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We demonstrate the versatility of the tangle-tree duality theorem for ab-
stract separation systems [5] by using it to prove tree-of-tangles theorems.
This approach allows us to strengthen some of the existing tree-of-tangles
theorems by bounding the node degrees in them. We also present a slight
strengthening and simplified proof of the duality theorem, which allows us
to derive a tree-of-tangles theorem also for tangles of different orders.

1 Introduction

Over the last twenty years, tangles, originally developed by Robertson and Seymour
as a tool in their monumental graph minor project [13], have evolved a lot. Originally
defined specifically just for graphs, they have since been generalized not only to other
combinatorial structures like matroids [11] but even into an abstract setting in which
concrete separations are replaced by an abstract poset with just some simple properties
that reflect those that separations typically have [3, 5, 7]. In all these settings, the
general idea of tangles is to use them as a method to indirectly capture highly cohesive
substructures of various kinds, by deciding for every low-order separation on which side
of that separation the desired structure lies.

Already in the original work by Robertson and Seymour the theory of tangles has two
major theorems: the tree-of-tangles theorem and the tangle-tree duality theorem. These
two form the main pillars of tangle theory, and thereby of a central aspect of graph
minor theory.

The first of these theorems allows one to distinguish all the tangles in a tree-like way,
displaying their relative position in the underlying combinatorial structure. One of the
most abstract variants of the tree-of-tangles theorem reads as follows:

Theorem 1.1 ([2, Theorem 6]). Let S be a structurally submodular separation system
and P a set of profiles of S. Then S contains a tree set that distinguishes P.

Profiles are the most general class of objects that one can think of as tangles.
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The tangle-tree duality theorem, on the other hand, provides a tree-like dual object
to tangles which, if no tangle exists, serves as a witness that there can be no tangle. In
this paper we demonstrate the versatility of the most abstract version of this duality
theorem: we deduce Theorem 1.1 and some of its variations from the tangle-tree duality
theorem, reducing the two pillars of abstract tangle theory to a single pillar.

In order to use tangle-tree duality to deduce tree-of-tangles theorems like Theorem 1.1,
we exploit the generality of the most abstract version of the tangle-tree duality theorem,
which reads as follows:

Theorem 1.2 (Tangle-tree duality theorem [5, Theorem 4.3]). Let U be a universe
containing a finite separation system S ⊆ U and let F ⊆ 2U be a set of stars such that
F is standard for S and S is F-separable. Then exactly one of the following statements
holds:

• there is an F-tangle of S;

• there is an S-tree over F .

The strength of Theorem 1.2 lies in the flexibility it allows in the choice of F . This
set F can be tailored to capture a wide variety of tangles and clusters, allowing Theorem 1.2
to be employed in a multitude of different settings ([2,4]). The freedom in choosing and
manipulating F will also allow us to achieve our goal of deducing tree-of-tangles theor-
ems from Theorem 1.2: by a clever choice of F we can ensure that there is no F-tangle
of S, and that the S-tree over F one then obtains will be a tree of tangles. We present
multiple variations of this idea throughout this paper.

In terms of simplicity and brevity, reducing the tree-of-tangles theorem to the tangle-
tree duality theorem in this way cannot compete with its direct proofs in [3],[2] or [10],
our general purpose solution to obtaining tree-of-tangles theorems in a wide range of
structures. (There, we showed an even more general theorem than Theorem 1.1 which
no longer mentions tangles or profiles at all, but just talks about sets of separations
fulfilling one simple-to-check condition.)

Instead of competing in terms of simplicity and brevity just for a proof of the tree-of-
tangles theorem, the aim of this paper is to bridge the two parts of the theory needed for
their classical proofs. This can be viewed in two ways. Firstly, that we introduce tools
from tangle-tree duality into the world of trees of tangles, which gives us a new method
for building trees in this context very unlike the proofs in [2, 3, 10].

Secondly, and perhaps more importantly, from the perspective of tangle-tree duality
this may be viewed as introducing a new range of ways of how to apply the duality
theorem by a careful choice of F . Previous applications of Theorem 1.2 all worked with
largely similar choices of F , all designed to capture some notion of ‘width’, whereas we
specifically construct F in such a way that no F-tangle can exist, thereby making sure
that Theorem 1.2 gives us the dual object which will be the desired tree-of-tangles.

A new result that we get from this method is that it allows us to bound the degrees
of the nodes in a tree of tangles in some contexts. Getting such a degree condition out
of the original proofs does not appear to be simple.
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To achieve our last result, we prove a strengthened version of Theorem 1.2, which we
present in Section 7.1 along with a simpler proof than the original one in [5].

The structure of this paper is as follows. In Section 2 we will repeat the required
definitions from [2–5, 7]. In Section 3 we prove our first basic tree-of-tangles theorem,
for structurally submodular separation systems. A refined version of this argument will
be given in Section 4, where we show that the approach via tangle-tree duality yields a
bound on the degrees of the nodes in a tree of tangles. In Section 5 we present a more
involved argument to obtain a tree of tangles that distinguishes a set of profiles efficiently.
Again, this approach can be used to obtain a result about the degrees in such a tree,
and we do so in Section 6. In Section 7 we prove a tree-of-tangles theorem for tangles of
different orders. For that we need our stronger version of the tangle-tree duality theorem,
which we state in Section 7.1. The proof of this stronger duality theorem in Section 7.1
also offers a new, and maybe simpler, proof of the original tangle-tree duality theorem
Theorem 1.2. In our final section, Section 7.2, we then use this stronger tangle-tree
duality theorem to obtain a tree-of-tangles theorem for profiles of different order.

2 Terminology and background

Since we combine the theory of tangle-tree duality and of trees of tangles we need the
terminology of both. Consequently, this results in a large number of definitions which
need to be understood for the comprehension of this paper. We employ the frameworks
of [2–5, 7]. For reference, we offer a recap of the definitions that we will use, split up
according to their context. The cited sources provide more in-depth motivation of the
respective set-ups.

2.1 Basic definitions of abstract separation systems (see [7])

A separation system S = (S,6,∗ ) consists of a finite poset S together with an involution
∗ which is order-reversing, i.e., s 6 t ⇔ s∗ > t∗. We call the elements of S (oriented)
separations and denote, given an oriented separation s ∈ S, the image of s under ∗ as
the inverse of s.

The pair {s, s} of s together with its inverse s is denoted as s and called the underlying
unoriented separation of s. Given s, we say that s and s are the orientations of s. The
set of all the underlying unoriented separations for a set T ⊆ S is denoted as T , so S is
the set of all unoriented separations of separations in S. Conversely, when given a set T
of unoriented separations, we denote as T the set of all orientations of separations in T .
For brevity, we mean by the term ‘separations’ both oriented and unoriented separations
if the intended meaning is clear from the context.

We say that s ∈ S is small if it is less then its inverse, that is if s 6 s. If there is an
unoriented separation r 6= s such that s 6 r and s 6 r, then s is called trivial. Note
that every trivial separation is small, since s 6 r implies that s > r and thus s 6 r 6 s.
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The inverse s of a small separation s is called cosmall and likewise the inverse of a
trivial separation is called cotrivial. A set of oriented separations is regular if it contains
no cosmall separation.

We say that a separation s (and likewise its orientations) is degenerate if s = s.
We say that two unoriented separation r and s from S are nested if they have orient-

ations r, s such that r 6 s. Two separations r and s cross if they are not nested. Two
oriented separations r and s cross or are nested if the underlying unoriented separations
r and s cross or are nested, respectively. Note than in particular r and s can be nested
even if they are incomparable, for instance if r 6 s. A set of separations is called nested
if its elements are pairwise nested.

A nested set T of unoriented separations is called a tree set in a separation system S,
if T does not contain any separation s which has a trivial orientation in T . A tree-set T
is regular if T is regular.

A universe U = (U,6,∗ , ∨, ∧) is a separation system (U,6,∗ ) together with join and
meet operators ∨, ∧ which turn the poset (U,6) into a lattice. For universes DeMorgan’s
law holds:

(s ∨ t)∗ = s ∧ t

Given two unoriented separations s and t in U , we call the unoriented separations cor-
responding to s ∨ t, s ∨ t, s ∨ t and s ∨ t the corner separations, or corners for short, of
s and t.

One often-used property of universes is the so-called fish lemma:

Lemma 2.1 ([7, Lemma 3.2]). Let r, s ∈ U be two crossing separations. Every separation
t that is nested with both r and s is also nested with all four corner separations of r and s.

Given a separation system S, a subset O ⊆ S is antisymmetric if |O ∩ {s, s}| 6 1 for
every s ∈ S.

An orientation of S is an antisymmetric subset O ⊆ S such that s ∈ O or s ∈ O for
every s ∈ S. Such an orientation O is consistent if O does not contain any r and s such
that r 6 s and r 6= s.

Some universes U come with an order function, a function |·| : U → N0 which is
invariant under ∗, that is, for any s ∈ U , we have |s| = |s| =: |s|. Such an order function
is called submodular if, for all s, t ∈ U ,

|s| + |t| > |s ∨ t| + |s ∧ t| .

A universe U together with such a submodular order function is called a submodular
universe. Given a submodular universe we denote as Sk ⊆ U , for k ∈ N, the separation
system consisting of all separations s ∈ U satisfying |s| < k.

We say that a separation system S inside a universe is structurally submodular (some
literature omits the ‘structurally’) if, for all s, t ∈ S, at least one of s ∨ t and s ∧ t also
lies in S. Note that, if U is a submodular universe, then every Sk ⊆ U is structurally
submodular.
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2.2 The tree-of-tangles theorem (see [3])

A separation s is said to distinguish two orientations O1 and O2 of two, possibly distinct,
separation systems inside U , if s has an orientation s such that s ∈ O1 and s ∈ O2. If U
comes with an order function we say that such an s distinguishes O1 and O2 efficiently
if there is no r with |r| < |s| which distinguishes O1 and O2.

A consistent orientation O of a separation system S ⊆ U inside some universe U is
said to be a profile if it satisfies the profile property:

∀ r, s ∈ P : (r ∧ s) /∈ P (P)

For a universe U with an order function, a k-profile in U is a profile of Sk ⊆ U . We
say that P is a profile in U if P is a k-profile in U for some k. If P is a k-profile in U ,
then k is the order of P .

Such a profile P is robust if moreover:

∀s ∈ P, t ∈ U : if |s ∨ t| < |s| and |s ∨ t| < |s|, then either s ∨ t ∈ P or s ∨ t ∈ P

The tree-of-tangles theorem for k-profiles states the following:

Theorem 2.2 ([3, Corollary 3.7], modified). Let (U,6,∗ , ∨, ∧, | |) be a submodular uni-
verse of separations. For every set P of pairwise distinguishable robust regular profiles
in U there is a regular tree set T = T (P) ⊆ U of separations such that:

1. every two profiles in P are efficiently distinguished by some separation in T ;

2. every separation in T efficiently distinguishes a pair of profiles in P.

Note that the original statement [3, Corollary 3.7] included a third property which
guaranteed that the resulting set T is invariant under automorphisms. Our methods in
this paper will not allow us to guarantee this, that is why we exclude this property from
our version of [3, Corollary 3.7]. For more discussion of this property, canonicity, see
[3, 9].

Similarly, we have the tree-of-tangles theorem already mentioned in the introduction
for structurally submodular separation systems which do not necessarily come in the
form of an Sk ⊆ U :

Theorem 1.1 ([2, Theorem 6]). Let S be a structurally submodular separation system
and P a set of profiles of S. Then S contains a tree set that distinguishes P.

2.3 Tangle-tree duality (see [5])

Given some set F of subsets of S, an F-tangle of S is a consistent orientation of S which
includes no subset in F . Given a submodular universe U , we say that τ is an F-tangle
in U if τ is an F-tangle of some Sk. Observe that profiles are P-tangles for the set P of
all ‘profile triples’ {r, s, (r ∨ s)∗} ⊆ S.

Often we will consider sets F of stars: A star in S is a set σ ⊆ S such that s 6 t for
all s, t ∈ σ.
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We say that a set F forces a separation s ∈ S if {s} ∈ F .
F is standard for S if it forces all trivial separations, that is F contains all singletons

{s} for cotrivial s ∈ S.
Given a tree T we denote as E(T ) the set of orientations of edges of T . This set is

equipped with a natural partial order where e 6 f if and only if the unique path in T
from the tail of e to the head of f contains both the head of e and the tail of f . This
partial order, together with ∗ the reversal of directed edges, turns E(T ) into a separation
system.

Given a separation system S, an S-tree (T, α) is a tree T together with a function
α : E(T ) → S which commutes with ∗, i.e., α(e) = α(e)∗. The S-tree is order-respecting
if α preserves the partial order from E(T ), i.e., α(e) 6 α(f ) whenever e 6 f . For
t ∈ V (t) we denote as α(t) the set {α(st) | s ∈ N(t)}. Given some set F of subsets of S,
an S-tree (T, α) is over F if α(t) ∈ F for all t ∈ V (T ).

An S-tree (T, α) is irredundant, if for any node t ∈ V (T ) and distinct neighbours
t′, t′′ ∈ N(t) we have that α(t′, t) 6= α(t′′, t).

Note that, if F is a set of stars then any irredundant S-tree over F is order-respecting.
Given a separation system S inside a universe U and r, s0 ∈ S with s0 > r and where

r is nondegenerate and notrivial in S, the shifting map f ↓r
s0

is defined by letting, for
every s > r,

f ↓r
s0

(s) = s ∨ s0 and f ↓r
s0

(s) = (s ∨ s0 )∗.

This map is defined on S>r r {r}, where S>r is the set of all separations t ∈ S which
have an orientation t with t > r, and S>r is the set of all orientations of separations
in S>r .

For an irredundant S-tree (T, α) over some set of stars with {r} = α(x), for some leaf
x of T , we write

αx,s0
:= f ↓r

s0
◦ α .

The resulting new tree (T, αx,s0
) is called the shift of (T, α) from r to s0 if the leaf x is

the only one which has α(x) = {r}.
Given a separation system S inside a universe U and a star σ ⊆ S a shift of σ (to

some s0 ∈ S) is a star of the form

σs0

x := {x ∨ s0 } ∪ {y ∧ s0 | y ∈ σ r {x}} ,

where x ∈ σ. Note that if, for some r ∈ S, we have x > r then σs0

x is the image of σ
under f ↓r

s0
.

A separation s emulates r in S if s > r and for every t ∈ S r {r} with t > r we have
s ∨ r ∈ S. The separation s emulates t in S for F if additionally for every star σ ∈ F
with r /∈ σ and every x ∈ σ with x > r we have σs

x ∈ F .
Note that for an irredundant S-tree (T, α) over some set of stars F with {r} = α(x),

for some leaf x of T , the shift from r to s0 is again an S-tree over F if s0 emulates r in
S for F .

A separations system S is separable if for any two nontrivial nondegenerate separations
r1 , r2 ∈ S with r1 6 r2 there exists a separation s0 ∈ S, with r1 6 s0 6 r2 such that
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s0 emulates r1 in S and s0 emulates r2 in S. The separation system S is F-separable if
we can choose, for any two such r1 and r2 which are nontrivial nondegenerate and not
forced by F , such an s0 so that s0 emulates r1 in S for F and s0 emulates r2 in S for
F .

The abstract tangle-tree duality theorem now states the following:

Theorem 1.2 (Tangle-tree duality theorem [5, Theorem 4.3]). Let U be a universe
containing a finite separation system S ⊆ U and let F ⊆ 2U be a set of stars such that
F is standard for S and S is F-separable. Then exactly one of the following statements
holds:

• there is an F-tangle of S;

• there is an S-tree over F .

If, in the following, we speak of the duality theorem, we mean Theorem 1.2.
The condition of F-separability is sometimes split into two parts which, in sum, are

stronger: Firstly, that S is separable and secondly that F is closed under shifting, that
is, every shift σ′ of a star σ ∈ F is also in F if σ′ ⊆ S. (Compare [2, Lemma 12].)

We shall need the following additional lemmas from the literature:

Lemma 2.3 ([5, Lemma 2.1]). Every irredundant S-tree (T, α) over stars is order-
respecting. In particular, α(E(T )) is a nested set of separations in S.

Lemma 2.4 ([5, Lemma 2.2]). Let (T, α) be an irredundant S-tree over a set F of stars.
Let e, f be distinct edges of T with orientations e < f such that α(e) = α(f ) =: r. Then
r is trivial.

In particular, T cannot have distinct leaves associated with the same star {r} unless
r is trivial.

Lemma 2.5 ([5, Lemma 2.3]). If (T, α) is an S-tree over F , possibly redundant, then
T has a subtree T ′ such that (T ′, α′) is an irredundant S-tree over F , where α′ is the
restriction of α to E(T ′). If (T, α) is rooted at a leaf x and T has an edge, then T ′ can
be chosen so as to contain x and ex, the edge incident to x in T .

Lemma 2.6 ([5, Lemma 2.4]). Let (T, α) be an S-tree over a set F of stars, rooted at
a leaf x. Assume that T has an edge, and that r = α(ex ) is nontrivial. Then T has a
minor T ′ containing x and ex such that (T ′, α′), where α′ = α ↾ E(T ′), is a tight and
irredundant S-tree over F .

For every such (T ′, α′) the edge ex is the only edge e ∈ E(T ′) with α(e) = r.

Lemma 2.7 ([2, Lemma 13]). Let U be a universe of separations and S ⊆ U a struc-
turally submodular separation system. Then S is separable.

Moreover, we shall need a variant of [5, Lemma 4.2] which follows with the exact same
proof:
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Lemma 2.8 ([5]). Let F ⊆ 2U be a set of stars. Let (T, α) be a tight and irredundant S-
tree with at least one edge, over some set of stars, and rooted at a leaf x. Assume
that r := α(ex ) is nontrivial and nondegenerate, let s0 ∈ S emulate r in S for F ,
and consider α′ := αx,s0

. Then (T, α′) is an order-respecting S-tree in which {s0 } is a
star associated with x but with no other leaf of T . Moreover α′(t) ∈ F for all t 6= x
with α(t) ∈ F .

The only difference in the statement between Lemma 2.8 and [5, Lemma 4.2] is that
[5, Lemma 4.2] requires that (T, α) is an S-tree over F , whereas we only require (T, α)
to be an S-tree over some set of stars. Consequently, in [5, Lemma 4.2] it is shown
that then (T, α′) is an S-tree over F ∪ {{s0 }} whereas we only conclude that α′(t) ∈ F
whenever α(t) ∈ F .

2.4 Splices in submodular universes

In addition to the existing terminology, we shall need the following new concept, which
has already been considered in [4], but has not been given a name there: In a submodular
universe U a separation s is a splice for a separation r with r 6 s if there is no separation
t with r 6 t 6 s and |t| < |s|. A splice between two separations r and s with r 6 s is
one of minimum order among all t with r 6 t 6 s.

These splices are good choices for proving separability due to the next lemma. It
follows directly from the proof of Lemma 3.4 of [4] which, phrased in our terminology,
considers a splice between two separations. We recapitulate the main argument of this
proof below.

Lemma 2.9 ([4]). Consider Sk ⊆ U in a submodular universe. If s ∈ Sk is a splice for
r ∈ Sk then, for every t ∈ U with t > r, the order of t ∨ s is at most the order of t. In
particular, s emulates r in Sk .

Proof sketch, see [4, Lemma 3.4]. If the order of t ∨ s were greater then the order of t
then, by submodularity, the order of t ∧ s would be less than the order of s. However,
by the fish Lemma 2.1, r 6 t ∧ s 6 s and this contradicts the fact that s is a splice
for r.

This lemma then directly implies the ultimate statement of [4, Lemma 3.4]:

Lemma 2.10 ([4, Lemma 3.4]). Every Sk ⊆ U in a submodular universe is separable.

3 Structurally submodular separation systems

In this section we will prove the first tree-of-tangles theorem of this paper. It is a
theorem for regular profiles, all of the same structurally submodular separation system,
and states as follows:

Theorem 3.1. Let S be a structurally submodular separation system. Then S contains
a nested set that distinguishes the set of regular profiles of S.
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By itself Theorem 3.1 is nothing special; indeed, it is a slight weakening of Theorem 1.1,
which asserts the same but without requiring the profiles to be regular. In this case the
ingredients of the proof are more interesting than its result: we shall obtain Theorem 3.1
as a direct consequence of Theorem 1.2.

So let S be a structurally submodular separation system inside some universe U . Since
we are interested in the regular profiles of S we may assume that S has no degenerate
elements. Our strategy will be as follows: we shall construct a set F ⊆ 2U for which
there is no F-tangle of S, and such that every element of F is included in at most one
regular profile of S. If we can achieve this then Theorem 1.2 applied to this set F will
yield an S-tree over F . The set N of edge labels of this S-tree (T, α) will then be the
desired nested set distinguishing all regular profiles of S: each regular profile P of S
orients the edges of T and hence includes a star σ of the form α(t) for some t ∈ V (T ).
By choice of F this σ is included in no other regular profile of S, which means that it
distinguishes P from all other profiles.

To construct this set F , first let P be the set of all ‘profile triples’ in S: the set of
all {r, s, (r ∨ s)∗} ⊆ S. For a consistent orientation of S it is then equivalent to be a
profile of S and to be a P-tangle. Furthermore let C be the set of all {s} with s ∈ S
co-small. Finally, let M consist of each of the sets max P of maximal elements of P for
each regular profile P of S. We then take

F := P ∪ C ∪ M .

With these definitions the regular profiles of S are precisely its (P ∪C)-tangles; and there
are no F-tangles of S since each regular profile P of S includes max P ∈ M ⊆ F . If this
F were a set of of stars and if we could feed this F to Theorem 1.2, we would receive
an S-tree over F and the edge labels of this S-tree would be our desired nested set, since
each element of F in included in at most one regular profile of S: indeed, the regular
profiles of S have no subsets in P or C, and each element max P ∈ M in included only
in P itself.

Unfortunately, we are still some way off from plugging F into Theorem 1.2: we need
to ensure that F is a set of stars that is standard for S and that S is F-separable. Out
of these the second and one half of the third are easy: F is standard for S since C ⊆ F
is, and S is separable by Lemma 2.7.

We thus need to show that S is not only separable but F-separable. Unfortunately
our current set F is not even a set of stars yet. However, in [1] a solution was laid out
for this exact situation: a series of lemmas from [1] shows that we can simply make F a
set of stars and close it under shifting without altering the set of F-tangles of S.

The way to do this is as follows. Given two elements r and s of some set σ ⊆ S, by
submodularity, either r ∧ s or r ∧ s must lie in S. Uncrossing r and s in σ then means
to replace either r by r ∧ s or s by r ∧ s, depending on which of these two lies in S.
(Structural submodularity ensures that at least one of them does.) Uncrossing all pairs
of elements of σ in turn yields a star σ∗, which we call an uncrossing of σ. (Note that
σ∗ is not in general unique since it depends on the order in which one uncrosses the
elements of σ.) It is then easy to see that a regular profile of S includes σ if and only if
it includes σ∗:
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Lemma 3.2 ([1, Lemma 11]). If a regular profile of S includes an uncrossing of some
set, it also includes that set.

Conversely, if a regular consistent orientation of S includes some set, it also includes
each uncrossing of that set.

Let us write F∗ for the set of all uncrossings of elements of F . Then F∗ is a set of
stars that is standard for S. We are still not done, however, since F∗ need not be closed
under shifting. We can fix this in a similar manner though.

Just as for uncrossings it is not hard to show that the inclusion of a star’s shift in a
regular profile implies that star’s inclusion:

Lemma 3.3 ([1, Lemma 13]). If a regular profile of S includes a shift of some star, it
also includes that star.

In [1] the definition of a shift of a star contains additional technical assumptions on σ
and s0 , keeping in line with the precise assumptions of Theorem 1.2. However the proof
of Lemma 3.3 does not necessitate this, and neither does its application.

Lemma 3.3 says that if we close F∗ under shifting we, again, do not alter the set
of F∗-tangles of S. Formally, set G0 = F∗, and for i > 1 let Gi be the set of all shifts of
star in Gi−1. Write F̂∗ :=

⋃
i∈N Gi. Then by Lemma 3.3 the F̂∗-tangles of S are precisely

its F∗-tangles, which is to say that there are no F̂∗-tangles of S. Moreover this set F̂∗

still has the property that each star in it is included in at most one regular profile: let us
say that σ̂∗ ∈ F̂∗ originates from σ ∈ F if σ̂∗ can be obtained by a series of shifts from
an uncrossing of σ. Lemmas 3.2 and 3.3 then say that if σ̂∗ ⊆ P for a regular profile
P , and σ̂∗ originates from σ ∈ F , then σ ⊆ P . Since the only element of F which P
includes is max P , this implies that no other regular profile of S includes σ̂∗.

We can thus formally prove Theorem 3.1:

Proof of Theorem 3.1. Define P, C, M, F , F∗, and F̂∗ as above. Then F̂∗ is standard
for S since C ⊆ F̂∗, and closed under shifting by construction. By Lemma 2.7 S is
separable. Together this gives that S is F-separable. Hence we can apply the tangle-
tree duality theorem 1.2 to obtain either an F̂∗-tangle of S or an S-tree over F̂∗.

We claim that the first is impossible. For suppose that P is some F̂∗-tangle of S.
From C ⊆ F̂∗ we know that P is a regular and consistent orientation of S. If P has
the profile property (P) then we could derive a contradiction from Lemmas 3.2 and 3.3
since S has no F-tangle. On the other hand, if P is not a profile, then P includes some
set σ ∈ P. By the second part of Lemma 3.2 P then also includes some (in fact: each)
uncrossing of σ and hence a set in F∗ ⊆ F̂∗, contrary to its status as an F̂∗-tangle.

So let (T, α) be the S-tree over F̂∗ returned by Theorem 1.2, which we may assume
to be irredundant (Lemma 2.5). Let N be the image of α. Then N is a nested subset
of S (Lemma 2.3). Let us show that N distinguishes all regular profiles of S. Since (T, α)
is an S-tree over F̂∗ each consistent orientation of S includes some star σ̂∗ ∈ F̂∗ ∩ 2N .
In particular if P is a regular profile of S then P includes some σ̂∗ ∈ F̂∗ ∩ 2N . Since the
only element of F which P includes is max P , this σ̂∗ must originate from max P . Con-
sequently no other regular profile of S can include σ̂∗, since none of them include max P .

10



Thus σ̂∗ distinguishes P from every other regular profile of S. Since P was arbitrary
this shows that N distinguishes all regular profiles of S.

Let us make some remarks on this proof of Theorem 3.1. First, in the definition of F ,
we could have used other sets M: the only properties of M that every regular profile
of S contains some set from M, and that no element of M is included in more than one
such regular profile. We will put this observation to good use in Section 4, where we will
make a more refined choice for M than simply collecting the sets of maximal elements
from each profile.

Second, with the approach shown here it is not easy to strengthen Theorem 3.1 to the
level of Theorem 1.1 by dropping the assumption of regularity, since Lemma 3.3 cannot
do without this regularity.

In the remainder of this section we will show a more direct version of the proof presen-
ted above. This proof will be the guiding principle by which we will approach the issues
of efficiency and profiles of differing order in Sections 5 and 7.

The core idea is that one can take as F the set of all stars that are included in at
most one regular profile of S. An S-tree over this set F would immediately lead to the
desired nested set distinguishing all regular profiles. Moreover this F is standard for S
since C ⊆ F . To obtain this S-tree over F from Theorem 1.2 one would only need to
show two things, namely that S is F-separable and that there is no F-tangle of S. The
first of these amounts to Lemma 3.3; the second requires the two insights that every
F-avoiding consistent orientation is a regular profile, and that each regular profile of S
includes some star in F , both of which retrace some steps of Lemma 3.2.

Lemma 3.4. Let S ⊆ U be a structurally submodular separation system and let P be a
profile of S. There exists a star σ ⊆ P such that no other profile of S includes σ.

Proof. Let σ ⊆ P be a star which minimizes the number of profiles which include σ.
Suppose for a contradiction that there exists a profile P ′ 6= P with σ ⊆ P . Some
separation s, say, distinguishes P from P ′. Clearly s crosses some element of σ.

Suppose that, subject to the above, σ and s are chosen such that the number of
separations in σ that s crosses is minimum. Let t ∈ σ be a separation that s crosses.
If either of the corner separations t ∨ s or t ∨ s was in S then, by the profile property,
it would distinguish P and P ′. It would also, by the fish Lemma 2.1, cross one less
separation in σ than s does, contradicting the choice of s.

So by submodularity the corner separations t ∧ s and t ∧ s are in S. Note that, by
the profile property, any profile including

σ′ := σ r {t} ∪ {t ∧ s, t ∧ s}

also includes σ. Consequently σ′ together with s are a better choice than σ and s,
a contradiction.

Lemma 3.5. Given any set P of profiles of S, every consistent orientation O of S which
is not a profile in P contains a star σ which is not contained in any profile in P.
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Proof. Since O is not a profile in P there is, for every profile P in P, a separation s such
that s ∈ O but s ∈ P . Pick a set N ⊆ O which contains one such separation for every
profile in P and is, subject to this, 6-minimal: That is, there is no other such set N ′

together with an injective function α : N ′ → N satisfying s′ 6 α(s′) for all s′ ∈ N ′.
If N is a nested set, then N contains the desired star, so suppose that s, t ∈ N cross.

By submodularity we may suppose, after possibly renaming s and t, that s ∧ t ∈ S and
thus, by consistency, s ∧ t ∈ O. We claim that N r {s} ∪ {s ∧ t} is also a candidate for
N , contradicting the 6-minimality. So suppose that N r {s} ∪ {s ∧ t} does not contain
a separation r such that r ∈ P , say. Then clearly s ∈ P and t ∈ P , thus, by the profile
property s ∨ t ∈ P which is precisely such an r, a contradiction.

We are now ready to give a proof of Theorem 3.1 without resorting to Lemma 3.2:

Theorem 3.1. Let S be a structurally submodular separation system. Then S contains
a nested set that distinguishes the set of regular profiles of S.

Direct Proof. Let P be the set of regular profiles of S. Let FP ⊆ 2S consist of all stars
σ ⊆ S for which one of the following is true:

(i) No profile in P includes σ, or

(ii) Precisely one profile in P includes σ.

This FP is, by Lemma 3.3, closed under shifting: any shift of a star contained in at most
one profile is again contained in at most one profile. The set FP is also standard for S,
since cosmall separations are contained in no regular profile.

By Theorem 1.2 there either exists an S-tree over FP , or an FP -tangle of S. In the
former case we obtain the desired nested set. For the latter case observe that every
FP -tangle P , say, is a regular profile: By Lemma 3.5 every consistent orientation which
avoids FP is a profile and if P would not be regular, it would contain a cosmall separation
s which is impossible, since {s} ∈ FP . So by Lemma 3.4 there exists a star σ ⊆ P which
every profile other than P avoids. In particular σ ∈ FP , which contradicts the fact that
P is an FP -tangle.

4 Application: Degrees in trees of tangles

In this section we are going to see that our proof of Theorem 3.1 in Section 3 has one
advantage over the usual, more direct proofs of Theorem 3.1 from [2, 10]: It allows us
to easily control the maximum degree of the resulting tree. More precisely: Let S be a
structurally submodular separation system and P a regular profile of S. In this section
we answer the following question: over all trees of tangles that distinguish all regular
profiles of S, how low can the degree of the node containing P in those trees of tangles
be?

Let us first make this notion of degree in a tree of tangles formal. For the purposes
of this application only, a tree of tangles (for S) is an irredundant S-tree (T, α) whose
set of edge labels distinguishes all regular profiles of S. For a regular profile P of S and
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a tree of tangles (T, α), the node of P in T is the unique sink of the orientation of T ’s
edges induced by P , and the degree of P in (T, α) is the degree of this node.

Our question is thus: what is the minimum degree of P in (T, α) over all trees of
tangles (T, α)?

A lower bound for this degree can be established as follows. Let δ(P ) denote the
minimal size of a set of separations which distinguishes P from all other regular profiles
of S. If t is the node of P in some tree of tangles (T, α) then α(t) is such a set of
separations which distinguishes P from all other regular profiles of S; thus, the degree
of P in every tree of tangles (T, α) is at least δ(P ).

We show that this lower bound can be achieved: there is a tree of tangles (T, α) for S
in which P has degree exactly δ(P ). In fact (T, α) will be optimal in this sense not just
for P , but for all regular profiles of S simultaneously. Additionally the degrees of those
nodes of (T, α) that are not the node of some regular profile will not be unreasonably
high: the maximum degree of T will be attained in some profiles’ node.

Theorem 4.1. Let S be a structurally separation system. Then there is a tree of tangles
(T, α) for S in which each regular profile P of S has degree exactly δ(P ). Furthermore,
if ∆(T ) > 3, then ∆(T ) = δ(P ) for some regular profile P of S.

To prove Theorem 4.1 we will follow the first proof of Theorem 3.1, making a more
refined choice of M, and utilise the fact that uncrossing and shifting a set cannot increase
its size.

We will later see an example of a structurally submodular separation system in which
δ(P ) 6 2 for every profile P but ∆(T ) = 3 for every tree of tangles T ; this will demon-
strate that the last assertion of Theorem 4.1 is optimal in that regard.

Observe further that the set of maximal elements of a profile P is a set which distin-
guishes P from every other profile of S. (In fact, the maximal elements of P distinguish P
from every other consistent orientation of S.) Therefore δ(P ) 6 |max P | and hence the
degree of P in the tree of tangles from Theorem 4.1 is at most |max P |.

Let us now prove Theorem 4.1:

Proof of Theorem 4.1. For each regular profile P of S pick a subset DP ⊆ P of size δ(P )
which distinguishes P from every other regular profile of S. Let D be the set of these DP .
Define P and C as in the proof of Theorem 3.1, and set

F := P ∪ C ∪ D .

From here, define F∗ and F̂∗ just as in Theorem 3.1 and follow the same proof. The
result is an S-tree over F̂∗, which we may assume to be irredundant and hence a tree of
tangles for S.

Now let P be a regular profile of S, let t be the node of P in T , and σ̂∗ := α(t). As
in the proof of Theorem 3.1 the only element of F from which σ̂∗ can originate is DP .
Since uncrossing and shifting DP cannot increase its size we have |σ̂∗| 6 |DP | = δ(P ).
Conversely we have |σ̂∗| > δ(P ) since σ̂∗ distinguishes P from all other regular profiles.
Thus the degree of P in (T, α) is indeed δ(P ).
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Finally, if ∆(T ) > 3, the maximum degree of T is attained in some node t whose
associated star α(t) originates from some DP ∈ D, since all elements of F̂∗ originating
from elements of P or C have size at most three. As above we thus have |α(t)| 6 |DP | =
δ(P ), giving ∆(T ) = δ(P ).

Let us see an example showing that we cannot guarantee to find T with maximum
degree less than three even if all regular profiles of S have δ(P ) 6 2:

Figure 1: A ground-set and system of bipartitions.

Example 4.2. Let V consist of the six points in Fig. 1, and S be the separation system
given by the six outlined bipartitions of V together with {∅, V }. (That is, S contains
(A, B) and (B, A) for each of these bipartions {A, B}. We have (A, B) 6 (C, D) :⇔ A ⊆
C, and (A, B)∗ = (B, A). Compare [4].) The regular profiles of S correspond precisely
to the six elements of V : each v ∈ V induces a profile of S by orienting each bipartition
towards v, and conversely each profile of S is of this form. Each profile P has at most two
maximal elements, giving δ(P ) 6 2. However, every tree of tangles for S must contain
the outer three bipartitions and hence have a maximum degree of at least three.

5 Efficient distinguishers

Often our structurally submodular separation system S is actually an Sk , the set of all
separations of order less than k, of some submodular universe U . In this case we are
not just interested in a nested set of separations which distinguishes all profiles, but
one which does so efficiently, that is, for any two profiles it contains a distinguishing
separation of minimum possible order. In this section we are going to see how this can
be achieved for regular profiles of a fixed Sk utilising the duality theorem together with
a separate application of its core mechanism: shifting S-trees.

We will prove this theorem:

Theorem 5.1. Let U be a submodular universe and let P be a set of regular profiles
of Sk . Then there exists a nested set N ⊆ Sk efficiently distinguishing all the profiles
in P.
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Our approach is similar to the one of the direct proof in Section 3, but we shall restrict
our set of stars so that they do not interfere with efficiency.

Consider a nested set of separations which distinguishes all profiles efficiently and,
subject to this, is ⊆-minimal. Every profile P induces an orientation of this set, and the
maximal elements of this orientation form a star. The separations in this star are, in a
way, ‘well connected’ to the profile. We make this a condition on the stars we consider.
For a star σ and a profile P , we say that σ has the property Eff(P ) if the following holds:

∄ s ∈ σ and s′ ∈ P : s 6 s′ and |s′| < |s|. (Eff(P ))

This condition ensures that, for two profiles P and P ′, a star σ with property Eff(P )
containing s, and a star σ′ with property Eff(P ′) containing s, the separation s needs
to be an efficient P–P ′-distinguisher. For if s is not efficient, consider an efficient P–
P ′-distinguisher r ∈ P . Then r cannot be nested with s, since s 6 r would contradict
property Eff(P ) whereas r 6 s would contradict property Eff(P ′). But r cannot cross
s either: if it did we would have either |r ∨ s| < |s| or |r ∧ s| < |s| by submodularity,
again contradicting property Eff(P ) or Eff(P ′), respectively.

Property Eff(P ) is preserved under taking shifts:

Lemma 5.2. Let s ∈ Sk be a splice for r ∈ Sk and let σ ⊆ Sk be a star with some
x ∈ σ with x > r. If a profile P contains both σ and σ′ := σs

x and σ has property Eff(P )
then also σ′ has property Eff(P ).

Proof. Suppose for a contradiction that σ′ does not have property Eff(P ), that is, above
some t ∧ s ∈ σ′, where t ∈ σ, there is a separation t′ ∈ P of lower order than t ∧ s.

We will first show that we may assume t′ 6 t. Since s is a splice for r we have
|s ∧ t| > |s|, and thus by submodularity |s ∧ t| 6 |t|. So if t′ > t then this contradicts
the assertion that σ has property Eff(P ). If however t′ crosses t then by the profile
property of P and property Eff(P ) of σ the supremum t′ ∨ t has at least the order of t.
By submodularity then t′ ∧ t has at most the order of t′ . This is also a separation in P
which is above t ∧ s and of lower order than t ∧ s, so we may consider it instead.

Now, since s is a splice for r we have that |t′ ∧ s| > |s|, so by submodularity t′ ∧ s has
at most the order of t′ . But this t′ ∧ s is the same as t ∧ s since t > t′ > t ∧ s. So we
have |t ∧ s| 6 |t′ |, which contradicts the assumption that |t′ | < |t ∧ s|.

We define Fe as the set of all stars σ ⊆ Sk which are contained in at most one profile
in P and which, if they are contained in a profile P ∈ P, fulfil property Eff(P ).

From the Lemmas 5.2 and 3.3 immediately we obtain the following corollary:

Corollary 5.3. Sk is Fe-separable.

However, an S-tree over Fe does not necessarily give rise to an efficient distinguisher
set for P because we make no assumptions on those stars which are not contained in
any profile. Our proof of Theorem 5.1 will need to make additional arguments on why
an efficient such tree exists.

It would be much more elegant if we could introduce a condition, similar to Eff(·), on
the stars which are in no profile, so as to guarantee that any Sk-tree over these stars is as
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desired. However, all possible such properties that the authors could come up with failed
to give F-separability and there is reason to believe that such a solution is not possible:
The critical part in the proof of Theorem 5.1 will make a global argument, specifically
that of two shifts of one separation one is an efficient distinguisher. Separability on the
other hand is defined in terms of each individual shift of a star.

For this section’s analogue of Lemma 3.4, we define the fatness of a star σ as the tuple
(nk−1, nk−2, . . . , n1, n0), where ni is the number of separations of order i in σ. We will
consider the lexicographic order on the fatness of stars.

Lemma 5.4. Given a set P of regular profiles of Sk , every profile P ∈ P includes a
star in Fe.

Proof. By Lemma 3.4 P includes a star which is contained only in P . Take such a star σ
which has lexicographically minimal fatness and suppose for a contradiction that σ does
not have property Eff(P ). So take s ∈ σ and r ∈ P with s 6 r and |r| < |s|. Among
the possible choices for r, let r be one which crosses as few separations in σ as possible.
If r were nested with σ then the maximal elements of σ ∪ {r} would form a star of lower
fatness, thus we may suppose that r crosses some x ∈ σ.

By the choice of r, the corner separations r ∨ x and r ∧ x must have strictly higher
order than |r| since both are > s. Thus, by submodularity, the corner separations r ∧ x
and r ∧ x have strictly lower order than |x|. Now the star σ′ := σ r {x} ∪ {r ∧ x, r ∧ x}
has a lower fatness. This star is still contained in P by consistency and in no other profile,
since every profile which includes σ′ also includes σ by the profile property applied with
x and r. This contradicts the choice of σ.

We are now able to prove Theorem 5.1:

Proof of Theorem 5.1. We may apply Theorem 1.2 for Fe since Sk is Fe-separable by
Corollary 5.3 and Fe is standard since cotrivial separations are not contained in any
regular profile. From this theorem we cannot get an Fe-tangle: such a tangle cannot
be a profile in P by Lemma 5.4, and Lemma 3.5 states that every consistent orientation
which is not a profile in P includes a star which is not contained in any profile in P, but
each of these stars is contained in Fe, so no such orientation is an Fe-tangle. So instead,
there exists an Sk-tree over Fe.

Among all Sk-trees over Fe pick an irredundant one, (T, α) say, whose associated
separations efficiently distinguishes as many pairs of profiles as possible. Let us suppose
that some pair of profiles P1, P2 is not distinguished efficiently by this tree.

Consider the nodes vP1
, vP2

of this tree corresponding to P1 and P2. These nodes are
distinct, since every star in Fe is contained in at most one profile. Moreover, we can
assume without loss of generality, that in no node on the path between vP1

and vP2

there lives a profile Q: In that case either the pair P1, Q or the pair Q, P2 would not be
efficiently distinguished by (T, α) either, so we could consider them instead.

Let sP1
be the separation associated to the first edge on the path from vP1

to vP2
and

let sP2
be the separation associated to the first edge on the path from vP2

to vP1
. There

exists a separation t which efficiently distinguishes P1 and P2 and is nested with sP1
and
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sP2
: if t ∈ P1 is not nested with, say sP1

, we know by property Eff(P ) that sP1
∨ t needs

to have order at least |sP1
|, thus sP1

∧t has order at most |t|, so it efficiently distinguishes
P1 and P2 and is nested with sP . Thus by the fish Lemma 2.1, there indeed needs to
exists such a t which efficiently distinguishes P1 and P2 and is nested with sP1

and sP2
.

Moreover, t has an orientation such that sP1
6 t 6 sP2

, otherwise the existence of t
again contradicts either property Eff(P ) or Eff(Q). Note that t thus is a splice between
sP1

and sP2
and therefore t emulates sP1

for Fe and t emulates sP2
for Fe.

Let TP1
be the subtree of T consisting of the component of T − vP1

which contains
vP2

together with vP1
and similarly let TP2

be the subtree consisting of the component
of T − vP2

containing vP1
together with vP2

.
We consider the trees (TP1

, αP1
) and (TP2

, αP2
) obtained from (TP1

, α↾TP1
) and (TP2

, α↾

TP2
) by applying the shifts f ↓

sP1

t
and f ↓

sP2

t
, respectively. Consider now the tree (T ′, α′)

obtained from these two trees by identifying the respective edges associated with t.
By applying Lemma 2.8 with the two shifted trees the combined tree is again over Fe.
We may again assume it to be irredundant. We are going to show that it efficiently
distinguishes more pairs of profiles than (T, α).

Let Q1, Q2 be a pair profiles which were efficiently distinguished by a separation r
associated to an edge of (T, α). If r is not associated to any edge of (T ′, α′) then,
without loss of generality, either sP1

6 r 6 sP2
or both sP1

6 r and sP2
6 r.

In the first case r distinguishes P1 and P2 and therefore |r| > |t|. By the definition of
the shift, our tree (T ′, α′) contains both, r ∨ t and r ∧ t, and both of them have order at
most the order of r, by Lemma 2.9. However, one of r ∨ t, r ∧ t and t distinguishes Q1

and Q2 and does so efficiently.
In the second case, by the definition of the shift, our tree (T ′, α′) contains both, r ∨ t

and r ∨ t, and both of them have order at most the order of r, again by Lemma 2.9.
Again, one of r ∨ t and r ∨ t distinguishes Q1 and Q2 and does so efficiently.

Thus, since (T ′, α′) additionally efficiently distinguishes P1 and P2 with t, this contra-
dicts the choice of (T, α).

6 Degrees in efficient trees of tangles

In this section we apply our method from Section 4 to Theorem 5.1 to obtain a tree
of tangles of low degree, but this time one which efficiently distinguishes the profiles.
That is, we are interested in the minimal degrees of a tree of tangles whose associated
separations efficiently distinguish all regular profiles of Sk.

Extending the definitions of Section 4, let us say that a tree of tangles (T, α) for Sk

is efficient, if the set of edge labels not only distinguishes all regular profiles of Sk, but
does so efficiently.

Given a k-profile P , we denote by δe(P ) the minimal size of a star σ ⊆ P with
property Eff(P ) which distinguishes P from all other regular profiles of Sk, i.e., every
other regular profile orients some s ∈ σ as s. Note that, by Lemma 5.4, there exists
such a star for every regular profile P , thus δe(P ) is a well defined natural number.

We denote by δe,max the maximum of δe(P ) over all regular profiles P .
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We can give a bound on δe(P ) which is not in terms of stars or nested sets:

Lemma 6.1. Let P be a regular k-profile in U and let DP ⊆ P be a subset of P
which contains, for every regular k-profile P ′ 6= P in U , a separation which efficiently
distinguishes P from P ′. Let us denote as m the number of maximal elements of DP .
Then δe(P ) 6 m.

Proof. It is enough to consider a set DP ⊆ P such that m = |max DP | is as small as
possible. Moreover, we may assume without loss of generality that every element of
DP distinguishes P efficiently from some other profile in P, since we could otherwise
remove it from DP . We may furthermore assume that, subject to all this, DP is chosen
so that max DP is 6-minimal. Furthermore we may suppose that, for separations r 6 s
in DP , the order of r is lower than the order of s, since otherwise we could just remove
r from DP .

If the maximal separations in DP are pairwise nested, they satisfy property Eff(P )
by the fact that they distinguish P efficiently from some other profile P ′. Further,
every profile P ′ is distinguished from P by some maximal separation in DP : there is an
efficient P -P ′ distinguisher s ∈ DP and thus a maximal separation t > s in DP also
distinguishes P from P ′. Hence, if the maximal elements of DP are pairwise nested, they
are a candidate for δe(P ) and therefore witness that δe(P ) 6 m.

So suppose that this is not the case, so two maximal separations s, t ∈ DP cross and,
without loss of generality, |s| 6 |t|. By the definition of DP , there is a profile Ps which
is efficiently distinguished from P by s ∈ DP . Similarly, there is such a profile Pt for t.

Since DP was chosen to have as few maximal elements as possible, the separation s ∨ t
has greater order than t: otherwise we could, by consistency and the profile property,
replace t in DP by s ∨ t. Thus, by submodularity, the order of s ∧ t is less than the order
of s. In particular, by efficiency of s and t, neither Ps nor Pt contains (s ∧ t)∗ = s ∨ t.

Thus s ∧ t and s ∧ t have order precisely |s| and |t|, respectively: if one of them had
lower order this would, by the profile property, contradict the fact that s or t, respectively,
efficiently distinguishes P from Ps or Pt, respectively. This means that, in particular,
s ∧ t efficiently distinguishes P from Ps.

For every r 6 s in DP we have assumed |r| < |s|. Both r ∧t and r ∧t have at most the
order of r due to submodularity, the efficiency of t, the profile property and consistency,
analogue to the above.

Let us consider the set D′
P obtained from DP by removing all r 6 s, and adding s ∧ t

as well as, for every r 6 s, any r ∧ t and r ∧ t which efficiently distinguishes P from
some other profile. By the above, this set D′

P distinguishes P from every other regular
profile, and is a candidate for DP . The maximal separations of D′

P and of DP are the
same except that s in DP is replaced by s ∧ t in D′

P . This contradicts the choice of DP

with 6-minimal maximal elements.

To limit the degree of the node of P in our tree of tangles we want to remove from
Fe all the stars which are contained in P but are larger than δe(P ). In order to achieve
a maximum degree of δe,max we also need to limit the size of the stars in Fe which are
contained in no profile to δe,max. As in Section 4, we cannot limit the maximum degrees
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below 3. Along the lines of the proof of Lemma 3.2, the next lemma shows that we
can find, in every consistent orientation O of Sk which is not a profile, a star of size 3
contained in O and in no profile.

Lemma 6.2. Every consistent orientation O of Sk which is not a profile contains a star
σ of size 3 which is not contained in any profile.

Proof. As O is not a profile, there are s, t ∈ O such that s ∧ t ∈ O. By submodularity,
either s ∧ t or s ∧ t ∈ S, let us suppose the former one. Then σ = {s ∧ t, t, s ∧ t} is a star
in O and σ cannot be contained in any profile: any profile P needs to contain either s or
s, and the profile property implies that P then cannot contain both, s ∧ t and s ∧ t.

We can now show the following variant of Theorem 5.1, which shows that we can find
a tree of tangles of bounded degree:

Theorem 6.3. Let U be a submodular universe and let P be the set of regular profiles
of Sk . Then there exists tree of tangles (T, α) such that, for every profile P ∈ P, the
degree of P in (T, α) is δe(P ) and the maximal degree of T is at most max{δe(P), 3}.

Proof. Let Fs
e be the subset of Fe consisting of, for every profile P , all stars from Fe of

size δe(P ) contained in P , together with all stars of size at most max{δe(P), 3} from Fe

not contained in any profile. For any star σ and any shift σr
s of σ we have |σ| > |σr

s |.
Further, Sk is Fe-separable by Corollary 5.3. Moreover, the shift of a star cannot contain
any profile which does not contain the original star by Lemma 3.3, thus Sk is also Fs

e -
separable.

Thus, all we need to show is that applying Theorem 1.2 cannot result in an Fs
e -tangle,

the rest of the proof can then be carried out as the proof of Theorem 5.1: Instead of
S-trees over Fe we now consider S-trees over Fs

e , and observe that the shifting argument
in the proof of Theorem 5.1 again shifts stars in Fs

e to stars in Fs
e .

However, applying Theorem 1.2 indeed cannot result in an Fs
e -tangle: Such a tangle

cannot be a regular profile, since by our definition of δe(P ), there is a star in Fs
e contained

in P . But every consistent orientation which is not a regular profile either contains a
star {s} for a cosmall separation s – each such star is also contained in Fe – or contains,
by Lemma 6.2 a star of size 3 not contained in any profile. Either such star is also
contained in Fs

e by definition.

7 Tangles of mixed orders

In this section we would like to use the ideas from Section 5 to obtain a proof of
Theorem 2.2 using tangle-tree duality. The challenge of Theorem 2.2 compared to
Theorem 5.1 is that the set of profiles P considered in Theorem 2.2 consists of pro-
files of different orders. In particular, there might be profiles P1 and P2 in P which
are efficiently distinguished by separations of order k, say, and there might be another
profile Q ∈ P which has only order l < k and thus does not orient the separations which
efficiently distinguish P1 and P2. Thus, we cannot simply require the stars in our set F
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to be contained in at most one profile: the resulting S-tree over F would not necessarily
distinguish all profiles in P, for example it might not distinguish the profiles P1 and Q
from above. Our solution to this problem will be to restrict the set of stars further by
additionally requiring that all the separations in a star in F ‘could be oriented’ by every
profile in P, even if that profile has lower order than the separation considered.

With this further restricted set of stars however S will no longer be F-separable, but
it will only fail to do so under rather specific circumstances. Thus in order to obtain
a result in the fashion of Theorem 2.2, we shall first proof a slightly stronger version
of Theorem 1.2, which allows us to exclude this specific situation im the requirement of
F-separability. The proof of this stronger version of Theorem 1.2 is different from the
original one of Theorem 1.2 in [5]: our proof of Theorem 7.1 also serves as an alternative
proof of Theorem 1.2 which is slightly shorter than the original one and perhaps neater
and less technical.

7.1 A Short Adventure into Duality

As mentioned above, we will prove the following slight strengthening of Theorem 1.2:

Theorem 7.1. Let U be a finite universe, S ⊆ U a separation system, and F ⊆ 2S a
set of stars such that F is standard for S and S is critically F-separable. Then precisely
one of the following holds:

• there is an S-tree over F ;

• there is an F-tangle of S.

This theorem is a strengthening in the sense that, we weaken the technical assumption
that S be F-separable to only require F-separability for those separations whose inverse
lies in no star of F , rather than for all separations in S. Formally:

A separation r in S is F-critical if r ∈ σ for some σ ∈ F , but there is no σ′ ∈ F
with σ′ ∩ r = {r}. Observe that if r ∈ S is F-critical then r is nondegenerate and
not forced by F , and in particular r is nontrivial in S since F is standard for S. We
say that S is critically F-separable if for all F-critical r, r′ ∈ S with r 6 r′ there exists
an s0 ∈ S with an orientation s0 that emulates r in S for F and such that s0 emulates r′

in S for F . Clearly, if S is F-separable, then S is critically F-separable.
The core argument of our proof of Theorem 7.1 is the following: if there is no S-tree

over F , then every ‘attempt’ at such an S-tree must fail. Thus, if one starts with some
star σ in F as the basis for such an S-tree, and then ‘glues’ for each s ∈ σ with {s} /∈ F
some star from F onto s that contains s, then one must at some point be unable to
find such a star. The resulting attempt is then an S-tree that is ‘over F ’ only for all
internal vertices, but not necessarily at the leaves. The fundamental strategy of the
proof presented here is to collect the set of all these leaf-separations at which the S-tree
attempts get stuck, and then turn this set into the basis of an F-tangle.

The strategy described here is already present in Mazoit’s proof ([12]) of the classical
duality theorem for brambles and tree-width in graphs. In [6] Diestel gives a proof of
this graph-theoretic duality theorem that is derived from his and Oum’s original proof
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of Theorem 1.2, applied to the specific F corresponding to tree decompositions of a
certain width. Curiously Mazoit’s and Diestel’s graph-theoretic proofs are quite similar.
One could therefore argue that the strategy for the proofs here comes from re-translating
Diestel’s translation of Theorem 1.2 to this specific graph application back into abstract
separation systems.

Let us now make this sketch of a proof formal:

Proof of Theorem 7.1. Let U be a finite universe, S ⊆ U a separation system, and F ⊆
2S a set of stars such that F is standard for S and that S is critically F-separable.. We
may assume that ∅ /∈ F .

We shall need the following definitions. An S-tree attempt is an S-tree (T, α) with at
least one edge and α(t) ∈ F for every internal node t of T . For a leaf t of an S-tree
attempt (T, α) the incoming label of t is the separation r for which {r} is associated
with t in (T, α); the outgoing label of t is then r. We call such an r a petal of (T, α)
if {r} /∈ F .

We will prove the following assertion which is equivalent to the tangle-tree duality
theorem:

S has an F-tangle if and only if every S-tree attempt has a petal. (∗)

Since the S-tree attempts without petals are exactly the S-trees that are over F , (∗)
immediately implies Theorem 1.2.

For our proof of (∗) we will use the Lemmas 2.3 to 2.6. These lemmas, roughly
speaking, say that an S-tree over a set of stars may be assumed to be ‘cleaned up’, i.e.
tight and irredundant; that such a cleaned up S-tree (T, α) is order-respecting; and that
then each nontrivial separation can only appear once as a label. In short, cleaning up a
given S-tree over stars enables us to apply Lemma 2.8 to it.

The ‘only if’ direction of (∗) is clear, so let us show the backward direction.
Let L ⊆ S be the set of all petals of S-tree attempts. Suppose first that we can

find P ⊆ L such that P is a consistent and antisymmetric set that contains at least
one petal of every S-tree attempt. Then P is an F-tangle of S: Indeed, P orients each
separation s in S since it contains a petal of the S-tree attempt that is just a single edge
labelled with s; and P avoids each star σ in F since it is antisymmetric and contains a
petal of the S-tree attempt consisting of one internal node for σ and one leaf for every
element of σ.

So let us show that we can find such a set P ⊆ L. For this pick a P ⊆ L that is
minimal with respect to inclusion subject to the conditions that P contains at least one
petal of every S-tree attempt and is down-closed in L, that is, such that p ∈ P for
all p ∈ L with p 6 q for some q ∈ P . Such a P exists since L itself is a candidate. We
claim that this P is antisymmetric and consistent.

So suppose that P is not antisymmetric, or not consistent. Then there are r 6= s in P
with r 6 s. In particular we can take r and s to be maximal elements of P . Neither r
nor s can be co-trivial in S since F is standard for S and r and s are petals. Therefore
neither of the two can be trivial or degenerate either, since this would imply that the
other one is co-trivial.
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By picking r and s among the maximal elements of P we ensure that both P r {r}
and P r {s} are still down-closed in L. Thus, by the minimality of P , there are S-tree
attempts (Tr, αr) and (Ts, αs) whose only petals that lie in P are r and s, respectively.
We may assume (Tr, αr) and (Ts, αs) to be tight and irredundant by the Lemmas 2.5
and 2.6, which implies that r and s are the incoming label of exactly one leaf of Tr

and Ts, respectively, by Lemma 2.4.
We claim that r is F-critical. To see this, let vr be the leaf of Tr whose incoming edge

is labelled with r, and let wr be the neighbour of vr in Tr. Then wr has an incoming
edge labelled with r, and we must have αr(wr) ∈ F , witnessing that r lies in some star
in F : for if αr(wr) /∈ F then wr would be a leaf of Tr and r a petal of (Tr, αr). By r 6 s
and P being down-closed in L we would then have r ∈ P , contrary to the assumption
that r is the only petal of (Tr, αr) which lies in P . Suppose now that σ ∩ {r, r} = {r}
for some σ ∈ F . Then we can extend (Tr, αr) by σ at the leaf at which r appears.
This extension of (Tr, αr) is then an S-tree attempt, of which P must contain a petal.
Since r /∈ σ this petal would be strictly larger than r , contradicting the maximality of r
in P .

A similar argument shows that s is F-critical. By the assumption that S is critically F-
separable we thus find an s0 ∈ S with an orientation s0 that emulates r in S for F and
such that s0 emulates s in S for F . Let vr and vs be the leaves of Tr and Ts with incoming
labels r and s, respectively. Set α′

r := (αr)vr ,s0
and α′

s := (αs)vs,s0
. Then Lemma 2.8

says that (Tr, α′
r) and (Ts, α′

s) are S-tree attempts in which vr is the unique leaf of Tr

with incoming label s0 , and that vs is the unique leaf of Ts with incoming label s0 .
Let (T, α) be the S-tree obtained from (Tr, α′

r) and (Ts, α′
s) by identifying vr ∈ Tr with

the neighbour of vs in Ts and vice-versa, and extending the maps α′
r and α′

s accordingly.
This (T, α), too, is an S-tree attempt since every internal node of (T, α) corresponds

to an internal node of (Tr, α′
r) or (Ts, α′

s).
We claim that P , contrary to its definition, contains no petal of (T, α). To see this we

consider the leaves of (T, α) and note that by definition every leaf of T corresponds to
either a leaf of Tr other than vr, or to a leaf of Ts other than vs. Thus, let us first consider
some leaf t of Tr other than vr, and let p be the incoming label of t in (Tr, αr). Then r 6 p
by Lemma 2.3, and thus the incoming label of t in (T, α) is s0 ∨ p. If αr(t) = {p} ∈ F
then α(t) = {s0 ∨ p} ∈ F since s0 emulates r in S for F . Consequently, if s0 ∨ p is a
petal of (T, α), then p is a petal of (Tr, αr). In particular, since p 6= r and r is the only
petal of P from (Tr, αr), and P is down-closed in L, we know that (s0 ∨ p) > p cannot
be a petal of (T, α) that lies in P .

By the same argument those leaves of T which are leaves of Ts other than vs cannot
give rise to a petal of (T, α) in P , either. Hence P contains no petal from (T, α), causing
a contradiction. This finishes the proof that P is consistent and antisymmetric and
hence an F-tangle of S.
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7.2 Obtaining a tree-of-tangles theorem for different order tangles from
tangle-tree duality

Theorem 7.1 now allows us to use our methods from Theorem 5.1 to prove a tree-of-
tangles theorem for different order tangles. More specifically we will obtain a result
similar to Theorem 2.2, however our construction only works in distributive universes –
that is, r ∨ (s ∧ t) = (r ∨ s) ∧ (r ∨ s), always – since we need the following result from
[8], which can be also found in [3]:

Lemma 7.2 ([3, Theorem 3.11], [8, Theorem 1], strong profile property). Let U be a
distributive universe and S ⊆ U structurally submodular, then for any profile P of S and
any r and s ∈ P there does not exists any t ∈ P such that r ∨ s 6 t.

Moreover, our method will not allow us to distinguish all robust profiles, instead we
need a slight strengthening of robustness: We say that a k-profile P is strongly robust,
if for any s ∈ P and r ∈ U where s ∨ r and s ∨ r both have at most the order of s one
of s ∨ r and s ∨ r is in P . Note that most instances of tangles, for example tangles in
graphs, are strongly robust profiles.

For this section let U be a distributive submodular universe and let P be some set of
pairwise distinguishable strongly robust profiles in U (possibly of different order).

To handle the issue, that not all separations in a tree-of-tangles for profiles of different
orders are oriented by all the considered profiles, we introduce the following additional
definition: A consistent orientation O of Sk weakly orients a separation s as s if O
contains a separation r such that s 6 r. If we want to omit s we just say O weakly
contains s.

We will now only consider stars of separations where every separation is at least weakly
oriented by all the profiles in P. Specifically, we work with the set Fd consisting of all
stars σ with the following properties:

1. There exists at most one profile P ∈ P such that σ ⊆ P .

2. For every profile P ∈ P such that σ 6⊆ P there exists s ∈ σ such that P weakly
orients s as s.

3. If there exists a P ∈ P such that σ ⊆ P , then σ satisfies property Eff(P ).

We want to show that U is critically Fd-separable, and our first step to do so is to
show that splices – which we want to use in separability – are weakly oriented by every
profile in P.

Lemma 7.3. Let U be a distributive submodular universe and let P be a set of strongly
robust profiles in U . Suppose that r and s are Fd-critical separations in U with r 6 s,
then every splice between r and s is weakly oriented by every profile in P.

Proof. Since r and s are Fd-critical, they are contained in some star in Fd and hence
weakly oriented by every profile in P.

Let t be a splice between r and s. If t is not weakly oriented by every profile in P,
then P contains a profile P of order at most |t| which weakly orients r as r and s as
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s, since every witnessing separation that a profile weakly orients r as r or s as s also
witnesses that it weakly orients t. Let MP

r be the set of all separations wr in P satisfying
r 6 wr and having minimal possible order with that property. Let wr ∈ MP

r be chosen
6-maximally. Let ws be defined for s, accordingly.

Observe that if wr 6 s, respectively, then, by the order-minimality of MP
r , the order

of wr is at least |t| so P orients t, which contradicts the assumption that P does not
weakly orient t. Similarly, ws 6 r results in a contradiction.

Suppose now that wr crosses s.

r s

t

wr

w

P ′

P

ws

We claim that every profile P ′ in P which weakly orients s as s also weakly contains
either s ∨ wr or s ∨ wr . This then impies that {s, s ∧ wr , s ∧ wr } is a star in Fd, which
will contradict the Fd-criticality of s.

So suppose that P ′ weakly orients s as s, witnessed by some w ∈ P ′ with w > s.
If wr ∨ w had order at most the order of wr , this would contradict the choice of wr :

By Lemma 7.2 applied to the separations wr , ws , w ∧ wr , the profile P would need to
contain wr ∨ w which contradicts the choice of wr being 6-maximal in MP

r .
Similarly, if w ∧ wr had order less than the order of wr , this would contradict the

choice of wr : By consistency P would need to contain w ∧ wr which contradicts the
definition of MP

r , from which wr was chosen.
Thus, by submodularity, w ∧ wr has order less than the order of w, and w ∧ wr has

order at most the order of w. Hence, as P ′ is strongly robust, P ′ contains either w ∨ wr

or w ∨ wr and therefore either weakly orients s ∧ wr as s ∨ wr or s ∧ wr as s ∨ wr .
This proves the claim which results in a contradiction to the assumption that s is Fd

critical. Thus we may suppose that wr does not cross s and, by a symmetric argument,
that ws does not cross r. Hence r 6 ws and s 6 wr . We may therefore assume without
loss of generality that wr = ws .

If wr = ws crosses t then, by the choice of t, that neither wr ∧ t nor wr ∧ t has order
less than |t|, thus wr ∨ t and wr ∨ t both have order at most the order of wr . By the
strong robustness of P applied to wr , wr ∧ t and wr ∧ t, we know that either wr ∨ t ∈ P
or wr ∨ t ∈ P . However, both contradict the 6-maximal choice of wr . So, instead wr is
nested with t, that is, t has an orientation t such that t 6 wr , so t is weakly oriented by
P , as claimed.
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t

wr = ws
P

Note that the assumption that our profiles are strongly robust is essential in this
argument, for example for the case wr = ws : If we only assume robustness, we can not
conclude that P contains either wr ∨t or wr ∨t and thus would not obtain a contradiction.

The next step is to verify that shifting with a splice as in Lemma 7.3 maps stars in
Fd to stars in Fd, which will prove that U is critically Fd-seperable:

Lemma 7.4. Let r and s0 be separations which are weakly oriented by every profile in P
and suppose that s0 us a splice for r. Let σ ∈ Fd be a star which contains a separation
x > r. Then the shift σs0

x of σ from x to s0 is again an element of Fd.

Proof. Since s0 is a splice for r, by Lemma 2.9, s ∨ s0 has at most the order of s for
every s > r.

Let σ be any star in Fd containing a separation x > r. By the above, if σ ⊆ Sk for
some k then also the shift σs0

x is a subset of Sk . Hence by Lemma 3.3, every profile in
U which contains σs0

x also contains σ. Now if some profile P contains σ, then P orients
every separation in σs0

x , and thus either P contains the inverse of some separation in σs0

x

or σs0

x ⊆ P .
Hence, by Lemma 5.2 it is enough to show that every profile from P which, for some

y ∈ σ, weakly contains y also weakly contains y′ for some separation y′ ∈ σs0

x .
So suppose such a profile P , for some y ∈ σ, weakly contains y and suppose that this

is witnessed by wy ∈ P . If r 6 y, then y is shifted onto y ∧ s0 and therefore wy also
witnesses that P weakly contains y ∧ s0 while y ∨ s0 ∈ σs0

x . Thus we may suppose that
r 6 y and therefore that y is shifted onto y ∨ s0 .

If P weakly orients s0 as s0 , then P also weakly contains y ∧s0 6 s0 while y ∨s0 ∈ σs0

x .
Thus we may suppose that P weakly orients s0 as s0 , witnessed by w0 ∈ P .
By our assumptions on s0 we know that the order of s0 ∧ wy is at least the order of s0

and thus, by submodularity, s0 ∧wy has order at most the order of wy, i.e., it is oriented
by P . By Lemma 7.2 applied to w0 , wy ∈ P and s0 ∧ wy we can therefore conclude that
P contains s0 ∨ wy , i.e., P weakly contains y ∨ s0 6 s0 ∨ wy .

In order to use our stronger tangle-tree duality theorem Theorem 7.1 with our set Fd

of stars to obtain a tree of tangles for strongly robust profiles it only remains for us to
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show that this application cannot result in an Fd-tangle. We do this in the following
two lemmas.

Lemma 7.5. For every profile P in U and every set P ′ of strongly robust profiles in U
distinguishable from P , there exists a nested set N which distinguishes P efficiently from
all the profiles in P ′.

Proof. For every profile Q ∈ P ′ pick a 6-minimal separation sQ ∈ P which efficiently
distinguishes Q from P . We claim that the set N consisting of all these separations sQ

is nested and therefore as claimed.
So suppose that this is not the case, so sQ and sQ′ , say, cross. We may assume without

loss of generality that |sQ | 6 |sQ′ |. Now sQ ∨ sQ′ has order at least the order of sQ′

since otherwise, by the profile property, sQ ∨ sQ′ would also distinguish P and Q′ and
would thus contradict the fact that sQ′ did so efficiently. Thus |sQ ∧ sQ′ | 6 |sQ |.

Now Q′ orients sQ and it cannot contain sQ since then, by the profile property, sQ ∧sQ′

would also distinguish P and Q′ efficiently and would therefore contradict the 6-minimal
choice of sQ′ .

Thus sQ ∈ Q′. Now |sQ ∧ sQ′ | > |sQ′ | since otherwise, again by the profile property,
sQ ∧ sQ′ contradicts the 6-minimal choice of sQ′ .

Thus, by submodularity, |sQ ∧ sQ′ | < |sQ | and |sQ ∧ sQ′ | 6 |sQ |. But, by strong
robustness, either sQ ∨ sQ′ or sQ ∨ sQ′ is in Q. In particular, sQ ∧ sQ′ or sQ ∧ sQ′

efficiently distinguishes P and Q and therefore contradicts the 6-minimal choice of
sQ .

Unlike for structurally submodular separation systems in Lemma 3.5 or efficient dis-
tinguishers in Lemma 6.2, in this setup we can not necessarily find a star in Fd which is
contained in O but in no profile in P for every orientation O of U which not include any
profile in our set P of strongly robust profiles . This is because we require that every
profile in P weakly orients a separation in our star outwards, but the stars constructed
in Lemma 6.2, for example, do not necessarily have this property. Thus we are going to,
instead, find a star σ contained in both O and exactly one profile from P. Since each
such star also lies in Fd, this will be enough to ensure that our application of Theorem 7.1
does not result in an Fd-tangle.

Lemma 7.6. For every consistent orientation O of U and every set P 6= ∅ of distin-
guishable strongly robust profiles in U there exists a star σ in Fd contained in O.

Proof. Pick a star σ (not necessarily from Fd) with the following properties:

(i) σ ⊆ O.

(ii) σ is contained in at least one profile in P.

(iii) Property Eff(P ) is satisfied for every profile P ∈ P such that σ ⊆ P .

(iv) Every P ∈ P either contains σ or weakly contains s for some separation s ∈ σ.
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(v) For every separation s ∈ σ and any profile σ ⊆ P there exists a profile Q ∈ P such
that s is a efficient P -Q distinguisher.

Note that the empty set is such a star. Let us further assume that we choose our star σ
fulfilling (i)-(v) such that as few profiles in P as possible contain σ.

If only one profile contains σ then σ ∈ Fd is as desired, so let us suppose for a
contradiction that there are at least two such profiles.

Pick two such profiles P1, P2 ⊇ σ such that the order of an efficient P1-P2-distinguisher
is as small as possible. Pick an efficient P1-P2-distinguisher s which crosses as few
elements of σ as possible. O orients s, say s ∈ O. If s is nested with σ, the maximal
elements of σ ∪{s} form a star violating the definition of σ: Every profile containing this
new star also contains σ. To see that (iii) is fulfilled, note that there is no profile P ⊇ σ
in P such that s ∈ P for which there is a s′ of lower order than s such that s 6 s′ ∈ P ,
since such an s′ would be a distinguisher of lower order than s for some pair of profiles
containing σ, contrary to the coice of s.

Thus we may assume that s is not nested with σ, say s crosses t ∈ σ. Since, by(v),
there is some profile Q ∋ t for which t is an efficient P1-Q-distinguisher, we know that
at least one of s ∧ t and s ∧ t has order at least the order of t: Otherwise this would
contradict the fact that t is an efficient P1-Q-distinguisher by robustness (if |t| < |s|) or
the profile property (if |s| 6 |t|) of Q.

Thus by submodularity the order of at least one of s ∨ t and s ∨ t is at most the order
of s and that separation is therefore also an efficient P1-P2-distinguisher (by the profile
property and consistency), which would make it a better choice for s, a contradiction.

Thus σ contains precisely one profile and therefore, by construction, σ ∈ Fd.

Together with Theorem 7.1, these lemmas give a proof of a tree-of-tangles theorem
for strongly robust profiles of different orders in a submodular universe. This theorem
does not give efficient distinguishers; we will deal with efficiency in a later step.

Theorem 7.7 (Tree-of-tangles theorem for different orders). Let U = (U,6,∗ , ∨, ∧, | |)
be a submodular distributive universe of separations. Then for every distinguishable set
P of strongly robust profiles in U there is a nested set T = T (P) ⊆ U of separations
such that:

(i) every two profiles in P are distinguished by some separation in T ;

(ii) for any profile P ∈ P, any maximal s ∈ P ∩ T and any s′ ∈ P such that s 6 s′ we
have |s| 6 |s′ |.

Proof. By Lemma 7.3 and Lemma 7.4 the set U is critically Fd-separable for the set Fd

defined above. Thus we can apply Theorem 7.1. This can, by Lemma 7.6, not result
in an Fd-tangle, thus there is an U -tree over Fd. By Lemma 2.5 we may assume this
U -tree to be irredundant. The set of separations associated to edges of this tree is then
a nested set T .

Every profile in P induces a consistent orientation of T , since all the separations in
T are weakly oriented by every profile in P. The maximal elements of this orientation
form a star σP in Fd, and this star is a subset of P by the definition of Fd.
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To see that T distinguishes every pair of profiles in P, consider two profiles P and Q
in P. These two profiles cannot induce the same orientation of T , since then σP = σQ

would be a subset of both P and Q, contradicting the definition of Fd. Thus some s ∈ σP

witnesses that P weakly orients some t ∈ σQ as t and, vice versa, t witnesses that Q
weakly contains s. Of these two separations s and t, the one of lower order is thus a
P–Q-distinguisher in T .

(ii) is then immediate from the definition of Fd.

Note that the nested set constructed in Theorem 7.7 does not yet necessarily distin-
guish any two profiles efficiently. However, we can use Theorem 5.1 in combination with
Theorem 7.7 to obtain such a set:

Theorem 7.8 (Efficient tree - of - tangles theorem for different order profiles). Let
U = (U,6,∗ , ∨, ∧, | |) be a submodular distributive universe of separations. Then for
every distinguishable set P of strongly robust profiles in U there is a nested set T =
T (P) ⊆ U of separations such that every two profiles in P are efficiently distinguished
by some separation in T .

Proof. Let k be the maximal order of a profile in U . Let T be the U -tree over Fd from the
proof of Theorem 7.7. We consider the ⊆- maximal subtrees Ti of T with the property
that no internal node of Ti corresponds to a profile in P. Clearly T =

⋃m
i=1 Ti and no

two Ti share an edge.
We are going to simultaneously replace each of the nested sets of separations cor-

responding to the Tis with other separations in such a way that the resulting set of
separations is still nested and we ensured that every pair of profiles contained in some
Ti is efficiently distinguished by this new set of separations.

So, given some Ti, let Pi be the set of profiles in P living, in T , in one of the leaves of
Ti. Let Li be the set of all separations associated to one of the directed edges adjacent
and pointing away from such a leaf. Note that Li is a star. For every s ∈ Li let Ps ∈ Pi

be the unique profile corresponding to a leaf of Ti and containing s.
It is easy to check that for any two profiles P and Q in Pi there is a efficient P–Q-

distinguisher t which is nested with all of Li : Pick one t which is nested with as many
separations from Li as possible. Now t cannot cross an s ∈ Li such that Ps = P or Ps =
Q, as in that case, for t ∈ Ps, either t∨s or t∧s would, by submodularity, consistency and
the profile property, be an efficient P -Q–distinguisher and as such contradict the choice
of t by Lemma 2.1. If on the other hand t crosses some s ∈ Li , such that Ps /∈ {P, Q},
then not both of s ∨ t and s ∨ t can have order less than the order of s by the profile
property since, by (ii), there is no s′ ∈ Ps such that s 6 s′ and |s| > |s′ |. Thus the
order of either s ∨ t or s ∨ t is at most the order of t, however by Lemma 7.2 and the
fish Lemma 2.1 this separation then contradicts the choice of t.

Moreover, there exists such an efficient P–Q-distinguisher t which has an orientation
t such that s 6 t for every s ∈ Li : Otherwise s 6 t for some orientation of t and if
neither P = Ps nor Q = Ps then both P and Q would weakly orient t as t since they
weakly contain s. On the other hand if P = Ps, say, then, again by (ii), the order of t
is at least the order of s, thus s itself would be the required efficient P–Q-distinguisher.
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Now consider, for every Ti, the set U i of all separations t in U nested with Li and
fulfilling the additional property of having, for every s ∈ Li , an orientation such that
s 6 t, i.e. U i is the set of all separations in U inside of Li . U

i
is closed under ∨ and

∧ in U by the fish Lemma 2.1, thus the restriction of U to U i is again a submodular
universe of separations.

Given any s ∈ Li , the down-closure of s is a regular profile of U i. Note that every
efficient distinguisher for the profiles induced by s1 and s2 ∈ Li on U i is also an efficient
distinguisher of Ps1

and Ps2
.

By Theorem 5.1 applied to the set of all separations of order less than k in U i, we thus
find a U i-tree T̂ i over Fe (defined for Pi). The corresponding nested set Ni efficiently
distinguishes all these profiles induced by some si ∈ Li .

But now the nested N given by
⋃m

i=1
(Ni ∪ Li) is as desired: It is easy to see that this

set is nested and every Ni efficiently distinguishes any two profiles in Pi. Moreover, we
only ever changed separations inside of Li for every Ti.

The set N also contains an efficient P–Q-distinguisher for profiles P and Q in differ-
ent Tis: A profile R whose node in T lies on the path between the nodes containing P
and Q, respectively, also does so in the tree induced by N . Thus, if we have efficient
distinguishers for P and R and for R and Q, respectively, in N , then one of the two is
also an efficient P–Q-distinguisher. An inductive application of this argument proves
the claim, that the set N efficiently distinguishes any two profiles in P.
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