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REMARKS ON INPUT-TO-STATE STABILITY OF COLLOCATED

SYSTEMS WITH SATURATED FEEDBACK

BIRGIT JACOB, FELIX L. SCHWENNINGER, AND LUKAS A. VORBERG

Abstract. We investigate input-to-state stability (ISS) of infinite-dimensional
collocated control systems subject to saturated feedback. Here, the unsatu-
rated closed loop is dissipative and uniformly globally asymptotically stable.
Under an additional assumption on the linear system, we show ISS for the
saturated one. We discuss the sharpness of the conditions in light of existing
results in the literature.

1. Introduction

In this note we continue the study of the stability of systems of the form
{
ẋ(t) = Ax(t) −Bσ

(
B∗x(t) + d(t)

)
,

x(0) = x0,
(ΣSLD)

derived from the linear collocated open-loop system

ẋ(t) = Ax(t) +Bu(t),

y(t) = B∗x(t).

by the nonlinear feedback law u(t) = −σ(y(t) + d(t)). Here X and U are Hilbert
spaces, A : D(A) ⊂ X → X is the generator of a strongly continuous contraction
semigroup and B is a bounded linear operator from U to X , i.e. B ∈ L(U,X). The
function σ : U → U is locally Lipschitz continuous and maximal monotone with
σ(0) = 0. Of particular interest is the case in which σ is even linear in a neigh-
bourhood of 0. The open-loop system is called collocated as the output operator
B∗ equals the adjoint of the input operator B. In the following we are interested in
stability with respect to both the initial value x0, that is internal stability, and the
disturbance d; external stability. This is combined in the notion of input-to-state
stability (ISS), which has recently been studied for infinite-dimensional systems e.g.
in [7, 9, 19, 20] and particularly for semilinear systems in [5, 6, 23], see also [18] for
a survey. The effect of feedback laws acting (approximately) linearly only locally is
known in the literature as saturation, and first appeared in [25, 24] in the context
of stabilization of infinite-dimensional linear systems, see also [10]. There, internal
stability of the closed-loop system was studied using nonlinear semigroup theory, a
natural tool to establish existence and uniqueness of solutions for equations of the
above type, see also the more recent works [11, 15, 16]. The simultaneous study of
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internal stability and the robustness with respect to additive disturbances in the
saturation seems to be rather recent. This notion clearly includes uniform global
(internal) stability, which is far from being trivial for such nonlinear systems. In
[22] this was studied for a wave equation and in [14] Korteweg-de Vries type equa-
tion was rigorously discussed, building on preliminary works in [12, 13], see also
[11].
The combination of saturation and ISS was initiated in [15] and, as for internal
stability, complemented in [16]. For the rich finite-dimensional theory on ISS
for related semilinear systems, we refer e.g. to [5, 6] and the references therein.
For (infinite-dimensional) nonlinear systems, ISS is typically assessed by Lyapunov
functions, see e.g. [3, 8, 17, 20, 23]. These are often constructed by energy-based
L2 norms, but also Banach space methods exist [20], which are much easier to
handle in the sense of L∞-estimates as present in ISS. We will use some of these
constructions here.

In this note we investigate the question whether internal stability of the linear
undisturbed system, that is, (ΣSLD) with σ(u) = u and d ≡ 0, implies input-
to-state stability of (ΣSLD). In doing so we try to shed light on limitations of
existing results. Because the linear system has a bounded input operator, the above
question is equivalent to asking whether ISS of the linear system yields that (ΣSLD)
is ISS, see e.g. [9]. For nonlinear systems, uniform global asymptotic (internal)
stability is only a necessary condition for ISS, which, however, may fail in presence
of saturation. Indeed, the following saturated transport equation will serve as
a model for a counterexample which we shall discuss in this note in detail, see
Theorem 1.





ẋ(t, ξ) = d
dξx(t, ξ)− satR

(
x(t, ξ)

)
, (t, ξ) ∈ (0,∞)× [0, 1],

x(t, 0) = x(t, 1),

x(0, ξ) = f(ξ),

(Σsat)

where

satR(z) :=

{
z
|z| , |z| ≥ 1

z, z ∈ (−1, 1).
(1)

2. ISS for saturated systems

Definition 1. We call σ : U → U an admissible feedback function if

i) σ(0) = 0,
ii) σ is locally Lipschitz continuous, i.e. for every r > 0 there exists a kr > 0

such that

‖σ(u)− σ(v)‖U ≤ kr‖u− v‖U ∀ u, v ∈ U with ‖u‖U , ‖v‖U ≤ r,

iii) σ is maximal monotone, i.e. ℜ〈σ(u)− σ(v), u − v〉U ≥ 0 ∀ u, v ∈ U .

If additionally a Banach space S is continuously, densely embedded in U with dual
space S′ such that

iv) ‖σ(u)− u‖S′ ≤ ℜ〈σ(u), u〉U ∀ u ∈ U , and
v) there exists C0 > 0 such that

ℜ〈u, σ(u + v)− σ(u)〉U ≤ C0‖v‖U ∀ u, v ∈ U,

then we call σ a saturation function. Here U ⊂ S′ is understood in the sense
of rigged Hilbert spaces, i.e. an element u in U is identified with the functional
s 7→ 〈s, u〉U in S′.
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It seems that the notion of a saturation function appeared first in the context
of infinite-dimensional systems in [24, 25]. Note that the precise definition — in
particular which properties it should include — has varied in the literature since
then. Our definition here matches the one in [15], except for the fact that there,
in addition, it is required that ‖σ(u)‖S ≤ 1. We distinguish between “admissible
feedback functions” and “saturation functions” in order to point out which (minimal)
assumptions are needed in the following results.

Example 1. Let satR be the function from (1). It is easy to see that the function

sat : L2(0, 1) → L2(0, 1), u 7→ satR(u(·))

is an admissible feedback function. Moreover, for S = L∞(0, 1) we have that

‖sat(u)− u‖L1(0,1) =

∫ 1

0

|sat(u)(ξ)− u(ξ)| dξ

≤
∫

{u≥1}

u(ξ) dξ +

∫

{−1≤u≤1}

u2(ξ) dξ +

∫

{u≤−1}

−u(ξ) dξ

= 〈sat(u), u〉U ∀u ∈ U.

As Property (v) from Definition 1 follows similarly, sat is a saturation function.
Note that this example is well-known in the literature, see [15, 16] and the references
therein.

Let σ be an admissible feedback function. In the rest of the paper we will be
interested in the following two types of systems: The unsaturated system,

{
ẋ(t) = Ax(t) −BB∗x(t),

x(0) = x0,
(ΣL)

and the disturbed saturated system
{
ẋ(t) = Ax(t) −Bσ

(
B∗x(t) + d(t)

)
,

x(0) = x0.
(ΣSLD)

with d ∈ L∞(0,∞;U). We abbreviate

Ã : D(Ã) ⊂ X → X, Ãx := Ax−BB∗x.

By the Lumer–Phillips theorem, Ã generates a strongly continuous semigroup of

contractions (T̃ (t))t≥0 as −BB∗ ∈ L(X) is dissipative. Moreover, the nonlinear
operator A−Bσ(B∗·) generates a nonlinear semigroup of contractions [26, Thm. 1]
since, obviously, Bσ(B∗·) : X → X is continuous and monotone, i.e.

〈Bσ(B∗x)−Bσ(B∗y), x− y〉 ≥ 0, ∀x, y ∈ X.

Clearly, (ΣL) is a special case of (ΣSLD) with d = 0, as σ(u) = u is an admissible
feedback function.

Definition 2. Let x0 ∈ X, d ∈ L∞
loc(0,∞;U) and t1 > 0. A continuous function

x : [0, t1] → X satisfying

x(t) = T (t)x0 −
∫ t

0

T (t− s)Bσ
(
B∗x(s) + d(s)

)
ds, t ∈ [0, t1],

is called a mild solution of (ΣSLD) on [0, t1] and we may omit the reference to the
interval. If x : [0,∞) → X is such that the restriction x|[0,t1] is a mild solution for
every t1 > 0, then x is called a global mild solution.
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By our assumptions, (ΣSLD) has a unique mild solution (on some maximal inter-
val) for any x0 ∈ X and d ∈ L∞(0,∞;U), [21, Thm. 6.1.4]1. In order to introduce
the external stability notions, the following well-known comparison functions are
needed,

K := {α ∈ C(R+,R+) | α is strictly increasing, α(0) = 0},
K∞ := {α ∈ K | α is unbounded},
L := {α ∈ C(R+,R+) | α is strictly decreasing with lim

t→∞
α(t) = 0},

KL := {β ∈ C(R+ × R+,R+) | β(·, t) ∈ K ∀t > 0, β(r, ·) ∈ L ∀r > 0},
where C(R+,R+) refers to the continuous functions from R+ to R+.

Definition 3. i) (ΣSLD) is called globally asymptotically stable (GAS) if
every mild solution x for d = 0 is global and the following two properties
hold; limt→∞ ‖x(t)‖X = 0 for every initial condition x0 ∈ X and there
exist σ ∈ K∞ and r > 0 such that ‖x(t)‖ ≤ σ(‖x0‖) for every x0 ∈ X with
‖x0‖ ≤ r, d = 0 and t ≥ 0.

ii) (ΣSLD) is called semi-globally exponentially stable in D(A) if for d = 0 and
any r > 0 there exist µ(r) > 0 and K(r) > 0 such that any mild solution x

with initial value x0 ∈ D(A) is global and satisfies

‖x(t)‖X ≤ K(r)e−µ(r)t‖x0‖X ∀t ≥ 0

for ‖x0‖D(A) := ‖x0‖X + ‖Ax0‖X ≤ r.
iii) (ΣSLD) is called locally input-to-state stable (LISS) if there exist r > 0,

β ∈ KL and ρ ∈ K∞ such that every mild solution x with initial value
satisfying ‖x0‖X ≤ r and disturbance d with ‖d‖L∞(0,∞;U) ≤ r is global and
for all t ≥ 0 we have that

‖x(t)‖X ≤ β(‖x0‖X , t) + ρ(‖d‖L∞(0,t;U)). (2)

(ΣSLD) is called input-to-state stable (ISS) if r = ∞.
System (ΣSLD) is called LISS with respect to C(0,∞;U) if the above holds
for continuous disturbances only. If (2) holds for (ΣSLD) with d ≡ 0
and r = ∞, the system is called uniformly globally asymptotically stable
(UGAS), where the uniformity is with respect to the initial values.

Note that in our notation "UGAS" refers to "0-UGAS" and "GAS" refers to
"0-GAS" more commonly used in the literature. The System (ΣSLD) is globally
asymptotically stable if and only if for every mild solution x for d = 0 we have
limt→∞ ‖x(t)‖X = 0. This directly follows from the fact that the mild solutions
of (ΣSLD) with d = 0 can be represented by a (nonlinear) contraction semigroup,
which implies that ‖x(t)‖ ≤ ‖x0‖ for all t ≥ 0, x0 ∈ X . Compared to the other
notions, semi-global exponential stability in D(A) seems to be less common in
the literature, but appeared already in the context of saturated systems in [16].
The notion of semi-global exponential stability in X was studied in [14]. Note
that for the linear System (ΣL) UGAS is equivalent to the existence of constants

M,ω > 0 such that ‖T̃ (t)‖X ≤ Me−ωt for all t ≥ 0, see [4, Proposition V.1.2].
Clearly, if (ΣSLD) is UGAS, then it is globally asymptotically stable. We note
that semi-global exponential stability in D(A) implies global asymptotical stability
since D(A) is dense in X and by the above mentioned fact that the mild solutions
are described by a nonlinear contraction semigroup. Moreover, using again the
denseness of D(A) in X , the System (ΣL) is UGAS if and only if it is semi-globally
exponentially stable in D(A).

1A careful look at the proof reveals that the continuity of the nonlinearity in t required in [21,
Thm. 6.1.2] can be dropped in our setting.
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Next we investigate the question whether (semi-)global exponential stability in
D(A) or UGAS of System (ΣL) implies (semi-)global exponential stability in D(A)
or UGAS of System (ΣSLD).

In [11, Theorem 2] it is shown that global asymptotic stability of (ΣL) implies
global asymptotic stability of (ΣSLD) if

• D(A) equipped with the norm ‖ ·‖D(A) = ‖ ·‖X +‖A · ‖X is a Banach space
compactly embedded in X and

• σ is an admissible feedback function with the additional properties that for
all u ∈ U , ℜ〈u, σ(u)〉 = 0 implies u = 0.

Note that the other assumptions of [11, Theorem 2] are satisfied in our situation
if σ is globally Lipschitz; this follows again by the fact that the mild solutions are
represented by a nonlinear semigroup. In [19, Section V] it is shown, that under
these conditions and in finite dimensions, i.e. X = R

n and U = R
m, (ΣSLD) is

UGAS.
Here we are interested in results for general admissible feedback functions and

saturation functions. The following result was proved in [16] and [15].

Proposition 1 ([15, Theorem 1], [16, Theorem 2]). Let (ΣL) be UGAS and σ :
U → U be a globally Lipschitz saturation function.

i) If S = U , then (ΣSLD) is ISS.
ii) If there exists a bounded self-adjoint operator P which maps D(A) to D(A)

and solves

〈Ãx, Px〉 + 〈Px, Ãx〉 ≤ −〈x, x〉, ∀x ∈ D(Ã) = D(A), (3)

and if

∃c > 0 ∀x ∈ D(A) : ‖B∗x‖S ≤ c‖x‖D(A), (4)

then (ΣSLD) is semi-globally exponentially stable in D(A).

Note that in the second part of Proposition 1, the existence of a bounded, self-
adjoint operator P satisfying (3) always follows from the assumption that (ΣL) is

UGAS. However, the property that such P leaves D(Ã) invariant does not hold in
general. For instance, this is satisfied if there exists α > 0 such that ℜ〈Ax, x〉 ≤
−α‖x‖2 all x ∈ D(A), which follows directly from dissipativity. On the other hand,
it is not hard to construct examples where this invariance is not satisfied. We will
comment on this condition also in Remark 1 ii). We will show next that Proposition
1 ii) does not hold without assuming (4) and moreover, that (4) does neither imply
UGAS nor ISS for (ΣSLD).

Proposition 2. Let X = U = L2(0, 1), S = L∞(0, 1), A = 0, B = I and σ = sat.
Then System (ΣL) is UGAS and System (ΣSLD) is neither semi-globally exponen-
tially stable in D(A), nor UGAS nor ISS.

Proof. As System (ΣL) is given by ẋ(t) = −x(t), it is UGAS. System (ΣSLD) s
given by

{
ẋ(t, ξ) = −satR

(
x(t, ξ)

)
, t ≥ 0, ξ ∈ (0, 1),

x(0, ξ) = f(ξ),
(5)

with the unique mild solution x ∈ C([0,∞);L2(0, 1))

x(t, ξ) =






f(ξ)− t, if f(ξ) ≥ 1 + t,

e−tf(ξ), if f(ξ) ∈ (−1, 1),

f(ξ) + t, if f(ξ) ≤ −1− t,

ef(ξ)−1−t, if f(ξ) ∈ [1, 1 + t),

−e1−t−f(ξ), if f(ξ) ∈ (−1− t,−1],

(6)
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which can be derived by solving (5) for fixed ξ as simple ODE. We will show that
there exists a sequence (fn)n ∈ L2(0, 1) with ‖fn‖D(A) = ‖fn‖L2(0,1) = 1 such that

for all t > 0 there exists an n ∈ N such that ‖xn(t)‖L2(0,1) >
1
2 where xn denotes

the corresponding solution of (5) with initial function fn. For this purpose we will
only consider the restriction of xn to {ξ ∈ [0, 1] | f(ξ) ≥ 1 + t} and define

fn(ξ) :=
1√
n
ξ−αn

with αn := 1
2

(
1− 1

n

)
. Clearly, fn ∈ L2(0, 1), ‖fn‖L2 = 1 and fn is decreasing.

Note that the equation fn(ξ) = 1+ t has a unique solution ξ for fixed n and t which
is given by

ξ = ξt,n :=
1

(
√
n(1 + t))

1
αn

.

Therefore, {ξ ∈ [0, 1] | fn(ξ) ≥ 1 + t} = {ξ ∈ [0, 1] | ξ ≤ ξt,n}. Hence,

‖xn(t)‖2L2(0,1) ≥
∫ ξt,n

0

xn(t, ξ)
2dξ

=

∫ ξt,n

0

(fn(ξ) − t)2 dξ

=

∫ ξt,n

0

(
1√
n
ξ−αn − t

)2

dξ

=
1

n

∫ ξt,n

0

ξ−2αndξ − 2t√
n

∫ ξt,n

0

ξ−αndξ +

∫ ξt,n

0

t2dξ

=
1

n

1

1− 2αn

ξ1−2αn

t,n − 2t√
n

1

1− αn

ξ1−αn

t,n + t2ξt,n

= n
1

1−n (1 + t)
2

1−n − 1

n+ 1
2n

1
1−n 2t(1 + t)

1+n

1−n + n
n

1−n t2(1 + t)
2n

1−n .

Taking the limit n→ ∞ we conclude

lim
n→∞

‖xn(t)‖2L2(0,1) ≥ 1.

Thus the solution of System (5) does not converge uniformly to 0 with respect to
the norm or graph norm of the initial value, so the system is neither semi-globally
exponentially stable in D(A) nor UGAS. � �

Note, that System (ΣSLD) from Proposition 2 is (GAS) for d = 0 by [11, Theorem
2]. After we have seen that (4) is necessary to conclude semi-global exponential
stability in D(A) in Proposition 1 ii), one may ask whether “more stability” can in
fact be expected. The following theorem shows that UGAS of System (ΣL) together
with the hypotheses in Proposition 1 ii) are not sufficient to guarantee UGAS of
System (ΣSLD).

Theorem 1. Let X = U = L2(0, 1), B = I, S = L∞(0, 1), σ = sat and

A =
d

dξ
, D(A) = {y ∈ H1(0, 1) | y(0) = y(1)}.

Then the following assertions hold.

i) System (ΣL) is UGAS and the hypothesis of Proposition 1 ii) holds,
ii) System (ΣSLD) is semi-globally exponentially stable in D(A),
iii) System (ΣSLD) is neither UGAS nor ISS.

We note, that System (ΣSLD) of Theorem 1 equals (Σsat). Further, in [15,
Thm. 1] it has been wrongly stated that the saturated system is UGAS.
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Proof. It is easy to see that System (ΣL) is UGAS. Since A is dissipative, it follows

that P = I solves (3) for Ã = A−BB∗ = A− I. Trivially, P maps D(A) to D(A).
Condition (4) is satisfied because H1(0, 1) is continuously embedded in L∞(0, 1).
Hence, (ΣSLD) is semi-globally exponentially stable in D(A) by Proposition 1 and
the fact that σ is globally Lipschitz continuous. This shows Assertions i) and
ii). To see iii), note that A generates the periodic shift semigroup on L2(0, 1).
By extending the initial function f periodically to R+, the unique mild solution
y ∈ C([0,∞);L2(0, 1)) of (ΣSLD) is given by

y(t, ξ) = x(t, ξ + t),

where x is defined in (6). By the particular form of (6), this implies that

‖x(t)‖L2(0,1) = ‖y(t)‖L2(0,1)

holds for all t ≥ 0. We can therefore choose the same sequence (fn)n ∈ L2(0, 1)
with ‖fn‖L2(0,1) = 1 as in the proof of Proposition 2 in order to conclude

lim
n→∞

‖yn(t)‖2L2(0,1) ≥ 1.

This shows that System (ΣSLD) is not UGAS and thus not ISS. � �

An important tool for the verification of ISS of System (ΣSLD) are ISS Lyapunov
functions.

Definition 4. Let Ur = {x ∈ X : ‖x‖ ≤ r} and r ∈ (0,∞]. Let U be either
C(0,∞;U) or L∞

loc(0,∞;U). A continuous function V : Ur → R≥0 is called an LISS
Lyapunov function for (ΣSLD) with respect to U , if there exists ψ1, ψ2, α, ρ ∈ K∞,
such that for all x0 ∈ Ur, d ∈ U , ‖d‖L∞(0,∞;U) ≤ r,

ψ1(‖x0‖X) ≤ V (x0) ≤ ψ2(‖x0‖X)

and

V̇d(x0) := lim sup
tց0

1

t

(
V (x(t)) − V (x0)

)
≤ −α(‖x0‖X) + ρ(‖d‖L∞(0,∞;U)), (7)

where x is the mild solution of (ΣSLD) with initial value x0 and disturbance d. If
r = ∞, then V is called an ISS Lyapunov function.

Note that our definition of an ISS Lyapunov function corresponds to the one
of a “coercive ISS Lyapunov function in dissipative form” in the literature, [18].
By [3, Thm. 1], see also [18, Thm. 2.18], the existence of an (L)ISS Lyapunov im-
plies (L)ISS for a large class of control systems which, in particular have to satisfy
the “boundedness-implies-continuation” property (BIC). System (ΣSLD) with an
admissible feedback function and continuous, or, more generally, piecewise contin-
uous disturbances d belongs to this class, which allows to infer (L)ISS from the
existence of a Lyapunov function. To see this, note in particular that the (BIC)
property is satisfied by classical results on semilinear equations, [1, Prop. 4.3.3] or
[21, Thm. 6.1.4].
In the following we will infer ISS by constructing Lyapunov functions.

Theorem 2. Suppose that there exists α > 0 such that ‖T (t)‖ ≤ e−αt for all t > 0
and let σ be an admissible feedback function. Then the function

V (x) = ‖x‖2X , x ∈ X,

is an ISS Lyapunov function for (ΣSLD) with respect to C(0,∞;U) and System
(ΣSLD) is ISS with respect to C(0,∞;U).
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Proof. Let x ∈ C(0, t1;X) be the mild solution of (ΣSLD) with initial value x0 ∈
D(A) and disturbance d ∈ C(0,∞;U). Let y ∈ C(0, t2;X) be the mild solution of
the system

{
ẏ(t) = Ay(t)− Bσ

(
B∗y(t) + d̃(t)

)

y(0) = y0

with d̃ ∈ C(0,∞;U) and y0 ∈ X . Then there exists an r > 0 such that

max{‖B∗x(s) + d(s)‖U , ‖B∗y(s) + d̃(s)‖U , ‖B∗x(s)‖U | s ∈ [0,min{t1, t2}]} < r

because x, y, d and d̃ are continuous. Thus we have for t ∈ [0,min{t1, t2})

‖x(t)− y(t)‖ ≤ ‖x0 − y0‖+
∫ t

0

‖B‖kr
(
‖B‖‖x(s)− y(s)‖ + ‖d(s)− d̃(s)‖

)
ds.

Applying Gronwall’s inequality yields

‖x(t)− y(t)‖ ≤
(
‖x0 − y0‖+

∫ t

0

‖B‖kr‖d(s)− d̃(s)‖ ds
)
et‖B‖2kr . (8)

Let us for a moment assume that d ist Lipschitz continuous with Lipschitz constant
L. We will prove that x is right-differentiable. For 0 < h < t1 − t we can write
x(t+ h) in the form

x(t+ h) = T (t+ h)x0 −
∫ t+h

0

T (t+ h− s)Bσ
(
B∗x(s) + d(s)

)
ds

= T (t)x(h)−
∫ t

0

T (t− s)Bσ
(
B∗x(s + h) + d(s+ h)

)
ds.

Thus x at time t+ h equals the mild solution y of
{
ẏ(t) = Ay(t)−Bσ

(
B∗y(t) + d(t+ h)

)

y(0) = x(h)
(9)

at time t. Hence, by (8) we obtain

‖x(t+ h)− x(t)‖ ≤
(
‖x(h)− x0‖+ ‖B‖krLht

)
et‖B‖2kr . (10)

Note that

x(h)− x0

h
=
T (h)x0 − x0

h
− 1

h

∫ h

0

T (h− s)Bσ
(
B∗x(s) + d(s)

)
ds

converges to Ax0 −Bσ
(
B∗x0 + d(0)

)
as hց 0 since x0 ∈ D(A) and σ, x and d are

continuous. Therefore, by (10), we deduce

lim sup
hց0

‖x(t+ h)− x(t)‖
h

<∞. (11)

By the definition of the mild solution we have that

T (h)− I

h
x(t) =

x(t+ h)− x(t)

h
+

1

h

∫ t+h

t

T (t+ h− s)Bσ
(
B∗x(s) + d(s)

)
ds.

Again by continuity of σ, x and d we have that

lim
hց0

1

h

∫ t+h

t

T (t+ h− s)Bσ
(
B∗x(s) + d(s)

)
ds = Bσ

(
B∗x(t) + d(t)

)
.

Combining this with (11) shows that

x(t) ∈ {z ∈ X | lim sup
hց0

1

h
‖T (h)x− x‖ <∞},
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which means that x(t) is an element of the Favard space of the semigroup and
because X is reflexive, we can conclude that x(t) ∈ D(A), [4, Cor. II.5.21]. This
implies that x is right-differentiable at t with

lim
hց0

x(t+ h)− x(t)

h
= Ax(t)−Bσ

(
B∗x(t) + d(t)

)
.

As V (x) = ‖x‖2, we hence obtain for the Dini derivative

D+V (x(·))(t) = lim sup
hց0

1

t

(
V (x(t+ h))− V (x(t))

)

that

D+V (x(·))(t) = 2ℜ(〈Ax(t), x(t)〉X − 〈Bσ(B∗x(t) + d(t)), x(t)〉X )

≤ −2α‖x(t)‖2 −ℜ(〈σ(B∗x(t) + d(t)) − σ(B∗x(t)), B∗x(t)〉X)

≤ −2α‖x(t)‖2 + ‖σ(B∗x(t) + d(t)) − σ(B∗x(t))‖ ‖B∗x(t)‖
≤ −2α‖x(t)‖2 + kr‖d(t)‖ ‖B‖ ‖x(t)‖, (12)

where we used that −ℜ〈σ(B∗x), B∗x〉 ≤ 0 by Property (i) and (ii) of admissible
feedback functions and the local Lipschitz condition for σ. By [2, Cor. A.5.45] we
obtain

V (x(t + h))− V (x(t)) ≤
∫ t+h

t

−2α‖x(s)‖2 + kr‖d(s)‖ ‖B‖ ‖x(s)‖ ds. (13)

From (8) we derive

‖x(t)− y(t)‖ ≤
(
‖x0 − y0‖+ t‖B‖kr‖d− d̃‖L∞(0,t;U)

)
et‖B‖2kr

and therefore the mild solution of (ΣSLD) depends continuously on the initial data
and the disturbance. Hence, by understanding x(t+ h) again as the solution of (9)
at time t, (13) holds for all x0 ∈ X and d ∈ C(0,∞;U) which leads to

V̇d(x0) ≤ −2α‖x0‖2 + kr‖d(0)‖ ‖B‖ ‖x0‖

≤ (ε− 2α)‖x0‖2 +
(kr ‖B‖ ‖d(0)‖)2

ε

for all x0 ∈ X , d ∈ C(0,∞;U) and ε > 0. Choosing ε < 2α, this shows that V
is an ISS-Lyapunov function for (ΣSLD) which implies that (ΣSLD) is ISS by [18,
Thm. 2.18]. � �

Remark 1.

i) Recall that the semigroup generated by A in Theorem 1 was not exponen-
tially stable. Theorem 2 shows that this is not accidental.

ii) Note that the assumption on the semigroup made in Theorem 2 is strictly
stronger than the condition that (T (t))t≥0 is an exponentially stable con-
traction semigroup as can be seen e.g. for a nilpotent shift-semigroup on
X = L2(0, 1). It is a simple consequence of the Lumer–Phillips theorem
that the following assertions are equivalent for a semigroup (T (t))t≥0 gen-
erated by A and some constant ω > 0.

(a) ℜ〈Ax, x〉 ≤ −ω‖x‖2 all x ∈ D(A).
(b) supt>0 ‖eωtT (t)‖ ≤ 1.
(c) P = 1

ω
I solves ℜ〈Ax, Px〉 ≤ −〈x, x〉, for all x ∈ D(A).

However, we also remark that the above condition is satisfied for a large
class of examples, such as in the case when A is a normal operator.
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iii) It is natural to ask whether Theorem 2 holds when A is merely assumed to
generate an exponentially stable semigroup. However, it is unclear how to
use the structural assumptions on σ in the general case. On the other hand,
the assumption on the semigroup in Theorem 2 implies that P = I satisfies
(3) in Proposition 1 ii).

iv) An inspection of the proof shows that Theorem 2 can be generalized to piece-
wise continuous or regulated functions d : [0,∞) → U .

Locally linear admissible feedback functions yield LISS Lyapunov functions.

Theorem 3. Let (ΣL) be UGAS with M,ω > 0 such that ‖T̃ (t)‖ ≤Me−ωt for all
t ≥ 0 and let σ be an admissible feedback function with σ(u) = u for all ‖u‖U ≤ δ

and some δ > 0. Then (ΣSLD) is LISS with Lipschitz continuous LISS Lyapunov

function V (x) := maxs≥0 ‖e
ω
2
sT̃ (s)x‖X .

Proof. Let ‖x0‖X ≤ ‖B‖−1δ and r := max{‖B∗x(s)‖U , ‖B∗x(s) + d(s)‖U | s ∈
[0, t]} for some t > 0. We can rewrite (ΣSLD) in the form

{
ẋ(t) = Ãx(t) +B

(
B∗x(t)− σ(B∗x(t) + d(t))

)
,

x(0) = x0.

Hence, the mild solution satisfies

x(h) = T̃ (h)x0 +

∫ h

0

T̃ (h− s)B
(
B∗x(s)− σ(B∗x(s) + d(s)

)
ds.

Denoting the integral by Ih, we have

lim sup
hց0

1

h
‖Ih‖X ≤ lim sup

hց0

1

h

(∫ h

0

M‖B‖‖B∗x(s)− σ(B∗x(s))‖Uds

+

∫ h

0

M‖B‖‖σ(B∗x(s)) − σ(B∗x(s) + d(s))‖Uds
)

≤ M‖B‖‖B∗x0 − σ(B∗x0)‖U +M‖B‖kr‖d‖L∞(0,ε;U)

= M‖B‖kr‖d‖L∞(0,ε;U),

where the continuity of x, the Lipschitz continuity of σ as well as the condition
σ(u) = u if ‖u‖ ≤ δ have been used.

With ‖x‖ ≤ V (x) ≤M‖x‖ and V
(
T̃ (t)x

)
≤ e−

ω
2
tV (x) for all x ∈ X we obtain

V̇d(x0) = lim sup
hց0

1

h

(
V (T̃ (h)x0 + Ih)− V (x0)

)

≤ lim sup
hց0

1

h

(
e−

ω
2
h − 1

)
V (x0) +M lim sup

hց0

1

h
‖Ih‖X

≤ −ω
2
‖x0‖X +M2‖B‖kr‖d‖L∞(0,ε;U)

for every ε > 0. The Lipschitz continuity of V follows from

|V (x) − V (y)| ≤ |max
s≥0

‖eω
2
sT̃ (s)x‖ −max

s≥0
‖eω

2
sT̃ (s)y‖|

≤ max
s≥0

‖eω
2
sT̃ (s)(x − y)‖

≤M‖x− y‖,
for all x, y ∈ X . Applying [17, Theorem 4] yields local input-to-state stability of
(ΣSLD). � �

Note that Property iii) of Definition 1 has not been used in the proof of Theorem
3.
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3. Conclusion

In this note we have continued the study of ISS for saturated feedback con-
nections of linear systems. Theorem 1 states that ISS cannot be concluded from
uniform exponential stability of the unsaturated closed-loop and stability of the
(undisturbed) open-loop linear system

ẋ(t) = Ax(t)

(i.e. the semigroup generated by A is bounded). However, the conclusion does hold
under more assumptions on A; namely that ℜ〈Ax, x〉 ≤ −α‖x‖2 for some α > 0
and all x ∈ D(A), see Theorem 2. The latter property can be seen as some kind
of quasi-contractivtiy of the semigroup combined with exponential stability. This
condition seems to be crucial for the proof, see Remark 1. The question remains
whether the result could be generalized to more general semigroups, e.g. such as
contractive semigroups which are exponentially stable, but do not satisfy the above
mentioned quasi-contractivity. Note, however, that the assumption that A gener-
ates a contraction semigroup seems to be to essential to employ dissipativity of the
nonlinear system.
Another task for future research is the step towards unbounded operators B, promi-
nently appearing in boundary control systems. As our techniques and also the ones
used in existing results for ISS on saturated systems, seem to heavily rely on the
boundedness of B, this may require a different approach or more structural assump-
tions on A.
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