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Abstract Suppressing vibrations in mechanical models, usually described by se-
cond-order dynamical systems, is a challenging task in mechanical engineering
in terms of computational resources even nowadays. One remedy is structure-
preserving model order reduction to construct easy-to-evaluate surrogates for the
original dynamical system having the same structure. In our work, we present an
overview of our recently developed structure-preserving model reduction methods
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for second-order systems. These methods are based on modal and balanced trunca-
tion in different variants, as well as on rational interpolation. Numerical examples
are used to illustrate the effectiveness of all described methods.

1 Introduction

We consider model order reduction of dynamical systems arising from modeling of
mechanical systems, which have the property of dissipativity. That is, energy is only
consumed and not produced by the system. In the particular focus of this work are
linear second-order systems

Mq̈(t)+Dq̇(t)+Kq(t) = Buu(t),

y(t) =Cpq(t)+Cvq̇(t)
(1)

with M, D, K ∈ Rn×n, Bu ∈ Rn×m, and Cp,Cv ∈ Rp×n. These occur naturally by
modeling mechanical systems via force balances, in which the second derivative
of the position vector q(t) at time t ∈ R occurs by Newton’s second law. Hereby,
the matrices M, D, and K are respectively called mass matrix, damping matrix, and
stiffness matrix. The function t 7→ u(t) expresses the input to the system (external
forces), a function that can be chosen by the operator (or, alternatively called, the
“user”) of the system. Moreover, the model contains an output t 7→ y(t), which con-
tains some linear combinations of the state variables and its first derivative which
are of particular interest. The typical situation is, especially for systems of high
complexity, that the position vector q(t) evolves in a high-dimensional space, that
is, the number n is large. In contrast to that, the input and output spaces are low-
dimensional, i. e., m� n and p� n. Since the number n of position variables is
a significant measure for the difficulty of the numerical simulation of (1), there is
a need for efficient and reliable methods for model reduction, i. e., the approxima-
tion of such systems by ones whose solutions can be computed with significantly
less effort. In this context, “reliable” means that the output of the reduced system
is (mathematically proven to be) close to the output of the original system for the
same input signal, whereas “efficient” means that the determination of the reduced
system comes with as little effort as possible. Another important demand on model
order reduction methods is that they preserve inherent properties such as stability
and the second-order structure of the system (to mention only a few). By the latter,
we mean that the reduced-order model is of the form

M̂ ¨̂q(t)+ D̂ ˙̂q(t)+ K̂q̂(t) = B̂uu(t),

ŷ(t) = Ĉpq̂(t)+Ĉv ˙̂q(t)
(2)

with M̂, D̂, K̂ ∈ Rr×r, B̂u ∈ Rr×m, and Ĉp,Ĉv ∈ Rp×r and with r � n. Moreover,
models of mechanical systems have the property that the mass and stiffness matrices
are positive definite, whereas the negative of the damping matrix is dissipative, that
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is, D+D> is positive semi-definite. These properties are requested to be preserved
as well by the reduced system (2).

Meanwhile, model reduction is an established discipline within applied mathe-
matics and is subject of textbooks and collections, see [1–5]. In particular, for first-
order systems

ẋ(t) = A x(t)+Bu(t),

y(t) = C x(t),
(3)

there exists a rich theory for their approximation by reduced systems of low state-
space dimension, see [1] for an overview. These methods are indeed applicable to
first-order representations of second-order systems like

[
In 0
0 M

]
d
d t

[
q(t)
q̇(t)

]
=

[
0 In
−K −D

][
q(t)
q̇(t)

]
+

[
0

Bu

]
u(t),

y(t) =
[
Cp Cv

][q(t)
q̇(t)

]
.

However, the problem with this is that the reduced system is again of first order,
and it does in general not have a physical interpretation as a mechanical system.
The structure-preserving model order reduction problem of second-order systems is
therefore a problem on its own and new techniques have to be developed.

The model order reduction problem for linear time-invariant systems allows us
to also consider the problem in the frequency domain. More precisely, the transfer
function can be considered, which for (1) is given by

H(s) = (Cp + sCv)(s2M+ sD+K)−1Bu =
[
Cp Cv

][sIn −In
K sM+D

][
0

Bu

]
.

Plancherel’s theorem [1, Prop. 5.1] gives a link between the time and frequency
domain in a way that — very roughly speaking — “the better the transfer function
of the reduced system approximates that of the original system, the better the outputs
of original and reduced systems coincide”. Two important measures for the distance
between transfer functions are the H∞-norm, which for stable systems expresses the
supremal distance between the transfer functions on the imaginary axis; and the so-
called gap metric [6], which applies to arbitrary, possibly unstable, systems and can
be expressed by the H∞-norm of certain stable factorizations of transfer functions.
Whereas in the time domain the H∞-norm expresses the L2-norm differences of
the outputs of the original and reduced system, the gap metric can be seen as a
quantitative measure for the distance of the dynamics of systems.

Besides considering arbitrary linear outputs y(t)=Cpq(t)+Cvq̇(t), in our consid-
erations special emphasis is put on co-located velocity outputs y(t) = BT

u q̇(t), which
corresponds to measurement of velocities directly at the force actuators forming the
input. This special input-output configuration has the additional property that it pro-
vides an energy balance, namely
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∀t ≥ 0 : 1
2

(
q̇(t)TMq̇(t)+q(t)TKq(t)

)
− 1

2

(
q̇(0)TMq̇(0)+q(0)TKq(0)

)

=

t∫

0

y(τ)Tu(τ)dτ−
t∫

0

q̇(τ)TDq̇(τ)dτ.

The expressions 1
2 q̇(t)TMq̇(t), 1

2 q(t)TKq(t), respectively, stand for the kinetic and
potential energies of the system at time t, whereas

∫ t
0 q̇(τ)TDq̇(τ)dτ is the dissi-

pated energy, and
∫ t

0 y(t)Tu(t)d t is the energy put into the system at the actuators
within the time interval [0, t]. In particular, since−D is dissipative and the mass and
stiffness matrices are positive definite, in the case where the system is in a standstill
at t = 0, i. e., q̇(0) = q(0) = 0, this energy balance reduces to

∀t ≥ 0 : 0≤
t∫

0

y(τ)Tu(τ)dτ.

Systems with this property are called passive, a property which is further desired to
be preserved by the reduced-order model. Note that the frequency domain pendant
of passivity is positive realness, i. e., the transfer function H(s) has no poles and is
dissipative in the open right complex half plane.

For linear time-invariant systems, there are three “prominent” techniques for
model order reduction, namely modal-based, balancing-based, and interpolation-
based approaches. The modal-based methods consider eigenvalue problems associ-
ated with the potential poles of the transfer function to retain chosen poles from the
original in the reduced-order model. Balancing-based methods use energy consider-
ations to figure out parts of the state only contributing marginally to the input-output
behavior, which are truncated to obtain a reduced system of a priori known quality
by providing an error bound in the H∞-norm or gap metric. The main cost in the
determination of reduced-order models by balanced truncation is the numerical so-
lution of matrix equations of Lyapunov or Riccati type. Interpolation-based methods
use certain projections of the state-space which guarantee exactness of the transfer
function of the reduced-order system at some prescribed frequencies.

For second-order systems, the general ideas of balancing-based model order re-
duction are subject of various contributions [7–14] (see also [15] for an overview).
Some progress has been made in preservation of certain physical properties like
passivity in model reduction of second-order systems with co-located inputs and
outputs [13–15], but none of these methods are provided with an error bound. Be-
sides these, there exist interpolatory methods, which succeed either in preserving
the second-order structure [16, 17] or deliver a posteriori H∞ error bounds [18].
However, all the approaches mentioned lack a combination of the two.

In the project “Structure-Preserving Model Reduction for Dissipative Mechan-
ical Systems” of the DFG Priority Program “Calm, Smooth, and Smart - Novel
Approaches for Influencing Vibrations by Means of Deliberately Introduced Dis-
sipation” (SPP1897), three approaches for model order reduction of second-order
systems have been developed. An extract of this work can be found in [19].
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The structure of this report is as follows. In Section 2, we present our results on a
dominant pole algorithm for modally damped mechanical systems. The reduction is
hereby based on q(t)≈V q̂(t), where V ∈ Rn×r contains eigenvectors of the matrix
binomial λ 2M +λD+K, which are dominant in the sense that the corresponding
residue contributes much to the transfer function. In Section 3, a novel balancing-
based approach for second-order systems is presented. Hereby, so-called frequency-
and time-limited Gramians are used to identify the dominant behavior of the system
on some prescribed time and frequency intervals. In Section 4, we consider an al-
ternative balancing-based method for second-order systems with co-located inputs
and outputs. The method of positive real balanced truncation is considered for this
class, and it is shown that this method yields a passive first-order reduced system
with a special structure. It is proven that an error bound in the gap metric holds
and, under some additional assumptions, a special state-space transformation leads
to a second-order system realization. Section 5 is devoted to an interpolation-based
model order reduction method for second-order systems. This method is established
on an optimization-based technique, which generates a sequence of reduced-order
models of descending error in the H∞-norm.

2 A dominant pole algorithm for modally damped mechanical
systems

One of the oldest model order reduction approaches, which also directly translates
into a structure-preserving setting for second-order systems (1), is the modal trun-
cation method [20]. Thereby, the projection basis for the reduced-order model only
consists of the left and right eigenvectors corresponding to the desired eigenvalues.
In case of second-order systems like (1), the corresponding quadratic eigenvalue
problem

(
λ 2

i M+λiD+K
)

xi = 0, yHi
(
λ 2

i M+λiD+K
)
= 0 (4)

has to be considered for the left and right eigenvectors yi,xi ∈ Cn \{0} correspond-
ing to the eigenvalue λi ∈ C. Hereby, yH stands for the conjugate transpose of y.

For this model order reduction method, the choice of the eigenvalues that remain
in the reduced system is critical. Classical choices are, e. g., taking the rightmost
eigenvalues in the complex plane or the eigenvalues with smallest absolute values.
A significant drawback of those simple choices is the neglection of the input and
output matrices, which have a significant influence on the actual input-to-output
behavior of the system. The extension of the classical modal truncation method to
a more sophisticated choice of eigenvalues is the dominant pole algorithm [21].
Here, the eigenvalues with the strongest influence on the system behavior are com-
puted and then chosen for constructing the reduced-order model. Adaptations of
the dominant pole algorithm to the case of general second-order systems have been
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suggested in [22] for single-input single-output systems and in [23] for multi-input
multi-output systems.

A modeling approach used very often for mechanical structures results in modally
damped second-order systems. Hereby, for the second-order system (1) it is as-
sumed that Cv = 0, M,D,K are symmetric positive definite and additionally it holds
that DM−1K = KM−1D, i. e., the system can be rewritten into modal coordinates
and completely decouples into independent mechanical systems of order 1; see,
e. g., [24]. Classical damping approaches, like Rayleigh and critical damping, fall
into this category. For this type of mechanical systems, the idea of the dominant pole
algorithm can be reformulated. As shown in [24], choosing X as a scaled eigenvector
basis gives

XTMX = Ω−1 and XTKX = Ω (5)

with Ω = diag(ω1, . . . ,ωn)∈Rn×n and X = [x1, . . . ,xn]∈Rn×n. By the modal damp-
ing assumption, we further get

XTDX = 2Ξ (6)

with Ξ = diag(ξ1, . . . ,ξn)∈Rn×n. Combining (5) and (6), the transfer function of (1)
can be written in pole-residue form

H(s) =Cp(s2M+ sD+K)−1Bu

=CpX(s2Ω−1 +2sΞ +Ω)−1XTBu

=
n

∑
k=1

ωkCpxkxTk Bu

(s−λ+
k )(s−λ−k )

, (7)

where the eigenvalue pairs λ+
k ,λ−k are given by

λ±k =−ωkξk±ωk

√
ξ 2

k −1. (8)

This new pole-residue formulation (7) is now used to derive a new dominant pole
algorithm for modally damped second-order systems. With (7), the extension of a
classical dominant pole as in [23] to pole pairs reads as: The pole pair (λ+

k ,λ−k ) is
called dominant if it satisfies

‖ωkCpxkxTk Bu‖2

Re(λ+
k )Re(λ−k )

>
‖ω jCpx jxTj Bu‖2

Re(λ+
j )Re(λ−j )

for all j 6= k. (9)

The corresponding dominant pole algorithm then computes the r most dominant
pole pairs and the corresponding eigenvectors, such that the reduced-order model’s
transfer function is given by
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Original model Reduced-order model (r = 10)

Fig. 1: Modally-damped dominant pole algorithm results for the butterfly gyroscope
example.

Ĥ(s) =
r

∑
k=1

ωkCpxkxTk Bu

(s−λ+
k )(s−λ−k )

≈ H(s).

The projection basis is then given by the r eigenvectors corresponding to the chosen
pole pairs. The resulting algorithm is published in [25]. Additionally, we published
an implementation of this new algorithm for large-scale sparse systems as MATLAB
toolbox [26].

Remark 1. A big advantage of this new approach, compared to the methods in [22]
and [23], is the restriction to one-sided projections. This preserves the system and
eigenvalue structure in each single step such that the resulting eigenvector basis will
be real and no additional unrelated Ritz values, which usually disturb the resulting
approximation, are introduced in the reduced-order model.

As an illustrative example, we consider the butterfly gyroscope benchmark
from [27] with n = 17361, m = 1 and p = 12. The used Rayleigh damping for the
D (= 10−6 ·K) matrix belongs to the class of modal damping. We are using the im-
plementation from [26] to compute a reduced-order model with the first 10 dominant
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Fig. 2: Projection of the computed dominant poles on the frequency axis compared
with the transfer functions for the butterfly gyroscope example.

pole pairs by the criterion (9). By construction, the resulting reduced-order model
has order 10. Fig. 1 shows the results in the frequency domain with the frequency
response behavior of the original and the reduced-order model and the point-wise
relative error of the approximation. Up to a frequency of about 106 rad/sec, the be-
havior of the original system is well reproduced, while later, the two lines begin to
slightly diverge. Additionally, Fig. 2 shows the position of the computed dominant
poles as projection onto the imaginary axis and the corresponding transfer function
behavior.

3 Second-order frequency- and time-limited balanced truncation

In practice, a global approximation of the system’s behavior in either the frequency
or time domain is often not required. The second-order limited balanced trunca-
tion approaches are a suitable tool for model order reduction restricted to certain
frequency and time ranges. Thereby, the ideas from the first-order frequency- and
time-limited balanced truncation methods [28] are combined with different second-
order balanced truncation approaches [7, 11, 15]. A first version of the methods can
be found in [19,25,29,30] and the completed theory with applications to large-scale
sparse systems is contained in [31].

The idea of the method is based on the first companion form realization of (1),
which is given by

[
In 0
0 M

]

︸ ︷︷ ︸
=:E

ẋ(t) =
[

0 In
−K −D

]

︸ ︷︷ ︸
=:A

x(t)+
[

0
Bu

]

︸ ︷︷ ︸
=:B

u(t),

y(t) =
[
Cp Cv

]
︸ ︷︷ ︸

=:C

x(t).
(10)
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For (10), the classical controllability and observability Gramians are defined and
can be limited as in [28]. Therefore, the frequency-limited Gramians PΩ and QΩ
of (10) are the unique positive semi-definite solutions of the potentially indefinite
Lyapunov equations

A PΩ ET+E PΩ A T+BΩ BT+BBT
Ω = 0,

A TQΩ E +ETQΩ A +CT
Ω C +CTCΩ = 0

for a specified frequency range Ω = [ω1,ω2]∪ [−ω2,−ω1]. The right-hand side
matrices contain matrix functions, which are given by

BΩ = Re
(

i
π

ln
(
(A +ω2iE )(A +ω1iE )−1)

)
B,

CΩ = C Re
(

i
π

ln
(
(A +ω1iE )−1(A +ω2iE )

))
.

Analogously, the time-limited Gramians PT and QT of (10) are given as the unique
positive semi-definite solutions of the (potentially) indefinite Lyapunov equations

A PT ET+E PT A T+Bt0B
T
t0 −BtfB

T
tf = 0,

A TQT E +ETQT A +CT
t0 Ct0 −CT

tf Ctf = 0,

where the time-dependent right-hand sides are defined as

Bt0 = eA E−1t0B, Btf = eA E−1tfB, Ct0 = C eE−1A t0 , Ctf = C eE−1A tf

on the time interval T = [t0, tf]. Using those Gramians for the different second-order
balanced truncation approaches [7,11,15] leads to the second-order limited balanced
truncation methods as described in [31]. The dense version of the resulting methods
is contained in the current version of the MORLAB toolbox [32], and an implemen-
tation for large-scale sparse systems as MATLAB and GNU Octave toolbox can be
found in [33].

As numerical example for the frequency-limited approach, we consider the triple
chain oscillator example as in [19]. We reduce the original model (n = 1201)
by the second-order frequency-limited balanced truncation method in the interval
[5 ·10−3,5 ·10−2] rad/sec using the eight different second-order balancing formulas
from [31] to the order r = 34. The computations are done using the dense implemen-
tation of the second-order frequency-limited balanced truncation method from the
latest version of the MORLAB toolbox [32]. The results can be seen in Fig. 3 with
the transfer functions and the relative approximation errors. The computed reduced-
order models are denoted according to the used balancing formulas from [31]. We
clearly see the good approximation behavior in the frequency range of interest. Note
that only the system computed by the fv formula is stable, while all others become
unstable.
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Fig. 3: Frequency-limited balanced truncation results for the triple chain oscillator
example.

To illustrate the time-limited balanced truncation method, we use the single
chain oscillator example as described in [31]. Here, we use the implementation
for large-scale sparse mechanical systems from [26] to reduce the original system
(n = 12000) to order r = 3 in the time interval [0,20] sec. The results for the second
output entry can be seen in Fig. 4, where in the time region of interest, the origi-
nal system is nicely approximated by the reduced-order models. For all balancing
formulas, the resulting systems are stable.

4 Positive real balanced truncation for second-order systems

In this section, we consider second-order systems of the form (1), where M,K > 0,
D≥ 0, and either we exclusively measure positions, i. e., Cv = 0, or velocities, i. e.,
Cp = 0. We start with the second case and additionally assume co-located inputs
and outputs, which means Bu =CT

v . This case is treated in [34]. Using the Cholesky
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Fig. 4: Time-limited balanced truncation results for the single chain oscillator ex-
ample.

factorizations K = GGT and M = LLT, the system can be rewritten in first-order
form as

ẋ(t) =
[

0 GTL−T

−L−1G −L−1DL−T

]

︸ ︷︷ ︸
=:A

x(t)+
[

0
L−1Bu

]

︸ ︷︷ ︸
=:B

u(t),

y(t) =
[
0 BT

u L−T
]

︸ ︷︷ ︸
=:C

x(t).
(11)

Besides passivity, the most important feature of this system is that it has an in-
ternal symmetry structure A Sn = SnA T and C = BT = BTSn, where Sn :=
diag(−In, In). In particular, its transfer function H(s) = C (sI2n−A )−1B is sym-
metric, i. e., it fulfills H(s)T = H(s). We will make heavy use of this symmetry
structure.

The model reduction technique is consisting of two steps:
Step 1: We apply positive real balanced truncation [35] to the first order system

(11), whose numerical bottleneck is consisting of the numerical solution of the Lur’e
equations
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A TP+PA =−KT
c Kc, A Q+QA T =−KT

o Ko,

PB−CT =0, QCT−B =0,
(12)

for stabilizing solutions P, Q ∈ R2n×2n, see [36]. The internal symmetry structure
of (11) yields that Q = SnPSn, whence only the Lur’e equation A TP+PA =
−KT

c Kc, PB−CT = 0 has to be solved for the matrices P and Kc. We can use the
method from [37] to obtain a low-rank approximative solution P ≈ LTL. The sign
symmetry of the first order system (11) yields that its positive real characteristic val-
ues (which are defined to be the square roots of the eigenvalues of PQ) can in a cer-
tain sense be allocated to the symmetry structure of the system (11). More precisely,
the positive real characteristic values are the absolute values of the eigenvalues of
the symmetric matrix LSnLT, and the signs of these eigenvalues are defined to be
the signatures of the respective characteristic values. By truncating equally many
states corresponding to positive and negative characteristic values, it is shown that
the resulting first order model is – without any further computational effort – of the
form

˙̂x(t) =




0 0 0 0 0 A16
0 0 0 0 A25 A26
0 0 A33 A34 0 A36
0 0 −A T

34 A44 0 A46
0 −A T

25 0 0 0 0
−A T

16 −A T
26 −A T

36 A T
46 0 A66




x̂(t)+




0
0
0
0
0

B6




u(t),

ŷ(t) =
[
0 0 0 0 0 BT

6

]
x̂(t),

(13)

where the block sizes from left to right and from top to bottom are m, `, p, p, `,m,
with r = p+m+`. Note that, if A33 is zero, then it would – by merging some of the
blocks – be of the form

˙̂x(t) =
[

0 ĜT

−Ĝ −D̂

]
x̂(t)+

[
0

B̂u

]
u(t),

ŷ(t) =
[
0 B̂T

u
]

x̂(t),

(14)

which would result in a reduced second-order model (2) with M̂ = Ir, K̂ = ĜĜT,
Ĉp = 0, and Ĉv = B̂T

u . This is regrettably not the case in general, whence we apply
the following step.

Step 2: We apply a state-space transformation to (13) such that the matrix A33
vanishes. More precisely, we first intend to find some invertible T ∈ R2p×2p that
preserves the symmetry structure, i. e., it fulfills TTSpT = Sp, and

T−1
[

A33 A34
−A T

34 A44

]
T =

[
0 Â34

−Â T
34 Â44

]
. (15)

Then a state-space transformation with T = diag(Im+`,T, I`+m) leads to a system
which is indeed of the form (14) and can then be rewritten as a second-order system.
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Such a transformation is based on techniques from indefinite linear algebra [38], and
can be computed without any remarkable computational effort. It is shown that such
a transformation is possible, if the reduced first-order system (15) has the property
that for all i = 1, . . . , p, the ith characteristic value with negative signature is smaller
than the ith characteristic value with positive signature. A sufficient criterion on the
original system for the existence of such a transformation is that it is overdamped,
that is

(
vTDv

)2
> 4
(
vTMv

)(
vTKv

)
for all v ∈ Rn.

The resulting second-order system in particular fulfills M̂, K̂ > 0, and it is fur-
ther shown that D̂ = D̂T has at most m negative eigenvalues. If the original system
is overdamped, then even D̂ > 0. Moreover, the gap metric distance between the
transfer functions H(s) of the original and Ĥ(s) of the reduced system is shown to
be bounded from above by twice the sum of the truncated positive real characteristic
values.

Considering a system dilation, we are able to extend the previously presented
reduction to second-order systems with velocity measurements y(t) =Cpq(t), which
are not necessarily co-located to the input. This can be done by considering the
extended system

Mq̈(t)+Dq̇(t)+Kq(t) =
[
Bu CT

v
][u1(t)

u2(t)

]
,

[
y1(t)
y2(t)

]
=

[
BT

u
Cv

]
q̇(t).

This system is again positive real and from the algorithm above we thus obtain a
reduced-order system for the extended system as

M̂ ¨̂q(t)+ D̂ ˙̂q(t)+ K̂q̂(t) =
[
B̂u ĈT

v
][u1(t)

u2(t)

]
,

[
ŷ1(t)
ŷ2(t)

]
=

[
B̂T

u
Ĉv

]
˙̂q(t),

(16)

where B̂u ∈Rr×m and Ĉv ∈Rp×r. From that we obtain a reduced-order system for (1)
as

M̂ ¨̂q(t)+ D̂ ˙̂q(t)+ K̂q̂(t) = B̂uu1(t),

ŷ2(t) = ĈT
v

˙̂q(t).
(17)

As the transfer function of (17) is a submatrix of the transfer function of the system
(16), and the same holds for the original system, the previously derived error bound
also holds in this more general case.

We illustrate the performance of the reduction method above with an example of
three coupled mass-spring-damper chains; see [39, Ex. 2]. The triple chain consists
of three rows that are coupled via a mass m0, which is connected to the fixed base
with a spring with stiffness k0. Each row contains g masses, g+ 1 springs and one
damper, which is attached to a wall, see Figure 5. One can write the free system as
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k0

m0
k1 m1 k1 m1 k1 ν1

k2 m2 k2 m2 k2 νg+1

k3 m3 k3 m3 k3 ν2g+1

Fig. 5: (3g + 1)-mass (triple chain) oscillator with three dampers [39].

Mq̈(t)+Dq̇(t)+Kq(t) = 0,

where M, D, and K are defined as M = diag(m1, . . . , m1,m2, . . . , m2, m3, . . . , m3),
D = αM+βK +ν1e1eT1 +νg+1eg+1eTg+1 +ν2g+1e2g+1eT2g+1 and

K =




K11 −κ1
K22 −κ2

K33 −κ3
−κT

1 −κT
2 −κT

3 k1 + k2 + k3 + k0


 , Kii = ki




2 −1
−1 2 −1

. . . . . . . . .
−1 2 −1
−1 2




with κi =
[
0 . . . 0 ki

]T ∈ R1×g and Kii ∈ Rg×g for i = 1, 2, 3. We choose the input

Bu =
[
1 . . . 1

]T and equally measure the velocities such that Cv = BT
u . The second-

order control system reads

Mq̈(t)+Dq̇(t)+Kq(t) = Buu(t),

y(t) =Cvq̇(t).

We consider the triple chain with g = 500, thus the number of differential equations
is n = 3g+1 = 1501. The stiffness and mass parameters are set as

k0 = 50, k1 = 10, k2 = 20, k3 = 1,
m0 = 1, m1 = 1, m2 = 2, m3 = 3

and the damping parameters α = β = 0.002 and ν1 = νg+1 = ν2g+1 = 5.
Following the previously presented theory, we first compute a reduced-order

model in first-order form of order 2r = 300 and then recover the structure of a
second-order model of order r = 150. The latter has again the form

M̂ ¨̂q(t)+ D̂ ˙̂q(t)+ K̂q̂(t) = B̂uu(t), ŷ(t) = B̂T
u q̂(t),
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Ĥ
(ω

i)
‖ 2

(a) Sigma plots.

10−4 10−3 10−2 10−1 10010−4

10−3

10−2

10−1

Frequency ω (rad/sec)

‖H
(ω

i)
−

Ĥ
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Fig. 6: Positive real balanced truncation results for the triple chain oscillator exam-
ple.

with symmetric M̂, D̂, K̂ ∈ Rr×r and B̂u ∈ Rr×m, where M̂ = Ir, K̂ > 0 and D̂ = D̂T

has one negative eigenvalue λ ≈ −3.535 · 10−2, while its largest eigenvalue is
λmax ≈ 3.162. The plot of the absolute value of the original and reduced transfer
function together can be found in Figure 6a, whereas Figure 6b displays the relative
error of the transfer function on the imaginary axis, respectively. With a maximum
relative error of approximately 4.3 ·10−2 we obtain a good match between the orig-
inal and the reduced second-order system.

5 H∞-optimal rational approximation

In this section, we briefly describe an interpolatory H∞ model order reduction
scheme for systems with symmetric mass damping and stiffness matrices and co-
located inputs and outputs, i. e., we have M, D, K > 0, Bu =CT

p and Cv = 0 in order
to be able to preserve symmetry and asymptotic stability by an appropriate choice
of the projection spaces. More precisely, we construct a sequence of reduced-order
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transfer functions of the form

Ĥ j(s) := BT
uVj
(
s2VT

j MVj + sVT
j DVj +VT

j KVj
)−1VT

j Bu, j = 1, 2, . . .

for appropriately chosen truncation matrices Vj. Our method aims to iteratively
reduce the H∞-norm of the error transfer function E j(s) := H(s)− Ĥ j(s). To
do so, we evaluate

∥∥E j
∥∥

H∞
:= maxω∈R∪{∞}

∥∥E j(ωi)
∥∥

2 =
∥∥E j(ω ji)

∥∥
2 and choose

Vj+1 :=
[
Vj (−ω2

j M+ω jiD+K)−1Bu
]
. This choice guarantees Hermite interpola-

tion properties between the original and reduced transfer functions H(s) and Ĥ j(s)
at the interpolation points ω1i,ω2i, . . . ,ω ji, such that the error near these points be-
comes small. This procedure is repeated until a specified error tolerance is met.

The main computational cost of this algorithm is the repeated computation of
the H∞-norm of the error transfer function, which is expensive to evaluate since the
error system is of large dimension. However, these computations have been made
possible by the methods presented in [40, 41], which we use here and which work
as follows.

Assume that a transfer function is given by H(s) = C(sE−A)−1B with the reg-
ular matrix pencil sE − A ∈ R[s]n×n, B ∈ Rn×m, and C ∈ Rp×n with n � m, p.
Then the algorithm determines a sequence of reduced-order transfer functions of the
form H j(s) =CVj(sWH

j EVj−WH
j AVj)

−1WH
j B, where Vj,Wj ∈Cn×k j and k j� n for

j = 1,2, . . . , and where
∥∥H j

∥∥
L∞

:= maxω∈R∪{∞}
∥∥H j(ωi)

∥∥
2 converges to ‖H‖H∞

.
Since the matrices defining the reduced-order transfer functions H j(s), are of small
dimensions,

∥∥H j
∥∥

L∞
can be efficiently computed using well-established methods

such as [42,43]. Assume first that m = p. Further suppose that j interpolation points
ω1i, . . . , ω ji ∈ iR are already given. In this case, the truncation matrices are chosen
as

Vj =
[
(ω1iE−A)−1B . . . (ω jiE−A)−1B

]
,

Wj =
[
(ω1iE−A)−HCH . . . (ω jiE−A)−HCH

]
.

This choice of the truncation matrices amounts to the Hermite interpolation condi-
tions

H(ωki) = H j(ωki), H ′(ωki) = H ′j(ωki), k = 1, . . . , j,

that carry over directly to the functions σ(s) := ‖H(s)‖2 and σ j(s) :=
∥∥H j(s)

∥∥
2.

These Hermite interpolation conditions are then used to prove a superlinear rate of
convergence to a local maximum of σ(i·) provided that the algorithm converges.
The situation is more difficult if m 6= p since then, Vj and Wj would have different
dimensions and the pencil sWH

j EVj−WH
j AVj would be singular. This situation also

occurs, if Vj or Wj do not have full column rank. Thus, an alternative choice for Vj
and Wj, which is outlined in [40], and QR factorizations can be used to obtain the
truncation matrices such that the pencil sWH

j EVj−WH
j AVj is regular.

In Figure 7, we illustrate the effectiveness of our algorithm using the triple chain
oscillator benchmark example [39] of order n = 1000 and an H∞-error bound of
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Fig. 7: Comparison of absolute errors of different methods for second-order model
reduction. The interpolation points of our greedy approach are plotted as red crosses.

10−6. Compared with two different second-order balanced truncation (SOBT) ap-
proaches from [15], the greedy interpolation approach has a slightly larger maximal
error for the same reduced order r = 29. However, in contrast to SOBT, we ob-
tain full information on the current error and may terminate whenever the reduced-
order model satisfies a prescribed error bound. Moreover, the method also allows
for an easy adaptation to frequency-limited reduction. We currently investigate post-
processing strategies to improve the performance of the greedy interpolation such
as an additional optimization of the interpolation points. Furthermore, our approach
may be combined with the subspaces obtained from (SO)BT to initialize the first
projection space.

The previously described algorithm leads to an error function E j(s), which is
zero at the interpolation points in exact arithmetics. This results in the spiky shape
of the error maximum singular value function that can be observed in Fig. 7. Such a
behavior is generally unwanted, since this indicates that our ROM approximates the
given model at a few frequencies much better than at others. In this way, accuracy
is “wasted” in a few regions that could be used to improve the overall accuracy
of the ROM. This is an inherent problem of a greedy approximation strategy with
interpolation on the imaginary axis.

To smoothen the error maximum singular value function and reach a better ap-
proximation with respect to the H∞-norm, we use direct numerical optimization. In
particular, after a new interpolation point has been chosen according to the previ-
ously described greedy algorithm, we vary the interpolation points such that the H∞-
error is locally minimized. This requires the solution of a nonsmooth, nonconvex
and nonlinear optimization problem. We use the method described in [44] imple-
mented in the software package GRANSO1. This iterative optimization requires the
repeated evaluation of the H∞-norm of the error system, which is high-dimensional.
For that, we again apply the method described in [40], which is well-suited for this
task.

1 available at http://www.timmitchell.com/software/GRANSO

http://www.timmitchell.com/software/GRANSO
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It is important to note that the gradient of ‖E j‖H∞
with respect to the interpolation

points can be computed analytically. Furthermore, the direct optimization strategy
is not limited to just the interpolation points. On top of that, we can optimize tan-
gential directions of the interpolation as well. In case of tangential interpolation, the
truncation matrix can be chosen as

Vj =
[
(s2

1M+ s1D+K)−1Bub1 . . . (s2
jM+ s jD+K)−1Bub j

]
,

where bk ∈Cm, and sk ∈C for k = 1, . . . , j not being in the spectrum of s2M+ sD+
K. In this way, the interpolation condition is relaxed such that we now only have
tangential Hermite interpolation between H(s) and Ĥ j(s), that is

H(sk)bk = Ĥ j(sk)bk, bHk H(sk) = bHk Ĥ j(sk), bHk H ′(sk)bk = bHk Ĥ ′j(sk)bk,

for k = 1, . . . , j. This results in an optimization that can exploit more degrees of
freedom, while the size of the projection matrix and hence the size of the ROM is
further reduced.

10−2 10−1 100 10110−9

10−5

10−1

Frequency ω (rad/sec)

‖H
(ω

i)
−

Ĥ
(ω

i)
‖ 2

new (r = 7) SOBT (p) (r = 7) new (r = 21) SOBT (p) (r = 21)

Fig. 8: Comparison of the (absolute) errors of SOBT (p) with the new, optimization-
based method.

In Figure 8, we show a comparison of the errors between this new method and
(the faster) SOBT on the triple chain oscillator example with n = 301. The new
method leads to an error function that is more steady and even outperforms the
SOBT methods for the smaller reduced model order. However, for the slightly larger
model order that is required to meet the given error bound of 10−6, the optimiza-
tion got stuck in a local optimum. Therefore, the error is less steady. However, the
accuracy is still comparable with the accuracy obtained by SOBT.
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6 Conclusions

We have presented an overview of recently developed structure-preserving model
order reduction methods for second-order systems. We have started with an adap-
tion of the dominant pole algorithm for modally damped mechanical systems and,
afterwards, have introduced extensions of the frequency- and time-limited balanced
truncation methods for second-order systems in various ways. We have presented
an approach for structure recovery of second-order systems based on positive real
balanced truncation, which also yields an a priori error bound in the gap metric,
and concluded with an H∞ greedy interpolation approach yielding an H∞-error
optimal approximation. Numerical examples for all the presented approaches have
illustrated their effectiveness.

Additionally to the approaches for linear systems summarized here, we were able
to develop model order reduction techniques for (parametric) mechanical systems
with special nonlinearities, namely bilinear control systems and quadratic-bilinear
systems. These techniques will be subject to further research and be described in a
different work.
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