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DUALITY THEOREMS FOR STARS AND COMBS
III: UNDOMINATED COMBS

CARL BURGER AND JAN KURKOFKA

ABSTRACT. In a series of four papers we determine structures whose existence
is dual, in the sense of complementary, to the existence of stars or combs. Here,
in the third paper of the series, we present duality theorems for a combination
of stars and combs: undominated combs. We describe their complementary
structures in terms of rayless trees and of tree-decompositions.

Applications include a complete characterisation, in terms of normal span-
ning trees, of the graphs whose rays are dominated but which have no rayless
spanning tree. Only two such graphs had so far been constructed, by Seymour
and Thomas [16] and by Thomassen [I7]. As a corollary, we show that graphs
with a normal spanning tree have a rayless spanning tree if and only if all their
rays are dominated.

1. INTRODUCTION

Two properties of infinite graphs are complementary in a class of infinite graphs if
they partition the class. In a series of four papers we determine structures whose
existence is complementary to the existence of two substructures that are particu-
larly fundamental to the study of connectedness in infinite graphs: stars and combs.
See [2] for a comprehensive introduction, and a brief overview of results, for the
entire series of four papers (|2} 8] 4] and this paper).

In the first paper [2] of this series we found structures whose existence is comple-
mentary to the existence of a star or a comb attached to a given set U of vertices,
and two types of these structures turned out to be relevant for both stars and
combs: normal trees and tree-decompositions. A comb is the union of a ray R (the
comb’s spine) with infinitely many disjoint finite paths, possibly trivial, that have
precisely their first vertex on R. The last vertices of those paths are the teeth of
this comb. Given a vertex set U, a comb attached to U is a comb with all its teeth
in U, and a star attached to U is a subdivided infinite star with all its leaves in U.
Then the set of teeth is the attachment set of the comb, and the set of leaves is the
attachment set of the star. Given a graph G, a rooted tree T' C G is normal in G if
the endvertices of every T-path in G are comparable in the tree-order of T, cf. [6].
For the definition of tree-decompositions see [0].

As stars and combs can interact with each other, this is not the end of the story.
For example, a given vertex set U might be connected in a graph G by both a star
and a comb, even with infinitely intersecting sets of leaves and teeth. To formalise
this, let us say that a subdivided star S dominates a comb C' if infinitely many
of the leaves of S are also teeth of C. A dominating star in a graph G then is a
subdivided star S C G that dominates some comb C' C G; and a dominated comb
in G is a comb C' C G that is dominated by some subdivided star S C G. Thus, a
comb C' C G is undominated in G if it is not dominated in GG. Recall that a vertex
v of G dominates a ray R C G if there is an infinite v—(R — v) fan in G, see [6]. A
ray R C G is dominated if some vertex of G dominates it. Rays not dominated by
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any vertex of G are undominated. Dominated combs are related to dominated rays
in that a comb is dominated in G if and only if its spine is dominated in G.

In the second paper [3] of our series we determined structures whose existence
is complementary to the existence of dominating stars or dominated combs—again
in terms of normal trees or tree-decompositions.

Here, in the third paper of the series, we determine structures whose existence is
complementary to the existence of undominated combs. A candidate for a normal
tree that is complementary to an undominated comb in G attached to a given set U
of vertices is a normal tree T' C G that contains U and all whose rays are dominated
in G, for if U = V(G) then T is spanning and hence its (dominated) rooted rays
are in a natural one-to-one correspondence to the ends of G. Such normal trees T
are easily seen to be complementary structures for undominated combs whenever G
happens to contain some normal tree that contains U. But in general, normal trees
T C G containing U all whose rays are dominated in G are not complementary to
undominated combs, because the absence of an undominated comb does not imply
the existence of such a normal tree: for example if G is an uncountable complete
graph and U = V(G), then every normal tree in G containing U must be spanning
but G does not have any normal spanning tree.

As our first main result, we show that if U is contained in any normal tree T' C G,
there is a more elementary structure that is complementary to undominated combs
attached to U and which obstructs undominated combs attached to U immediately:
a rayless tree containing U. Call a set U C V(QG) of vertices of a graph G normally
spanned in G if U is contained in a tree 7' C G that is normal in G. The graph
G is normally spanned if V(G) is normally spanned in G, i.e., if G has a normal
spanning tree.

Theorem Let G be any graph and let U C V(G) be normally spanned in G.
Then the following assertions are complementary:

(i) G contains an undominated comb attached to U;
(i) there is a rayless tree T C G that contains U.

This extends results of Polat [I3} [14] and Siraii [18], who proved the case U = V(G)
for countable G: A countable connected graph has a rayless spanning tree if and
only if all its rays are dominated.

There are uncountable graphs G for which this duality fails, even for U = V(G).
By Theorem [} such graphs G cannot have a normal spanning tree. There are
two known constructions of such graphs, by Seymour and Thomas [I6] and by
Thomassen [I7]. Both these constructions are involved.

As a corollary of Theorem [I| we obtain a full characterisation of the graphs that
contain a rayless tree containing a given set U of vertices: they are precisely the
graphs G that have a subgraph H in which U is normally spanned and all whose
rays are dominated in H. In particular, we obtain the following corollary:

Corollary Graphs with a normal spanning tree have a rayless spanning tree if
and only if all their rays are dominated.

The graphs with a normal spanning tree are well studied and are quite well known:
see [, 10, 12].

While it is not always possible to find normal trees or rayless trees that are com-
plementary to undominated combs, it turns out that suitable tree-decompositions
still serve as complementary structures:
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Theorem Let G be any connected graph and let U C V(G) be any vertex set.
Then the following assertions are complementary:

(i) G contains an undominated comb attached to U;

(ii) G has a star-decomposition with finite adhesion sets such that U is con-
tained in the central part and all undominated ends of G live in the leaves’
parts.

Moreover, we may assume that the adhesion sets of the tree-decomposition in (ii)
are connected.

As discussed above, rayless trees are in general too strong to serve as complemen-
tary structures for undominated combs. It turns out that less specific structures
than rayless trees, subgraphs all of whose rays are dominated, yield another com-
plementary structure for undominated combs:

Theorem Let G be any connected graph and let U C V(G) be any vertex set.
Then the following assertions are complementary:

(i) G contains an undominated comb attached to U;
(ii) G has a connected subgraph that contains U and all whose rays are domi-
nated in it.

This paper is organised as follows. In Section[2] we prove our duality theorem for
undominated combs in terms of rayless trees, Theorem [I] In Section [3| we discuss
applications of this duality theorem. In Section {4 we provide our two full duality
theorems for undominated combs: Theorem [3] and Theorem [

Throughout this paper, G = (V, E) is an arbitrary graph. We use the graph
theoretic notation of Diestel’s book [0], and we assume familiarity with the tools
and terminology described in the first paper of this series [2, Section 2].

2. UNDOMINATED COMBS AND RAYLESS TREES

In this section, we will consider rayless trees as structures that are complementary
to undominated combs. As usual, let G be any connected graph and let U C V(G)
be any vertex set. There are three reasons why rayless trees containing U are good
candidates. First, an undominated comb attached to U is more specific than a
comb attached to U and in [2 Theorem 1] we proved that rayless normal trees
T C G that contain U are complementary to combs. Therefore, structures that
are complementary to undominated combs should be less specific than such normal
trees.

Second, by the star-comb lemma, G containing no undominated comb attached
to U can be rephrased as follows: for every infinite subset U’ C U the graph G
contains a star attached to U’. So combining such stars in a clever way might lead
to a rayless tree containing U.

Finally, a graph cannot contain both an undominated comb attached to U and
a rayless tree containing U at the same time:

Lemma 2.1 ([2, Lemma 2.4]). If U is an infinite set of vertices in a rayless rooted
tree T, then T contains a star attached to U which is contained in the up-closure
of its central vertex in the tree-order of T'.

For U = V(G), Sirai [I8] conjectured that G having a rayless spanning tree is
complementary to G containing an undominated comb attached to U. Surprisingly,
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his conjecture has turned out to be false, as shown by Seymour and Thomas [16].
The counterexample they have found is also a big surprise. Recall that T, for a
cardinal k denotes the tree all whose vertices have degree x.

Theorem 2.2 ([I6, Theorem 1.6]). There is an infinitely connected, in particular
one-ended, graph G of order 280 which does not contain a subdivided K™, such
that every spanning tree of G contains a subdivision of Ty, .

Indeed, the end of a graph G as in Theorem [2.2] is dominated as G is infinitely
connected, but for U = V(@) the graph does not contain a rayless tree containing U.

A similar counterexample has been obtained independently by Thomassen [17].
Set-theoretic points of view are presented in both [16] and Komjéth’s [I1]. Komjédth
even gives a positive consistency result under Martin’s axiom for graphs G with
< 2% many vertices: If kK < 280 is a cardinal, MA(k) holds, and G is infinitely
connected with |V (G)| < k, then G has a rayless spanning tree.

Nevertheless, it is known that requiring G to be countable does suffice to ensure
the existence of a rayless spanning tree when G is connected and every end is
dominated, giving the following duality:

Theorem 2.3. Let G be any connected countable graph. Then the following asser-
tions are complementary:

(i) G contains an undominated comb attached to V(G);
(ii) G has a rayless spanning tree.

Proofs are due to Polat [I3, 4] and Siran [I8]. Our main result in this section
extends Theorem 2.3}

Theorem 1. Let G be any graph and let U C V(G) be normally spanned in G.
Then the following assertions are complementary:

(i) G contains an undominated comb attached to U;
(ii) there is a rayless tree T C G that contains U.

Note that this extends Theorem twofold: On the one hand, we localise the
statement to an arbitrary vertex set U C V(G). On the other hand, we extend the
statement to the class of all graphs in which U is normally spanned.

While our focus in this paper is to find duality theorems for undominated combs,
Polat and Sirdn were rather interested in a characterisation of those graphs that
have rayless spanning trees. The strongest sufficient condition for the existence of
a rayless spanning tree, other than Theorem (to the knowledge of the authors), is
due to Polat [I5]: If every end of a connected graph G is dominated and G contains
no subdivided Ty, , then G has a rayless spanning tree. His result does not imply our
Theorem for example consider G to be the graph obtained from Ty, by completely
joining an arbitrarily chosen root to all other nodes, and U = V(G). However, as
a corollary of Theorem [I) we obtain a full characterisation of the graphs that have
rayless spanning trees. Our characterisation even takes an arbitrary vertex set
U C V(G) into account:

Corollary 2.4. Let G be any graph. Then the following assertions are equivalent:

(i) There is a rayless tree T C G that contains U;
(ii) G has a subgraph H in which U C V(H) is normally spanned and all whose
rays are dominated in H. (I
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If the graph G itself has a normal spanning tree, then our characterisation simplifies
as follows:

Corollary 2. Graphs with a normal spanning tree have a rayless spanning tree if
and only if all their rays are dominated. O

This section is organised as follows. In Section [2.I] we will prove Theorem [I] for
normally spanned graphs. Then, in Section [2.2] we will deduce Theorem

2.1. Proof for normally spanned graphs. As a first approximation to Theo-
rem [I] we prove the following:

Theorem 2.5. Let G be any normally spanned graph and let U C V(G) be any
vertex set. Then the following assertions are complementary:

(i) G contains an undominated comb attached to U;
(ii) G contains a rayless tree that contains U.

Our proof consists of three key ideas, organised in three lemmas: Lemma |2.6
Lemma and Lemma

Lemma 2.6 (|2, Lemma 2.13]). Let G be any graph. If T C G is a rooted tree that
contains a verter set W cofinally, then 0qT = 0qW .

Lemma 2.7. Let G be any graph and let U C V(G) be any vertex set. If U is
the superset of U also containing all the vertices dominating an end in the closure
of U, then dqU = 0qU. In particular, 9qU’ = 0qU for all vertex sets U’ with
UCU' C U and U contains all the vertices dominating an end in the closure of U.

Proof. Every end in the closure of U is contained in the closure of U because U
contains U. For the other inclusion consider any end w in the closure of U. Given
a finite vertex set X € X we show that C(X,w) contains a vertex from U. Fix a
comb attached to U and with spine in w, and pick any tooth v of the comb in the
component C(X,w) of G — X. Then either v is contained in U, or v dominates
an end w’ in the closure of U in which case U must meet C(X,w') = C(X,w).
Therefore, C'(X,w) meets U for all X € X, and so w lies in the closure of U. O

For our last key lemma, we shall need the following result of Jung (cf. [2, Theo-
rem 3.5]):

Theorem 2.8 (Jung). Let G be any graph. A vertex set W C V(G) is normally
spanned in G if and only if it is a countable union of dispersed sets. In particular,
G is normally spanned if and only if V(G) is a countable union of dispersed sets.

Lemma 2.9. Let G be any graph and let U C V(G) be normally spanned. If every
end in the closure of U is dominated by some vertex in U, then there is a rayless
tree T C G containing U.

Normal trees follow the concept of depth-first search trees. Speaking informally,
all ends of G are ‘far away’ from the perspective of any fixed vertex. This is why
normal spanning trees grow towards the ends of the underlying graph in the sense
that they contain (precisely) one normal ray from every end. We, however, seek to
avoid having any rays in our tree. This is why our construction of a rayless tree
containing U will follow the opposite concept to depth-first search trees, namely
that of breadth-first search trees.



6 CARL BURGER AND JAN KURKOFKA

Proof of Lemma[2.9 First we choose a well-ordering of U all whose proper initial
segments are dispersed: By Theorem we have that U is a countable union
Unen Un of, say pairwise disjoint, dispersed sets U,,. Choose a well-ordering <,, of
every vertex set U,. Given u,u’ € U with u € U,, and v’ € U, we write v < v’/
if either m < n or m = n with v =<, « holds. It is straightforward to show
that < defines a well-ordering of U that is as desired. From now on we view U as
well-ordered set (U, =<).

We recursively construct an ascending sequence (Ty,) < of rooted trees T, shar-
ing their root and satisfying that the overall union of the T, is a rayless tree con-
taining U. Let Tj be the tree consisting of and rooted in the smallest vertex of U.
In a limit step 8 > 0 we let T be the tree |J{T, | @« < 8}. In a successor step
B = a+ 1 we terminate and set k = § if U is included in T,. Otherwise we let u
be the smallest vertex in U \ V(T,,). Following the concept of a breadth-first search
tree, among all u—T, paths fix one Pg whose endvertex in 7, has minimal height
in T,,. We obtain T from T, by adding the path Pg.

Let T be the overall union of the trees Ty, i.e., T := |J{To | @ < k}. Then
T is a rooted tree that contains U cofinally. It remains to check that T is rayless.
Suppose for a contradiction that R is a ray in 7' starting in the root, say. By
Lemma the end of the ray R is contained in the closure of U. As all ends in
0qU are dominated by vertices in U, we find a vertex u* € U dominating R. Let
P, be the path from the construction of T that added u*.

We claim that every tree T, meets R in a finite initial subpath. This can be
seen as follows. Since all proper initial segments of U are dispersed, by Lemma [2:6]
it suffices to show that every T, with a > 0 contains a subset of such a segment
cofinally. A transfinite induction on « shows that for T, this subset may be chosen
as the set of starting vertices of the paths P; with { < a a successor ordinal while
the proper initial segment may be chosen as the down-closure in U of the starting
vertex of P,11. Here we remark that o +1 < & for all @ < k (l.e. Kk is a limit
ordinal): indeed, by our assumption that R C T' we know that the vertex set U is
not dispersed and, therefore, meets infinitely many U,,.

Finally, we derive the desired contradiction. Fix § > a* so that the endvertex
x of Pgy1 in T3 has larger height than v* has in T3 and so that Pg4, contains an
edge of R. Let u be the first vertex of Pg1, i.e., the smallest vertex in U \ V(Tj).
Note that the first vertex w of Pg41 that is contained in R is distinct from . (Also
see Figure ) As u* dominates R we find an infinite set @ of u*~R paths in G
such that distinct paths in @ only meet in w*. All but finitely many paths in Q
meet Tjgy; precisely in u*: Otherwise the end of R is contained in the closure of
Ts4+1 contradicting that the vertex set of Tz, is dispersed. Fix a path Q € Q
meeting Tj34; precisely in v* and having its endvertex v in wR. We conclude that
uPg1wRvQu* would have been a better choice than Pgy; in the construction of
Ts41 (contradiction). O

Proof of Theorem[2.5. By Lemma at most one of (i) and (ii) holds at a time.
To verify that least one of (i) and (ii) holds, we show —(i)—(ii). By Lemma
we may assume that U contains all vertices dominating an end in the closure of U,
and by Lemma there is a rayless tree T' C G that contains U. [

2.2. Deducing our duality theorem in terms of rayless trees. Let us analyse
why the proof of our duality theorem for undominated combs in terms of rayless
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FIGURE 1. The situation in the last paragraph of the proof of

Lemma @

trees for normally spanned graphs, Theorem 2.5 does not immediately give a proof
for arbitrary graphs. For this, consider any graph G and let U C V(G) be any vertex
set. Furthermore, suppose that there is a normal tree 7" C G that contains U and
that G contains no undominated comb attached to U. In the proof of Theorem
we assume without loss of generality that U contains all the vertices dominating
an end in the closure of U. This is possible because, by Lemma adding all the
vertices to U that dominate an end in the closure of U does not change the set
0qU of ends in the closure of U. However, after adding all these vertices it may
happen—in contrast to the situation in the proof of Theorem where G has a
normal spanning tree—that U is no longer normally spanned in G (e.g. consider
any countably infinite set U of vertices in an uncountable complete graph). And U
being normally spanned in G is a crucial requirement of the lemma that yields the
desired rayless tree, Lemma [2.9]

But maybe adding all the vertices that dominate an end in the closure of U and
maintaining that U is normally spanned was too much to ask. Indeed, Lemma [2.9
only requires that U contains for every end w € OqU at least one vertex dominating
w, and adding just one dominating vertex for every end w might preserve the
property of U being normally spanned in G. The following example shows that this
is in general false:

Example 2.10. Let G be a binary tree with tops, i.e., let G be obtained from the
rooted infinite binary tree T5 by adding for every normal ray R of T» a new vertex
VR, its top, that is joined completely to R (cf. Diestel and Leader’s [7]). Let U be
the vertex set of Ty. Then doU = Q(G) and every end w is dominated precisely
by the top that was added for the unique normal ray of T that is contained in
w. Hence adding for every end in dqU a vertex dominating it to U results in the
whole vertex set of G. However, as pointed out in [7], the graph G does not have
a normal spanning tree.
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Our way out is to work in a suitable contraction minor, which requires some
preparation: Let H and G be any two graphs. We say that H is a contraction minor
of G with fized branch sets if an indexed collection of branch sets { V,, | x € V(H) }
is fixed to witness that G is an I H. In this case, we write [v] = [v]y for the branch
set V, containing a vertex v of G and also refer to « by [v]. Similarly, we write
Ul =[Ulg :={[u] | we U} for vertex sets U C V(G).

Lemma 2.11. Let G be any graph and let H be any contraction minor of G with
fixed branch sets that induce subgraphs of G with rayless spanning trees. Further-
more, let U C V(G) be any vertex set. If H contains a rayless tree that contains
[U], then G contains a rayless tree that contains U.

Proof. Let T C H be a rayless tree that contains [U]. Fix for every branch set
W e [V(T)] a rayless spanning tree Ty, in the subgraph that G induces on W.
Furthermore, select one edge ey € Eg(t1,t2) for every edge f = tita € T. It is
straightforward to show that the union of all the trees Ty plus all the edges ey is
a rayless tree in G that contains U. g

Let H be a contraction minor of a graph G with fixed branch sets. A subgraph
G' = (V',E') of G can be passed on to H as follows. Take as vertex set the set
[V'] and declare W1 W5 to be an edge whenever E’ contains an edge between W
and Wa. We write [G'] = [G']g for the resulting subgraph of H and call it the
graph that is obtained by passing on G’ to H. If every vertex W € [V’] meets V'
in precisely one vertex, then we say that G’ is properly passed on to H. Note that
if G’ is properly passed on to H, then [G'] and G’ are isomorphic.

Lemma 2.12. Let H be a contraction minor of a graph G with fixed branch sets
and let T 'C G be a tree that is normal in G. If T is properly passed on to H, then
[T] C H is a tree that is normal in H.

Proof. Since T is properly passed on to G we have that T" and [T] are isomorphic
as witnessed by the bijection ¢ that maps every vertex ¢ € T to [t]. In order to see
that [T is normal in H when it is rooted in [r] for the root r of T, consider any [T-
path Wy ... W} in [H]. Using that branch sets are connected, it is straightforward
to show that there is T-path in G between the two vertices o~ 1(Wy) and =1 (W})
of T. Hence Wy and W, must be comparable in [T7]. O

We need two more lemmas for the proof of Theorem[I] Recall that the generalised
up-closure || z]| of a vertex & € T is the union of |z | with the vertex set of | € (),
where the set € (z) consists of those components of G — T whose neighbourhoods
meet |z].

Lemma 2.13 (|2, Lemma 2.10]). Let G be any graph and T C G any normal tree.

(i) Any two vertices x,y € T are separated in G by the vertex set [z] N [y].

(ii) Let W C V(T) be down-closed. Then the components of G — W come in
two types: the components that avoid T'; and the components that meet T,
which are spanned by the sets ||z ]| with x minimal in T — W.

Lemma 2.14 ([2, Lemma 2.11]). If G is any graph and T C G is any normal
tree, then every end of G in the closure of T contains exactly one normal ray of T'.
Moreover, sending these ends to the normal rays they contain defines a bijection
between 0qT and the normal rays of T
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Proof of Theorem[]l Given a normally spanned vertex set U C V(G) we have to
show that the following assertions are complementary:

(i) G contains an undominated comb attached to U;
(ii) G contains a rayless tree that contains U.

By Lemma at most one of (i) and (ii) holds at a time. To verify that at least
one of (i) and (ii) holds, we show —(i)—(ii). For this, we may assume by Lemma 2.6
that U is the vertex set of a normal tree 7' C G. In the following we will find a
contraction minor H of GG with fixed branch sets V,, such that:

— all G[V,] have rayless spanning trees;

— T is properly passed on to H;

— and every end of H in the closure of [T] C H is dominated in H by some
vertex of [T7].

Before we prove that such H exists, let us see how to complete the proof once H
is found. By Lemma the tree [T] is normal in H, and it has vertex set [U]
because V(T) = U. So, by Lemma the graph H contains a rayless tree that
contains [U]. Finally, by Lemma this rayless tree in H containing [U] gives
rise to a rayless tree in G containing U as desired.

In order to construct H, fix for every normal ray R of T' a vertex vg dominating
R in G. Let R be the set of all normal rays R of T for which vy is contained in
a component Cr of G — T. Note that the down-closure of the neighbourhood of
each Cr is V(R) due to the separation properties of normal trees (Lemma .
Thus, we have Cg # Cr/ for distinct normal rays R, R’ € R. Fix a vg—R path Pg
for every R € R. Then the overall union of the paths Pg is a forest of subdivided
stars, each having its centre on T'. Let us refer by Sg to the subdivided star that
contains vg for R € R, i.e., Sg is the union of all the paths Pgr/ that contain the
last vertex of Pr and this last vertex is the centre of Sg. Let H be the contraction
minor of G with fixed branch sets defined as follows: if v is contained on a path
Pg, then put [v] := Sg; otherwise let [v] := {v}. Then, in particular, every branch
set of H induces a subgraph of GG that has a rayless spanning tree.

As every star Sgp meets T precisely in its centre, the tree T is properly passed
on to H. By Lemma [2.12] the tree [T'] C H is normal in H and V/([T]) = [U] since
V(T) = U. And by Lemma it remains to show that every normal ray of [T
is dominated in H by some vertex of [T]. For this, we consider three cases. In all
three cases, fix any normal ray R C T and some collection P of infinitely many
vp—R paths in G meeting precisely in vg.

First assume that R € R. Note that only finitely many of the paths in P meet
vr PR, without loss of generality none. Then all graphs [P] C H with P € P are
[vr]-[R] paths that meet only in [vg]. This shows that [vg] € [T] dominates [R]
in H.

Second, suppose that R ¢ R and that every branch set of H other than [vg]
meets only finitely many of the paths in P. By thinning out P we may assume
that every branch set other than [vg] meets at most one of the paths in P. Then
the connected graphs [P] with P € P pairwise meet in [vg] but nowhere else and
all contain a vertex of [R] other than [vg]|. Taking one [vg]—([R] — [vr]) path inside
each [P] yields a fan witnessing that [vg] € [T] dominates [R] in H.

Finally, suppose that R ¢ R and that some branch set S # [vg] of H meets
infinitely many of the paths in P, say all of them. We write ¢ for the centre of
S. Without loss of generality none of the paths in P contains c¢. Also note that
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¢ is contained in V(R) as otherwise all the paths in P need to pass through the
finite down-closure of ¢ in T in vertices other than vg. Let R’ be the collection of
normal rays of T that satisfies S = |J{V(Pr/) | R € R'}. For every vg—R path
P € P let vp be the last vertex on P that is contained in S, let wp be the first
vertex on P after vp in which P meets T and let @Qp be the unique wp—R path
in T. (See Figure[2]) For every path P € P let P’ = P'(P) := vpPwpQp, and let
P =P(P)={P'|PeP}

AR R

— s
.'UR _S

FIGURE 2. The final case in the proof of our duality theorem for
undominated combs in term of rayless trees.

Each path Pgr/¢ C S with R’ € R’ meets only finitely many paths from P’, and
these latter paths are precisely the paths in P’ that meet Cg/: This is because every
path in P’ that meets Crs starts in a vertex vp € Cr/ and after leaving C'r/ only
traverses through vertices of T. Therefore, by replacing P with an infinite subset
of P, we can see to it that every component Cg: with R’ € R’ meets at most one of
the paths in the then smaller set P’ = P’(P). In countably many steps we fix paths
P{, P}, ... in P’ so that their last vertices are pairwise distinct: In order to see that
this is possible suppose for a contradiction that t € R is maximal in the tree order
of T so that t is the last vertex of a path in P’. Note that R together with the paths
vpP with P € P forms a comb in G. Hence infinitely many of the paths vpP are
contained in the same component of G — [t] as some tail of R. By Lemma[2.13] this
component is of the form [[¢'|] for the successor ¢’ of t on R. In particular, we find
some P € P so that wp lies above ¢’ in the tree order of T'. But then the endvertex
of Qp in R lies above ' and, in particular, above ¢, contradicting the choice of .

So let P/, Pj,... be paths in P’ with pairwise distinct last vertices. We show
that the paths P/ give rise to S—[R] paths [P/] in H that form an infinite S—[R] fan
witnessing that S dominates [R] in H. Every path P/ is an S—R path because every
path in P’ is an S—R path by the choice of the vertices vp. Moreover, the paths P/
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are pairwise disjoint: Every path P/ starts in a component Cr/. Using the choice
of the vertices vp with P € P as the last vertex on P that is contained in S we
have that the [P/] are S—[R] paths of H that only share their first vertex S. Hence

the [P/] form an infinite S—R fan in H and we conclude that S € [T] dominates [R]
in H. (]

3. SPANNING TREES REFLECTING THE UNDOMINATED ENDS

In [§], Halin conjectured that every connected graph has a spanning tree that is
end-faithful for all its ends. However, Seymour and Thomas’ counterexample in
Theorem shows that his conjecture is in general false. Recently, Carmesin [5]
amended Halin’s conjecture by proving the follwing:

Theorem 3.1 (Carmesin 2014). Every connected graph G has a spanning tree that
is end-faithful for the undominated ends of G.

Carmesin pointed out that his theorem is best possible in that it becomes false when
one replaces ‘is end-faithful for’ with the more specific ‘reflects’ in its wording: by
Theorem [2.2) there are connected graphs without rayless spanning trees all whose
rays are dominated. Characterising the graphs that have spanning trees reflecting
their undominated ends has remained an open problem.

In order to prove Theorem Carmesin developed the following theorem:

Theorem 3.2 (Carmesin, [2| Theorem 2.17]). Every connected graph G has a rooted
tree-decomposition with upwards disjoint finite connected separators that displays
the undominated ends of G.

Here, we recall from [2] that a tree-decomposition (T',V) of a given graph G with
finite separators displays a set ¥ of ends of G if 7 restricts to a bijection 7 [ ¥: ¥ —
Q(T) between ¥ and the end space of T' and maps every end that is not contained
in ¥ to some node of T', where 7: Q(G) — Q(T) UV (T) maps every end of G to
the end or node of T which it corresponds to or lives at, respectively.

Call a connected graph G knobbly if it has a tree-decomposition with pairwise
disjoint finite and connected separators that displays the undominated ends of G,
ie., if G has a tree-decomposition as in Theorem [3.2] with the strengthening that
all separators are pairwise disjoint. Our aim in this section is twofold. First, we
prove Theorem below which provides an existence criterion for spanning trees
that reflect the undominated ends of a given graph. Second, we characterise in
Theorem (i) the spanning trees of finitely separable graphs that reflect the un-
dominated ends, and we establish in Theorem [3.9] (ii) that every connected finitely
separable graph has such a tree.

Our existence criterion for spanning trees that reflect the undominated ends can
be formulated locally:

Theorem 3.3. Let G be any knobbly graph and let U C V(G) be normally spanned.
Then there is a tree T C G that contains U and reflects the undominated ends in
the closure of U.

Our proof of Theorem requires some preparation.

Recall that a rooted tree-decomposition (T,V) of a graph G covers a vertex set
U C V(G) cofinally if the set of nodes of T whose parts meet U is cofinal in the
tree-order of T'.
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Theorem 3.4. Let G be any knobbly graph and let U C V(G) be any vertex set.
Then G has a rooted tree-decomposition with pairwise disjoint finite connected sep-
arators that displays the undominated ends of G that lie in the closure of U. More-
over, the tree-decomposition can be chosen so that it covers U cofinally.

Proof. Since G is knobbly, we find a tree-decomposition (T, V) of G with pairwise
disjoint finite connected separators that displays the undominated ends of G. Con-
sider T rooted in an arbitrary node. Let U’ be the set of vertices of T whose parts
meet U and let T” be the subtree of T obtained by taking the down-closure of U’
in T. Then we let (T, ) be the Sy, -tree corresponding to (T, V), so (T, a | E(T"))
is an Sy,-tree that induces the desired tree-decomposition. (]

Our construction of a tree reflecting the undominated ends in the closure of a
given set of vertices will employ a contraction minor H of the underlying graph G.
The following notation will help us to translate between the endspace of G and that
of H. Consider a contraction minor H of a graph G with fixed finite branch sets.
Every direction f of G defines a direction [f] of H by letting [f](X) := [f(J X)]
for every finite vertex set X C V(H). In fact, it its straightforward to check that
every direction of H is defined by a direction of G in this way:

Lemma 3.5. Let H be a contraction minor of a graph G with fixed finite branch
sets. Then the map f — [f] is a bijection between the directions of G and the
directions of H. O

This one-to-one correspondence then combines with the well-known one-to-one cor-
respondence between the directions and ends of a graph (see [2, Theorem 2.7]),
giving rise to a bijection w — [w] between the ends of G and the ends of H. The
natural one-to-one correspondence between the two end spaces extends to other
aspects of the graphs and their ends:

Lemma 3.6. Let H be a contraction minor of a graph G with fized finite branch
sets, let w be an end of G and let U C V(G) be any vertex set. Then w lies in
the closure of U in G if and only if [w] lies in the closure of [U] in H; and w is
dominated in G if and only if [w] is dominated in H.

We remark that this extends [6, Exercise 82 (i)].

Proof. Write f,, for the direction of G' that corresponds to w. Then the following
statements are equivalent:
(i) w lies in the closure of U in G;
(i) fw(X) meets U for every finite vertex set X C V(Q);
(iil) [fu](X) meets [U] for every finite vertex set X C V(H);
(iv) [w] lies in the closure of [U] in H.
Indeed, one easily verifies (i)« (i)« (iii) > (iv).

This establishes that the end w of G lies in the closure of U in G if and only
if [w] lies in the closure of [U] in H. Similarly, it is straightforward to check that
the following statements are equivalent for any vertex v of G (except for (iii)—(ii)
which we will verify in detail):

(i) there is a vertex z € [v] that dominates w in G;
(ii) there is a vertex z € [v] such that z € f,(X) for every finite vertex set
X CV(G)\ {z};
(iii) [v] € [fu](X) for every finite vertex set X C V(H)\ {[v]};
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(iv) [v] dominates [w] in H.
To see (iii)—(ii) we show —(ii) — —(iii). Since (ii) fails, there is for every vertex
z € [v] a finite vertex set X, C V(G) \ {#} such that z is not contained in f,(X,).
Consider the finite vertex set X := J, X.. Then no z € [v] is contained in the
component f,(X) or is one of its neighbours, because f,(X) C f,(X,) and z ¢
X. U fu(X.). Hence [v] ¢ [f,]([X']) for the neighbourhood X’ of f,(X) in G and
this neighbourhood avoids [v].

Therefore the end w of G is dominated in G if and only if [w] is dominated
in H. d

Lemma 3.7. Let H be a contraction minor of a graph G with fixed branch sets
and let U C V(G) be any vertex set. If U is normally spanned in G, then [U] is
normally spanned in H.

We remark that this is essentially [9, Lemma 7.2 (b)].

Proof. Without loss of generality both G and H are connected. By Theorem [2.8] we
have that U can be written as a countable union |J,, . Un with every U,, dispersed
in G. Then every vertex set [U,,] is dispersed in H, because every comb attached to
[U,] in H would give rise to a comb attached to U, in G, contradicting that U, is
dispersed in G. Hence [U] = |J,,cn[Ux] is normally spanned in H by Theorem

|

We need one more lemma for the proof of Theorem [3.3}

Lemma 3.8. Let G be any connected graph and let U C V(G) be any vertex set.
If (T, V) is a rooted tree-decomposition of G with pairwise disjoint finite connected
separators that displays the undominated ends in OqU and covers U cofinally, then
0oU = 0qU for the superset U of U that arises from U by adding all the vertices
that lie in the separators of (T,V).

Proof. The inclusion dgU C doU holds because U C U. For the backward inclu-
sion, consider any end w in the closure of ﬁ, and assume for a contradiction that
w does not lie in the closure of U. Then w lives at a node ¢t € T because (T,V)
displays the ends in the closure of U. Pick a comb in G attached to U and with
spine in w. As w does not lie in the closure of U we may assume that the comb
avoids U. Furthermore, we may assume that every tooth of the comb lies in a sep-
arator of (T,V) associated with an edge of T at and above t. Since the separators
of (T,V) are finite and pairwise disjoint, we may even ensure that no separator
contains more than one tooth. As (7',V) has connected separators and covers U
cofinally, we find infinitely many disjoint paths from the comb to U, one starting
in each tooth. Then the comb together with these paths witnesses that w lies in
the closure of U, a contradiction. [

Proof of Theorem[3.3 Let G be any knobbly graph and let U C V(G) be normally
spanned. Let (Tpec, V) be any rooted tree-decomposition of G with pairwise disjoint
finite connected separators such that (Tpee, V) displays the undominated ends in
the closure of U and covers U cofinally. And by Lemma we may assume that
U contains all the vertices that are contained in the separators of (Tpic, V).

We construct a tree T' C G displaying the undominated ends in the closure of U
as follows. For every separator X of (Tpec, V) we pick a spanning tree Tx of G[X].
As all X are finite and pairwise disjoint, so are the T'x. Next, we choose for every
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part V; of (Tppe, V) a rayless tree Ty in G[V4] containing U, := V; NU and extending
all the trees Tx for which X is a separator corresponding to some edge incident
with ¢, as follows. Given V;, we first consider the contraction minor H; of G[V}]
with fixed branch sets that is obtained from G[V;] by contracting each G[X] with X
a separator induced by an edge of Ty at t to a single dummy vertex named X. As
U is normally spanned in G it follows by Lemma[3.7 that [U]y is normally spanned
in the contraction minor H obtained from G by contracting every G[X] for every
separator. It follows that the vertex sets [U:] g, are normally spanned in H, C H.
Furthermore, since (Tpre, V) has disjoint finite connected separators and displays
the undominated ends of G in the closure of U, every end of G[V4] in the closure of
Uy in the graph G[V;] is dominated in G[V;]. Thus, by Lemma [3.6] every end of H,
in the closure of [U;] is dominated in H;. Hence we may apply Theorem (1| to H;
and [U,] to obtain a rayless tree T; in H, containing [U;]. Then by expanding each
dummy vertex X of Tt to Tx we obtain a rayless tree T} in G[V;] that contains U,
and extends all these T'x.

Let T be spanned by the down-closure of U in the tree UteTDEc T; with regard to
an arbitrary root. We claim that 7' contains U and reflects the undominated ends
in the closure of U. Clearly, T is a tree in G that contains U even cofinally. By the
star-comb lemma, every tree in G containing U contains for each undominated end
in the closure of U a ray from that end. In particular, T contains a ray from every
undominated end in the closure of U.

Next, the tree T contains at most one ray starting in the root for every undom-
inated end in the closure of U: Indeed, if T' contains two (say) vertex-disjoint rays
from the same undominated end w in the closure of U, then these give rise to a sub-
divided ladder in T via the trees T'x along any ray of Tz to which w corresponds,
and the ladder comes with infinitely many cycles, contradicting that T is a tree.

That T contains only rays from ends in the closure of U is a consequence of
Lemma [2.6] and the fact that T contains U cofinally by construction.

Finally, the tree T" contains no ray from dominated ends in the closure of U, for
if T' contains a ray from such an end, then the vertex set of that ray intersects some
part V; of (T,V) infinitely often, and then Lemma applied in the rayless tree T}
to that intersection yields infinitely many cycles in the tree T. O

Theorem 3.9. Let G be any graph and let T C G be any spanning tree.

(i) The fundamental cuts of T are all finite if and only if G is finitely separable
and T reflects the undominated ends of G.

(ii) If G is finitely separable and connected, then it has a spanning tree all whose
fundamental cuts are finite.

Proof. (i) For the forward implication suppose that the fundamental cuts of T are
all finite. First let us see that G is finitely separable. For this consider any two
distinct vertices v,w € V(G) and let e be an edge on the unique path between v
and w in T. Then the fundamental cut of e with respect to T is finite and separates
v from w in G.

Next, let us show that no ray of T is dominated. For this, consider any ray
R C T and any vertex v € V(G). Let C be the component of T'— v that contains a
tail of R and let e € E(T) be the unique edge between C' and v. As the fundamental
cut of e with respect to T is finite, and as all the paths of any v-(R — v) fan need
to pass through this fundamental cut, the vertex v cannot dominate R.
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The tree T contains a ray from every undominated end, because, by the star-
comb lemma, every spanning spanning tree of G does so. It remains to show that
every distinct two ends of T are included in distinct ends of G. For this consider
rays R, R' C T that belong to distinct ends of T'. Let e be an edge on a tail of R
that does not meet R’. Then the endvertices of the edges in the finite fundamental
cut of e form a finite vertex set that separates a tail of R from a tail of R’ in G.
Hence R and R’ belong to distinct ends of G.

For the backward implication suppose that G is finitely separable and that T
reflects the undominated ends of G. Consider any fundamental cut F, of an edge
e € E(T) with respect to T. Write Ty and Tb for the two components of T' — e.
Then F, consists of the T7-T5 edges of G. Suppose for a contradiction that F, is
infinite. Then F, has infinitely many endvertices in at least one of 77 and T5. Let
us write X; for the set of endvertices that F, has in T; for ¢ = 1,2. We consider
two cases and derive contradictions for both of them.

In the first case, some vertex x € X; is incident with infinitely many edges of Fp,
say for ¢ = 1. Then, as G is finitely separable, applying the star-comb lemma
in T5 to the infinitely many endvertices that these edges have in 75 must yield a
comb whose spine is then dominated by x in G, contradicting that T reflects the
undominated ends of G.

In the second case, every vertex of G is incident with at most finitely many
edges from F,. Then F, contains an infinite matching of an infinite subset of V(77)
and an infinite subset of V(Ty). First, we apply the star-comb lemma in T} to the
endvertices of this matching. This yields either a star or a comb, and we write Uy
for its attachment set. Then we apply the star-comb lemma in 75 to those vertices
that are matched to U;. Since G is finitely separable, we cannot get two stars. Like
in the first case, we cannot get one star and one comb. So we must get two combs.
But then T contains two rays that are equivalent in G, contradicting that 7" reflects
some set of ends of G.

(ii) By (i) it suffice to show that G has a spanning tree that reflects its undomi-
nated ends. Bruhn and Diestel [T, Theorem 6.3] showed that G has a spanning tree
T whose closure in G does not contain a circle (using their terminology). We claim
that T reflects the undominated ends of G. For this, we show that

(1) no ray in T is dominated in G, and that

(2) no two disjoint rays in T are equivalent in G.
Indeed, if T' contains a ray that is dominated in G by a vertex v, then that ray is
a tail of ray R C T that starts in v, so R C T is a circle contradicting the choice
of T. And if T contains two disjoint equivalent rays, then there is a double ray
D C T that contains both rays, and neither of the two rays is dominated by (1).
Thus, D C T is a circle contradicting the choice of T'. O
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4. DUALITY THEOREMS FOR UNDOMINATED COMBS

In this section we prove our two duality theorems for undominated combs in full
generality. The first theorem is phrased in terms of star-decompositions:

Theorem 3. Let G be any connected graph and let U C V(G) be any vertex set.
Then the following assertions are complementary:
(i) G contains an undominated comb attached to U;
(ii) G has a star-decomposition with finite separators such that U is contained
in the central part and all undominated ends of G live in the leaves’ parts.

Moreover, we may assume that the separators of the tree-decomposition in (ii) are
connected.

Proof. Clearly, at most one of (i) and (ii) can hold.

To establish that at least one of (i) and (ii) holds, we show —(i)—(ii). By Theo-
remwe find a rooted tree-decomposition (7', V) of G with upwards disjoint finite
connected separators that displays the undominated ends of G. We let W C V(7))
consist of those nodes t € T whose parts V; meet U. Then we root T' arbitrarily
and let 7" be the subtree [W] of T. Since U does not have any undominated end
of G in its closure, it follows that 7" must be rayless. We obtain the star S from T
by contracting 7" and all of the components of T — T”. Then we let (T, @) be the
Sy,-tree corresponding to (T,V), so (S, a | E(S)) is an Sy,-tree that induces the
desired star-decomposition which even satisfies the ‘moreover’ part. (]

The central part of the star-decomposition in Theorem [3| (ii) induces a subgraph
of G that seems to carry the information that there is no undominated comb at-
tached to U. Our second duality theorem for undominated combs confirms this
suspicion:

Theorem 4. Let G be any connected graph and let U C V(G) be any vertex set.
Then the following assertions are complementary:
(i) G contains an undominated comb attached to U;
(ii) G has a connected subgraph that contains U and all whose rays are domi-
nated in it.

Proof. To see that at most one of (i) and (ii) holds, consider any connected subgraph
H C G containing U such that every ray of H is dominated in H. We show that H
obstructs the existence of an undominated comb in G attached to U. Assume for
a contradiction that such a comb exists. Then the undominated end w € Q(G) of
that comb’s spine lies in the closure of U, and so applying the star-comb lemma in
H to the attachment set U’ C U of that comb must yield another comb attached
to U’. But this latter comb is dominated in H by assumption, and at the same
time its spine is equivalent in G to the first comb’s spine, contradicting that w is
undominated in G.

To establish that at least one of (i) and (ii) holds, we show —(i)—(ii). Let (T}, V)
be the star-decomposition from Theorem (ii) also satisfying the ‘moreover’ part of
the theorem. We claim that the graph H = G[V,] that is induced by the central part
Ve of (T,V) is as desired. Clearly, H contains U. And H is connected because the
separators of (T,)) are connected. Now if R is any ray in H, it is dominated in G
by some vertex v € V.. This vertex v also dominates R in H because every infinite
v—(R — v) fan in G can be greedily turned into an infinite v—(R — v) fan in H by
employing the connectedness of the finite separators of the star-decomposition. [
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