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Abstract

We show that string-net models provide an explicit way to construct invariants of mapping class group actions.
Concretely, we consider string-net models for a modular tensor category C. We show that the datum of a specific
commutative symmetric Frobenius algebra in the Drinfeld center Z(C) gives rise to invariant string-nets. The
Frobenius algebra has the interpretation of the algebra of bulk fields of a two-dimensional rational conformal field
theory in the Cardy case.
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1 Introduction

Two-dimensional conformal field theories, apart from their intrinsic physical interest, are quantum field theories
that are amenable to a precise mathematical study. In this paper, we use string-net models to study consistent
systems of bulk field correlators in a class of such models.

A consistent system of correlators in a two-dimensional conformal field theory is obtained by specifying elements
in spaces of conformal blocks, subject to certain consistency conditions. For a conformal field theory with the
monodromy data given by a braided monoidal category D, the spaces of conformal blocks can be constructed as
morphism spaces in D. They are endowed with projective actions of mapping class groups given by the structures of
D. For a rational conformal field theory, the category D is a (semisimple) modular tensor category and the spaces
of conformal blocks are provided by the state spaces of a three-dimensional topological field theory, namely the
Reshetikhin-Turaev TFT based on D. In this framework, the task of finding a consistent system of correlators is
equivalent to finding for each surface Σ a vector in the space of conformal blocks on the double Σ̂. This element has
to be invariant under the action of mapping class group and the set of elements has to be consistent under sewing
of the surfaces [FRS02, FRS04a, FRS04b, FRS05, FFRS06a].

In this article, we only consider bulk fields on oriented surfaces. Instead of taking the doubles of the surfaces one
can take the enveloping category Crev

⊠C of a modular tensor category as the category D. Modularity implies that we
have a braided equivalence: Crev

⊠C ≃ Z(C), where Z(C) is the Drinfeld center of C, see e.g. [Shi19] for a statement
that includes non-semisimple categories as well. The Reshetikhin-Turaev construction for Z(C) is equivalent to the
extended Turaev-Viro-Barrett-Westbury state-sum construction based on C [TV10, KJB10, Bal10a, Bal10b].

The string-net model arises in the study of topological order in condensed matter physics [LW05], and has recently
been shown to be equivalent to the Turaev-Viro-Barrett-Westbury state-sum construction as a 3-2-1 extended TFT
[KJ11, Goo18]. The string-net model has two advantages that are attractive in our context: a vector in the the space
of conformal blocks can be described by a string-net, and the action of the mapping class group, when expressed in
terms of such vectors, is completely geometrical.

In this paper, we restrict to a specific type of local rational conformal field theory: we assume that the object
F ∈ Z(C) that describes the bulk fields is the object

L =
⊕

i∈I(C)

X∨
i ⊗Xi ∈ C

along with a certain half-braiding (see subsection 3.2). This is usually referred to as the bulk algebra in the Cardy
case. Indeed, this object comes with a natural structure of a commutative symmetric Frobenius algebra in Z(C),
as befits an algebra of bulk fields, see theorem 3.6 for details. Our main result can now be described as follows: a
consistent systems of correlators can be obtained by assigning to each surface Σ, possibly with non-empty boundary,
a string-net given by decomposing the surface into pairs of pants and placing the appropriate elementary string-nets
that are constructed from the structural morphisms of the Frobenius algebra F on each component. For instance, for
a surface of genus one with one ingoing and two outgoing boundary components, we have the following string-net:
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F

F

F

Figure 1.1: The string-net assigned to the extended surface of genus one with one ingoing and two outgoing boundary
circles according to a certain pairs of pants decomposition.

Here the red and blue circular coupons stand for the multiplication and co-multiplication of the Frobenius algebra F
respectively, while the purple circles stand for the boundary projectors (introduced in remark 2.8) that account for
the half-braiding of F . We show that this assignment is independent of the choice of pairs of pants decomposition
for each surface hence well defined, and it gives rise to a consistent system of bulk field correlators (theorem 3.18).

This paper is organized as follows: in Section 2, we briefly review string-net models, following [KJ11]. We next
recall some facts about modular tensor categories in subsection 3.1, review the Cardy bulk algebra F in subsection
3.2 and the notion of a consistent system of bulk field correlators in subsection 3.3. The proofs of our main results
are contained in sections 3.4 - 3.7. They are based on a remarkable interplay of the algebraic properties of F and
the moves in the Lego-Teichmüller game.

This interplay calls for a deeper explanation which is the subject of subsection 3.8. We notice that the Frobenius
algebra is isomorphic to a different Frobenius algebra, see theorem 3.19. When expressed in terms of this Frobenius
algebra, our string nets become manifestly invariant under the mapping class group, cf. theorem 3.21. After
translating these string-nets back to the string-nets labeled by the original Frobenius algebra F , we obtain the
simplified form of the string-nets of our construction which exhibit manifest invariance under the mapping class
group as well, see theorem 3.22. This implies, for instance, that the colored graph shown in figure 1.1 is, in fact,
equivalent to the following colored graph and that the two graphs thus define the same string-net:

∑

i,j,k,l,m,n∈I(C)

djdkdldmdn

D6

l

i

j
m

k
n

Figure 1.2: The simplified form of the string-net assigned to the extended surface Σ1
1|2.

We expect that our results can be generalized in several directions: beyond the Cardy case and to correlators
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including also boundary and defect fields. A generalization of the string net construction to non-semisimple finite
tensor categories remains, at the moment, a challenge. It would allow to address correlators of logarithmic conformal
field theories as well.
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authors are partially supported by the RTG 1670 “Mathematics inspired by String theory and Quantum Field
Theory” and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy - EXC 2121 “Quantum Universe”- QT.2.

2 String-net models

2.1 Spherical fusion categories

The string-net models are usually defined for spherical fusion categories. We first review a few relevant categorical
concepts and fix our notations for the graphical calculus.

Recall that a right dual of an object V in a strict monoidal category C is an object V ∨ together with morphisms
coevV ∈ HomC(I, V ⊗ V ∨) and evV ∈ HomC(V ∨ ⊗ V, I) satisfying

(idV ⊗ evV ) ◦ (coevV ⊗ idV ) = idV

and
(evV ⊗ idV ∨) ◦ (idV ∨ ⊗ coevV ) = idV ∨ .

Graphically we have:

V ∨V

coevV

=

V

V ∨ V

evV

=

V

and

V

V

=

V

V V

V

=

V

V

.

Here we replaced V ∨ by V upon reversing the direction of the arrow. Left duality is defined similarly by reversing
the arrows in the graphical notation.

A pivotal structure on a rigid monoidal category is a monoidal natural isomorphism

ω : idC ⇒ (−)∨∨.

4



A pivotal structure is called strict if idC = (−)∨∨ and ω = ididC
. It is known that every pivotal category is pivotally

equivalent to a pivotal category with strict pivotal structure [NS07, Theorem 2.2], hence we will assume the pivotal
structure to be strict in the following without loss of generality. For a strict pivotal category, the left and right
duality strictly coincide as functors.

In a pivotal category we have the notions of right and left traces for any f ∈ EndC(V ). Graphically:

trr(f) :=

V

f ∈ EndC(I) trl(f) :=

V

f ∈ EndC(I).

When applied to idV ∈ EndC(V ), we get the definitions of the left and right categorical dimension of the object
V ∈ C:

dimr(V ) :=

V

∈ EndC(I) diml(V ) :=

V

∈ EndC(I).

A pivotal category is called spherical if the left and right traces coincide, i.e. tr(f) := trr(f) = trl(f) and
dim(V ) = dimr(V ) = diml(V ).

From now on, we fix an algebraically closed field K of characteristic 0.

Definition 2.1. A fusion category over K is a rigid K-linear monoidal category C that is finitely semisimple, with
the monoidal unit I being simple.

Here being K-linear means that the sets of morphisms are K-vector spaces and the composition as well as the
monoidal product are bilinear. Being finitely semisimple means that there are finitely many isomorphism classes of
simple objects (objects with no non-trivial subobject) and every object is a direct sum of finitely many simple objects.
Note that K-linearity and finitely-semisimplicity together imply that the morphism spaces are finite dimensional.

Definition 2.2. A spherical fusion category over K is a spherical category C that is also a fusion category over K.

Let us denote the set of isomorphism classes of simple objects by I(C), and fix a representative Xi for each
i ∈ I(C). In addition, we require 0 ∈ I(C) and X0 = I. Duality furnishes a involution on I(C), i.e. i 7→ ī := [X∨

i ].
We require that Xī = X∨

i whenever i 6= ī. Since K is assumed to be algebraically closed, the only finite dimensional
division algebra over K is K itself. Thus we have the Schur’s lemma:

HomC(Xi, Xj) ∼= δi,jK.

In particular, dX := dim(X) ∈ EndC(I) ∼= K. Define the global dimension of the spherical fusion category C to be

D2 :=
∑

i∈I(C)

d2
i .

By [ENO05, Theorem 2.3], D2 6= 0.
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We define the functor C ⊠ . . .⊠ C︸ ︷︷ ︸
n

→ VectK by

V1 ⊠ . . .⊠ Vn 7→ 〈V1, . . . , Vn〉 := HomC(I, V1 ⊗ . . .⊗ Vn).

The pivotal structure furnishes a natural isomorphism by

zV1⊠...⊠Vn
: 〈V1, . . . , Vn〉

∼=
−→ 〈Vn, V1, . . . , Vn−1〉

VnV1

ϕ

. . .

7→

Vn V1

ϕ

. . .

.

It can be seen from the graphical calculus that zn = id. Thus, up to a natural isomorphism, 〈V1, . . . , Vn〉 depends
only on the cyclic order of V1, . . . , Vn. This allows us to represent an element ϕ ∈ 〈V1, . . . , Vn〉 by a round coupon
with n outgoing legs colored by V1, . . . , Vn in clockwise order:

ϕ

V1Vn

.

We are able to connect legs with dual labels: define the composition map

〈V1, . . . , Vn, X
∨〉 ⊗K 〈X,W1, . . . ,Wm〉 → 〈V1, . . . , Vn,W1, . . . ,Wm〉

ϕ⊗K ψ 7→ ϕ ◦X ψ := evX ◦ (ϕ⊗K ψ).

This gives rise to a pairing: 〈V1, . . . , Vn〉 ⊗K 〈V ∨
n , . . . , V

∨
1 〉 → K. It is nondegenerate due to the nondegeneracy of

the evaluation maps. Hence for any choice of bases {ϕα}α∈A of 〈V1, . . . , Vn〉, we define the dual bases {ϕα}α∈A

with respect to this nondegenerate pairing. In the following we will use the summation convention:

α

V1Vn

α

V ∨
1 V ∨

n

:=
∑

α∈A

ϕα ⊗K ϕα.

Such expressions are independent of the choice of bases.
We now introduce a very useful relation:

Proposition 2.3. For any V1, . . . , Vn ∈ C, we have
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∑

i∈I(C)

di

α

α

V1 Vn
. . .

i

V1 Vn
. . .

=

V1 Vn
. . .

V1 Vn
. . .

We call this a completeness relation.

2.2 String-net spaces

We now give a brief introduction to the string-net construction. We refer to [KJ11] for more details, and to [LW05]
for motivations from physics.

Let’s consider finite graphs (i.e. the sets of the vertices and the edges are both finite) embedded in an oriented
surface Σ , which is not required to be compact and may have non-empty boundary. For such a graph Γ, denote
by Eor(Γ) the set of its oriented edges and V(Γ) the set of its vertices. One-valent vertices are called endings. We
denote the set of endings of Γ by Ven(Γ), and define V in(Γ) := V(Γ) \ Ven(Γ). We require Γ ∩ ∂Σ = Ven(Γ). We
will call the edges terminating at endings legs. Note that we don’t make a choice of orientations for the edges of
the finite graphs.

Definition 2.4. Let Σ and Γ be as defined above. A C-coloring (or simply coloring when there is no ambiguity)
of Γ is given by the following data:

• A map V : Eor(Γ) → Obj(C) such that for every e ∈ Eor(Γ), we have V (e) = V (e)∗, where e is the edge with
opposite orientation of e.

• A choice of a vector ϕ(v) ∈ 〈V (e1), . . . , V (en)〉 for every v ∈ V in(Γ), where e1, . . . , en are incident to v, taken
in clockwise order and with outward orientation.

An isomorphism f of two colorings (V, ϕ) and (V ′, ϕ′) is a collection of isomorphisms fe : V (e)
∼=
−→ V ′(e) that is

compatible with V (e) = V (e)∗ and such that ϕ′(v) = f ◦ ϕ(v).

Let B ⊂ ∂Σ be a finite collection of points on ∂Σ and V : B → Obj(C) a map. A C-colored graph Γ with
boundary value V is a colored graph such that Ven(Γ) = B and V (eb) = V(b), where b ∈ B and eb is the edge
incident to b with outgoing orientation. We define Graph(Σ,V) to be the set of C-colored graphs in Σ with boundary
value V, and VGraph(Σ,V) to be the K-vector space freely generated by Graph(Σ,V).

This would be typically an infinite-dimensional vector space since unless Σ = ∅, the set Graph(Σ,V) has infinitely
many elements.

When Σ happens to be a disc D ⊂ R
2, a colored graph Γ ∈Graph(D,V) can be naturally viewed as the graphical

representation of some morphism in C. Indeed, there is a canonical linear surjection [KJ11, Theorem 2.3]

〈−〉D : VGraph(Σ,V) → 〈V (e1), . . . , V (en)〉 ,

where B = {b1, . . . , bn} and e1, . . . , en are the corresponding outgoing legs, taken in the clockwise order.
The finite dimensional vector space 〈V (e1), . . . , V (en)〉 ∼= VGraph(D,V)/ker 〈−〉D can be viewed as the space

of linear combinations of C-colored graphs with a fixed boundary value, where two combinations are identified if

7



they represent the same morphism in C according to the graphical calculus. The identification in turn allows us to
perform graphical calculus in this space. This inspires us to use VGraph(D,V)/ker 〈−〉D as a local model to define
a vector space for an arbitrary oriented surface Σ with a prescribed boundary value V, so that we can perform
graphical calculus locally.

Definition 2.5. Let D ⊂ Σ be an embedded disc, a null graph with respect to D is a linear combination of colored
graphs Γ = c1Γ1 + . . .+ cnΓn ∈ VGraph(Σ,V) such that

• Γ is transversal to ∂D (i.e. no vertex of Γi is on ∂D and the edges of each Γi intersect with ∂D transversally).

• All Γi coincide outside of D.

• 〈Γ〉D =
∑

i

ci 〈Γi ∩D〉D = 0.

Denote by N(Σ,V) ⊂ VGraph(Σ,V) the subspace spanned by null graphs for all possible embedded disks D ⊂ Σ.

Definition 2.6. Let Σ be an oriented surface and let V : B → Obj(C) be a boundary value. Define the string-net
space for (Σ,V) to be the quotient space

ZSN,C(Σ,V) := VGraph(Σ,V)/N(Σ,V).

As before, we have a linear surjection

〈−〉Σ : VGraph(Σ,V) → ZSN,C(Σ,V).

The map has several nice properties. For instance, it is linear in the colors of vertices and additive with respect
to direct sums, isotopic graphs and graphs with isomorphic colorings have the same image. But most importantly,
it allows us to replace graphs that only differ by local relations. That is to say, all equations from the graphical
calculus for the spherical fusion category C, e.g. the one from proposition 2.3, still holds true inside any embedded
disc on the surface.

2.3 Drinfeld center and the extended string-net spaces

It is standard that one can associate to any monoidal category C a braided monoidal category Z(C), called the
Drinfeld center of C. We give the definition of the Drinfeld center of a monoidal category C here to fix our
notations.

Definition 2.7. The Drinfeld center Z(C) of a monoidal category C is a braided monoidal category with

• objects given by the pairs (U, γU ), where U ∈ C is an object and γU : U ⊗ − ⇒ − ⊗ U a natural isomorphism
called the half-braiding that satisfies

γU ;V ⊗W = (idV ⊗ γU ;W ) ◦ (γU ;V ⊗ idW )

for all V,W ∈ C;

• morphisms (U, γU ) → (V, γV ) given by all f ∈ HomC(U, V ) that satisfy

(idW ⊗ f) ◦ γU ;W = γV ;W ◦ (f ⊗ idW )

for all W ∈ C;

8



• monoidal product defined by (U, γU ) ⊗ (V, γV ) := (U ⊗ V, γU⊗V ), where

γU⊗V ;W := (γU ;W ⊗ idV ) ◦ (idU ⊗ γV ;W )

for all W ∈ C;

• braiding defined by β
Z(C)
(U,γU ),(V,γV )

:= γU ;V .

The definition of string-net spaces can be modified so that one assign to each boundary circle an object in the
Drinfeld center Z(C). We now give a working description of the extended string-net spaces that are relevant to our
construction of CFT correlators and refer to [KJ11, Section 6, 7] for details.

Remark 2.8. For all Y ∈ Z(C), the following string-net on a cylinder is a projector with respect to sewing the
string-nets on cylinders:

PY :=
∑

i∈I(C)

di

D2 i

Y

.

Here the crossing is given by the half-braiding of Y . By using proposition 2.3 and the naturality of the half-braiding,
we see that P is indeed a projector:

P 2
Y =

∑

i,j∈I(C)

didj

D4
j

Y

i
=

∑

i,j,k∈I(C)

didjdk

D4 k

Y

j

i
α α

=
∑

j,k∈I(C)

djdk

D4

k

Y

j

=
∑

k∈I(C)

dk

D2 k

Y

= P.

We are interested in the case where Σ ∼= Σg
n, here Σg

n means a compact oriented surface of genus g with n
boundary components. Denote by (Σg

n, Y1, . . . , Yn) a Z(C)-marked surface, i.e. Σg
n together with

• a numbering of π0(∂Σ) with 1, . . . , n,

• a choice of a point in each connected component of ∂Σ,

• a choice of n objects Y1, . . . , Yn ∈ Z(C).
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We denote the extended string-net space for the Z(C)-marked surface Σg
n with this boundary value by ZSN,C(Σg

n, Y1, . . . , Yn).
This is defined to be a subspace of the (unextended) string-net spaces of Σg

n with boundary value given by the un-
derlying objects of Y1, . . . , Yn in C, which is spanned by all the string-nets with additional projectors (introduced in
remark 2.8) placed near the corresponding boundary circles. For instance, a generic vector in ZSN,C(Σ1

3, Y1, Y2, Y3)
can be defined by a linear combination of equivalence classes of colored graphs on Σ1

3 such as:

Y3

Y1 Y2

Figure 2.1: A generic string-net in ZSN,C(Σ1
3, Y1, Y2, Y3).

Here the purple circles stand for the projectors PY1
, PY2

, PY3
introduced in remark 2.8.

By the result of [KJ11], there is a canonical isomorphism ZSN,C(Σg
n, Y1, . . . , Yn) ∼= ZT V,C(Σg

n, Y1, . . . , Yn), where
ZT V,C(Σg

n, Y1, . . . , Yn) is the state space for (Σg
n, Y1, . . . , Yn) in the extended Turaev-Viro-Barrett-Westbury topo-

logical field theory. Hence:

Proposition 2.9. There are isomorphisms

ZSN,C(Σg
n, Y1, . . . , Yn) ∼= ZT V,C(Σg

n, Y1, . . . , Yn) ∼= HomZ(C)(IZ(C), Y1 ⊗ . . .⊗ Yn ⊗ L⊗g

Z(C))

that are functorial with respect to the morphisms in Z(C), where

LZ(C) :=
⊕

i∈I(Z(C))

Z∨
i ⊗ Zi.

3 Consistent systems of correlators

3.1 Modular tensor categories

The categorical ingredient of the string-net construction is a spherical fusion category C, which is not necessarily
braided. However, for the application to the conformal field theories, we need a category with the structure of a
ribbon fusion category over C with an additional nondegeneracy property:

Definition 3.1. A modular tensor category C is a ribbon fusion category over C with the braiding being nonde-
generate in the sense that the matrix (si,j)i,j∈I(C) is invertible, where
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si,j := tr(βj,i ◦ βi,j) =

i j

∈ EndC(I) ∼= C.

It can be seen from the cyclic symmetry of the categorical trace that si,j = sj,i. Moreover, one can show that
(see e.g. [BK01, Theorem 3.7.1]) ∑

k∈I(C)

si,ksk,j = D2δi,j̄ .

For a spherical fusion category C, the Drinfeld center Z(C) is a modular tensor category.
We are going to use the following equations:

Lemma 3.2. For all i ∈ I(C), we have

i

j

=
sj,i

di
i.

Proof. Simply compare the traces of the both sides.

Lemma 3.3. For all i ∈ I(C), we have

∑

j∈I(C)

dj i

j

= D2δ0,i i.

Proof. The trace of the left-hand side =
∑

j∈I(C)

djsj,i =
∑

j∈I(C)

s0,jsj,i = D2δ0̄,i = D2δ0,i = the trace of the right-hand

side.

Lemma 3.4. For all X ∈ C, we have

∑

i∈I(C)

di

i

X

X

= D2

X

X

α

α

.
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In particular, for all i, j ∈ I(C), we have

∑

k∈I(C)

dk

k

i j

i j

=
D2

di

δi,j

i

i

.

Proof. Using proposition 2.3 and lemma 3.3.

For a ribbon category C, we denote by Crev its reverse category, i.e. the same monoidal category with inverse
braiding and twist. There is a canonical braided functor

Ξ: Crev
⊠ C → Z(C)

U ⊠ V 7→ (U ⊗ V, γU⊗V ),

where
γU⊗V ;W := (β−1

W,U ⊗ idV ) ◦ (idU ⊗ βV,W )

or graphically:

γU⊗V ;W :=

U V W

U VW

.

In fact, modularity could be formulated in terms of the functor Ξ, see e.g. [Shi19]:

Theorem 3.5. A ribbon fusion category C is a modular tensor category if and only if the canonical functor

Ξ: Crev
⊠ C → Z(C)

is a braided equivalence.

3.2 The Cardy bulk algebra

The following results are in principle known. We collect them for the convenience of the reader.
We define the object

L :=
⊕

i∈I(C)

X∨
i ⊗Xi

and equip it with the half-braiding which we call the dolphin half-braiding

12



γdol
L;X :=

⊕

i∈I(C)

i i X

i iX

.

We next show that it has a natural Frobenius algebra structure in Z(C). We denote F := (L, γdol
L ) ∈ Z(C) in

the following.

Theorem 3.6. (F, µF , ηF ,∆F , εF ) is a Frobenius algebra in Z(C), where

F

F F

µF :=
⊕

i,j,k∈I(C)

dk

α α

i ji j

k k

F

F F

∆F
:=

⊕

i,j,k∈I(C)

djdk

D2

α α

k k

i i

j j

F

ηF :=
⊕

i∈I(C)

δ0,i

i i

F

εF
:=

⊕

i∈I(C)

D2δ0,i

ii

.

Proof. Note that, all the morphisms here are indeed morphisms of the Drinfeld center Z(C). We only show one of
the Frobenius property, the other one can be shown in a similar way:

F

F

F

F

=
⊕

i,j,k,l,m∈I(C)

dkdldm

D2
α α

β β

k k

i j

l

i j

l

m m

13



=
⊕

i,j,k,l∈I(C)

dkdl

D2

γ

k k

i j

l

i j

l

γ

=
⊕

i,j,k,l∈I(C)

dkdl

D2

k k l l

i ji j

γ γ

=
⊕

i,j,k,l,m∈I(C)

dkdldm

D2

k k l l

m m

α α

i ji j

β β

=

F

F

F

F

.

Remark 3.7. The object L =
⊕

i∈I(C)

X∨
i ⊗ Xi is actually an explicit expression for the coend

∫ X∈C

X∨ ⊗ X in the

case of fusion categories. The coend makes sense in the more general case of finite tensor categories that are not
necessarily semisimple. It carries a canonical Hopf algebra structure with a non-degenerate Hopf pairing [Lyu95].
The Frobenius algebra structure in theorem 3.6 is obtained by changing the co-multiplication and the counit of the
Hopf algebra.

Theorem 3.8. The Frobenius algebra (F, µF , ηF ,∆F , εF ) is commutative, symmetric, and cocommutative.

Proof. We first prove the commutativity:

F

F F

µF

=
⊕

i,j,k∈I(C)

dk

α α

k k

i ji j

=
⊕

i,j,k∈I(C)

dk

α α

k k

i ji j

14



=
⊕

i,j,k∈I(C)

dk

α′ α′

k k

i ji j

=
⊕

i,j,k∈I(C)

dk

α′ α′

k k

i ji j

=

F

F F

µF .

We always represent by an over-crossing of a green line the corresponding half-braiding of its label in Z(C).
Then we show that F has trivial twist:

F

F

=
⊕

i∈I(C)

i i

i i

=
⊕

i∈I(C)

i i

i i

=
⊕

i∈I(C)

θiθ
−1
i

i i

i i

=

F

F

.

Here we have used the fact that for i ∈ I(C), θi := θXi
∈ EndC(Xi) ∼= C. By a result for Frobenius algebras in

general ribbon categories [FFRS06b, Proposition 2.25], F is also symmetric and cocommutative.

3.3 Consistent systems of bulk field correlators

We now give a summary of the concept of consistent systems of CFT bulk field correlators as introduced in [FS17].
An extended surface Σ is an oriented surface with a partition of the boundary components into ingoing and

outgoing parts, i.e. ∂Σ = ∂inΣ ⊔ ∂outΣ and a marked point for each boundary component. We denote by Σg

p|q an

extended surface of genus g with p ingoing boundary components and q outgoing boundary components.

Definition 3.9. The mapping class group Map(Σ) of an extended surface Σ is the group of homotopy classes of
orientation preserving homeomorphisms Σ → Σ that map ∂inΣ to itself (hence also ∂outΣ to itself) and map marked
points to marked points.

Along with the action of the mapping class group on an extended surface, we will also consider the sewing of the
surface: A sewing sα,β along (α, β) ∈ π0(∂inΣ) × π0(∂outΣ) gives us a new extended surface sα,β(Σ) := ∪α,βΣ by
identifying the boundary component ∂αΣ with ∂βΣ via an orientation preserving homeomorphism f : ∂αΣ → ∂βΣ
that maps the marked point on ∂αΣ to the marked point on ∂βΣ. The resulted surface is independent of f up to
homeomorphisms.

Definition 3.10. The category Surf is the symmetric monoidal category having extended surfaces Σ as objects
and the pairs (ϕ, sα,β) as morphisms Σ → ∪α,βΣ, where ϕ ∈ Map(Σ) is a mapping class and sα,β a sewing. The
monoidal product is given by the disjoint union.

In order to describe the composition of the morphisms in the category Surf, we need the relations among the
pairs of mapping classes and sewing. Such relations are discussed in detail in [HLS00].
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In a two-dimensional local conformal field theory (to which we refer as a CFT in the following), one assigns
to each extended surface Σ a C-vector space called the space of conformal blocks on Σ that carries a projective
representation of the mapping class group Map(Σ). The spaces of conformal blocks can be viewed as the spaces of
solutions to the differential equations imposed by the conformal symmetries called the Ward identities. The bulk
field correlators are elements in the spaces of conformal blocks that satisfies certain consistency conditions regarding
the action of mapping class groups and sewing. The spaces of conformal blocks can be constructed as the morphism
spaces in a braided monoidal category D involving an object F ∈ D. The braided monoidal category D should be
imagined as the representation category of a conformal vertex operator algebra, or a conformal net of observables,
and the object F ∈ D should be considered as the space of bulk fields. We say that the CFT has the monodromy
data based on D and the bulk object F .

Since we are interested in correlators of bulk fields, we consider conformal blocks that are based on the modular
tensor category D = Crev

⊠ C for a modular tensor category C (correlators of bulk fields are obtained by combining
conformal blocks for left movers with those for right movers). As mentioned in theorem 3.5, modularity is equivalent
to the canonical functor Ξ: Crev

⊠ C → Z(C) being a braided equivalence. Hence, by replacing D = Crev
⊠ C with

the Drinfeld center Z(C), we can apply the Turaev-Viro-Barrett-Westbury state-sum construction, or equivalently,
the string-net model described in section 2.

In the so called Cardy case rational CFT, we take the object F = (L, γdol
L ) as the bulk object for our CFT.

Define the pinned block functor
BlF : Surf → VectC

by assigning to the extended surface Σg

p|q the finite dimensional vector space

BlF (Σg

p|q) := ZSN,C(Σg
p+q, F

∨, . . . , F∨

︸ ︷︷ ︸
p

, F, . . . , F︸ ︷︷ ︸
q

) ∼= HomZ(C)(IZ(C), (F
∨)⊗p ⊗ F⊗q ⊗ L⊗g

Z(C)),

and to a morphism (ϕ, s) between extended surfaces the natural action of the mapping class ϕ followed by the
concatenation of the string-net induced by the sewing s.

Define the trivial block functor ∆C : Surf → VectC by assigning to every extended surface the vector space C

and to every morphism the identity idC. A consistent system of bulk field correlators is then a monoidal natural
transformation

vF : ∆C → BlF

such that vF (Σ0
1|1) := (vF )Σ0

1|1

(1) ∈ BlF (Σ0
1|1) ∼= EndZ(C)(F ) is invertible.

Unraveling the rather compact definition above, we see that the so defined consistent system of bulk field
correlators amounts to a choice of a vector

vF (Σg

p|q) := (vF )Σg

p|q
(1) ∈ BlF (Σg

p|q)

for each extended surface Σg

p|q that is invariant under the action of the mapping class group Map(Σg

p|q), such that

the linear map induced by a sewing maps the chosen vector to the chosen vector for the sewn surface.
It is shown [FS17, Theorem 4.10] that for a (not necessarily semisimple) modular finite category D, the consistent

systems of bulk field correlators with monodromy data based on D and with bulk object F ∈ D are in bijection
with structures of a modular Frobenius algebra [FS17, Definition 4.9] on F .

Since the bulk object F we are considering does carry the structure of a modular Frobenius algebra [KR09,
Section 3] that is given in theorem 3.6, the existence of a consistent set of correlators is guaranteed. We now
propose an explicit construction of the bulk field correlators using the string-net model.
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3.4 Invariance under Dehn twists

We start our construction by proposing that the correlator vF (Σ0
1|1) is given by the following string-net on a cylinder:

v0
1|1 :=

F

F

=
∑

i,j∈I(C)

dj

D2
ji i .

In fact, this is the only possible choice since it needs to be an invertible idempotent, hence an identity in ZSN,C(Σ0
2, F

∨, F ) ∼=
EndZ(C)(F ).

Lemma 3.11. The string-net v0
1|1 is invariant under the action of the mapping class group Map(Σ0

1|1).

Proof. Since Map(Σ0
1|1) is generated by a Dehn twist T , we only have to show the invariance under T . Indeed:

Tv0
1|1 =

∑

i,j∈I(C)

dj

D2

j

ii

ii

=
∑

i,j,k∈I(C)

djdk

D2
j

ii

ii

k k
α α

=
∑

i,j,k∈I(C)

djdk

D2
j

ii

ii

k k

α

α =
∑

i,k∈I(C)

dk

D2

i i

k

=
∑

i,k∈I(C)

dk

D2

i

k

i

=
∑

i,k∈I(C)

dk

D2

i

k

i

= v0
1|1.

Here we first cut along the the dashed lines, which are identified to produce a cylinder, and insert the completeness
relation introduced in proposition 2.3. Then we twist the node on the right counterclockwise so we are able to
contract according to the completeness relation along the line that is labeled by j. Twists of the red ribbons and
inverse-twists of the blue ribbons are created in this process and they cancel each other in each summand.
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Remark 3.12. If we replace F in the string-net v0
1|1 by any other object in Z(C) with trivial twist, by carrying out

the same argument we see that the string-net will still be invariant under a Dehn twist.

3.5 Modular invariance

By sewing the cylinder along the boundaries, we get the correlator on a torus:

v1
0|0 :=

F
.

Lemma 3.13. The string-net v1
0|0 is invariant under the action of the mapping class group Map(Σ1

0|0).

Proof. The mapping class group Map(Σ1
0|0) ∼= SL(2,Z) of the torus is generated by a Dehn twist T and a mapping

class S that exchange two generators of the first homology of the torus H1(Σ1
0;Z). The invariance under the action

of T follows immediately from lemma 3.11, so we only need to show the invariance under the action of S. Write

v1
0|0 =

∑

i,j∈I(C)

dj

D2

i

j

i

=
∑

i∈I(C)

Gī,i,

where we define:

Gi,j :=
∑

k∈I(C)

dk

D2

i

k

j

.

It is sufficient to show that

SGi,j =
∑

k∈I(C)

dk

D2

i

k

j
=

∑

a,b∈I(C)

sī,asj,b

D2
Ga,b,

18



since this implies that

Sv1
0|0 =

∑

i∈I(C)

SGī,i =
∑

i,a,b∈I(C)

si,asi,b

D2
Ga,b =

∑

a,b∈I(C)

δā,bGa,b =
∑

b∈I(C)

Gb̄,b = v1
0|0.

In fact, we have
∑

a,b∈I(C)

sī,asj,b

D2
Ga,b

=
∑

a,b,k∈I(C)

dksī,asj,b

D4

a

k

b

=
∑

a,b,k∈I(C)

dadbdk

D4

a

k

b

i

j

=
∑

a,b,k,l∈I(C)

dadbdkdl

D4

a

k

b

i

j
kl

α α =
∑

a,b,l∈I(C)

dadbdl

D4

a b
i

j

l

=
∑

a,b,l,m∈I(C)

dadbdldm

D4

a b

i

j

l

α

α

m

m

=
∑

a,l,m∈I(C)

dadldm

D4

a

i

j

l

m

=
∑

l,m∈I(C)

dldm

D2
δ0,l

i

j

l

m

=
∑

m∈I(C)

dm

D2

i

m

j

= SGi,j .

Here we first use lemma 3.2 to insert circles around the red and the blue ribbons, then we cut across the two circles
and the line in the middle that is labeled with k and insert a completeness relation. Then we contract along k, cut
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along the dashed lines one the top and the bottom (they are identified) and insert a completeness relation again.
Then we contract along the b line and create a circle around l. Finally we use lemma 3.3 to get rid of the l line.

Remark 3.14. In fact, the modular invariance of the string-net v1
0|0 can be made manifest. Namely, the string-net

v1
0|0 is actually the empty diagram on the torus:

v1
0|0 =

∑

i,j∈I(C)

dj

D2

i

j

i

=
∑

i,j,k∈I(C)

didjdk

D4 j

i

i

k

=
∑

i,j,k∈I(C)

didjdk

D4 j

k

i

k

=
∑

j,k∈I(C)

djdk

D2 j

k

α α

k

k

k

j

=
∑

k∈I(C)

dk

D2

k

k

k

k

=
∑

k∈I(C)

dk

D2 k

= .

Here we have used lemma 3.4. In fact, this is a special case of the more general result we are going to present later
in theorem 3.22.

For a modular tensor category C, since Z(C) ≃ Crev
⊠ C, every simple object in Z(C) is isomorphic to Z(i,j) :=

(Xi ⊗Xj , γ(i,j)) for some i, j ∈ I(C) and the half braiding γ(i,j) given by the inverse of the braiding of Xi and the
braiding of Xj. The s matrix for Z(C) is then given by
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s(i,j),(a,b) =

i

j a

b

=

ai j b

= sī,asj,b.

Moreover, the global dimension of Z(C) is given by D2
Z(C) =

∑

i,j∈I(C)

d2
i d

2
j = D4, i.e. the square of the global

dimension of C. Now, it can be seen from the following representation of the string-net space associated to the torus
that follows from factorization

ZSN,C(Σ1
0) ∼=

⊕

k∈I(Z(C))

ZSN,C(Σ0
2, Z

∨
k , Zk) ∼=

⊕

i,j∈I(C)

ZSN,C(Σ0
2, Z

∨
(i,j), Z(i,j))

that {Gi,j}i,j∈I(C) is a basis for the vector space ZSN,C(Σ1
0), which transforms under the S-move as expected from

the action of the mapping class group. The basis {Gi,j}i,j∈I(C) is canonical up to a choice of circle (we think of

a torus as the product of two circles), but the coefficient of the v1
0|0 is unchanged under a change of the choice of

circle since the corresponding change of basis is implemented by the action of the S-move. Hence, the invariant we
get is indeed the charge conjugation matrix (δi,j̄)i,j∈I(C), the entities of which are the coefficients of v1

0|0 under the

bases {Gi,j}i,j∈I(C), even though v1
0|0 is in fact the empty diagram on the torus.

3.6 Invariance under braid moves

We now consider the natural candidates for vF (Σ0
2|1) and vF (Σ0

1|2):

v0
2|1 :=

F F

F

and v0
1|2 :=

F F

F

.

Lemma 3.15. The string-net v0
2|1 is invariant under the action of the mapping class group Map(Σ0

2|1) and the

string-net v0
1|2 is invariant under the action of the mapping class group Map(Σ0

1|2).

Proof. The three projectors guarantee the invariance under the Dehn twists, hence we only have to show the
invariance under the braid move, which for instance acts on v0

2|1 as:
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B :

F F

F

7→

F F

F

.

Since the product and coproduct of the Frobenius algebra F are only commutative with respect to the braiding in
the Drinfeld center Z(C), we need to show that the braid move produces the braiding in Z(C) with the help of the
projectors. It turns out that this is indeed the case:

∑

i,j,k,l∈I(C)

dkdl

D4

i ji j

k l

7→
∑

i,j,k,l∈I(C)

dkdl

D4

i ji j

k l

=
∑

i,j,k,l,m∈I(C)

dkdldm

D4

i ji j

k l

m

α

α

=
∑

i,j,k,m∈I(C)

dkdm

D4

i ji j

k

m

=
∑

i,j,k,m,n∈I(C)

dkdmdn

D4

i ji j

k

m
α α

n

=
∑

i,j,m,n∈I(C)

dmdn

D4

i ji j

n

m

=
∑

i,j,m,n,p∈I(C)

dmdndp

D4

i ji j

n p

m

α

α

=
∑

i,j,n,p∈I(C)

dndp

D4

i ji j

n p

.
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Remark 3.16. As can be seen from the proof above, the proposed string-nets v0
2|1 and v0

1|2 will be invariant under
the braid move if we replace F by any commutative symmetric (hence cocommutative) Frobenius algebra in Z(C).

3.7 Consistency via the Lego-Teichmüller game

The requirement of consistency with respect to sewing forces us to make the following choices of vF (Σ0
1|0) and

vF (Σ0
0|1), where the counit and the unit of F are used respectively:

v0
1|0 :=

F

and v0
0|1 :=

F

.

Note that on a disc the projector for the boundary is simply the number
1

D2

∑

i∈I(C)

d2
i = 1. Such a choice of the

correlators on the discs leads to the same result on the cylinder. For instance:

v0
1|1 =

F

F

=

F

F

.

There is a systematic framework of decomposing extended surfaces of any genus and with any number of
boundary circles into pairs of pants, cylinders and discs which undergoes the name of Lego-Teichmüller game.
Combining this with factorization, we can build the correlator for any extended surface Σg

p|q from v0
1|0, v0

0|1, v0
1|1,

v0
2|1, and v0

1|2 (we call them the elementary string-nets). The fact that we are using the morphisms of the Frobenius
algebra structure on F makes sure that we get the consistent results if we build everything from those elementary
correlators and the sewing doesn’t involve sewing the boundary components of the same elementary surface. For
instance, the associativity of the product gives us:
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v0
3|1 :=

F

F FF

=

F

FF F

.

Here we also used the fact that we can pass projectors through each others, as was demonstrated in the proof of
lemma 3.15. For instance, we have:

=
α

α

=

=
α

α

= .

The Frobenius property of F guarantees that:
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v0
2|2 :=

F

FF

F

=

F F

F F

=

F

F F

F

.

In general, given a generic extended surface Σg

p|q, there exist different ways of decomposing it into a pairs of

pants, cylinders and discs. There exists at least one such decomposition, for which one can label each boundary circle
of the components as either ingoing or outgoing, such that only ingoing and outgoing circles are sewed together,
and that for each pair of pants there are at most two ingoing and at most two outgoing boundary circles, and that
the types of the two boundary circles of each cylinder are different. We call such a decomposition along with a
label of boundary circles a regular decomposition. Given a regular decomposition Π of an extended surface Σg

p|q,

we define the string-net vF (Σg

p|q,Π) ∈ BlF (Σg

p|q) to be the one obtained by placing the appropriate elementary

string-net on each component. According to the general theory of the Lego-Teichmüller game [BK00], given two
regular decompositions Π and Π′, there exist a finite sequence of moves, which satisfies finite numbers of relations,
that transform Π into Π′. The Lego-Teichmüller game has five types of moves. Among these moves, the only one
involving surfaces of genus higher than zero is the S-move on tori with one boundary circle (see lemma 3.17). The
invariance under the rest of the moves is taken care of by the (co)associativity, the (co)unity and the Frobenius
property of F , along with the special property of the boundary projectors.

We now consider the following string-nets v1
1|0 and v1

0|1 obtained from regular decompositions of the tori with
one boundary circle:

v1
1|0 :=

F

and v1
0|1 :=

F

.

It turns out that in order to show that the assignment of the string-net vF (Σg

p|q,Π) ∈ BlF (Σg

p|q) to any extended

surface Σg

p|q is independent of the choice of regular decomposition Π and gives rise to a consistent system of bulk

field correlators, it remains to show that the string-nets v1
1|0 and v1

0|1 are invariant under the S-move.

Lemma 3.17. The string-nets v1
1|0 and v1

0|1 are invariant under the actions of the corresponding mapping class
groups.

25



Proof. For v1
1|0: we need to show that it is invariant under the S-move:

S :

F

F

F

7→ F

F F

.

First we notice that the projector around the single boundary component is redundant:

v1
1|0 =

F

F

F

=

F

F

F

α α

=

F

F

F

=

F

F

F

=

F

F

F

.

Then by using lemma 3.4, we see:

v1
1|0 =

∑

i,j,k

djdk

D2

α α

j j

j j

i i

k

=
∑

i,j,k,l

djdkdl

D4

j

j

i

k

l
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=
∑

i,j,k,l

djdkdl

D4 j

l

k

l

i

=
∑

i,k,l

dkdl

D2

l

k

l

i

l

l

α α
k

=
∑

i,l

dl

D2

l

l

i

l

l

=
∑

i,l

dl

D2

l

i

.

The last picture is manifestly invariant under the S-move.
Using both the invariance of v1

1|0 and the Frobenius property, it can be decuced that v1
0|1 is also invariant under

the S-move and hence the action of mapping class group.

Theorem 3.18. The assignment of the string-net vF (Σg

p|q,Π) ∈ BlF (Σg

p|q) to any extended surface Σg

p|q is inde-

pendent of the choice of regular decomposition Π and such assignments give rise to a consistent system of bulk field
correlators vF : ∆C → BlF .

The upshot of the argument we are giving here is that given any commutative symmetric Frobenius algebra in
Z(C), a consistent system of correlators can be produced via decomposing each extended surface into smaller pieces
and sewing together the elementary string-nets according to the decompositions, provided that the string-nets we
get on the tori with one boundary circle are invariant under the S-move. However, the consistency for the Cardy
case can be seen in a much more straight forward manner, and a closed form of the correlators can be derived: it
turns out that the string-nets we get, in their most simplified forms, are as empty as possible.

3.8 Consistency made explicit

The coend L =
⊕

i∈I(C)

X∨
i ⊗ Xi can be also equipped with a different half-braiding that comes from the central

monad:

γnon
L;X :=

⊕

i,j∈I(C)

dj

i i X

j jX

α α .

We call it the non-crossing half-braiding for the obvious reason.
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We denote F̃ := (L, γnon
L ) ∈ Z(C). There is also a naturally defined Frobenius algebra structure on this object,

with the multiplication and co-multiplication given by:

F̃

F̃ F̃

µ
F̃ :=

⊕

i∈I(C)

d−1
i

i i i i

i i

∆
F̃

F̃F̃

F̃

:=
⊕

i∈I(C)

i i i i

i i

.

In this case, it is easy to show that this is a special symmetric Frobenius algebra.

Theorem 3.19. For a modular tensor category C, the morphism SL :=
⊕

i,j∈I(C)

dj

i i

j j

∈ EndC(L) is an

isomorphism of Frobenius algebras in Z(C) from the Cardy bulk algebra (F, µF , ηF ,∆F , εF ) in theorem 3.6 to the

Frobenius algebra (F̃ , µ
F̃
, η

F̃
,∆

F̃
, ε

F̃
) defined above, with the inverse given by S−1

L
:=

⊕

i,j∈I(C)

dj

D2

i i

j j

.

Proof. Using proposition 2.3, it is not hard to see that SL ∈ HomZ(C)(F, F̃ ) and S−1
L ∈ HomZ(C)(F̃ , F ). For

instance:

SL

F̃

F X

X

=
⊕

i,j∈I(C)

dj

j j

i X

X

i

=
⊕

i,j,k∈I(C)

djdk

j j

i X

X

i

α α

k

=
SL

F̃

F X

X

.

The fact that SL and S−1
L are inverse to each other is equivalent to lemma 3.4.

To show that SL is an isomorphism of algebras, we notice:
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S−1
L S−1

L

SL

µF

F̃

F

F̃

F̃

FF

=
⊕

i,j,k,l,m,n∈I(C)

dkdldmdn

D4

α α

i ji j

k l

n n

m

=
⊕

i,j,k,l,n∈I(C)

dkdldn

D4

i ji j

k l

n n

=
⊕

i,j,k,l,n∈I(C)

dkdldn

D4

i ji j

n n

k l

=
⊕

i,j,l∈I(C)

dl

D2

i ji j

i i

l =
⊕

i∈I(C)

d−1
i

i ii i

i i

= µ
F̃

F̃ F̃

F̃

.

Hence SL ◦ µF = µ
F̃

◦ (SL ⊗ SL). Similarly, one shows that SL is also an isomorphism of coalgebras:

SL SL

S−1
L

∆F

F̃

F

F̃

F̃

FF

=
⊕

i,j,k,l,m,n∈I(C)

djdkdldmdn

D4

α α

i i

j

k l

m nm n
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=
⊕

i,j,k,m,n∈I(C)

djdkdmdn

D4

i i

j

k

m nm n

=
⊕

i,k,m∈I(C)

dkdm

D2

i i

k

m im i

=
⊕

i,k,m∈I(C)

dkdm

D2

i i

k

m im i

=
⊕

i,k,m∈I(C)

dkdm

D2

i i

k

m im i

=
⊕

i∈I(C)

i i

i ii i

= ∆
F̃

F̃ F̃

F̃

.

Corollary 3.20. For a modular tensor category C, (F̃ , µ
F̃
, η

F̃
,∆

F̃
, ε

F̃
) is a commutative, symmetric Frobenius

algebra in Z(C). In particular, F̃ has trivial twist.

The isomorphism SL induces isomorphisms of string-net spaces. This is implemented by composing the string-
net with SL near the outgoing boundary and precomposing the string-net with S−1

L near the ingoing boundary. For
instance, applying to the invariants on pairs of pants, we get
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F̃ F̃

F̃

F F

FµF and

F̃ F̃

F̃

F F

F
∆F

.

Here the white boxes stand for SL and the gray ones stand for S−1
L . Since both are morphisms in Z(C), it makes

no difference which side of the projectors we put the boxes on, as long as we use the correct half-braidings.
On the other hand, if we take F̃ as our bulk object, we get a new set of conformal blocks

BlF̃ : Surf → VectC

as well as a new set of correlators

v
F̃

: ∆C → BlF̃ .

In fact, the induced isomorphisms of string-net spaces give rise to a natural isomorphisms of conformal blocks

BlSL : BlF → BlF̃ ,

since the isomorphisms intertwine the action of mapping class groups and sewing. For example, by sewing a pair
of ingoing and outgoing boundaries of Σ0

2|1, we get:

F̃

F

F

F

µF

F̃
=

F̃

F

F

F̃

F

µF =

F̃

F

F

µF .

Moreover, due to the fact that

31



F̃ F̃

F̃

F F

FµF =

F̃ F̃

F̃

µ
F̃

and

F̃ F̃

F̃

F F

F
∆F

=

F̃ F̃

F̃

∆
F̃

,

we get a commutative diagram of natural transformations:

BlF̃

∆C

BlF

vF v
F̃

BlSL

.

Intuitively, the two isomorphic Frobenius algebras produce equivalent sets of correlators. The natural isomorphism
BlSL gives the precise way to relate them.

It turns out that the correlators given by the Frobenius algebra (F̃ , µ
F̃
, η

F̃
,∆

F̃
, ε

F̃
) are particularly easy to

compute:

Theorem 3.21. For all p, q, g ∈ Z≥0, we have
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v
F̃

(Σg

p|q) =
∑

i1,...,ip,j1,...,jq∈I(C)

dj1
. . . djq

D2p

i1 ip

j1 jq. . .

. . .

. . .

. . .

. . .
.

Proof. Essentially, we only have to check the cases in which g = 0 and p+ q ≤ 3 .

v
F̃

(Σ0
2|1) =

F̃ F̃

F̃

µ
F̃ =

∑

i,j,k,l,m,n,o∈I(C)

dkdldmdndo

D6

i i j j

k k

l

l

l

m n

o

=
∑

i,j,k,l∈I(C)

dkdl

D6

i

k

j

l =
∑

i,j,k∈I(C)

dk

D4

i

k

j

.

Similarly, we have
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v
F̃

(Σ0
1|2) =

F̃ F̃

F̃

∆
F̃

=
∑

i,j,k∈I(C)

djdk

D2

i

j k

.

The arguments concerning the unit and counit are even more straight forward. Notice that, whenever we sew
together a pair of boundaries, we get a contractible circle that cancels out a factor of D2.

By applying the inverse of the natural isomorphism BlSL , we get the simplified form of the consistent system
of correlators vF given by the Cardy bulk algebra (F, µF , ηF ,∆F , εF ) that manifests both the invariance and
consistency:

Theorem 3.22. For all p, q, g ∈ Z≥0, we have

vF (Σg

p|q) =
∑

i1,...,ip,j1,...,jq,k1,...,kp,l1,...,lq∈I(C)

dj1
. . . djq

dk1
. . . dkp

dl1
. . . dlq

D2(p+q)

k1

j1
. . .

. . .

. . .

. . .

. . .

i1

kp

ip

jq
l1 lq

.
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