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Abstract

We consider output trajectory tracking for a class of uncertain nonlinear systems whose internal dynamics may be
modelled by infinite-dimensional systems which are bounded-input, bounded-output stable. We describe under which
conditions these systems belong to an abstract class for which funnel control is known to be feasible. As an illustrative
example, we show that for a system whose internal dynamics are modelled by a transport equation, which is not
exponentially stable, we obtain prescribed performance of the tracking error.
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1. Introduction

We study output trajectory tracking for uncertain non-
linear systems by funnel control. As a crucial assumption,
we require that the internal dynamics of the system, typi-
cally arising from a partial differential equation (PDE) in
our framework, are bounded-input, bounded-output (BIBO)
stable.

Funnel control has been developed in [18] for systems
with relative degree one, see also the survey [16]. The fun-
nel controller is a low-complexity model-free output-error
feedback of high-gain type; it is an adaptive controller
since the gain is adapted to the actual needed value by
a time-varying (non-dynamic) adaptation scheme. Note
that no asymptotic tracking is pursued, but a prescribed
tracking performance is guaranteed over the whole time in-
terval. The funnel controller proved to be the appropriate
tool for tracking problems in various applications, such
as temperature control of chemical reactor models [21],
control of industrial servo-systems [12] and underactuated
multibody systems [2], speed control of wind turbine sys-
tems [10, 11], DC-link power flow control [27], voltage and
current control of electrical circuits [6], oxygenation con-
trol during artificial ventilation therapy [24] and adaptive
cruise control [4, 5].

A funnel controller for a large class of systems described
by functional differential equations with arbitrary relative
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degree has been developed recently in [1]. While this ab-
stract class appears to allow for fairly general infinite-
dimensional systems, cf. also Section 2, it is in fact not
clear which types of PDE systems are encompassed. As a
first result, it was shown in [3] that the linearized model
of a moving water tank, where sloshing effects appear, be-
longs to the aforementioned system class. On the other
hand, not even every linear, infinite-dimensional system
has a well-defined (integer-valued) relative degree: In that
case, results as in [18, 1] cannot be applied. Instead, the
feasibility of funnel control has to be investigated directly
for the (nonlinear) closed-loop system, see [26] for a bound-
ary controlled heat equation and [25] for a general class of
boundary control systems.

The present paper is devoted to systems which have
a relative degree, but in the presence of internal dynam-
ics that are modelled by a PDE system. Motivated by
the observation that several relevant systems of the afore-
mentioned form belong to the class introduced in [1], we
develop a general system class containing PDE models for
which funnel control is feasible; this result is presented in
Section 3. We show that the class of systems for which
a Byrnes-Isidori form exists, see [20], is contained in this
new system class. As an example, we consider a system
internally driven by a transport equation and illustrate
the funnel controller by a simulation in Section 4. Some
conclusions are given in Section 5.

1.1. Nomenclature and basic concepts
Throughout this article, we use the following notation:

N denotes the natural numbers, N0 = N∪{0}, and R≥0 =
[0,∞). We use the notation Cω = { λ ∈ C | Reλ > ω }

Preprint submitted to Elsevier December 6, 2019

ar
X

iv
:1

91
2.

02
45

3v
1 

 [
m

at
h.

O
C

] 
 5

 D
ec

 2
01

9



for ω ∈ R. With Lp(I;Rn) we denote the Lebesgue
space of all measurable and pth power integrable functions
f : I → Rn, where I ⊆ R is an interval and p ∈ [1,∞);
L∞(I;Rn) denotes the Lebesgue space of all measurable
and essentially bounded functions f : I → Rn. We write
‖ · ‖∞ for ‖ · ‖L∞(R≥0;Rn). By L∞loc(I;Rn) we denote the
set of measurable and locally essentially bounded func-
tions f : I → Rn and by W k,p(I;Rn), k ∈ N0, the
Sobolev space of k-times weakly differentiable functions
f : I → Rn such that f, . . . , f (k) ∈ Lp(I;Rn). For an
open set V ⊆ Rm we denote by Ck(V ;Rn) the set of k-
times continuously differentiable functions f : V → Rn,
k ∈ N0∪{∞} where C(V ;Rn) := C0(V ;Rn). The set of all
real-valued Borel measures with bounded total variation is
denoted by M(R≥0) and the total variation by ‖f‖M(R≥0)

for f ∈ M(R≥0); we refer to the textbook [9] for more
details. By L(X ;Y), where X ,Y are Hilbert spaces, we
denote the set of all bounded linear operators A : X → Y.

Let X be a real Hilbert space and recall that a C0-
semigroup (T (t))t≥0 on X is a L(X ;X )-valued map satis-
fying T (0) = IX and T (t + s) = T (t)T (s), s, t ≥ 0, where
IX denotes the identity operator, and t 7→ T (t)x is con-
tinuous for every x ∈ X . C0-semigroups are characterized
by their generator A, which is a, not necessarily bounded,
operator on X .

Furthermore, recall the space X−1, see e.g. [31,
Sec. 2.10], which should be thought of as an abstract
Sobolev space with negative index1. If A : D(A) ⊆ X → X
is a densely defined operator with ρ(A) 6= ∅, where ρ(A)
denotes the resolvent set of A, then for any β ∈ ρ(A) we
denote by X−1 the completion of X with respect to the
norm

‖x‖X−1
= ‖(βI −A)−1x‖X , x ∈ X .

Then the norms generated as above for different β ∈ ρ(A)
are equivalent and, in particular, X−1 is independent of
the choice of β. If A generates a C0-semigroup (T (t))t≥0
in X , then the latter has a unique extension to a semigroup
(T−1(t))t≥0 in X−1, which is given by

T−1(t) = (βI −A−1)T (t), t ≥ 0,

where (βI − A−1) ∈ L(X ;X−1) is a surjective isome-
try. Therefore, A−1 is the generator of the semigroup
(T−1(t))t≥0.

The notion of admissible operators is well-known in
infinite-dimensional linear systems theory with unbounded
control and observation operators, as present in boundary
control, see e.g. [31], and is motivated by interpreting a
PDE on a larger space in order to define solutions. Let
U ,X ,Y be real Hilbert spaces and A as above such that it
generates a C0-semigroup (T (t))t≥0 on X . Then we recall
that B ∈ L(U ;X−1) is a Lp-admissible control operator
(for (T (t))t≥0), with p ∈ [1,∞], if for all t ≥ 0 and all

1This space is sometimes referred to as rigged Hilbert space.

u ∈ Lp([0, t];U) we have

Φtu :=

∫ t

0

T−1(t− s)Bu(s) ds ∈ X .

By a closed graph theorem argument this property im-
plies that, for any t ≥ 0, the operator Φt is bounded from
Lp([0, t];U) to X .

An operator C ∈ L(D(A);Y) is called Lp-admissible
observation operator (for (T (t))t≥0), if for some (and hence
all) t ≥ 0 the mapping

Ψt : D(A)→ Lp([0, t],Y), x 7→ CT (·)x

can be extended to a bounded operator from X to
Lp([0, t],Y) — this extension will again be denoted by Ψt.

Both admissibility notions are combined in the stronger
concept of well-posedness: Let (A,B,C) represent a sys-
tem where A is the generator of a C0-semigroup, B is a
L2-admissible control operator and C is a L2-admissible
observation operator in the sense described above. If for
some ω ∈ R the transfer function H : Cω → L(U ,Y),
which is uniquely determined (up to a constant) by

1

s2 − s1
(H(s1)−H(s2)) = C

(
(s1I −A)−1(s2I −A)−1

)
B

for all s1, s2 ∈ Cω, s1 6= s2, exists and is proper, that is
sups∈Cω

‖H(s)‖ < ∞, then we say that (A,B,C) is well-
posed. We remark that well-posedness is usually defined
differently, but equivalently, see [7]. If limRe s→∞H(s)v
exists for any v ∈ U , then the system (A,B,C) is called
regular.

1.2. System class
In the remainder of the present paper we consider ab-

stract differential equations of the form

y(r)(t) = f
(
d(t), T (y, ẏ, . . . , y(r−1))(t)

)
+ Γ

(
d(t), T (y, ẏ, . . . , y(r−1))(t)

)
u(t)

y|[−h,0] = y0 ∈W r−1,∞([−h, 0];Rm),

(1)

where h ≥ 0 is the “memory” of the system2, r ∈ N is the
relative degree, and

(N1) the disturbance satisfies d ∈ L∞(R≥0;Rp), p ∈ N;

(N2) f ∈ C(Rp × Rq;Rm), q ∈ N;

(N3) the high-frequency gain matrix function Γ ∈ C(Rp ×
Rq;Rm×m) satisfies Γ(d, η) + Γ(d, η)> > 0 for all
(d, η) ∈ Rp × Rq;

(N4) T : C([−h,∞);Rrm)→ L∞loc(R≥0;Rq) is an operator
with the following properties:

2Here, “h = 0” means that the initial values y(0), ẏ(0), . . .,
y(r−1)(0) are prescribed.
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a) T maps bounded trajectories to bounded tra-
jectories, i.e, for all c1 > 0, there exists c2 > 0
such that for all ζ ∈ C([−h,∞);Rrm),

sup
t∈[−h,∞)

‖ζ(t)‖ ≤ c1 ⇒ sup
t≥0
‖T (ζ)(t)‖ ≤ c2,

b) T is causal, i.e, for all t ≥ 0 and all ζ, ξ ∈
C([−h,∞);Rrm),

ζ|[−h,t) = ξ|[−h,t) ⇒ T (ζ)|[0,t)
a.e.
= T (ξ)|[0,t).

c) T is locally Lipschitz continuous in the following
sense: for all t ≥ 0 and all ξ ∈ C([−h, t];Rrm)
there exist τ, δ, c > 0 such that, for all ζ1, ζ2 ∈
C([−h,∞);Rrm) with ζi|[−h,t] = ξ and ‖ζi(s)−
ξ(t)‖ < δ for all s ∈ [t, t + τ ] and i = 1, 2, we
have∥∥(T (ζ1)− T (ζ2)) |[t,t+τ ]

∥∥
∞

≤ c
∥∥(ζ1 − ζ2)|[t,t+τ ]

∥∥
∞ .

In [1, 13, 17, 18, 19] it is shown that the class of sys-
tems (1) encompasses linear and nonlinear systems with
strict relative degree r and BIBO stable internal dynam-
ics. The operator T allows for infinite-dimensional (linear)
systems, systems with hysteretic effects or nonlinear delay
elements, and combinations thereof. Note that T is typi-
cally the solution operator corresponding to a (partial) dif-
ferential equation which describes the internal dynamics of
the system. The linear infinite-dimensional systems that
are considered in [18, 19] are in a special Byrnes-Isidori
form that is discussed in detail in [20]. While the internal
dynamics in these systems is allowed to correspond to a
strongly continuous semigroup, all other operators are as-
sumed to be bounded and to satisfy additional restrictive
conditions. In contrast to this, in the present paper we
consider nonlinear equations which, in particular, involve
unbounded operators. This complements and generalizes
the findings in [3].

1.3. Control objective
The objective is to design a derivative output error

feedback of the form

u(t) = G
(
t, e(t), ė(t), . . . , e(r−1)(t)

)
,

where yref ∈ W r,∞(R≥0;Rm) is a reference signal, which
applied to (1) results in a closed-loop system where the
tracking error e(t) = y(t) − yref(t) evolves within a pre-
scribed performance funnel

Fϕ := { (t, e) ∈ R≥0 × Rm | ϕ(t)‖e‖ < 1 } , (2)

which is determined by a function ϕ belonging to

Φr :=

ϕ ∈ Cr(R≥0;R)

∣∣∣∣∣∣
ϕ, ϕ̇, . . . , ϕ(r) are bounded,
ϕ(τ) > 0 for all τ > 0,
and lim infτ→∞ ϕ(τ) > 0

 .

Furthermore, all signals u, e, ė, . . . , e(r−1) should remain
bounded.

The funnel boundary is given by 1/ϕ, see Fig. 1. The
case ϕ(0) = 0 is explicitly allowed and puts no restriction
on the initial value since ϕ(0)‖e(0)‖ < 1; in this case the
funnel boundary 1/ϕ has a pole at t = 0.

λ

b
(0,e(0))

1/φ(t)

t

1

Figure 1: Error evolution in a funnel Fϕ with boundary 1/ϕ(t).

An important property is that each performance fun-
nel Fϕ with ϕ ∈ Φr is bounded away from zero, because
boundedness of ϕ implies existence of λ > 0 such that
1/ϕ(t) ≥ λ for all t > 0. The funnel boundary is not
necessarily monotonically decreasing and there are situa-
tions, like in the presence of periodic disturbances, where
widening the funnel over some later time interval might
be beneficial.For typical choices of funnel boundaries see
e.g. [15, Sec. 3.2].

2. Funnel control

It was shown in [1] that the funnel controller

u(t) = −kr−1(t) er−1(t),

e0(t) = e(t) = y(t)− yref(t),
e1(t) = ė0(t) + k0(t) e0(t),

e2(t) = ė1(t) + k1(t) e1(t),

...
er−1(t) = ėr−2(t) + kr−2(t) er−2(t),

ki(t) =
1

1− ϕi(t)2‖ei(t)‖2
, i = 0, . . . , r − 1,

(3)

where
ϕ0 ∈ Φr, ϕ1 ∈ Φr−1, . . . , ϕr−1 ∈ Φ1, (4)

achieves the control objective described in Section 1.3 for
any system which belongs to the class (1). We stress that
while the derivatives ė0, . . . , ėr−2 appear in (3), they only
serve as short-hand notations and may be resolved in terms
of the tracking error, the funnel functions and the deriva-
tives of these, cf. [1, Rem. 2.1].

The existence of solutions of the initial value prob-
lem resulting from the application of the funnel con-
troller (3) to a system (1) must be treated carefully. By

3



a solution of (3), (1) on [−h, ω) we mean a function
y ∈ Cr−1([−h, ω);Rm), ω ∈ (0,∞], with y|[−h,0] = y0

such that y(r−1)|[0,ω) is weakly differentiable and satisfies
the differential equation in (1) with u defined in (3) for
almost all t ∈ [0, ω); y is called maximal, if it has no right
extension that is also a solution. Existence of solutions
of functional differential equations has been investigated
in [18] for instance.

The following result is from [1]. Note that in [1] a
slightly stronger version of conditions (N3) and (N4) c) is
used. However, the proof does not change; in particular,
regarding (N4) c), the existence part of the proof in [1]
relies on a result from [17] where the version from the
present paper is used.

Theorem 2.1. Consider a system (1) with proper-
ties (N1)–(N4) for some r ∈ N and h ≥ 0. Let
yref ∈ W r,∞(R≥0;Rm), ϕ0, . . . , ϕr−1 as in (4) and y0 ∈
W r−1,∞([−h, 0];Rm) be an initial condition such that
e0, . . . , er−1 defined in (3) satisfy

ϕi(0)‖ei(0)‖ < 1 for i = 0, . . . , r − 1.

Then the funnel controller (3) applied to (1) yields an
initial-value problem which has a solution, and every solu-
tion can be extended to a maximal solution y : [−h, ω) →
Rm, ω ∈ (0,∞], which has the following properties:

(i) The solution is global, i.e., ω =∞.

(ii) The input u : R≥0 → Rm, the gain functions
k0, . . . , kr−1 : R≥0 → R and y, ẏ, . . . , y(r−1) : R≥0 →
Rm are bounded.

(iii) The functions e0, . . . , er−1 : R≥0 → Rm evolve in
their respective performance funnels and are uni-
formly bounded away from the funnel boundaries in
the sense

∀ i = 0, . . . , r − 1 ∃ εi > 0 ∀ t > 0 :

‖ei(t)‖ ≤ ϕi(t)−1 − εi.

While the class of functional differential equations (1)
appears to be rather general and funnel control is feasible
for these systems by Theorem 2.1, it is not clear exactly
which kind of systems that contain PDEs are encompassed
by the class (1). The operator T , which describes the in-
ternal dynamics, is able to model a broad class of PDE
systems, as we will show in the following example which
motivates the introduction of the operator class in Sec-
tion 3.

Example 2.2. Consider the following system whose inter-
nal dynamics are described by a transport equation, that
is

ẏ(t) = z(t, 0) + γu(t)

∂z

∂t
(t, ξ) = c

∂z

∂ξ
(t, ξ) + h(ξ)y(t),

z(0, ξ) = 0,

(5)

for (t, ξ) ∈ (0,∞) × [0,∞), where c > 0 and h ∈ M(R≥0)
is a Borel measure of bounded total variation. It is well-
known that the second and third equations in (5) con-
stitute a regular well-posed linear system (A,B,C) on
X = L2(R≥0;R), the so-called shift-realization of the
Laplace transform L(h), see e.g. [14, 32]. More precisely,
the PDE is then considered on the abstract Sobolev space
X−1 to appropriately interpret the term h(ξ)y(t) and the
solutions are mild solutions3 in general.

Also note that the generated (left-) shift-semigroup is
not exponentially stable. In particular, the Laplace trans-
form L(h) of the measure h is defined on the closed right
half-plane and bounded analytic on this domain. More-
over, the impulse response of the PDE equals h. More
precisely, for sufficiently smooth y we have the representa-
tion

z(t, 0) = (h ∗ y)(t) =

∫ t

0

y(t− s) dh(s).

Therefore, the first equation in (5) formally reads

ẏ(t) = (h ∗ y)(t) + γu, (6)

which is an integral-differential Volterra equation. Also
note that for the following simple cases

• h = δ0, we obtain a finite-dimensional linear system:

ẏ(t) = y(t) + γu(t);

• h = δt0 , t0 > 0, we obtain a delay differential equa-
tion:

ẏ(t) =

{
y(t− t0) + γu(t), t ≥ t0,
γu(t), 0 ≤ t < t0.

Another typical case is that h(ξ) = f(ξ)dξ with f ∈
L1(R≥0;R), i.e., h is represented by its L1-density with
respect to the Lebesgue measure. If additionally f ∈
L2(R≥0;R), then the input operator B = h of the PDE
is bounded.

We may now observe that (6) belongs to the system
class (1), if we define the operator

T (y) := h ∗ y, y ∈ C(R≥0;R).

As h has bounded total variation, it follows that T is
a bounded operator from C(R≥0;R) ∩ L∞(R≥0;R) to
L∞(R≥0;R) and hence it is straightforward to check that T
satisfies condition (N4).

3. A class of operators for funnel control

Motivated by Example 2.2, in this section we develop a
description for a class of operators T which include certain

3See e.g. [31] for a definition of the mild solution.
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linear PDEs and satisfy condition (N4). The aforemen-
tioned PDEs may either be coupled with a nonlinear ob-
servation operator which satisfies a certain growth bound,
or it may be coupled with a linear observation operator
which is possibly unbounded, but with respect to which
the system is regular well-posed. In both cases we addi-
tionally require that the overall system is BIBO stable. For
the linear observation operator, this is true if, for instance,
the inverse Laplace transform of the corresponding trans-
fer function defines a Borel measure with bounded total
variation. This structure is illustrated in Fig. 2.

We give a precise definition of the operator class in the
following.

ẋ(t) = Ax(t) +Bζ(t), x(0) = x0

T̃ S C

F (z1, z2, z3)

ζ

T̃ (ζ) = z1

x
x

S(x) = z2 Cx = z3

T (ζ)

Figure 2: Structure of an operator T ∈ T `,q
h .

Definition 3.1. Let h ≥ 0 and `, q ∈ N. Then T `,qh is
defined as the set of all operators

T : C([−h,∞);R`)→ L∞loc(R≥0;Rq)

which, for any ζ ∈ C([−h,∞);R`), are given by

T (ζ)(t) = F
(
T̃ (ζ)(t), S(x)(t), (Cx)(t)

)
, t ≥ 0,

where x, for some x0 ∈ D(A), is the mild solution of the
PDE

ẋ(t) = Ax(t) +Bζ(t), x(0) = x0, (7)

where

(P1) A generates a bounded C0-semigroup in a real Hilbert
space X and B ∈ L(R`;X−1), C ∈ L(D(A);Rq3) are
operators such that (A,B,C) is a regular well-posed
linear system which additionally is BIBO stable, i.e.,
the operator

L∞((0,∞);R`)→ L∞((0,∞);Rq3), f 7→ L−1(H)∗f

is bounded, where H : C0 → Cq3×` denotes the
transfer function of (A,B,C).

(P2) F ∈ C1(Rq1 × Rq2 × Rq3 ;Rq);

(P3) T̃ : C([−h,∞);R`) → L∞loc(R≥0;Rq1) satisfies condi-
tion (N4) in Section 1.2 with ` = rm;

(P4) S : X → Rq2 is a (possibly nonlinear) operator which
satisfies that for all x ∈ X and all ρ > 0 there exists
L > 0 such that for all x1, x2 ∈ X with ‖xi− x‖X <
ρ, i = 1, 2, we have

‖S(x1)− S(x2)‖ ≤ L‖S(x1 − x2)‖.

Furthermore, S is such that (7) is BIBO stable
w.r.t. S, i.e., there exists γ ∈ C1(R≥0;R) such that
for all ζ ∈ C([−h,∞);R`) the mild solution of (7)
satisfies

∀ t ≥ 0 : ‖S
(
x(t)

)
‖ ≤ γ(‖ζ|[−h,t]‖∞);

Remark 3.2.

(i) We note that any operator T as given in Defini-
tion 3.1 with the properties (P1)–(P1) is indeed well-
defined from C([−h,∞);R`) to L∞loc(R≥0;Rq).

(ii) We emphasize that the assumption of BIBO stability
of (7) as in (P4) is quite weak. Provided that S is
sufficiently nice, then a sufficient condition for this is
input-to-state stability [28]. This concept was studied
extensively for nonlinear systems, see [29], and for
systems containing PDEs it is investigated in [22, 23].
However, the state of an input-to-state stable system
converges to zero whenever the input is zero, which
is not required for BIBO stable systems considered
here.

(iii) Note that the assumption of BIBO stability in (P1)
essentially reduces to showing that the inverse
Laplace transform hij = L−1(Hij) is a Borel mea-
sure on R≥0 with bounded total variation for all
i = 1, . . . , q3 and j = 1, . . . , `, i.e., hij ∈ M(R≥0).
Recall that there exist bounded, shift-invariant op-
erators on L∞((0,∞);R) defined as the convolution
with a tempered distribution, which is not contained
in M(R≥0), see [9, Sec. 2.5.4].

In the following main result we show that any operator
which belongs to the class T `,qh satisfies the condition (N4)
in Section 1.2.

Theorem 3.3. Any T ∈ T `,qh satisfies condition (N4) in
Section 1.2.

Proof. Step 1 : We show property (N4) a). To this end,
observe that by continuity of F it suffices to show this for
the maps ζ 7→ T̃ (ζ), ζ 7→ S(x) and ζ 7→ Cx; recall that x
as in (7) depends on ζ. By (P3), T̃ satisfies (N4) a) and
by (P4) we have

‖S(x(t))‖ ≤ γ(‖ζ‖∞)

for all t ≥ 0 and all bounded ζ ∈ C([−h,∞);R`). It re-
mains to show that Cx is bounded. By (P1) the system

5



(A,B,C) is regular and well-posed, from which it follows
by the variation of constants formula, see e.g. [30], that

Cx(·) = CTA(·)x0 + (h ∗ ζ)(·),

where (TA(t))t≥0 is the C0-semigroup generated by A and
h = L−1(H) is the inverse Laplace transform of the trans-
fer function H : C0 → Cq3×`. By Assumption (P1) there
exists Ch > 0 such that ‖h ∗ ζ‖∞ ≤ Ch‖ζ‖∞ and thus, for
all t ≥ 0,

‖Cx(t)‖ ≤ ‖CTA(t)x0‖+ ‖(h ∗ ζ)(t)‖
≤ ‖C‖L(D(A);Rq3 )‖ATA(t)x0‖+ Ch‖ζ‖∞
= ‖C‖L(D(A);Rq3 )‖TA(t)Ax0‖+ Ch‖ζ‖∞
≤ ‖C‖L(D(A);Rq3 )‖TA(t)‖L(X)‖Ax0‖X + Ch‖ζ‖∞
≤ M‖C‖L(D(A);Rq3 )‖Ax0‖X + Ch‖ζ‖∞,

where we have used that x0 ∈ D(A) and (TA(t))t≥0 is
bounded, that is, M = supt≥0 ‖TA(t)‖L(X;X) <∞. Thus,

‖Cx(·)‖∞ ≤M‖C‖L(D(A);Rq3 )‖Ax0‖X + Ch‖ζ‖∞.

Step 2 : We show property (N4) b). This is a straight-
forward consequence of the definition of T̃ .

Step 3 : We show property (N4) c). Fix t ≥ 0 and
ξ ∈ C([−h, t];R`). Let τ̃ , δ̃, c̃ be the constants given by
property (N4) c) of T̃ . Set τ := τ̃ and δ := δ̃. Further let
ζi ∈ C([−h,∞);R`) with ζi|[−h,t] = ξ and ‖ζi(s)−ξ(t)‖ < δ
for all s ∈ [t, t + τ ] and i = 1, 2. Let xi denote the mild
solution of (7) corresponding to ζi for i = 1, 2. Then, by
linearity, x1−x2 is the mild solution corresponding to ζ1−
ζ2. Let x̃ denote the mild solution of (7) corresponding
to ξ̃ defined by ξ̃|[−h,t] = ξ and ξ̃|[t,∞) ≡ ξ(t). Then,
since by well-posedness of (A,B,C) the operator B is L2-
admissible, we have for all s ∈ [t, t+ τ ] that

‖xi(s)− x̃(t)‖X ≤ ‖Φt+τ
(
(ζi − ξ(t))|[t,s]

)
‖X

< δ‖Φt+τ‖.

Now let L be the constant given by (P4) for x = x̃(t) and
ρ = δ‖Φt+τ‖, and further set

L2 := L · sup
s∈[0,2δ]

|γ′(s)|.

Therefore, we find that for all s ∈ [t, t+ τ ]

‖S(x1(s))− S(x2(s))‖ ≤ L‖S
(
x1 − x2

)
(s)‖

≤ Lγ(‖
(
ζ1 − ζ2

)
|[−h,s]‖∞)

≤ L2‖
(
ζ1 − ζ2

)
|[t,t+τ ]‖∞.

Furthermore, by linearity and (P1) we have

‖Cx1(s)− Cx2(s)‖ = ‖(h ∗ (ζ1 − ζ2))(s)‖
≤ Ch‖

(
ζ1 − ζ2

)
|[t,t+τ ]‖∞

for all s ∈ [t, t+ τ ]. Now define ĉ := c̃+ L2 + Ch and

L3 := sup

 ‖F ′(z)‖
∣∣∣∣∣∣
∥∥∥∥∥∥z −

T̃ (ξ̃)(t)
S(x̃)(t)
Cx̃(t)

∥∥∥∥∥∥ ≤ ĉδ


and set
c := ĉL3.

Then we have

‖T (ζ1)(s)− T (ζ2)(s)‖ ≤ c‖
(
ζ1 − ζ2

)
|[t,t+τ ]‖∞

for all s ∈ [t, t+ τ ] and this finishes the proof of the theo-
rem.

It is a consequence of Theorem 3.3 that the operator T
defined in Example 2.2 satisfies T ∈ T 1,1

0 . As an additional
example, note that it is implicitly shown in [3] that the op-
erator associated with the internal dynamics of a linearized
model of a moving water tank system belongs to the class
T `,qh . In fact, there it is shown that (P1) is satisfied since
the transfer function belongs to the Callier-Desoer class,
cf. [8, Sec. 7.1].

Concluding this section, we consider a class of linear
infinite dimensional systems, which can be transformed
into a Byrnes-Isidori form, which was introduced in [20]:

ẋ(t) = Ax(t) + bu(t), t ≥ 0,

y(t) = 〈x(t), c〉 ,
(8)

where (A, b, c) satisfy, for some r ∈ N, the assumptions

(A1) A : D(A) ⊆ H → H is the generator of a C0-
semigroup (T (t))t≥0 in a real Hilbert space H with
inner product 〈·, ·〉,

(A2) b ∈ D(Ar) and c ∈ D
(
(A∗)r

)
,

(A3) γ := 〈Ar−1b, c〉 6= 0 and 〈Ajb, c〉 = 0 for all j =
0, 1, . . . , r − 2.

We show that the systems (8) belong to the class of sys-
tems (1), provided the internal dynamics satisfy a certain
BIBO stability assumption. To this end, observe that
by [20, Thm. 2.6], system (8) can be rewritten as

y(r)(t) =

r−1∑
i=0

Piy
(i)(t) + Sη(t) + γu(t),

η̇(t) = Qη(t) +Ry(t), η(0) = η0,

where Pi ∈ R for i = 0, . . . , r − 1, S ∈ L(Ĥ;R), R ∈
L(R; Ĥ) and Q : D(Q) ⊆ Ĥ → Ĥ is the generator of a
C0-semigroup on Ĥ, where Ĥ is some real Hilbert space,
and η0 ∈ D(Q). As a BIBO stability assumption we im-
pose that the transfer function H(s) = S(sI −Q)−1R has
inverse Laplace transform which is a Borel measure with
bounded total variation.

We may now define the operator T by

T (ζ) := Sη, ζ ∈ C(R≥0;R),

where η is the mild solution of η̇(t) = Qη(t) + Rζ(t) with
η(0) = η0. It is clear that R is a L2-admissible control
operator, S is a L2-admissible observation operator and
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the system (Q,R, S) is well-posed and regular. Since as-
sumptions (P2)–(P4) are trivially satisfied in our case, it
thus follows that T ∈ T 1,1

0 .
As a consequence, the class of infinite-dimensional sys-

tems (8) is indeed contained in the system class (1). More-
over, the class of operators T `,qh in particular covers oper-
ators coming from linear PDE systems as above, but also
allows for much more general (and even nonlinear) equa-
tions.

4. Simulation

We revisit Example 2.2 and illustrate our results by
a simulation of the funnel controller (3) for system (5).
For the simulation we have chosen h(ξ) = f(ξ)dξ with
f(ξ) = e−ξ/

√
ξ, which is integrable but not square in-

tegrable on R≥0. Furthermore, we use the parameters
c = γ = 1 and the reference signal

yref(t) = cos t, t ≥ 0.

The initial value is chosen as y(0) = 0 and for the con-
troller (3) we chose the funnel function

ϕ(t) =
(
2e−2t + 0.1

)−1
, t ≥ 0.

Clearly, the initial error lies within the funnel boundaries
as required in Theorem 2.1. Furthermore, by Theorem 3.3
the operator T satisfies (N4) and hence funnel control is
feasible.

The PDE is solved using explicit finite differences with
a grid in t with M = 1000 points for the interval [0, T ],
where T = 15, and a grid in ξ with N = bM(b− a)/(αT )c
points for α = 0.4 and a = 0, b = 10. The method has
been implemented in Python and the simulation results
are shown in Fig. 3.

It can be seen that even in the presence of infinite-
dimensional internal dynamics which are not exponentially
stable a prescribed performance of the tracking error can
be achieved with the funnel controller (3). At the same
time the input generated by the controller is bounded with
a very good performance.

5. Conclusion

In the present paper we considered the question which
classes of systems with infinite-dimensional internal dy-
namics are encompassed by the abstract system class (1)
for which funnel control is feasible by Theorem 2.1. We
have defined a class of operators T `,qh , which model the in-
ternal dynamics of the system, that encompass BIBO sta-
ble linear and nonlinear PDEs. The corresponding nonlin-
ear observation operators are assumed to satisfy a certain
growth bound, while the linear observation operator may
be unbounded. For the latter we additionally assumed that
the resulting system is regular and well-posed such that the
inverse Laplace transform of its transfer function defines a
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Fig. 3b: State z of the PDE.

Figure 3: Simulation of the funnel controller (3) for the system (5).

measure with bounded total variation. In Theorem 3.3 we
have proved that any operator belonging to T `,qh satisfies
the conditions of the system class (1).

Several extensions of the operator class T `,qh and Theo-
rem 2.1 may be investigated in future research. In particu-
lar, extensions to nonlinear PDE systems with unbounded
observation operators are of interest as well as systems
with infinite-dimensional input and output spaces which
do not have an integer-valued relative degree.
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