989 [30], are non-linear systems and we refer the
reader to [31] for a survey on ISS for ODEs. Already seemingly harmless system
classes such as bilinear systems

ẋ(t) = Ax(t) +B(u(t), x(t)), (2)
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1I.e. β(0, s) = limt→∞ β(r, t) = γ(0) = 0 and β(·, t), β

(

r, 1

·

)

, γ are strictly increasing on R+

for all r, s, t > 0.
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where B(u, x) =
∑m

i=1 ui(t)Bix and matrices A ∈ Rd×d, Bi ∈ Rd×d, see [8], are
typical counterexamples for ISS [32]. Nevertheless, the following variant of ISS [32]
is satisfied by such systems; there exists functions β ∈ KL and γ1, γ2 ∈ K such that

‖x(t)‖X ≤ β(‖x0‖X , t) + γ1

(
∫ t

0

γ2(‖u(s)‖U ) ds

)

, ∀t > 0, ∀u, x0, (3)

which is called integral input-to-state stable (iISS), see also [32]. Note that the
terms involving u in (1) and (3) cannot be compared for arbitrary t > 0, general
functions u, and fixed functions γ, γ1, γ2. Still iISS and ISS are equivalent for
infinite-dimensional linear systems with a bounded linear operator B : U → X ,
[12, 24] as this reduces to uniform exponential stability of the uncontrolled system.
The corresponding question for general infinite-dimensional systems seems to be
much harder and notorious questions remain, see [12, 28, 14] and [35] for a negative
result.
On the other hand in [24] the equivalence of iISS and uniform exponential stability
is shown for a natural infinite-dimensional version of (2), with A generating a C0-
semigroup and B : X×U → X satisfying a Lipschitz condition and being bounded
in the sense that ‖B(x, u)‖ . ‖x‖γ(‖u‖) for some K-function γ and all x and u. As
indicated above, the property whether a system is ISS or iISS is more subtle when
boundary controls are considered and consequently, the involved input operators
become unbounded. This also applies for bilinear systems which — in the presence
of boundary control — cannot be treated as in the references mentioned above.

In this article we establish the abstract theory to overcome such issues. More
precisely, we study infinite-dimensional bilinear control systems of the abstract form

ẋ(t) = Ax(t) +B1F (x(t), u1(t)) +B2u2(t), t ≥ 0, (4)

where A generates a C0-semigroup on a Banach spaceX and B1 and B2 are possibly
unbounded linear operators defined on Banach spaces X̃ and U2 respectively. The
nonlinearity F : X ×U1 → X̃ is assumed to satisfy a Lipschitz condition and to be
bounded in the sense that

‖F (x, u)‖X̃ . ‖x‖X ‖u‖U1 ∀x ∈ X,u ∈ U.

In Section 2 we present the abstract framework and prove the main theoretical
results. Under weak conditions on the operators B1 and B2, we discuss existence of
global (mild) solutions to (4) and provide several ISS estimates. Furthermore, we
give conditions on B1 assuring that uniform exponential stability of the semigroup
and iISS are equivalent notions for System (4). We continue with an example of
infinitely many scalar ODE’s in Section 3 which justifies the use of Orlicz spaces in
the abstract results from Section 2 The guiding example for this research work is
the following bilinearly controlled Fokker–Planck equation with reflective boundary
conditions, which has recently appeared in [5, 11],

∂ρ
∂t
(x, t) = ∆ρ(x, t) + u1(t)∇ ·

(

ρ(x, t)∇α
)

,

ρ(x, 0) = ρ0(x),

0 = (ν∇ρ+ ρ∇α) · ~n,

on a bounded domain Ω, where α : Ω → R is sufficiently smooth and ρ0 is an initial
condition in L2(Ω). In Section 4 we show that such systems satisfy suitable inte-
gral input-to-state estimates and provide a more general class of related examples
tractable within the above abstract framework.
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2. Input-to-state stability for bilinear systems

2.1. System class and Notions. In the following we study infinite-dimensional
bilinear control systems of the form

ẋ(t) = Ax(t) +B1F (x(t), u1(t)) +B2u2(t), t ≥ 0,

x(0) = x0,
(Σ(A, [B1, B2], F ))

where

• X , X̃ and U1, U2 are Banach spaces and x0 ∈ X ,
• A generates a C0-semigroup (T (t))t≥0 on X ,
• the input function u1 is locally integrable function with values in U1, that
is, u1 ∈ L1

loc(0,∞;U1) and u2 ∈ L1
loc(0,∞;U2),

• the operators B1 and B2 are defined on X̃ and U1 respectively. Both
operators map into a space (see below) in which X is densely embedded,

• the nonlinear operator F : X ×U1 → X̃ is bounded in the sense that there
exists a constant m > 0 such that

‖F (x, u)‖X̃ ≤ m‖x‖X‖u‖U1 ∀x ∈ X,u ∈ U1. (5)

and Lipschitz continuous in the first variable on bounded subsets of X ,
where the Lipschitz constant depends on the U1-norm of the second ar-
gument, that is, for all bounded subsets Xb ⊂ X there exists a constant
LXb

> 0, such that

‖F (x, u)− F (x̃, u)‖X̃ ≤ LXb
‖u‖U1‖x− x̃‖X ∀x ∈ Xb, u ∈ U1, (6)

• s 7→ F (f(s), g(s)) is measurable for any interval I and measurable functions
f : I → X , g : I → U1,

• we write Σ(A, [0, B2]) if B1 = 0 and thus System Σ(A, [B1, B2], F ) is linear.

Before explaining the details on the assumptions on B1 and B2 below, we list some
examples for functions F and operators that fit our setting.

(a) X̃ = X , U = C and F (x, u) = xu,

(b) X̃ = U = X , f ∈ X∗, F (x, u) = f(x)u,

(c) X̃ = C, U = X∗, F (x, u) = 〈x, u〉.

Let X−1 be the completion of X with respect to the norm ‖x‖X−1 = ‖(β −
A)−1x‖X for some β in the resolvent set ρ(A) of A.

For a reflexive Banach space, X−1 can be identified with (D(A∗))′, the continu-
ous dual of D(A∗) with respect to the pivot space X . The operators B1 and B2 are

assumed to map to X−1, more precisely, B1 ∈ L(X̃,X−1) and B2 ∈ L(U2, X−1),
where L(X,Y ) refers to the bounded linear operators from X to Y . Only in the

special case that B1 or B2 are in L(X̃,X) or L(U2, X), we say that the respec-
tive operator is bounded. The C0-semigroup (T (t))t≥0 extends uniquely to a C0-
semigroup (T−1(t))t≥0 on X−1 whose generator A−1 is the unique extension of A to
an operator in L(X,X−1), see e.g. [9]. Note that X−1 can be viewed as taking the
role of a Sobolev space with negative index. With the above considerations we may
consider System Σ(A, [B1, B2], F ) on the Banach spaceX−1. We want to emphasize
that our interest is primarily in the situation where B1 and B2 are not bounded
— something that typically happens if the control enters through point boundary
actuation. Note, however, that the assumptions imply that “the unboundedness
of B1 and B2 is not worse than the one of A” — which particularly means that if
A ∈ L(X,X) then B1 ∈ L(X̃,X) and B2 ∈ L(U2, X).
For zero-inputs u1 and u2, the solution theory for System Σ(A, [B1, B2], F ) is fully
characterized by the property that A generates a C0-semigroup as this reduces to
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solving a linear, homogeneous equation. For non-trivial inputs, the solution concept
is a bit more delicate.

More precisely, for given t0, t1 ∈ [0,∞), t0 < t1, x0 ∈ X , u1 ∈ L1
loc(0,∞; X̃) and

u2 ∈ L1
loc(0,∞;U2), a continuous function x : [t0, t1] → X is called a mild solution

of Σ(A, [B1, B2], F ) on [t0, t1] if for all t ∈ [t0, t1],

x(t) = T (t− t0)x0 +

∫ t

t0

T−1(t− s)[B1F (x(s), u1(s)) +B2u2(s)] ds. (7)

We say that x : [0,∞) → X is a global mild solution or a mild solution on [0,∞)
of Σ(A, [B1, B2], F ) if x|[0,t1] is a mild solution on [0, t1] for every t1 > 0. We stress
that existence of a mild solution is non-trivial, even when u1 = 0. In this case, it is
easy to see that x ∈ C([0,∞);X−1), but not necessarily x(t) ∈ X , t > 0, without
further assumptions on B2. The existence of a mild solutions to the linear System
Σ(A, [0, B2]) is closely related to the notion admissibility of the operator B2 for the
semigroup (T (t))t≥0 and various sufficient and necessary conditions are available,
see e.g. Proposition 2.4 and [12].

We need the following well-known function classes from Lyapunov theory.

K = {µ ∈ C(R+
0 ,R

+
0 ) | µ(0) = 0, µ strictly increasing},

K∞ = {θ ∈ K | lim
x→∞

θ(x) = ∞},

L = {γ ∈ C(R+
0 ,R

+
0 ) | γ strictly decreasing, lim

t→∞
γ(t) = 0},

KL = {β : (R+
0 )

2 → R
+
0 | β(·, t) ∈ K ∀t ≥ 0, β(s, ·) ∈ L ∀s > 0}.

The following concept is central in this work. It originates from works by Sontag
[30, 32]. We refer e.g. to [26, 27] for the infinite-dimensional setting.

Definition 2.1. The system Σ(A, [B1, B2], F ) is called

(i) input-to-state stable (ISS), if there exist functions β ∈ KL, µ1, µ2 ∈ K∞

such that for every x0 ∈ X, u1 ∈ L∞(0,∞;U1) and u2 ∈ L∞(0,∞;U2)
there exists a unique global mild solution x of Σ(A, [B1, B2], F ) and for
every t ≥ 0

‖x(t)‖ ≤ β(‖x0‖, t) + µ1(‖u1‖L∞(0,t;U1)) + µ2(‖u2‖L∞(0,t;U2));

(ii) integral input-to-state stable (iISS or integral ISS), if there exist func-
tions β ∈ KL, θ1, θ2 ∈ K∞ and µ1, µ2 ∈ K such that for every x0 ∈ X,
u1 ∈ L∞(0,∞;U2) and u2 ∈ L∞(0,∞;U2) there exists a unique global mild
solution x of Σ(A, [B1, B2], F ) and for every t ≥ 0

‖x(t)‖ ≤ β(‖x0‖, t) + θ1

(
∫ t

0

µ1(‖u1(s)‖) ds

)

+ θ2

(
∫ t

0

µ2(‖u2(s)‖) ds

)

.

One may define some mixed type of these definitions like (ISS,iISS) (and (iISS,ISS)),
in the sense that one has an ISS-estimate for u1 and some integral-ISS-estimate
for u2 (and vice versa).

Although the terms involving u1 and u2 on the right-hand-side of the integral ISS
estimate do not define norms in general, the following function spaces were shown
to be naturally linked to integral ISS [12]. In this context we briefly introduce the
Orlicz space EΦ(I;Y ) for an interval I ⊂ R and a Banach space Y . For more details
on Orlicz spaces we refer to [1, 20, 19].

Let Φ : R+
0 → R

+
0 be a Young function, i.e. Φ is continuous, increasing, convex

with lims→0
Φ(s)
s

= 0 and lims→∞
Φ(s)
s

= ∞. Denote the set of Bochner-measurable
functions u : I → Y for which there exists a constant k > 0 such that Φ(k‖u(·)‖)

4



integrable by LΦ(I;Y ). This vector space becomes a Banach space when equipped
with the norm

‖u‖LΦ(I,Y ) = inf

{

k > 0

∣

∣

∣

∣

∫

I

Φ

(

‖u(s)‖

k

)

ds ≤ 1

}

. (8)

Despite the fact that LΦ(I;Y ) is typically referred to as “Orlicz space” in the
literature, we prefer to call

EΦ(I;Y ) = {u ∈ L∞(I;Y ) | ess supp u is bounded}
‖·‖LΦ(I;Y )

the Orlicz space associated with the Young function Φ. Note that u ∈ EΦ(I;Y )
implies that Φ ◦ ‖u(·)‖ is integrable. Typical examples of Orlicz spaces are Lp-
spaces; for Φ(t) = tp with p ∈ (1,∞) it holds that EΦ(I;Y ) = Lp(I;Y ).
An important property of Φ in the characterization of Orlicz spaces is the ∆2

condition. A Young function Φ is said to satisfy the ∆2 condition if there exist
K > 0 and s0 ≥ 0 such that

Φ(2s) ≤ KΦ(s), s ≥ s0.

In particular note that EΦ(I;Y ) = LΦ(I;Y ) if and only if Φ satisfies the ∆2 con-
dition. The Young functions Φ(s) = sp, p ∈ (1,∞), share this property, leading to

EΦ(I;Y ) = LΦ(I;Y ) = Lp(I;Y ). For a Young function Φ let Φ̃ denote the comple-
mentary Young function, a notion which can be seen as the Orlicz space analog of
Hölder-conjugates. In fact, for Φ(s) = sp

p
it holds that Φ̃(s) = sq

q
for p, q ∈ (1,∞)

with 1
p
+ 1

q
= 1. As for Lp spaces, an equivalent norm to ‖ · ‖LΦ(I;Y ) is given by

‖u‖Φ,(I;Y ) = sup

{
∫

I

‖u(s)‖|v(s)| ds

∣

∣

∣

∣

v measurable,

∫

I

Φ̃(|v(s)|) ds ≤ 1

}

. (9)

Furthermore, for a Young functions Φ and its complementary Young function Φ̃
the following generalized Hölder inequality

∫

I

‖u(s)‖‖v(s)‖ds ≤ 2‖u‖LΦ‖v‖LΦ̃
. (10)

holds. This also implies the continuity of the embeddings

L∞(I;Y ) →֒ LΦ(I;Y ) →֒ L1(I;Y )

if I is bounded. Although L1 is not an Orlicz space, we will explicitly allow for
Φ(t) = t in our notation referring to EΦ(I;Y ) = L1(I;Y ). Note that the definition
of the norm (8) is indeed consistent with the L1-norm and that Φ satisfies the ∆2

condition. However, we will not define a “complementary Young function” for this
particular Φ.
An essential property of Orlicz spaces is the absolute continuity of the EΦ norm
with respect to the length of the interval I (see e.g. [20, Thm. 3.15.6]), this is for
u ∈ EΦ(I;Y ) and ε > 0 there exists δ > 0 such that for each intervall I holds

λ(I) < δ ⇒ ‖u‖EΦ(I;Y ) < ε,

where λ referes to the Lebesgue-measure on R.

Definition 2.2. Let (T (t))t≥0 be a C0-semigroup.

(i) We say that (T (t))t≥0 is of type (M,ω) if M ≥ 1 and ω ∈ R are such that

‖T (t)‖ ≤ Me−ωt, t ≥ 0. (11)

(ii) We say that (T (t))t≥0 is (uniformly) exponentially stable if (T (t))t≥0 is of
type (M,ω) for some ω > 0.
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(iii) Let Z = EΦ or Z = L∞. An operator B ∈ L(U,X−1) is called Z-admissible
for (T (t))t≥0, if for every t > 0 and u ∈ Z(0, t;U) it holds that

∫ t

0

T−1(t− s)Bu(s) ds ∈ X.

We will neglect the reference to (T (t))t≥0 if this is clear from the context.

Recall that every C0-semigroup is of type (M,ω) for some M ≥ 1 and ω ∈ R.
Note that any bounded operator B is Z-admissible for all Z considered above.

Remark 2.3. Let B ∈ L(U,X−1) be Z-admissible for (T (t))t≥0 with Z = EΦ or
Z = L∞. Then for any t > 0 there exists a minimal constant Ct,B > 0 such that

∥

∥

∥

∥

∫ t

0

T−1(t− s)Bu(s) ds

∥

∥

∥

∥

≤ Ct,B‖u‖Z(0,t;U), u ∈ Z(0, t;U). (12)

This is a consequence of the closed graph theorem. Also note that B is Z-admissible
for (eδtT (t))t≥0 for any δ ∈ R. Furthermore, the function t 7→ Ct,B is non-
decreasing and, if (T (t))t≥0 is exponentially stable, even bounded, that is, CB :=
supt≥0 Ct,B < ∞.

The following result clarifies on the relation between admissibility and (integral)
ISS. Note in particular that the existence of mild solutions for EΦ-admissible oper-
ators B2 is based on the absolut continuity of the Orlicz norm with respect to the
length of the interval and the strong continuity of the shift-semigroup on EΦ(I;Y )
for any interval I and any Banach space Y . The latter can be proven by similar
methods one uses to prove the strong continuity of the Shift-semigroup on Lp(I;Y ).

Proposition 2.4 (Prop. 2.10 & Thm. 3.1 in [12]). Let A generate the C0-semigroup
(T (t))t≥0 on X and B2 ∈ L(U2, X−1).

(i) If B2 is EΦ-admissible, then for every x0 ∈ X and u2 ∈ EΦ,loc(0,∞;U2)
there exists a unique global mild solution x of System Σ(A, [0, B2]), which
is given by (7) with B1 = 0.

(ii) System Σ(A, [0, B2]) is ISS if and only if (T (t))t≥0 is exponentially stable
and B2 is L∞-admissible.

(iii) Σ(A, [0, B2]) is iISS if and only if (T (t))t≥0 is exponentially stable and B2

is EΦ-admissible for some Young function Φ.

2.2. Main results. Whether ISS implies iISS for System Σ(A, [0, B]) is still an
open question. This is true for B bounded, see e.g. [12, Prop. 2.14] or [24]. However,
various conditions on A and the input spaces U are available under which iISS and
ISS are equivalent [14] in the case of boundary control. In contrast to linear systems,
the existence of mild solutions is less clear for bilinear control systems of the form
Σ(A, [B1, B2], F ).

Sontag [32] showed that finite-dimensional bilinear systems are hardly ever ISS,
but iISS if and only if the semigroup is exponentially stable. In [24] it was shown
that this result generalizes to infinite-dimensional bilinear systems provided that
B1 and B2 are bounded operators and X̃ = X . The following results give sufficient
conditions for ISS, iISS and some combination of ISS and iISS of Σ(A, [B1, B2], F ).
We start with a result on existence of local solutions to Σ(A, [B1, B2], F ). The proof
involves typical arguments in the context of mild solutions for semilinear equations.

Proposition 2.5. Let A generate a C0-semigroup (T (t))t≥0 on X. Suppose that

B1 ∈ L(X̃,X−1) is EΦ-admissible and that B2 ∈ L(U2, X−1) is EΨ-admissible.
Then for every t0 ≥ 0, x0 ∈ X, u1 ∈ EΦ(0,∞;U1) and u2 ∈ EΨ(0,∞;U2) there
exists t1 > t0 such that System Σ(A, [B1, B2], F ) possesses a unique mild solution
x on [t0, t1].

6



Moreover, if tmax > t0 denotes the supremum of all t1 > t0 such that System
Σ(A, [B1, B2], F ) has a unique mild solution x on [t0, t1], then tmax < ∞ implies
that

lim
t→tmax

‖x(t)‖ = ∞.

Proof. We first show that for every t0 ≥ 0, x0 ∈ X , u1 ∈ EΦ(0,∞;U1) and u2 ∈
EΨ(0,∞;U2) there exists t1 > t0 such that System Σ(A, [B1, B2], F ) possesses a
unique mild solution on [t0, t1] with initial condition x0 and input functions u1 and
u2. Moreover, we show that t1 = t0+δ can be chosen such that δ is independent for
any bounded sets of initial data x0 and t0. Let T > 0, r > 0, u1 ∈ EΦ(0,∞;U1) and
u2 ∈ EΨ(0,∞;U2) be arbitrarily. We first recall the following property of Orlicz
spaces. For any ε > 0 there exists δ > 0 such that

max{‖u1‖EΦ(t,t+δ;U1), ‖u2‖EΨ(t,t+δ;U2)} < ε, ∀t ≥ 0, (13)

see e.g. [20, Thm. 3.15.6]. Let t0 ∈ [0, T ], t1 > t0 and x0 ∈ Kr(0) = {x ∈ X : ‖x‖ ≤
r} and define the mapping

Φt0,t1 : C([t0, t1];X) → C([t0, t1];X)

(Φt0,t1(x))(t) := T (t− t0)x0 +

∫ t

t0

T−1(t− s)[B1F (x(s), u1(s)) +B2u2(s)] ds.

The strong continuity of (T (t))t≥0 and Proposition 2.4 imply that Φt0,t1 is well-
defined, that is, Φt0,t1(x) ∈ C([t0, t1];X) for every x ∈ C([t0, t1];X). Note that we
applied Proposition 2.4 twice: To System Σ(A, [0, B2]) with input u2 and to System
Σ(A, [0, B1]) with input F (x(·), u1(·)), where we set u1, u2, x zero on (0, t0).

LetM,ω > 0 be such that ‖T (t)‖ ≤ Meωt for all t ≥ 0 and choose k = 4Mr+2M .
Set

Mk(t0, t1) := {x ∈ C([t0, t1];X) | ‖x‖C([t0,t1];X) ≤ k}.

We will show next that t1 can be chosen such that Φt0,t1 maps Mk(t0, t1) to
Mk(t0, t1) and is contractive on this set. Let Ct,B1 and Ct,B2 refer to the ad-
missibility constants such that (12) holds for B1 and B2 which can be chosen non-
decreasing in t. Let m be the boundedness constant of F from (5) and let LKk(0)

be the Lipschitz constant of F such that (6) holds for the bounded set Xb = {x(t) |
x ∈ Mk(t0, t1), t ∈ [t0, t1]} ⊂ X which is equal to Kk(0) = {x ∈ X : ‖x‖ ≤ k}. Now,
let t1 = t0 + δ with δ ∈ (0, 1) be chosen such that for all t0 ∈ [0, T ],

(i) eω(t1−t0) = eωδ ≤ 2,
(ii) mCT+1,B1‖u1‖EΦ(t0,t0+δ,U1) ≤

1
2 ,

(iii) CT,B2‖u2‖EΨ(t0,t0+δ;U2) ≤ M and
(iv) CT+δ,B1LKk(0)‖u1‖EΦ(t0,t0+δ;U1) < 1

holds, where we used (13) in (ii)-(vi). Note that apart from the parameters of
the operators B1, B2, A, F , the choice of δ only depends on r and T , where the r-
dependence of δ arises from the r-dependence of k. It follows that for all t0 ∈ [0, T ],
x ∈ Mk(t0, t1) and x0 ∈ Kr(0)

‖Φt0,t1(x)‖C([t0,t1];X)

≤ Meω(t1−t0)‖x0‖+ Ct1,B1‖F (x, u1)‖EΦ(t0,t1;X̃) + Ct1,B2‖u2‖EΨ(t0,t1;U2)

≤ 2M‖x0‖+mCt1,B1‖u1‖EΦ(t0,t1,U1)‖x‖C([t0,t1];X) +M

≤ k,

where we used admissibility in the first inequality and (5) in the second inequality
as well as the monotonicity of the Orlicz norm in both estimates. Hence, Φt0,t1

maps Mk(t0, t1) to Mk(t0, t1). The contractivity follows since

‖Φt0,t1(x)− Φt0,t1(x̃)‖C([t0,t1];X)
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≤ sup
t∈[t0,t1]

∥

∥

∥

∥

∫ t

t0

T (t− s)B1[F (x(s), u1(s)) − F (x̃(s), u1(s))] ds

∥

∥

∥

∥

≤ Ct1,B1LKk(0)‖u1‖EΦ(t0,t1;U1)‖x− x̃‖C([t0,t1];X),

where we used again admissibility, the Lipschitz property of F and the monotonicity
of the Orlicz norm. By Banach’s fixed-point theorem, we conclude that System
Σ(A, [B1, B2], F ) possesses a unique mild solution on [t0, t1] with initial condition
x0 and input functions u1 and u2.
Now let tmax be the supremum of all t1 such that there exists a mild solution x of
Σ(A, [B1, B2], F ) on [t0, t1] for every t1 < tmax, where x0 ∈ X , u1 ∈ EΦ(0,∞;U1)
and u2 ∈ EΨ(0,∞;U2) are given. Suppose that tmax is finite. We will show, that
then limt→tmax ‖x(t)‖ = ∞. If this is not the case, we have

r = sup
t∈[t0,tmax]

‖x(t)‖ < ∞.

Let (tn)n∈N be a sequence of positive real numbers converging to tmax from below.
Since tn ∈ [0, tmax] and ‖x(tn)‖ ≤ r for all n ∈ N, there exists δ > 0 independent
of n ∈ N such that the equation

ẏ(t) = Ay(t) +B1F (y(t), u1(t)) +B2u2(t),
y(tn) = x(tn).

has a mild solution y on [tn, tn + δ]. Therefore, we can extend x by x(t) = y(t),
t ∈ (tn, tn + δ], to a solution of Σ(A, [B1, B2], F ) on [t0, tn + δ]. This contradicts
the maximality of tmax and hence, x has to be unbounded in tmax. �

Theorem 2.6. Let A generate a C0-semigroup (T (t))t≥0 on X. Suppose that there
exist Young functions Φ and Ψ such that

• B1 ∈ L( X̃,X−1) is EΦ-admissible, and
• B2 ∈ L(U2, X−1) is EΨ-admissible.

Then for all x0 ∈ X, u1 ∈ EΦ(0,∞;U1), u2 ∈ EΨ(0,∞;U2) there exists a unique
global mild solution x of Σ(A, [B1, B2], F ) and it holds that

‖x(t)‖≤ β(‖x0‖, t)+γ1(Ct,B1‖u1‖EΦ(0,t))+ γ2(Ct,B2e
−ω

2 t‖e
ω
2 ·u2‖EΨ(0,t)), (14)

≤ β(‖x0‖, t)+γ1(Ct,B1‖u1‖EΦ(0,t))+ γ2(Ct,B2 sup
r∈[0,t]

e−
ω
2 r‖u2‖EΨ(0,t)),

for all t ≥ 0, where ‖ · ‖EΦ(I) = ‖ · ‖EΦ(I;U1) and ‖ · ‖EΨ(I) = ‖ · ‖EΨ(I;U1) and

β(s, t) = Me−ωts+ 1
2M

2e−ωts2 sup
r∈[0,t]

e−ωr,

γ1(s) = 4m2s2e4ms,

γ2(s) = s+ 1
2s

2.

Here, (M,ω) denotes the type of (T (t))t≥0, Ct,Bi
, i = 1, 2, is the admissibility con-

stant of Bi with respect to the semigroup
(

e
ω
2 tT (t)

)

t≥0
(see (12)), and m is the

bound of F (see (5)).

Proof. By Remark 2.3 there exist Ct,B1 , Ct,B2 > 0 such that for every t ≥ 0,

y ∈ EΦ(0,∞; X̃) and ỹ ∈ EΨ(0,∞;U2) we have
∥

∥

∥

∥

∫ t

0

e
ω
2 (t−s)T−1(t− s)B1y(s) ds

∥

∥

∥

∥

≤ Ct,B1‖y‖EΦ(0,t;X̃)

and
∥

∥

∥

∥

∫ t

0

e
ω
2 (t−s)T−1(t− s)B2ỹ(s) ds

∥

∥

∥

∥

≤ Ct,B2 ‖ỹ‖EΨ(0,t;U2)
.
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Let x0 ∈ X , u1 ∈ EΦ(0,∞;U1) and u2 ∈ EΨ(0,∞;U2) and let tmax be the supre-
mum over all t1 such that Σ(A, [B1, B2], F ) possesses a unique x mild solution on
[0, t1]. Proposition 2.5 yields tmax > 0. For t ∈ [0, tmax) it follows that

‖x(t)‖

=

∥

∥

∥

∥

T (t)x0 +

∫ t

0

T−1(t− s)B1F (x(s), u1(s)) ds+

∫ t

0

T−1(t− s)B2u2(s) ds

∥

∥

∥

∥

≤ ‖T (t)x0‖+ e−
ω
2 t

∥

∥

∥

∥

∫ t

0

e
ω
2 (t−s)T−1(t− s)B1(e

ω
2 sF (x(s), u1(s))) ds

∥

∥

∥

∥

+ e−
ω
2 t

∥

∥

∥

∥

∫ t

0

e
ω
2 (t−s)T−1(t− s)B2e

ω
2 su2(s) ds

∥

∥

∥

∥

≤ Me−ωt‖x0‖+ Ct,B1e
−ω

2 t‖e
ω
2 ·F (x(·), u1(·))‖EΦ(0,t;X̃) + Cω,u2,t, (15)

where Cω,u2,t = Ct,B2e
−ω

2 t
∥

∥e
ω
2 ·u2

∥

∥

EΨ(0,t;U2)
. The ‖ · ‖EΦ-norm in the second term

can be estimated by the boundedness of F ,

‖e
ω
2 ·F (x(·), u1(·))‖EΦ(0,t;X̃) ≤ m

∥

∥ ‖u1(·)‖ e
ω
2 · ‖x(·)‖

∥

∥

EΦ(0,t)
.

Provided that EΦ 6= L1, we can further pass over to the equivalent norm onEΦ given
in (9). Therefore, for ε > 0 there exists a function g ∈ LΦ̃(0, t) with ‖g‖LΦ̃(0,t) ≤ 1
such that

∥

∥‖u1(·)‖e
ω
2 ·‖x(·)‖

∥

∥

EΦ(0,t)
≤

∫ t

0

‖u1(s)‖ |g(s)|
(

e
ω
2 s‖x(s)‖

)

ds+ ε.

In the case that EΦ = L1, the above estimate holds trivially with the constant
function g = 1. Hence, by combining this with (15) gives

e
ω
2 t‖x(t)‖ ≤ Me−

ω
2 t‖x0‖+mCt,B1ε+ e

ω
2 tCω,u2,t

+ mCt,B1

∫ t

0

‖u1(s)‖ |g(s)|
(

e
ω
2 s‖x(s)‖

)

ds.

Setting α(t) := Me−
ω
2 t‖x0‖ +mCt,B1ε+ e

ω
2 tCω,u2,t, Gronwall’s inequality implies

that

e
ω
2 t‖x(t)‖ ≤ α(t) +mCt,B1

∫ t

0

α(s)‖u1(s)‖ |g(s)|e
(mCt,B1

∫
t

s
‖u1(r)‖ |g(r)| dr)ds

≤ α(t) +

(

M‖x0‖ sup
r∈[0,t]

e−
ω
2 r +mCt,B1ε+ e

ω
2 tCω,u2,t

)

· 2mCt,B1‖u1‖EΦ(0,t;U1)e
2mCt,B1‖u1‖EΦ(0,t;U1) ,

where we used the generalized Hölder inequality (10) in the case that EΦ 6= L1.
Thus, by letting ε tend to 0, multiplying with e−

ω
2 t and using ab ≤ 1

2a
2 + 1

2b
2 for

a, b ∈ R, we obtain

‖x(t)‖ ≤ Me−ωt‖x0‖+
1
2M

2e−ωt sup
r∈[0,t]

e−ωr‖x0‖
2

+ 4m2C2
t,B1

‖u1‖
2
EΦ(0,t;U1)

e4mCt,B1‖u1‖EΦ(0,t;U1)

+ Cω,u2,t +
1
2C

2
ω,u2,t

.

This shows the first estimate in (14). The second inequality readily follows by
monotonicity of the Orlicz norm,

‖e
ω
2 ·u2‖EΨ(0,t;U2) ≤ sup

r∈[0,t]

e
ω
2 r‖u2‖EΨ(0,t;U2).
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Moreover, the mild solution exists on [0,∞). Indeed, if this is not the case, we have
tmax < ∞ and Proposition 2.5 implies that x is unbounded in tmax. This contradicts
(14) since the right-hand-side is uniformly bounded in t on finite intervals [0, tmax).

�

Remark 2.7. A similar result for the existence of the unique global mild solution
in Proposition 2.5 were proved under slightly stronger conditions in [4] for Lp-
admissible B1, scalar-valued inputs u1, F (x, u1) = u1x and B2 = 0. Our condition
is more natural as the same condition guarantees the existence of continuous (and
unique) global mild solutions of the linear systems Σ(A, [0, B1]) and Σ(A, [0, B2]),
see Proposition 2.4.

If, additionally, the semigroup is exponentially stable, then uniform estimates
can be given for the terms depending on u1 and u2 in (14).

Corollary 2.8. If in addition to the assumptions of Theorem 2.6, the semigroup
(T (t))t≥0 is exponentially stable, i.e. (T (t))t≥0 is of type (M,ω) with M ≥ 1 and
ω > 0, then for all x0 ∈ X, u1 ∈ EΦ(0,∞;U1) and u2 ∈ EΨ(0,∞;U2) the unique
global mild solution x of Σ(A, [B1, B2], F ) satisfies

‖x(t)‖ ≤ β(‖x0‖, t) + γ1
(

CB1‖u1‖EΦ(0,t;U1)

)

+ γ2
(

CB2‖u2‖EΨ(0,t;U2)

)

, (16)

for all t ≥ 0, with CBi
:= supt>0 Ct,Bi

< ∞, and β, γ1, γ2, Ct,Bi
, i = 1, 2, as in

Theorem 2.6. Moreover, β ∈ KL and γ1, γ2 ∈ K∞.

Proof. This is a direct consequence of Theorem 2.6. Indeed, Remark 2.3 implies
that Ct,B1 and Ct,B2 are uniformly bounded in t since the semigroup

(

e
ω
2 tT (t)

)

t≥0

is exponentially stable. Hence, (16) and that β ∈ KL, γ1, γ2 ∈ K∞ follow by (14)
and since supr∈[0,t] e

−ω
2 r = 1 if ω > 0. �

Remark 2.9. In the situation of Theorem 2.6 note that Estimate (14) for B1 = 0
is not optimal regarding the dependence on the norm of u2. In fact, for the linear
system Σ(A, [0, B2]), we have by Remark 2.3 that

‖x(t)‖ ≤ Me−ωt‖x0‖+ CB2‖u2‖EΨ(0,t;U2).

Corollary 2.8 has the following variant.

Corollary 2.10. Under the assumptions of Corollary 2.8 there exists some constant
C > 0, θ2 ∈ K∞ and µ2 ∈ K such that the global mild solution x of Σ(A, [B1, B2], F )
satisfies

‖x(t)‖ ≤ β(‖x0‖, t) + γ1(CB1‖u1‖EΦ(0,t;U1)) + γ2(C‖u2‖L∞(0,t;U2))

and

‖x(t)‖ ≤ β(‖x0‖, t) + γ1(CB1‖u1‖EΦ(0,t;U1)) + θ2

(
∫ t

0

µ2(‖u2(s)‖) ds

)

(17)

for all t > 0, x0 ∈ X, u1 ∈ EΦ(0,∞;U1), u2 ∈ L∞(0,∞;U2), where β, γ1, γ2
defined in Theorem 2.6.

Proof. The first inequality follows from Theorem 2.6, (14), by realizing that there
exists a constant C > 0 such that

e−
ω
2 t‖e

ω
2 ·u2‖EΨ(0,t;U2) ≤ C‖u2‖L∞(0,t;U2), (18)

for all u2 ∈ L∞(0,∞;U2) and t > 0. To see this, let ǫ > 0 such that Ψ(x) ≤ x

for all x ∈ (0, δ), which exists by the property that lims→0
Ψ(s)
s

= 0. Therefore,

choosing C = max{ 1
ǫ
, 2
ω
},

∫ t

0

Ψ
(

C−1e−
ω
2 s
)

ds ≤

∫ t

0

C−1e−
ω
2 sds ≤

2

Cω
≤ 1.
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This implies that

∫ t

0

Ψ

(

e
ω
2 s‖u(s)‖

Ce
ω
2 t‖u‖L∞(0,t;U2)

)

ds ≤

∫ t

0

Ψ
(

C−1e
ω
2 (s−t)

)

ds ≤ 1,

which yields (18) by the definition of the EΨ-norm. To show that (17) holds, note
that by [12, Theorem 3.1] it follows that Σ(A, [0 B2]) is integral ISS. Using the
respective estimates for the input function u2 in (15) in the proof of Theorem 2.6
instead of the previously used EΨ-admissibility yields the adapted estimates for
u ∈ L∞(0,∞;U2). �

Remark 2.11. This can be seen as some type of ISS and iISS in the linear part
of Σ(A, [B1, B2], F ). One cannot expect such an ISS result for u1 as the trivial
finite-dimensional example ẋ = −x+ u1x shows.

We now ask for conditions which guarantee iISS for Σ(A, [B1, B2], F ).

Corollary 2.12. Under the assumptions of Corollary 2.8 the following statements
hold.

1. If Φ satisfies the ∆2 condition, then there exist β ∈ KL, γ2, θ1 ∈ K∞ and
p ∈ (1,∞) such that the unique global mild solution x of Σ(A, [B1, B2], F )
satisfies

‖x(t)‖ ≤ β (‖x0‖, t) + θ1

(
∫ t

0

‖u1(s)‖
p ds

)

+ γ2
(

‖u2‖EΨ(0,t;U2)

)

for every t ≥ 0, u1 ∈ Lp(0,∞;U1), and u2 ∈ EΨ(0,∞;U2). Moreover,

‖x(t)‖ ≤ β(‖x0‖, t) + θ1

(
∫ t

0

‖u1(s)‖
p ds

)

+ γ2(‖u2‖L∞(0,t;U2))

and

‖x(t)‖ ≤ β(‖x0‖, t) + θ1

(
∫ t

0

‖u1(s)‖
p ds

)

+ θ2

(
∫ t

0

µ2(‖u2(s)‖) ds

)

(19)

for all t > 0, x0 ∈ X, u1 ∈ Lp(0,∞;U1) and u2 ∈ L∞(0,∞;U2), and some
θ2 ∈ K∞ and µ2 ∈ K.

In particular, Σ(A, [B1, B2], F ) is iISS.
2. If Ψ satisfies the ∆2 condition, then there exist β ∈ KL, γ1, θ2 ∈ K∞ and

µ2 ∈ K such that for every t ≥ 0, u1 ∈ EΦ(0,∞;U1) and u2 ∈ EΨ(0,∞;U2)
the unique global mild solution of Σ(A, [B1, B2], F ) satisfies Estimate (17).

3. If Φ and Ψ satisfy the ∆2 condition, then there exist β ∈ KL, θ1, θ2 ∈ K∞,
p ∈ (1,∞) and µ2 ∈ K such that for every t ≥ 0, u1 ∈ Lp(1,∞;U1)
and u2 ∈ EΨ(0,∞;U2) the unique global mild solution of Σ(A, [B1, B2], F )
satisfies Estimate (19). In particular, Σ(A, [B1, B2], F ) is iISS.

Proof. 1. If Φ satisfies the ∆2 condition, then there exists p ∈ (1,∞) such
that the embedding Lp(0, t;U1) →֒ EΦ(0, t;U1) is well-defined and con-
tinuous, see [19, p. 24-25] together with [20, Section 3.17]. Hence, B1 is
Lp-admissible and Corollary 2.8 applied with Lp-admissible B1 yields the
first assertion. The second assertion follows directly from Corollary 2.10.

2. If Ψ satisfies the ∆2 condition, then [12, Theorem 3.2] shows that the
integral ISS estimate in (17) even holds for all u2 ∈ EΨ(0,∞;U2).

3. This is clear by combining 1. and 2. �
11



3. Example: Parabolic Diagonal System

Consider the following system of infinitely many bilinear ordinary differential
equations







ẋn(t) = λnxn(t) + u(t)µnxn(t),

xn(0) = xn,0,
n ∈ N, t > 0, (20)

for sequences (λn)n∈N, (µn)n∈N of complex numbers and scalar-valued functions xn

and u. We will discuss this system in the framework of sequences (xn(t))n∈N in
X = ℓ2 = ℓ2(N), but remark that this could be done more general2. Formally, one
can rewrite (20) in the abstract form (4) with F : X×C → X given by F (x, u) := ux
and linear operators A and B1 acting “diagonally” on the canonical basis (en)n∈N

of X , i.e. Aen = λnen and B1en = µnen for all n ∈ N. Let us from now on assume
that supn Reλn < ∞, which guarantees the existence of solutions x(t) in X for all
initial values x0 ∈ X since A generates a C0-semigroup in this case. If (µn)n∈N is a
bounded sequence, then B is bounded and thus System (20) is integral ISS if and
only if supn Reλn < 0. This is an easy exercise when using the explicit solution of
(20), but can also be inferred from Corollary 2.12, as B is clearly L1-admissible. If,
however, (µn)n∈N is not bounded, the characterization does not hold any more.

With the following result we present an abstract example of a bilinear Sys-
tem Σ(A, [B1, B2], F ), where the control operator B1 is Orlicz-admissible for some
Young function Φ but not Lp-admissible for any p ∈ [1,∞). In the context of lin-
ear systems, such an example was already given in [12, Ex. 5.2] for an operator B
defined on C using the connection between a Carleson-measure criterion and admis-
sibility stated in [12], see also [13]. We will reformulate this example for B defined
on X and show EΦ-admissibility by using ideas from [35, Ex. 4.2.12]. Corollary
2.12 implies that such Φ can not satisfy the ∆2 condition.
This result also shows that it is insufficient to consider Corollary 2.8 only in the
case of Lp spaces and that it is necessary to consider Orlicz spaces for the assertion
of the corollary.

Proposition 3.1. There exists a system Σ(A, [B1, B2], F ) with

F : X × C → X, (x, u) 7→ ux

such that the following properties hold.

• B1 and B2 are EΦ-admissible for some Young function Φ;
• B1 and B2 are not Lp-admissible for any p ∈ [1,∞);
• Estimate (16) holds with Φ = Ψ.

More precisely, on any separable Hilbert space X such a system can be defined by
λn = −2n and µn = −λn

n
, n ∈ N, and linear operators A, B = B1 = B2 given by

Aen = λnen, Ben = µnen, n ∈ N,

with maximal domains, that is, D(A) =
{
∑

n xnen ∈ X |
∑

n |λnxn|
2 < ∞

}

, and
where (en)n∈N refers to an orthonormal basis of X.

Proof. Without loss of generality let X = ℓ2(N) and (en)n∈N refer to the canoni-
cal basis. It is well-known that A generates an analytic exponentially stable C0-
semigroup (T (t))t≥0 on X , given by T (t)en = etλnen, t > 0, and that

(ℓ2)−1 =

{

x = (xn)n∈N |
∑

n

|xn|
2

|λn|2
< ∞

}

, ‖x‖X−1 = ‖A−1x‖ℓ2 .

2More generally, any separable Hilbert space can be chosen here and even more general, any
space with a q-Riesz basis.
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Hence, every bounded linear operator b : C → (ℓ2)−1 can be identified with a

sequence (bn)n∈N in C satisfying
∑

n
|bn|

2

|λn|2
< ∞.

To show the admissibility of B with respect to some Orlicz space consider

Φ̃(x) = x ln(ln(x+ e)).

It is easy to check Φ̃ is a Young function. Let Φ be the complementary Young

function and define the sequnce k = (kn)n∈N by kn = ln(Cn)
n

, n ∈ N, where C =
ln(2) + ln(2e) > 1. Choose n large enough, such that knn = ln(Cn) ≥ 1 holds.
Then we have

Φ̃

(

2n

knn
e−2nt

)

=
2n

knn
e−2nt ln

(

ln

(

2n

knn
e−2nt + e

))

≤
2n

knn
e−2nt ln

(

ln

(

2n

knn

(

e−2nt + e
)

))

≤
2n

knn
e−2nt ln (n ln(2)− ln(knn) + ln(2e))

≤
2n

knn
e−2nt ln(Cn)

= 2ne−2nt.

We deduce
∫ t

0

Φ̃

(

e−2n(t−s) 2n

n

kn

)

ds ≤ 1− e−2nt < 1

and hence ‖e−2n(t−·) 2n

n
‖LΦ̃(0,t;C) ≤ kn for sufficiently large n. Using the generalized

Hölder inequality (10), we get for u ∈ EΦ(0, t; ℓ
2) and sufficiently large n

∣

∣

∣

∣

(
∫ t

0

T−1(t− s)Bu(s) ds

)

(n)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t

0

e−2n(t−s) 2
n

n
(u(s))(n) ds

∣

∣

∣

∣

≤ 2

∥

∥

∥

∥

e−2n(t−·) 2
n

n

∥

∥

∥

∥

LΦ̃(0,t;C)

‖(u(·))(n)‖EΦ(0,t;C)

≤ 2kn‖u‖EΦ(0,t;ℓ2),

where we used in the last inequality that
∫ t

0

Φ

(

|(u(s))(n)|

k

)

ds ≤

∫ t

0

Φ

(

‖u(s)‖ℓ2

k

)

ds.

Therefore, for some M > 0,
∥

∥

∥

∥

∫ t

0

T−1(t− s)Bu(s) ds

∥

∥

∥

∥

ℓ2
≤ M‖k‖ℓ2‖u‖EΦ(0,t;ℓ2),

which shows that B is EΦ-admissible. By Corollary 2.8, we conclude that Estimate
(16) holds for Φ = Ψ.
It remains to show that B is not Lp-admissible for any p ∈ [1,∞), see e.g. [12,
Ex. 5.2]. Suppose on the contrary that B is Lp admissible for some p ∈ [1,∞).

Since Lp′

-admissibility implies Lp-admissibility for 1 ≤ p′ < p ≤ ∞ by the nesting
properties of Lp spaces, we can without loss of generality assume that p > 2. By the
definition of admissibility it follows that bx := Bx : C → (ℓ2)−1 is Lp-admissible
for every x ∈ ℓ2. Taking x = ( 1

n
)n∈N, we can identifiy bx with the sequence

(bn)n∈N ∈ X−1 given by bn = 2n

n2 . By the characterization of Lp-admissibility
operators b : C → X−1 for 2 < p < ∞ from [13, Thm. 3.5], this implies that

(

2−
2n(p−1)

p µ(Qn)
)

n∈Z

∈ ℓ
p

p−2 (N),

13



where µ is the Dirac measure given by µ =
∑

n |bn|
2δ−λn

, δλ is centred at λ and
Qn = {z ∈ C | 2n−1 < Re(z) ≤ 2n}. This however leads to a contradiction since

(

(

2−
2n(p−1)

p µ(Qn)
)

p

p−2

)

n∈N

=

(

2
2n
p−2

n
4p

p−2

)

n∈N

/∈ ℓ1.

This completes the proof. �

4. Controlled Fokker–Planck equation

Following [5, 11] we consider a variant of the Fokker–Planck equation on a
bounded domain Ω ⊂ Rn, with smooth boundary ∂Ω, of the form

∂ρ
∂t
(x, t) = ν∆ρ(x, t) +∇ ·

(

ρ(x, t)∇V (x, t)
)

,

ρ(x, 0) = ρ0(x),
(21)

where x ∈ Ω, t > 0, with reflective boundary conditions

0 = (ν∇ρ+ ρ∇V ) · ~n, (22)

on ∂Ω×(0,∞) and where ~n refers to the outward-pointing unit normal vector on the
boundary. Here ρ0 denotes the initial probability distribution with

∫

Ω ρ0(x) dx = 1
and ν > 0. Furthermore, the potential V is of the form

V (x, t) = W (x) + (M(u(t))) (x), (23)

where W ∈ W 2,∞(Ω) and M(u) is assumed to satisfy the structural assumption

∇M(u) · ~n = 0 on ∂Ω× (0,∞)

for all u from the input space U . To apply the results from Section 2, we introduce
the following operators.

Af = ν∆f +∇ · (f∇W ),

D(A) = {f ∈ H1(Ω) | ∆f ∈ L2(Ω), (ν∇f + f∇W ) · ~n = 0 on ∂Ω}

B = ∇· = div

D(B) = H1(Ω)n

where the state space is X = L2(Ω) and H1(Ω), H2(Ω) refer to the standard
Sobolev spaces. Let

F : L2(Ω)× U → L2(Ω)n, (ρ, u) 7→ ρ∇M(u), (24)

with

M : U → {g ∈ W 1,∞(Ω) ∩H2(Ω) | ∇g · n = 0 on ∂Ω}

and M ∈ L(U,W 1,∞(Ω)). For instance, M could be given by

M : C → W 1,∞(Ω), u 7→ α(·)u

with α ∈ W 1,∞(Ω) ∩H2(Ω) and ∇α · ~n = 0 on ∂Ω. This example is studied in [5].
More generally, we can consider

M : L2(Ω) → W 1,∞(Ω), u 7→

(

x 7→

∫

Ω

k(x, y)u(y) dy

)

,

where k ∈ C2(Ω× Ω) satisfies ∇xk(·, y) · n = 0 on ∂Ω for all y ∈ Ω. Note that for
k(·, y) = α(·) we arrive at the first example

M(u) = α(·)

∫

Ω

u(y) dy,

upon identifying a function u ∈ L2(Ω) with its integral.
14



Proposition 4.1. The operator A generates a bounded semigroup on X, with dis-
crete spectrum σ(A) = σp(A) ⊆ (−∞, 0] and ρ∞ = e−Φ is an eigenfunction to the
simple eigenvalue 0.

To prove this, we define Φ = ln ν + W
ν

and let M be the multiplication operator

with e
Φ
2 on L2(Ω). Clearly, M is bounded on L2(Ω) and leaves H1(Ω) invariant.

Moreover, M is invertible and the inverse is the multiplication operator with e−
Φ
2 .

Hence, Ã given by

Ã =MAM−1,

D(Ã) =MD(A)

is well-defined. The proof of the following result is standard, wee e.g. [5]. For
convenience, we sketch it.

Lemma 4.2. The operator Ã is self-adjoint and dissipative with compact resolvent
and σ(A) = σp(A) = σp(Ã) = σ(Ã) ⊆ (−∞, 0]. The eigenvalue 0 is simple and one

corresponding eigenfunction is given by e0 = e−
Φ
2 . In particular, the eigenfunctions

of Ã form an orthonormal basis and Ã generates a contraction semigroup on L2(Ω).

Proof. First we verify by form-methods that A generates a C0-semigroup. It is
shown in [3, Thm. 7.15] that ∆ with D(∆) = D(A) generates a C0-semigroup on
L2(Ω). Since the mapping ρ 7→ ∇ · (ρ∇W ) is bounded considered as operator on

H1(Ω) mapping into L2(Ω) [2, Prop. 7.2.1] implies that A and therefore Ã generates
a C0-semigroup. Integration by parts will show the dissipativity and symmetry
of Ã and that ker(Ã) (and therefore ker(A)) is one-dimensional. In particular,

σ(Ã) ⊂ C− and Ã generates a contraction semigroup. Hence, there exist λ ∈ C \R

such that λ, λ̄ ∈ ρ(Ã). Together with the symmetry, this implies the self-adjointness

of Ã. Standard estimates such as the compact embedding ofH1(Ω) into L2(Ω) show

that Ã and A have compact resolvent. �

To study admissibility of B we introduce the following well-known abstract in-
terpolation and extrapolation spaces, see e.g. [34]. Let X̃1 and X̃−1 be defined in

the same way as X1 and X−1, but using Ã instead of A. We define X̃− 1
2
as the

completion of D(Ã) with respect to the norm given by

‖z‖2
X̃1

2

:= 〈(I − Ã)z, z〉

for x ∈ D(Ã). Furthermore denote by X̃− 1
2
the dual space of X̃ 1

2
with respect to

the pivot space X , i.e. it is the completion of X with respect to the norm

‖z‖2
X̃

−
1
2

:= sup
‖v‖X̃ 1

2

≤1

|〈z, v〉X |.

The following embeddings are dense and continuous

X̃1 →֒ X̃ 1
2
→֒ X →֒ X̃− 1

2
→֒ X̃−1.

Lemma 4.3. The operator B extends uniquely to an L2-admissible operator (for
A) in L(Xn, X−1).

Proof. Let ~M : Xn → Xn, (x1, . . . , xn) 7→ (Mx1, . . . ,Mx1), which is obviously

invertible. We first prove that the operator B̃ := MB ~M−1 defined on D(Ã)n has

a unique extension B̃ ∈ L(Xn, X̃− 1
2
) which is L2-admissible. Integration by parts

gives

‖v‖2
X̃ 1

2

= ‖v‖2L2 + ‖∇
(

e
Φ
2 v
)

e−
Φ
2 ‖2L2 , v ∈ D(Ã).

15



For ~f ∈ D(Ã)n and v ∈ D(Ã), ‖v‖X̃ 1
2

≤ 1, we have that

|〈B̃ ~f, v〉L2 | =

∣

∣

∣

∣

∫

Ω

ve
Φ
2 ∇ ·

(

e−
Φ
2 ~f
)

dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

∂Ω

ve
Φ
2 e−

Φ
2 ~f · ~n dσ −

∫

Ω

∇
(

ve
Φ
2

)

·
(

e−
Φ
2 ~f
)

dx

∣

∣

∣

∣

≤ ‖∇
(

ve
Φ
2

)

e−
Φ
2 ‖2L2(Ω)n‖

~f‖2L2(Ω)n

where σ is the surface measure on ∂Ω. Thus B̃ ∈ L(X, X̃− 1
2
) and B̃ is L2-admissible

for Ã which follows from [34, Prop. 5.1.3]. We have for β ∈ ρ(A) = ρ(Ã) and f ∈ X

‖M−1f‖X−1 = ‖(β −A)−1M−1f‖X

= ‖M−1(β − Ã)−1f‖X ≤ ‖M−1‖L(X)‖f‖X̃−1
.

Thus, M−1 extends uniquely to an operator in L(X̃−1, X−1). The same argument

yields a unique extension M ∈ L(X−1, X̃−1). Note that these extensions are inverse
to each other, so it is natural to denote the extensions again by M and M−1.

Using these extensions we infer that B = M−1B̃ ~M ∈ L(Xn, X−1) is L
2-admissible

for A. Indeed, if (T (t))t≥0 is the semigroup generated by A, then (S(t))t≥0 with

S(t) = MT (t)M−1 is the semigroup generated by Ã and for ~u ∈ L2(0, t;Xn) we

have ~M~u ∈ L2(0, t;Xn) and
∫ t

0

T−1(t− s)B~u(s) ds = M−1

∫ t

0

S(t− s)B̃( ~M~u)(s) ds.

which proves the assertions. �

From what has been shown in this section so far, it can be shown that the
bilinearly controlled Fokker–Planck system given by (21)-(23) can be written as a
system Σ(A, [B1, B2], F ) with B2 = 0, B1 = B and nonlinearity F satisfying the
assumptions from Section 2. Therefore, the following result follows directly from
Theorem 2.6.

Proposition 4.4. The Fokker–Planck system (21)-(23) has a unique global mild
solution ρ for any initial value ρ0 ∈ L2(Ω) and input function u ∈ L2(0,∞;U). If
∫

Ω
ρ0(x)dx = 1, then

∫

Ω
ρ(t, x)dx = 1 for all t > 0.

Proof. The first assertion follows directly from Theorem 2.5. To see the second
let ρ be the global mild solution for given u ∈ L2(0,∞;U) and ρ0 ∈ L2(Ω) with
∫

Ω ρ0(x)dx = 1. Define f = (t 7→ f(t, ·)) by

f(t, x) = BF (ρ(t, x), u(t)) = ∇ · ρ(t, x) (∇M(u(t))) (x),

which is an element of L1
loc(0,∞;X−1). Since ρ is a global mild solution of the

bilinear system, ρ is also a global mild solution of the linear equation

ρ̇(t) = Aρ(t) + f(t), t > 0, ρ(0) = ρ0. (25)

By [33, Thm. 3.8.2(iii)] if follows that ρ ∈ C([0,∞);X)∩W 1,1
loc (0,∞;X−1) and that

ρ satisfies the equation (25) pointwise almost everywhere in X−1. Thus, for any
v ∈ D(A∗) we have that

〈ρ̇(t), v〉X−1×D(A∗) = 〈Aρ(t), v〉X−1×D(A∗) + 〈f(t), v〉X−1×D(A∗)

= 〈ρ(t), A∗v〉X−1×D(A∗) +

∫

Ω

(∇ · ρ(t)∇M(u(t))) · v dx.

Letting v ≡ 1 ∈ D(A∗), we conclude by A∗v = 0 and the structural assumption
∇M(u) · n = 0 on ∂Ω that

∫

Ω ρ(t, x)dx =
∫

Ω ρ0(x)dx = 1 for all t > 0. �
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However, recall from Lemma 4.2 that the kernel of A is one-dimensional with
corresponding normalized eigenfunction ρ∞ = ce−Φ where c > 0 is a suitable
constant. Therefore A does not generate an exponentially stable semigroup and
thus Theorem 2.6 is not applicable. This is why we consider the system around the
stationary distribution ρ∞ instead of the origin, see also [5]. This means that we
consider the change of variables y := ρ−ρ∞, for which the Fokker–Planck equation
then reads

ẏ(t) = Ay(t) +B (y(t)∇M(u(t))) +B (ρ∞∇M(u))) , t ≥ 0

y(0) = ρ0 − ρ∞.

In order to apply Corollary 2.12 we decompose X according to the projections

P : L2(Ω) → L2(Ω), y 7→ y −

∫

Ω

y(x) dxρ∞ and Q := I − P.

Note that ran(Q) = ker(P ) = span{ρ∞} and ker(Q) = ran(P ). Define X = ran(P ).
Using y = yP + yQ with yP = Py ∈ X and yQ = Qy ∈ span{ρ∞} and following [5,
Sec. 3.2], the Fokker–Planck equation can be rewritten as a system in X ,

ẏP (t) = AyP (t) + B1 (yP (t)∇M(u(t))) + B2 (ρ∞∇M(u(t))) , t ≥ 0,

yP (0) = Pρ0,

yQ(t) = Qρ0 − ρ∞ = 0, t ≥ 0,

(26)

where A is the restriction of A to X , B1 is the restriction of B1 to Xn respectively,
and B2 = Bρ∞. See also [5, Eq. (3.12)]. We emphasize that Qρ0 − ρ∞ = 0 follows
by the assumption that

∫

Ω
ρ0(x)dx = 1. Note that by [5] we have PB1 = B1 on

H1(Ω)n and hence on Xn as well as PB2 = B2 on R.

Lemma 4.5. The operator B1 = B|Xn ∈ L(Xn,X−1) is L2-admissible for A and
B2 is L1-admissible for A.

Proof. Since B2 ∈ L(C,X ), admissibility of B2 is clear.
To infer the L2-admissibility of B1 for A, we refer to [15, Lem. 4.4] in combination
with Lemma 4.3. We remark, that [15, Lem. 4.4] is true for B1 ∈ L(X,X−1), even
though only B1 ∈ L(Cm, X−1) is considered. More presicely, B1 is L2-admissible
for A and P commutes with T (t). To verify the latter it sufficies to prove that

P̃ = MPM−1 commutes with the semigroup generated by Ã. This is clear because
Ã provides an orthonormal basis consisting of the eigenfunctions of Ã and ker(Ã) =

span{e0} where e0 = e−
Φ
2 is the eigenfunction to the eigenvalue 0. Then, by [15,

Lem. 4.4] P has a unique extension to a projection P ∈ L(X−1) commuting with
T (t) and with ran(P ) = X−1, where X−1 is considered with respect to the operator
A. Besides, B1 = PB1 as operator mapping from X to X−1. By [15, Lem 4.4], B1

is L2-admissible for A. �

Corollary 2.8 now yields the following result on the considered class of Fokker–
Plank systems.

Theorem 4.6. There exists a constants C, ω > 0 such that for any ρ0 ∈ L2(Ω) with
∫

Ω
ρ0(x)dx = 1 and u ∈ L2(0,∞;U), the global mild solution of the Fokker–Planck

system (21) satisfies

‖ρ(t)− ρ∞‖L2 ≤ Ce−ωt
(

‖ρ0 − ρ∞‖L2 + ‖ρ0 − ρ∞‖2L2

)

+ γ

(
∫ t

0

‖u(s)‖2Uds

)

,

where γ(r) = CreCr
1
2 + Cr

1
2 + Cr.
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Proof. This readily follows from Corollary 2.12 applied to System (26) using Lemma
4.5. Finally note that

yP (t) = Pρ(t) = ρ(t)−

∫

Ω

ρ(t, x)dx ρ∞ = ρ(t)− ρ∞,

where we applied Proposition 4.4 in the last identity. �

5. Conclusion

Bilinear systems appear naturally in control theory e.g. when considering multi-
plicative disturbances in feedback loops of linear systems. The results in this article
draw a link between bilinear systems, which are a classical example class in (inte-
gral) ISS in finite-dimensions, and recent progress in ISS for infinite-dimensional
systems. We emphasize that the most natural example in this context,

ẋ(t) = Ax(t) + u(t)x(t), t > 0, x(0) = x0,

with A generating a C0-semigroup T onX , is covered by the system class considered
here. More precisely, by the results in Section 2, it follows that this system is
integral ISS if and only if T is exponentially stable. More precisely, the sufficiency
follows since the identity is L1-admissible and hence the system is integral ISS by
Corollary 2.12. It seems that prior works on integral ISS [24, Sec. 4.2] did not cover
this comparably simple class as the bilinearity x 7→ xu fails to satisfy a Lipschitz
condition uniform in u required there3.

Moreover, our results generalize to integral ISS assessment for bilinearities arising
from boundary control (or lumped control). We recap our findings by discussing
the following conjecture.

Conjecture 5.1. A bilinear system Σ(A, [B1, B2], F ) satisfying the hypothesis of
Section 2 is integral ISS if the linear systems Σ(A, [0, B1]) and Σ(A, [0, B2]) are
integral ISS.

First, observe that this is known to be true if B1, B2 are bounded. In this case the
converse holds true as well and moreover the condition is equivalent to A generating
an exponentially stable semigroup. In general, the conjecture is open. We are,
however, able to show slightly weaker variants of the statement. On the one hand we
may sharpen the assumption on the linear systems by requiring that Σ(A, [0, B1])
is EΦ-ISS where Φ satisfies the ∆2-condition, see Corollary 2.12. Whereas we
show in Section 3 that this refined condition does not follow from integral ISS
of Σ(A, [B1, B2], F ) in general, we stress that this seems to be no restriction for
any more practical example, Section 4. On the other hand we can replace the
hypothesis in the conjecture by inferring that Σ(A, [B1, B2], F ) is ISS with respect
to some Orlicz space, Theorem 2.6. Note that it would already be interesting to
know whether the conjecture holds true for the systems from Section 3.

6. Acknowledgements

The authors would like to thank Hafida Laasri (Wuppertal) for valuable discus-
sions on form methods.

3However, it seems this can be overcome with a carefully refined argument in the proof of [24,
Thm. 4.2].

18



References

[1] R. Adams. Sobolev spaces. Academic Press, New York-London, 1975. Pure and Applied Math-
ematics, Vol. 65.

[2] W. Arendt. 9th Internet Seminar on Evolution Equations: Heat Kernels, 2005/06.
[3] W. Arendt, R. Chill, C. Seifert, H. Vogt, and J. Voigt. 18th Internet Seminar on Evolution

Equations: Form Methods for Evolution Equations, and Applications, 2014/15.
[4] L. Berrahmoune. A note on admissibility for unbounded bilinear control systems. Bull. Belg.

Math. Soc. Simon Stevin, 16(2):193–204, 2009.
[5] T. Breiten, K. Kunisch, and L. Pfeiffer. Control Strategies for the Fokker–Planck Equation.

ESAIM Control Optim. Calc. Var., 24(2):741–763, 2018.
[6] S. Dashkovskiy and A. Mironchenko. Input-to-state stability of infinite-dimensional control

systems. Math. Control Signals Systems, 25(1):1–35, 2013.
[7] S. Dashkovskiy and A. Mironchenko. Input-to-state stability of nonlinear impulsive systems.

SIAM J. Control Optim., 51(3):1962–1987, 2013.
[8] D. L. Elliott. Bilinear control systems, volume 169 of Applied Mathematical Sciences.

Springer, Dordrecht, 2009.
[9] K.-J. Engel and R. Nagel. One-parameter semigroups for linear evolution equations, volume

194 of Graduate Texts in Mathematics. Springer-Verlag, New York, 2000.
[10] C. Guiver, H. Logemann, and M. R. Opmeer. Infinite-Dimensional Lur’e Systems: Input-To-

State Stability and Convergence Properties. SIAM J. Control Optim., 57(1):334–365, 2019.
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[35] J. Wintermayr. Positivity in perturbation theory and infinite-dimensional systems. PhD the-

sis, University of Wuppertal, 2019.
[36] J. Zheng and G. Zhu. Input-to-state stability with respect to boundary disturbances for a

class of semi-linear parabolic equations. Automatica J. IFAC, 97:271–277, 2018.

(RH) University of Wuppertal, School of Mathematics and Natural Siences, Gauß-

str. 20, 42119 Wuppertal, Germany

E-mail address: hosfeld@uni-wuppertal.de

(BJ) University of Wuppertal, School of Mathematics and Natural Sciences, Gauß-

str. 20, 42119 Wuppertal, Germany

E-mail address: bjacob@uni-wuppertal.de

(FLS) Department of Applied Mathematics, University of Twente, P.O. Box 217,

7500 AE Enschede, The Netherlands and Department of Mathematics, University of

Hamburg, Bundesstraße 55, 20146 Hamburg, Germany

E-mail address: f.l.schwenninger@utwente.nl

20


	1. Introduction
	2. Input-to-state stability for bilinear systems
	2.1. System class and Notions
	2.2. Main results

	3. Example: Parabolic Diagonal System
	4. Controlled Fokker–Planck equation
	5. Conclusion
	6. Acknowledgements
	References

