
ENDS OF DIGRAPHS III: NORMAL ARBORESCENCES

CARL BÜRGER AND RUBEN MELCHER

Abstract. In a series of three papers we develop an end space theory for

digraphs. Here in the third paper we introduce a concept of depth-first search
trees in infinite digraphs, which we call normal spanning arborescences.

We show that normal spanning arborescences are end-faithful: every end of

the digraph is represented by exactly one ray in the normal spanning arbores-
cence that starts from the root. We further show that this bijection extends to

a homeomorphism between the end space of a digraph D, which may include

limit edges between ends, and the end space of any normal arborescence with
limit edges induced from D. Finally we prove a Jung-type criterion for the

existence of normal spanning arborescences.

1. Introduction

Ends of graphs are one of the most important concepts for the study of infinite
graphs. In a series of three papers we develop an end space theory for digraphs.
See [1] for a comprehensive introduction to the entire series of three papers ([1], [2]
and this paper) and a brief overview of all our results.

Depth-first search trees are a standard tool in finite graph and digraph theory.
These trees arise from an algorithm on a graph or digraph called depth-first search.
Starting from a fixed vertex, the ‘root’, the algorithm moves along the edges, going
to a vertex not visited yet whenever this is possible, and going back otherwise.
Depth-first search stops when all vertices have been visited, and the trees defined
by the traversed edges are called depth-first search trees.

For connected finite graphs, the depth-first search trees are precisely the normal
spanning trees. Here, a rooted tree T ⊆ G is normal in G if the endvertices of every
T -path in G are comparable in the tree-order of T . (A T -path in G is a non-trivial
path that meets T exactly in its endvertices.) Normal spanning trees generalise
depth-first search trees, since they are also defined for infinite graphs; they are
perhaps the single most important structural tool in infinite graph theory [5].

In this third paper of our series we introduce and study normal spanning arbores-
cences. These are generalisations of depth-first search trees to infinite digraphs that
promise to be as powerful for a structural analysis of digraphs as normal spanning
trees are for graphs, both from a combinatorial and a topological point of view.

An arborescence is a rooted oriented tree T that contains for every vertex
v ∈ V (T ) a directed path from the root to v. The vertices of any arborescence
are partially ordered as v ≤T w if T contains a directed path from v to w. We
write bvcT for the up-closure of v in T .
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2 CARL BÜRGER AND RUBEN MELCHER

Consider a finite digraph D together with a spanning depth-first search tree
T ⊆ D. If vw is an edge of D between ≤T -incomparable vertices of T , then w is
visited at an earlier stage of the depth-first search than v.1 Together with all such
edges, T forms an acyclic subdigraph of D [3].2

Figure 1. A depth-first search arborescence visiting vertices from
right to left.

Let us use this property of depth-first search trees in finite digraphs as the defini-
tion of our infinite analogue, i.e., as the defining property for ‘normal’ arborescences
in infinite digraphs. More precisely, consider a (possibly infinite) digraph D and an
arborescence T ⊆ D, not necessarily spanning. A T -path in D is a non-trivial di-
rected path that meets T exactly in its endvertices. The normal assistant of T in D
is the auxiliary digraph H that is obtained from T by adding an edge vw for every
two ≤T -incomparable vertices v, w ∈ V (T ) for which there is a T -path from bvcT
to bwcT in D, regardless of whether D contains such an edge. The arborescence T
is normal in D if the normal assistant of T in D is acyclic. It is straightforward
to check that this indeed generalises depth-first search trees in that for finite D a
spanning arborescence T of D is normal in D if and only if T defines a depth-first
search tree; see Corollary 3.3.

One aspect of why normal spanning trees of infinite undirected graphs are so
useful is that they are end-faithful. A spanning tree T of a graph G is end-faithful
if the map that assigns to every end of T the end of G that contains it as a subset
(of rays) is bijective, see [5]. Equivalently T is end-faithful if every end of G is
represented by a unique ray in T that starts from a fixed root. Our first theorem
will be an analogue of this for normal arborescences, so let us recall the definition
of ends of digraphs from [1].

A directed ray is an infinite directed path that has a first vertex (but no last ver-
tex). The directed subrays of a directed ray are its tails. For the sake of readability

1Indeed, if v was visited before w, the algorithm would have traversed the edge vw rather than
backtracking from v, which it must have done since v and w are incomparable. Note that all the
visits to v happen while the algorithm searches bvcT , and likewise for w, so visiting ‘before’ and

‘after’ are well-defined for incomparable vertices.
2Indeed, any cycle would, but cannot, lie in the up-closure of its first-visited vertex.
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we shall omit the word ‘directed’ in ‘directed path’ and ‘directed ray’ if there is no
danger of confusion. We call a ray in a digraph solid in D if it has a tail in some
strong component of D − X for every finite vertex set X ⊆ V (D). We call two
solid rays in a digraph D equivalent if for every finite vertex set X ⊆ V (D) they
have a tail in the same strong component of D − X. The equivalence classes of
this equivalence relation are the ends of D. For a finite vertex set X ⊆ V (D) and
an end ω of D we write C(X,ω) for the unique strong component of D −X that
contains a tail of every ray that represents ω; the end ω is then said to live in that
strong component. The set of ends of D is denoted by Ω(D).

Let T ⊆ D be a spanning arborescence of a digraph D. We say that T is end-
faithful if every end of D is represented by a unique ray in T starting from the root
of T . (Note that, conversely, rays in T will only represent ends of D if they are
solid in D.) Here is our first main result:

Theorem 1. Every normal spanning arborescence of a digraph is end-faithful.

In fact we will prove a localised version of this for normal arborescences in D that
are not necessarily spanning.

The end space of any normal spanning tree T of an undirected graph G coincides
with the end space of G, not only combinatorially but also topologically. Indeed,
the map that assigns to every end of T the end of G that contains it as a subset
is a homeomorphism between the end space of T and that of G, see [5]. Hence, in
order to understand the end space of G one just needs to understand the simple
structure of the tree T .

We also have an analogue of this for digraphs and their normal arborescences.
To state this, let us recall the notion of limit edges of a digraph D.

For two distinct ends ω and η of D, we call the pair (ω, η) a limit edge from
ω to η if D has an edge from C(X,ω) to C(X, η) for every finite vertex set X for
which ω and η live in distinct strong components of D−X. Similarly, for a vertex
v ∈ V (D) and an end ω of D we call the pair (v, ω) a limit edge from v to ω if D has
an edge from v to C(X,ω) for every finite vertex set X ⊆ V (D) with v 6∈ C(X,ω).
And we call the pair (ω, v) a limit edge from ω to v if D has an edge from C(X,ω)
to v for every finite vertex set X ⊆ V (D) with v 6∈ C(X,ω). The digraph D, its
ends, and its limit edges together form a topological space |D|, in which the edges
are copies of the real interval [0, 1]; see [2].

The horizon of a digraph D is the subspace of |D| formed by the ends of D and
all the limit edges between them. Arborescences do not themselves have ends or
limit edges, but there is a natural way to endow an arborescence T in a digraph D
with a meaningful horizon. The solidification of an arborescence T ⊆ D, or of its
normal assistant H in D, is obtained from T or H, respectively, by adding all the
edges wv with vw ∈ E(T ). Note that all the rays of T are solid in its solidification
and thus represent ends there. Let us define the horizon of T as the horizon of the
solidification of its normal assistant.

Recall that the digraphs D that are compactified by |D| are precisely the solid
ones, those such that D − X has only finitely many strong components for every
finite vertex set X ⊆ V (D) [2]. Let T be a normal spanning arborescence of D,
with root r, say. By Theorem 1, there exists a well-defined map ψ that sends every
end ω of D to the end of the solidification T of T represented by the unique ray
R ⊆ T starting from r that represents ω in D. This map ψ is clearly injective. If D
is solid, every ray in T represents an end of D, so ψ is also surjective. Let ζ denote
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the map from the set of ends of T to that of the solidification H of the normal
assistant H of T in D that assigns to every end of T the end of H that contains
it as a subset (of rays). This is always bijective, see Lemma 5.1. Note that H,
unlike T , can have limit edges. We say that T reflects the horizon of D if the map
ζ ◦ ψ : Ω(D) → Ω(H) extends to a homeomorphism from the horizon of D to that
of H.

As our second main result we prove that normal spanning arborescences of solid
digraphs reflect the horizon of the digraph they span:

Theorem 2. Every normal spanning arborescence of a solid digraph reflects its
horizon.

Not every connected graph has a normal spanning tree; for example, uncountable
complete graphs have none. Thus it is not surprising that there are also strongly
connected digraphs without normal spanning arborescences—such as any digraph
obtained from an uncountable complete graph by replacing every edge by its two
orientations as separate directed edges.

Jung [6] characterised the connected graphs with a normal spanning tree in terms
of dispersed sets. A set U ⊆ V (G) of vertices of a graph G is dispersed if there is
no comb in G with all its teeth in U . Recall that a comb is the union of a ray R
with infinitely many disjoint finite paths, possibly trivial, that have precisely their
first vertex on R. The last vertices of those paths are the teeth of this comb, see [5].
Jung proved that a connected graph has a normal spanning tree if and only if its
vertex set is a countable union of dispersed sets.

Translating this to digraphs, a directed comb is the union of a directed ray with
infinitely many disjoint finite paths (possibly trivial) that have precisely their first
vertex on R. Hence the underlying graph of a directed comb is an undirected comb.
The teeth of a directed comb are the teeth of the underlying comb. We call a set
U ⊆ V (D) of vertices of a digraph D dispersed if there is no directed comb in D
with all its teeth in U . For two vertices v, w ∈ V (D), we say that v can reach w if
D contains a path from v to w.

Theorem 3. Let D be any digraph and suppose that r ∈ V (D) can reach all the
vertices of D. If V (D) is a countable union of dispersed sets, then D has a normal
spanning arborescence rooted in r.

In fact we will prove a slightly stronger version of this where we show how to find
a normal arborescence in D that contains a given set of vertices of D.

In an undirected graph, the levels of any normal spanning tree are dispersed, so
the forward implication in Jung’s characterisation is easy. Theorem 3 implies the
harder backward implication when applied to the digraph obtained from the graph
by replacing every edge by its two orientations as separate directed edges.

The easy forward implication in Jung’s theorem does not have a directed ana-
logue, since the converse implication in Theorem 3 may fail (see Section 6). How-
ever, the converse of Theorem 3 does hold if the digraph D is solid.

This paper is organised as follows. We provide the tools and terminology that
we use throughout this paper in Section 2. Then in Section 3 we introduce normal
arborescences and provide some basic lemmas that we need for the proofs of our
main results. In Section 4, we show that normal spanning arborescences are end-
faithful, Theorem 1. In Section 5, we prove that normal spanning arborescences



ENDS OF DIGRAPHS 5

reflect the horizon, Theorem 2. Finally, we prove our existence criterion for normal
arborescences in digraphs, Theorem 3, in Section 6.

2. Tools and terminology

Any graph-theoretic notation not explained here can be found in Diestel’s text-
book [5]. For the sake of readability, we sometimes omit curly brackets of single-
tons, i.e., we write x instead of {x} for a set x. Furthermore, we omit the word
‘directed’—for example in ‘directed path’—if there is no danger of confusion.

Throughout this paper D is an infinite digraph without multi-edges and without
loops, but which may have inversely directed edges between distinct vertices. For
a digraph D, we write V (D) for the vertex set of D, we write E(D) for the edge
set of D and X (D) for the set of finite vertex sets of D. We write edges as ordered
pairs (v, w) of vertices v, w ∈ V (D), and we usually write (v, w) simply as vw. The
vertex v is the tail of vw and the vertex w its head. The reverse of an edge vw is
the edge wv. More generally, the reverse of a digraph D is the digraph on V (D)
where we replace every edge of D by its reverse, i.e., the reverse of D has the edge

set { vw | wv ∈ E(D) }. We write
←
D for the reverse of a digraph D. A symmetric

ray is a digraph obtained from an undirected ray by replacing each of its edges by
its two orientations as separate directed edges. Hence the reverse of a symmetric
ray is a symmetric ray.

The directed subrays of a ray are its tails. Call a ray solid in D if it has a tail
in some strong component of D − X for every finite vertex set X ⊆ V (D). Two
solid rays in D are equivalent, if they have a tail in the same strong component of
D−X for every finite vertex set X ⊆ V (D). We call the equivalence classes of this
relation the ends of D and we write Ω(D) for the set of ends of D.

Similarly, the reverse subrays of a reverse ray are its tails. We call a reverse
ray solid in D if it has a tail in some strong component of D −X for every finite
vertex set X ⊆ V (D). With a slight abuse of notation, we say that a reverse ray
R represents an end ω if there is a solid ray R′ in D that represents ω such that R
and R′ have a tail in the same strong component of D −X for every finite vertex
set X ⊆ V (D).

Given sets A,B ⊆ V (D) of vertices a path from A to B, or A–B path is a path
that meets A precisely in its first vertex and B precisely in its last vertex. We say
that a vertex v can reach a vertex w in D and w can be reached from v in D if
there is a v–w path in D. A non-trivial path P is an A-path for a set of vertices A
if P has both its endvertices but none of its inner vertices in A. A set W of vertices
is strongly connected in D if every vertex of W can reach every other vertex of W
in D[W ].

A vertex set Y ⊆ V (D) separates A and B in D with A,B ⊆ V (D) if every A–B
path meets Y , or if every B–A path meets Y . For two vertices v and w of D we
say that Y ⊆ V (D) \ {v, w} separates v and w in D, if it separates {v} and {w}
in D.

For a finite vertex set X ⊆ V (D) and a strong component C of D−X an end ω
is said to live in C if one (equivalent every) solid ray in D that represents ω has a
tail in C. We write C(X,ω) for the strong component of D −X in which ω lives.
For two ends ω and η of D a finite set X ⊆ V (D) is said to separate ω and η if
C(X,ω) 6= C(X, η), i.e., if ω and η live in distinct strong components of D −X.



6 CARL BÜRGER AND RUBEN MELCHER

We say that a digraph is acyclic if it contains no directed cycle as a subdigraph.
The vertices of any acyclic digraph D are partially ordered by v ≤D w if D contains
a path from v to w.

An arborescence is a rooted oriented tree that contains for every vertex v ∈ V (T )
a directed path from its root to v. Note that arborescences T are acyclic and that
≤T coincides with the tree-order of the undirected tree underlying T . For vertices
v ∈ V (T ), we write bvcT for the up-closure and dveT for the down-closure of v
with regard to ≤T . The nth level of T is the nth level of the undirected tree
underlying T .

A directed comb is the union of a ray with infinitely many finite disjoint paths
(possibly trivial) that have precisely their first vertex on R. Hence the undirected
graph underlying a directed comb is an undirected comb. The teeth of a directed
comb are the teeth of the underlying undirected comb. The ray from the definition
of a directed comb is the spine of the directed comb.

Let H be any fixed digraph. A subdivision of H is any digraph that is obtained
from H by replacing every edge vw of H by a path Pvw with first vertex v and last
vertex w so that the paths Pvw are internally disjoint and do not meet V (H)\{v, w}.
We call the paths Pvw subdividing paths. IfD is a subdivision ofH, then the original
vertices of H are the branch vertices of D and the new vertices its subdividing
vertices.

An inflated H is any digraph that arises from a subdivision H ′ of H as follows.
Replace every branch vertex v of H ′ by a strongly connected digraph Hv so that
the Hv are disjoint and do not meet any subdividing vertex; here replacing means
that we first delete v from H ′ and then add V (Hv) to the vertex set and E(Hv) to
the edge set. Then replace every subdividing path Pvw that starts in v and ends in
w by an Hv–Hw path that coincides with Pvw on inner vertices. We call the vertex
sets V (Hv) the branch sets of the inflated H. A necklace is an inflated symmetric
ray with finite branch sets; the branch sets of a necklace are its beads. With a slight
abuse of notation, we say that a necklace N ⊆ D represents an end ω of D if one
(equivalently every) ray in N represents ω. Given a set U of vertices in a digraph
D, a necklace N ⊆ D is attached to U if infinitely many of the branch sets of N
contain a vertex from U .

For two distinct ends ω, η ∈ Ω(D), we call the pair (ω, η) a limit edge from ω
to η, if D has an edge from C(X,ω) to C(X, η) for every finite vertex set X ⊆ V (D)
that separates ω and η. For a vertex v ∈ V (D) and an end ω ∈ Ω(D) we call the
pair (v, ω) a limit edge from v to ω if D has an edge from v to C(X,ω) for every
finite vertex set X ⊆ V (D) with v 6∈ C(X,ω). Similarly, we call the pair (ω, v) a
limit edge from ω to v if D has an edge from C(X,ω) to v for every finite vertex
set X ⊆ V (D) with v 6∈ C(X,ω). We write Λ(D) for the set of all the limit edges
of D. As we do for ‘ordinary’ edges of a digraph, we will suppress the brackets
and the comma in our notation of limit edges. For example we write ωη instead of
(ω, η) for a limit edge between ends ω and η. For limit edges we need the following
proposition from the first paper of this series [1, Proposition 5.2].

Proposition 2.1. For a digraph D, a vertex v and an end ω of D the following
assertions are equivalent:

(i) D has a limit edge from v to ω;
(ii) there is a necklace N ⊆ D that represents ω such that v sends an edge to

every bead of N .
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For vertex sets A,B ⊆ V (D) let E(A,B) be the set of edges from A to B, i.e.,
E(A,B) = (A × B) ∩ E(D). Now, consider two ends ω, η ∈ Ω(D) and a finite
vertex set X ⊆ V (D). If X separates ω and η we write E(X,ωη) as short for
E(C(X,ω), C(X, η)) and if additionally ωη is a limit edge, then we say that it lives
in E(X,ωη).

3. Normal arborescences

In this section we introduce normal arborescences and we provide some basic lem-
mas that we need for the proofs of our main results.

Consider a digraph D and an arborescence T ⊆ D, not necessarily spanning.
The normal assistant of T in D is the auxiliary digraph H that is obtained from
T by adding an edge vw for every two ≤T -incomparable vertices v, w ∈ V (T ) for
which there is a T -path from bvcT to bwcT in D, regardless of whether D contains
such an edge. The arborescence T is normal in D if the normal assistant of T in D
is acyclic; in this case, we write ET :=≤H and we call ET the normal order of T .

Similarly, a reverse arborescence T is normal in D if
←
T is normal in

←
D.

Lemma 3.1. Let D be any digraph and let T ⊆ D be an arborescence. If the
normal assistant of T in D contains a cycle, then it also contains a cycle so that
consecutive vertices on the cycle are ≤T -incomparable.

Proof. Let H be the normal assistant of T in D and let C be a cycle in H of minimal
length. Suppose for a contradiction that C contains consecutive vertices that are
≤T -comparable. As T is acyclic the cycle C cannot be contained entirely in T ; in
particular C has length at least three. Thus we find a subpath uvw ⊆ C such that
u is the ≤T -predecessor of v, and such that v and w are ≤T -incomparable. But
then also uw ∈ E(H) and replacing the path uvw in C by the edge uw gives a
shorter cycle. �

An extension � of ≤T on an arborescence T is branch sensitive if for any two
≤T -incomparable vertices v � w of T there is no v′ ∈ bvcT with w � v′. An
extension � of ≤T on T is path sensitive if for no two ≤T -incomparable vertices
v � w the digraph D contains a T -path from w to v. Note that the normal order
of any normal arborescence T ⊆ D is both branch sensitive and path sensitive. A
sensitive order on T is a linear extension of ≤T on T that is both branch sensitive
and path sensitive.

Lemma 3.2. Let D be any digraph and let T ⊆ D be an arborescence in D. Then
T is normal in D if and only if there is a sensitive order on T .

Proof. For the forward implication assume that T is normal in D. Let us write
Ln for the nth level of T and let us write Tn for the arborescence that T induces
on

⋃
{Lm | m ≤ n }. We recursively construct an ascending sequence of orders

(�n)n∈N such that �n is a sensitive order on Tn as follows. In the base case, we
let �0:=≤T0 . In the recursive step, suppose that we have defined �n. Let us write
for every v ∈ Ln the set of up-neighbours (children) of v in T as Nv. For every
v ∈ Ln let �v be a linear extension of the restriction of ET to Nv. And for every
two distinct vertices v, w ∈ Ln with v �n w we define v′ �vw w′ whenever v′ ∈ Nv
and w′ ∈ dNweT \ dveT . Now, let �n+1 be the transitive closure of

�n ∪
⋃
{�v| v ∈ Ln } ∪

⋃
{�vw| v 6= w in Ln }.
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It is straightforward to check that the order �n+1 is a sensitive order on Tn+1.
Hence

⋃
{�n| n ∈ N } is a sensitive order on T as an ascending union of sensitive

orders on subarborescences of T .
For the backward implication assume that T has a sensitive order � on T .

Suppose for a contradiction that T is not normal in D. Let H be the normal
assistant of T in D. Then H contains a cycle C and by Lemma 3.1 we may assume
that consecutive vertices on C are ≤T -incomparable. Let c be the �-largest vertex
on C and let c′ be its successor on C. Note that c′ � c by the choice of c. The edge
cc′ of C ⊆ H is witnessed by a T -path P from bccT to bc′cT . Let w be the first
vertex and v the last vertex of P . As � is branch sensitive, we have v � w. But
then the two vertices v and w together with P show that � is not path sensitive
contradicting that � is a sensitive order on T . �

Corollary 3.3. A spanning arborescence of a finite digraph is normal if and only
if it defines a depth-first search tree.

Proof. Let T be a spanning arborescence of a finite digraph D. For the forward
implication assume that T is normal in D. By Lemma 3.2, we find a sensitive order
� on T . Then T is defined by the traversed edges of the depth-first search that
starts in the root of T and always chooses the �-largest up-neighbour (child) in T
in each step.

For the backward implication assume that T is a depth-first search tree and
suppose for a contradiction that T is not normal in D. Then the normal assistant
of T contains a cycle C and by Lemma 3.1 we may choose C so that consecutive
vertices on C are ≤T -incomparable. Let x be the vertex on C that is visited first in
the depth-first search and let y be its successor on C. The edge xy of the normal
assistant of T is witnessed by a T -path from bxcT to bycT . As T is spanning this
path is just an edge e. Note that all vertices in bxcT are visited earlier than those
in bycT in the depth-first search. Hence the edge e should have been visited by the
depth-first search; this is a contraction because e is not an edge of T . �

We think of (countable) normal spanning arborescence T ⊆ D as being drawn
in the plane with all the edges between ≤T -incomparable vertices running from left
to right; see Figure 1.

Let us see that, similar to their undirected counterparts, normal arborescences
capture the separation properties of D, while they carry the simple structure of an
arborescence:

Lemma 3.4. Let D be any digraph and let T ⊆ D be a normal arborescence in D.
If v, w ∈ V (T ) are ≤T -incomparable vertices of T with w 5T v, then every w–v
path in D meets X := dveT ∩ dweT . In particular, X separates v and w in D.

Proof. Suppose for a contradiction that P is a w–v path in D that avoids X,
for ≤T -incomparable vertices v, w ∈ V (T ) with w 5T v. Let NX consist of all
neighbours of X in the digraph T that are contained in V (T −X), let N1

X consist
of all vertices y ∈ NX with y ET v and let N2

X := NX \ N1
X . Moreover, let Zi be

the union of the up-closures bscT with s ∈ N i
X , for i = 1, 2. Note that Z1 and Z2

partition V (T −X). As ET is branch sensitive, we observe that any two vertices
z1, z2 ∈ V (T ) \X with z1 ∈ Z1 and z2 ∈ Z2 are either incomparable with regard to
ET , or satisfy z1 ET z2. Let z1 be the first vertex of P in Z1 and let z2 be the last
vertex of P in T that precedes z1 in the path-order of P . Note that z2 is contained



ENDS OF DIGRAPHS 9

in Z2 by our assumption that P avoids X. Hence the T -path z2Pz1 witnesses that
z2 ET z1 contradicting our aforementioned observation. �

The dichromatic number [7] of a digraph D is the smallest cardinal κ so that D
admits a vertex partition into κ many partition classes that are acyclic in D. From
the path sensitivity of normal arborescences we obtain the following:

Proposition 3.5. Every digraph that has a normal spanning arborescence does
have a countable dichromatic number.

Proof. We denote by Ln the nth level of T and claim that Ln is acyclic for every
n ∈ N. The vertices in Ln are pairwise ≤T -incomparable. As T is path sensitive
there is no w-v path in D[Ln] between vertices v ET w in Ln. This would be
violated by the ET -largest vertex w and its successor v in C of any directed cycle
C ⊆ D[Ln]. Hence the non-empty Ln define a partition of V (D) into acyclic vertex
sets, witnessing that D has a countable dichromatic number. �

4. Arborescences are end-faithful

In this section we prove that normal spanning arborescences capture the end space
combinatorially. Let T ⊆ D be a fixed arborescence of a digraph D and let Ψ
be a set of ends of D. We say that T is end-faithful for Ψ if every end in Ψ is
represented by a unique ray of T that starts from the root. We call the rays in a
normal arborescence T that start from the root normal rays of T . We say that an
end ω of D is contained in the closure of a vertex set U ⊆ V (D) if C(X,ω) meets
U for every finite vertex set X ⊆ V (D). Note that an end ω is contained in the
closure of the vertex set of a ray R if and only if R represents ω.

Theorem 1. Let D be any digraph and let U ⊆ V (D) be any vertex set. If T is a
normal arborescence containing U , then T is end-faithful for the set of ends in the
closure of U .

We will employ the following star-comb lemma [5, Lemma 8.2.2] in order to prove
Theorem 1:

Lemma 4.1 (Star-comb lemma). Let W be an infinite set of vertices in a connected
undirected graph G. Then G contains a comb with all its teeth in W or a subdivided
infinite star with all its leaves in W .

Proof of Theorem 1. First, let R1 and R2 be distinct normal rays of T that repre-
sent ends of D in the closure of U , say ω1 and ω2, respectively. Our goal is to show
that ω1 and ω2 are distinct ends of D. By Lemma 3.4, the rays R1 and R2 have
tails in distinct strong components of D − X for X = V (R1) ∩ V (R2). Hence X
witnesses that R1 and R2 are not equivalent; in particular ω1 6= ω2.

It remains two show that every end ω in the closure of U is represented by a
normal ray of T . We claim that there is a necklace N attached to U in D that
represents ω. For this consider the auxiliary digraph D′ obtained from D by adding
a new vertex v∗ and adding new edges v∗u, one for every u ∈ U . Since ω is contained
in the closure of U , we have that v∗ω is a limit edge of D′. Note, that adding v∗

does not change the set of ends, in the sense that every end of D′ contains a unique
end of D as a subset (of rays), and we may identify the ends of D′ with the ends of
D. Now, Proposition 2.1 yields a necklace N ⊆ D that represents ω such that v∗
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sends an edge to every bead of N . By the definition of D′, we conclude that N is
attached to U .

Having N at hand, fix a vertex from U of every bead of N and let W be the
set of these fixed vertices. Now, apply the star-comb lemma in the undirected tree
underlying T to W . We claim that the return is a comb. Indeed, suppose for a
contradiction that we get a star and let c be its centre. By Lemma 3.4, the finite
set dceT separates any two leaves of the star, which is impossible because they are
all contained in the necklace N ⊆ D.

So the return of the star-comb lemma is indeed a comb and we may assume that
its spine R, considered as a ray in T , is a normal ray. Our aim is to prove that R
represents ω and we may equivalently show that ω is contained in the closure of
V (R). So given a finite vertex set X ⊆ V (D), fix teeth u and u′ of the comb that
are contained in C(X,ω). These exist because the teeth of the comb are contained
in W and the choice of W . By Lemma 3.4, the strong component C(X,ω) contains
a vertex of dueT ∩du′eT . As this intersection is included in R we have verified that
C(X,ω) contains a vertex of R. This completes the proof that ω is contained in
the closure of R and with it the proof of this theorem. �

Corollary 4.2. Let D be any digraph and let U ⊆ V (D) be any vertex set. If T
is a reverse normal spanning arborescence containing U , then T is end-faithful for
the set of ends in the closure of U .

Proof. Applying Theorem 1 to the digraph
←
D and the normal arborescence

←
T ⊆

←
D

shows that
←
T is end-faithful for the ends of

←
D in the closure of U . Hence the

statement is a consequence of the fact that the ends of D in the closure of U

correspond bijectively to the ends of
←
D in the closure of U , via the map that sends

an end ω of D to the end of
←
D that is represented by some (equivalently every)

reverse ray of D that represents ω. �

5. Arborescences reflect the horizon

One of the most useful facts about normal spanning trees is that the end space of
any normal spanning tree T coincides with the end space of the graph G it spans—
even topologically, i.e., the map that assigns to every end of T the end of G that
contains it as a subset is a homeomorphism, see [4]. Hence, in order to understand
the end space of G one just needs to understand the simple structure of the tree T .

In [2] we defined a topological space |D| formed by a digraph D together with
its ends and limit edges. The horizon of a digraph D is the subspace of |D| formed
by the ends of D and all the limit edges between them. In order to understand
the results of this section it is not necessary to know the topology on |D|, as the
subspace topology on the horizon of D is particularly simple. Let us give a brief
description of the subspace topology for the horizon of D.

The ground set of the horizon of a digraph D is defined as follows. Take the set
of ends Ω(D) of D together with a copy [0, 1]λ of the unit interval for every limit
edge λ between two ends of D. Now, identify every end ω with the copy of 0 in
[0, 1]λ for which ω is the tail of λ and with the copy of 1 in [0, 1]λ′ for which ω is
the head of λ′, for all the limit edges λ and λ′ between ends of D. For inner points
zλ ∈ [0, 1]λ and zλ′ ∈ [0, 1]λ′ of limit edges λ and λ′ between ends of D we say that
zλ corresponds to zλ′ if both correspond to the same point of the unit interval.
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We describe the topology of the horizon of D by specifying the basic open sets.
Neighbourhoods Ωε(X,ω) of an end ω are of the following form: Given X ∈ X (D)
let Ωε(X,ω) be the union of

• the set of all the ends that live in C(X,ω) and the points of limit edges
between ends that live in C(X,ω) and

• half-open partial edges (ε, y]λ respectively [y, ε)λ for every limit edge λ
between ends for which y lives in C(X,ω).

Neighbourhoods Λε,z(X,λ) of inner points z of a limit edge λ between ends
are of the following form: Given X ∈ X (D) that separates the endpoints of λ let
Λε,z(X,λ) be the union of all the open balls of radius ε around points zλ′ with λ′ a
limit edge between ends that lives in the bundle E(X,λ) and with zλ′ corresponding
to z. Here we make the convention that for limit edges λ between ends the ε of
open balls Bε(z) of radius ε around points z ∈ λ is implicitly chosen small enough
to guarantee Bε(z) ⊆ λ.

Arborescences do not themselves have ends or limit edges, but there is a natural
way to endow an arborescence T in a digraph D with a meaningful horizon. The
solidification of an arborescence T ⊆ D, or of its normal assistant H in D, is
obtained from T or H, respectively, by adding all the edges wv with vw ∈ E(T ).
Note that all the rays of T are solid in its solidification and thus represent ends
there. Let us define the horizon of T as the horizon of the solidification of its normal
assistant.

Now suppose that we have fixed a root r of T and suppose that every ray of D is
solid in D. By Theorem 1, there exists a well-defined map ψ that sends every end
ω of D to the end of the solidification T of T represented by the unique ray R ⊆ T
starting from r that represents ω in D. This map ψ is clearly injective. Note that
the map ψ is also surjective, by our assumption that every ray of D is solid in D.
Let ζ denote the map from the set of ends of T to that of the solidification H of
the normal assistant H of T in D that assigns to every end of T the end of H that
contains it as a subset (of rays). This is always bijective:

Lemma 5.1. Let D be a digraph, T a normal spanning arborescence of D and H
the normal assistant of T in D. The map ζ : Ω(T ) → Ω(H) that assigns to every
end of T the end of H that contains it as a subset is bijective.

Proof. To see that ζ is injective, let ω1 and ω2 be distinct ends of T and let Ri
be the ray in T starting from the root of T that represents ωi for i = 1, 2. By
Lemma 3.4 the two rays R1 and R2 have a tail in distinct strong components of
H −X for X := dR1eT ∩ dR2eT ; hence ζ maps the ends ω1 and ω2 to distinct ends
of H.

To see that ζ is onto, let ω be an end of H and let R be any solid ray in H that
represents ω. Our goal is to find a solid ray R′ in T that is equivalent to R in H:
then the end of T that is represented by R′ is included in ω as a subset of rays. For
this apply the star-comb lemma in the undirected tree underlying T to the vertex
set of R. If the return is a comb, then the comb’s spine defines the desired ray R′.
Indeed, the paths between the comb’s spine and its teeth, define (in H) a family
of disjoint directed paths from R′ to R and from R to R′, hence R′ and R are
equivalent in H. It now suffices to show that the return of the star-comb lemma
is always a comb; so suppose for a contradiction that it is a star with centre c say.
Then, by Lemma 3.4, the down-closure of c in T separates infinitely many vertices
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of V (R) in H, contradicting that R has a tail in a strong component of H −X for
every finite vertex set X. �

Note that H, unlike T , can have limit edges. We say that T reflects the horizon
of D if the map ζ◦ψ : Ω(D)→ Ω(H) extends to a homeomorphism from the horizon
of D to that of H.

The horizon of a normal spanning arborescences might differ from the horizon
of the digraph it spans. This is due to the nature of connectivity in digraphs: a
digraph might have a normal spanning arborescence and many strong components
at the same time. For example consider the digraph D depicted in Figure 2. On
the one hand, every ray in D is solid in D. On the other hand, consider the unique
normal spanning arborescence T that is rooted in the leftmost vertex of the bottom
ray. Note that T coincides with its normal assistant. Hence T is normal in D and
the end ω in the horizon of T is a limit point of the ends ωi in the horizon of T .
In contrast to that, all points in the horizon of D are isolated as every end lives in
exactly one strong component of D.

ω0 ω1 ω2 ω3 ω4 ω5

ω

Figure 2. A digraph D with a normal spanning arborescence T
where the horizon of T differs from that of D. Every undirected
edge in the figure represents a pair of inversely directed edges.
Every line that ends with an arrow stands for a symmetric ray.

However, it turns out that the horizon of a digraph D coincides with the horizon
of any normal spanning arborescence of D if D belongs to an important class of
digraphs, namely to the class of solid digraphs:

Theorem 2. Every normal spanning arborescence of a solid digraph reflects its
horizon.

The proof of this will be a consequence of the following two lemmas:

Lemma 5.2. Let D be a solid digraph, let T be a normal spanning arborescence
of D and H the normal assistant of T in D. For ends ω of D and ω′ of H, with
ω′ = ζ(ψ(ω)) the following statements hold:

(i) For every finite vertex set X ⊆ V (D) there is a finite vertex set X ′ ⊆ V (H)
such that the vertex set of C(X ′, ω′) is contained in that of C(X,ω).

(ii) For every finite vertex set X ′ ⊆ V (H) there is a finite vertex set X ⊆ V (D)
such that the vertex set of C(X,ω) is contained in that of C(X ′, ω′).

Proof. (i) Let X be any finite vertex set of D. We may assume that X is down-
closed with respect to ≤T . We write Rω′ for the unique ray of T that starts from
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the root of T and represents ω′, Theorem 1. Note that since D is solid every ray
in T is solid in D. We will find a vertex v ∈ Rω′ such that the up-closure of v in
T is contained in C(X,ω); then X ′ := dveT \ {v} is as desired by the separation
properties of normal arborescences, Lemma 3.4.

For this, we call a vertex v ∈ Rω′ bad if bvcT meets V (T ) \ C(X,ω). Let us
show that Rω′ has only finitely many bad vertices. As T is normal in D and X is
down-closed we have that every strong component of D − X other than C(X,ω)
receives at most one edge of T from C(X,ω). Now, using that D − X has only
finitely many strong components, it follows that only finitely many edges of T leave
C(X,ω). Let B be the finite set of all tails of edges of T that leave C(X,ω). Then
also dBeT is finite and no vertex of Rω′ − dBeT is bad. This shows that there are
indeed only finitely many bad vertices on Rω′ . Now, choosing a vertex v on Rω′

higher than any bad vertex and high enough so that the subray of Rω′ that starts
at v is included in C(X,ω) gives bvcT ⊆ C(X,ω).

(ii) Let X ′ be any finite vertex set of H. By the separation properties of normal
arborescences, Lemma 3.4, the finite vertex set X := dX ′eT is as desired. �

Lemma 5.3. Let D be a solid digraph, T a normal spanning arborescence of D
and H the normal assistant of T in D. Then ωη is a limit edge of D if and only if
ω′η′ is a limit edge of H, where ω′ and η′ is the image under the map ζ ◦ ψ of ω
and η, respectively.

Proof. We write ω′ and η′ for the image under the map ζ◦ψ of ω and η, respectively.
Let us first show that ω′η′ is a limit edge of H if ωη is a limit edge of D. For this
let any finite vertex set X ′ that separates ω′ and η′ in H be given. Our goal is to
find an edge in H from C(X ′, ω′) to C(X ′, η′). By Theorem 1 there are rays Rω
and Rη in T that represent ω and η in D, respectively. As ωη is a limit edge of D,
there is an edge in D from bvωcT to bvηcT for any two ≤T -incomparable vertices
vω ∈ Rω and vη ∈ Rη. Now, choose such vertices vω and vη so that both bvωcT
and bvηcT avoid X ′. In H both bvωcT and bvηcT are strongly connected, by the
definition of the solidification. And as Rω and Rη have a tail in C(X ′, ω′) and
C(X ′, η′), respectively, we have that bvωcT ⊆ C(X ′, ω′) and bvηcT ⊆ C(X ′, η′). In
particular, bvωcT ∩ bvηcT = ∅. Consequently, any edge in D from bvωcT to bvηcT
has ≤T -incomparable endvertices and therefore is an edge in H from C(X ′, ω′) to
C(X ′, η′).

Now, let ω′η′ be a limit edge of H. We write ω and η for the unique preimage
under ζ ◦ ψ of ω′ and η′, respectively. We show that ωη is a limit edge in D. For
this let any finite vertex set X that separates ω and η in D be given. Our goal
is to find an edge in D from C(X,ω) to C(X, η). As in the proof of Lemma 5.2,
there are vertices vω and vη such that bvωcT ⊆ C(X,ω) and bvηcT ⊆ C(X, η).

Let X ′ = (dvωeT ∪ dvηeT ) \ {vω, vη} and consider C(X ′, ω′) and C(X ′, η′) in H.
Using that T is normal in D it is easy to show that C(X ′, ω′) = bvωcT and
C(X ′, η′) = bvηcT . As ω′η′ is a limit edge of H there is an edge e in H from
C(X ′, ω′) to C(X ′, η′). Furthermore, the endpoints of e are ≤T -incomparable.
Now, e was added to T in the definition of H because there is an edge f of D from
bvωcT to bvηcT and this edge f is as desired. �

Proof of Theorem 2. By Lemma 5.1 and its preceding text, the map ζ ◦ ψ is a
bijection. We extend this map to a bijection Θ between the horizon of D and that
of H as follows. Let y be an inner point of a limit edge ωη between ends of D. We
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write ω′ and η′ for the image under ζ ◦ψ of ω and η, respectively. By Lemma 5.3 we
have that ω′η′ is a limit edge of H. Then we declare Θ(y) := y′ for y′ the point that
corresponds to y on ω′η′. Again, by Lemma 5.3, the map Θ is bijective; we claim
that Θ is even a homeomorphism. Indeed, using Lemma 5.2 (ii) it is straightforward
to check that Θ is continuous and using Lemma 5.2 (i) it is straightforward to check
that the inverse of Θ is continuous. �

6. Existence of arborescences

Not every digraph with a vertex that can reach all the other vertices has a normal
spanning arborescence, for example any digraph D obtained from an uncountable
complete graph by replacing every edge by its two orientations as separate directed
edges has none. Indeed, if T is a normal arborescence of D, then any two of its
vertices must be contained in the same ray starting from the root of T . Hence
T cannot be spanning. In this section we give a Jung-type existence criterion for
normal spanning arborescence.

For a digraph D we call a set U ⊆ V (D) of vertices dispersed in D if there is no
comb in D with all its teeth in U . Our main result of this section reads as follows:

Theorem 3. Let D be any digraph, U ⊆ V (D) and suppose that r ∈ V (D) can
reach all the vertices in U . If U is a countable union of dispersed sets, then D has
a normal arborescence that contains U and is rooted in r.

The converse of this is false in general. To see this consider the digraph D = (ω1, E)
with E = { (α, β) | α < β } and U = V (D). Here ω1 denotes the first uncountable
ordinal. On the one hand, no infinite subset of ω1 is dispersed, so ω1 cannot be
written as a countable union of dispersed sets. On the other hand, the spanning
arborescence that consists of all the edges with tail 0 is normal in D.

However, the converse of Theorem 3 holds in an important case, namely if the
digraph D is solid. Indeed, if D is solid then any arborescence T ⊆ D that is
normal in D is locally finite by the separation properties of normal arborescences,
Lemma 3.4. Hence the levels of T are finite; in particular, dispersed.

An analogue of Theorem 3 holds for reverse normal arborescences:

Corollary 6.1. Let D be any digraph and suppose that U ⊆ V (D) is a countable

union of dispersed sets in
←
D. If r ∈ V (D) can be reached by all the vertices in U ,

then D has a reverse normal arborescence that contains U and is rooted in r.

Proof. Apply Theorem 3 to the reverse of D. �

Proof of Theorem 3. Suppose that the vertex set U can be written as a countable
union

⋃
{Un | n ∈ N } of sets that are dispersed in D. Then we can write U as a

collection {uα | α < κ} for a finite or limit ordinal κ such that every proper initial
segment of the collection is dispersed in D as follows: We may assume that the Un
are pairwise disjoint. Choose a well-ordering ≤n of every Un. Then write u ≤ u′

for vertices u ∈ Um and u′ ∈ Un with m < n, or with m = n and u ≤m u′. It is
straightforward to show that ≤ defines a well-ordering of U that is as desired.

We may assume that for every limit ordinal α < κ the vertex uα coincides with
some uξ with ξ < α; indeed, just increment the subscripts of the uα by one for α
an infinite ordinal, and recursively redefine uα to be some uξ with ξ < α for α a
limit ordinal.
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Now, we recursively define ascending sequences (Tα)α<κ and (�α)α<κ such that
Tα is an arborescence and �α is a sensitive order of Tα that satisfies the following
conditions:

(i) Tα contains {uξ | ξ ≤ α } cofinally3 with regard to ≤Tα ;
(ii) if v, w ∈ Tα with v �α w are distinct and have a common ≤Tα-predecessor,

then w ∈ Tξ and v /∈ Tξ for some ξ < α;
(iii) there is no infinite strictly ascending sequence of vertices in Tα with regard

to �α.

Once the Tα are defined the arborescence T :=
⋃
{Tα | α < κ } is as desired; indeed,⋃

{�α| α < κ} is a sensitive order on T and thus T is normal in D by Lemma 3.2.
Finally, V (T ) contains U by condition (i).

Conditions (ii) and (iii) become relevant in the construction of the Tα, which
now follows. If α = 0, then let T0 be any r–u0 path in D and let �0:=≤T0 .
Otherwise β > 0. If β is a limit ordinal, then let Tβ :=

⋃
{Tα | α < β } and

�β=
⋃
{�α| α < β}. Then �β is a sensitive order on Tβ as each �α with α < β

is a sensitive order on Tα. Condition (i) for β follows from (i) for α < β and our
assumption that uβ coincides with uα for some α < β. Similarly, condition (ii)
for β follows from (ii) for α < β. Condition (iii) can be seen as follows. Suppose
for a contraction that there is an infinite strictly ascending sequence (wn)n∈N in
Tβ with regard to �β . Apply the star-comb lemma to the set {wn | n ∈ N } in
the undirected tree underlying Tβ . The return is an infinite subdivided undirected
star since an undirected comb would give rise to a directed comb in Tβ with all its
teeth in U ; here we use that by (i) every tooth has a vertex of U in its up-closure
and that every proper initial segment of {uα | α < κ} is dispersed. Let Z be the
set of ≤Tβ

-up-neighbours of the centre of the subdivided star that contain a tooth
in their ≤Tβ

-up-closure. Since �β is branch sensitive we may write Z as a strictly
ascending collection Z = { zn | n ∈ N } with regard to �β . Choose z∗ ∈ Z ∩ V (Tα)
so that α is minimal with Z ∩ V (Tα) 6= ∅. By (ii) we have that zn �β z∗ for every
zn 6= z∗ contradicting that the zn form a strictly ascending sequence with regard
to �β .

Now, suppose that β = α + 1 is a successor ordinal. If Tα already contains uβ ,
we let Tβ := Tα. Otherwise uβ is not contained in Tα. As r can reach uβ there is
a Tα–uβ path P . By (iii) for α, we may choose P such that its first vertex vP is
�β-maximal among all the starting vertices of Tα–uβ paths. We let Tβ := Tα ∪ P .
Note that this ensures condition (i) for Tβ .

In order to define �β we only need to describe how the vertices from v̊PP relate
to the vertices in Tα. We define vertices of P −vP to be smaller than all the vertices
larger than vP and larger than all others (with regard to the normal order of Tα).
Note that this ensures (ii). Condition (iii) holds because there is no infinite strictly
ascending sequence of vertices in Tα with regard to �α and Tβ extends Tα finitely.

It remains to show that �β is a sensitive order on Tβ . That �β is branch sensitive
is immediate from the construction so let us prove that it is path sensitive. Suppose
for a contradiction that Q is a Tβ-path from w to v with ≤Tβ

-incomparable vertices
v �β w. Since Tα is normal either v or w are contained in P − vP . If w ∈ P − vP ,
then vPPwQv is a path violating that �α is path sensitive; unless vP and v are

3A subset B of a poset A = (A,≤) is cofinal in A if for every a ∈ A there is a b ∈ B with
a ≤ b.
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≤Tβ
comparable, but then we would have w �β v by the definition of �β . In the

other case, the path wQvPuβ would have been a better choice for P . �
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