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Abstract

In a vertex algebra setting, we consider non-local screening opera-
tors, which are associated to any non-integral lattice. We have previously
shown that under certain restrictions these screening operators satisfy the
relations of a quantum shuffle algebra or Nichols algebra, with a diagonal
braiding associated to the non-locality and non-integrality.

In the present article, we take all finite-dimensional diagonal Nichols
algebras, as classified by Heckenberger, and find all realisations of the
braiding by a lattice that are compatible with reflections. Usually the
realising lattices are unique or parametrised by one or two parameters.
We then study the associated algebra of screenings with improved meth-
ods. Typically, for positive definite lattices we obtain the Nichols algebra,
such as the positive part of the quantum group, and for negative definite
lattices we obtain a certain extension of the Nichols algebra generalising
the infinite quantum group with a large centre. Our result in particular
covers so-called (p, p′)-models and Lie superalgebras, which had been of
interest to other research.
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1 Introduction

Given a (non-integral) lattice Λ with basis v1, . . . , vn, we associate the Gram
matrix mij = (vi, vj) and a braiding matrix qij = eπi(vi,vj). For the Heisen-
berg vertex algebra, we consider the non-local screening operators Zvi . Then
in [Len17] it was proven that the screening operators obey the relations of
the diagonal Nichols algebra B(q), as long as the so-called smallness condi-
tion on mij is fulfilled. The application one has in mind is the construction
of vertex algebras with the same representation theory as quantum groups
[Wak86][FGST06a][AM08][FT10] and beyond [Sem11].

The goal of this article is to find all lattices Λ, such that the associated
braiding qij gives a finite-dimensional Nichols algebra as classified in [Hec06],
and such that the Weyl reflections on qij lift to reflections on mij in a suitable
sense. In this case we say that Λ, mij realise the braiding matrix qij .

As a second goal, for each realising lattice Λ we then study the algebra of
screening operators by analysing the smallness condition which does usually not
hold. Depending on the free parameters in the realisation we find extensions of
Nichols algebras.

As a main example, let g be a complex finite-dimensional semisimple Lie
algebra with simple roots α1, . . . , αn. Let q be a root of unity and qij = q(αi,αj)

be the braiding with associated Nichols algebra B(q) the positive part of the
small quantum group uq(g)+.
For every real number r with q = eiπr we get a realising lattice, namely the root
lattice of g rescaled by r. Then the screening algebra is for r > 0 the Nichols
algebra uq(g)+ and for r < 0 conjecturally the positive part of the Kac-Procesi-
DeConcini quantum group UKq (g) (see 5.4).
These are all solutions, if q has sufficiently large order. But for e.g. q = −1,
g = sln we get an additional family of realising solutions. They are associated
to the Lie superalgebras sl(n′|n′′), n′+n′′ = n, which give incidentally the same
braiding matrices but different realising lattices. The screening algebra is for
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r > 0 again the Nichols algebra uq(sln)+ = uq(sl(n
′|n′′))+, q = −1, and for

r < 0 conjecturally the positive part of the Kac-Procesi-DeConcini quantum
super group UKq (sl(n′|n′′)), which is different from UKq (sln).

The paper is organized as follows:
In section 2 we present some preliminary notions on Nichols algebras.
In section 3, we briefly present the notion of vertex algebras and their repre-
sentation theory. In particular we look at the Heisenberg algebra H and its
modules Hv, v ∈ Cn. Then we introduce screening operators and review in
theorem 3.2 the result from [Len17] that if mij fulfils the smallness condition
then the screening operators Zvi generate the Nichols algebra B(q), qij = eiπmij .
Then we prove in theorem 3.5 our first main result, which weakens the smallness
conditions on mij by analytical continuation.
In section 4 we state the classification problem: for a given braiding qij , we
classify lattices Λ we Gram matrix mij = (vi, vj) such that qij = eiπmij and
such that mij is compatible with Nichols algebra reflections in the sense of 5.
In section 5 we classify realising lattices for braidings of Cartan type: starting
from a simple Lie algebra g we rescale its root lattice by a parameter r and
prove that this lattice Λ always realises the braiding. Except small values of q,
we prove this solution to be unique. Then we calculate the screening algebra
depending on r.
In section 6 we proceed for Lie superalgebras. A classification of the realisable
lattices of this type is presented and explicit examples in rank 2 and arbitrary
rank are shown.
In section 7.1 we construct realising lattices for all other finite dimensional di-
agonal Nichols algebras in rank 2.
In section 7.2 we show that the examples presented in the previous sections
exhaust all realising lattices for rank 2 braidings of finite dimensional diagonal
Nichols algebras.
In section 8 we present the construction and classification for rank 3.
In section 9 we indicate how this determines the realising lattices for rank ≥ 4.
Final tables show all realising Λ, mij for rank 2 and 3.

Acknowledgements

IF and SL are partially supported by the RTG 1670 “Mathematics inspired by
String theory and Quantum Field Theory”.

2 Preliminaries on Nichols algebras

We start by giving the basic definitions and examples regarding Nichols algebras.

2.1 Definition and properties

Let M = 〈x1, . . . , xrank〉C be a complex vector space and let (qij)i,j=1,...rank be
an arbitrary matrix with qij ∈ C×. This defines a braiding of diagonal type on
M via:

c : c(xi ⊗ xj) = qijxj ⊗ xi.
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Hence we get an action ρn of the braid group Bn on M⊗n via:

ci,i+1 := id⊗ · · · ⊗ c⊗ · · · ⊗ id.

Definition 2.1. Let (M, c) be a braided vector space. We consider the canonical
projections Bn � Sn sending the braiding ci,i+1 to the transposition (i, i +
1). There exists the Matsumoto section of sets s : Sn → Bn given by (i, i +
1) 7→ ci,i+1 which has the property s(xy) = s(x)s(y) whenever length(xy) =
length(x) + length(y). Then we define the quantum symmetrizer by

Xq,n :=
∑
τ∈Sn

ρn(s(τ)) (1)

where ρn is the representation of Bn on M⊗n induced by the braiding c. Then
the Nichols algebra or quantum shuffle algebra generated by (M, c) is defined by

B(M) :=
⊕
n

M⊗n/ker(Xq,n).

Remark 2.2. This characterization enables one in principle to compute B(M)
in each degree, but it is very difficult to find generators and relations for B(M)
since in general the kernel of the map Xq,n is hard to calculate in explicit terms.
In fact B(M) is a Hopf algebra in a braided sense and as such it enjoys several
equivalent universal properties.

2.2 Examples

We now present some examples.

Example 2.3 (Rank 1). [Nichols78] Let M = xC be a 1-dimensional vector
space with braiding given by q11 = q ∈ C×, then

C 3 Xq,n =
∑
τ∈Sn

q
|τ |
11 =

n∏
k=1

1− qk

1− q
=: [n]q!

Because this polynomial has zeros all q 6= 1 of order ≤ n the Nichols algebra is

B(M) =

{
C[x]/(x`), q11 primitive `-th root of unity

C[x], else

Example 2.4 (Quantum group). Let g be a finite-dimensional complex semisim-
ple Lie algebra of rank n with root system Φ and simple roots α1, . . . , αn and
Killing form (αi, αj). Let q be a primitive `-th root of unity. Consider the
n-dimensional vector space M with diagonal braiding qij := q(αi,αj) Then the
Nichols algebra B(M) is isomorphic to the positive part uq(g)+ of the small
quantum group uq(g), which is a deformation of the universal enveloping of a
Lie algebra U(g).

2.3 Generalized root system and Weyl groupoid

Every finite-dimensional Nichols algebra comes with a generalized root system,
a Weyl groupoid and a PBW-type basis [Kha00], [Hec06], [HS08].
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The Weyl groupoid plays a similar role as the Weyl group does for ordinary
root systems in Lie algebras, but in the general case not all Weyl chambers look
the same: different braiding matrices and even different Dynkin diagrams are
attached to different Weyl chambers (i.e. groupoid objects). This behaviour
already appears for Lie superalgebras.
The finite Weyl groupoids are classified in [CH09], [CH10]; apart from the finite
Weyl groups there are additional series Dn,m and 74 sporadic examples.

Remark 2.5. We remark that the generalized root systems do not provide a com-
plete classification as they do in the theory of complex semisimple Lie algebras:
there are non-isomorphic Nichols algebras whose corresponding Weyl groupoids
are equivalent and there are Weyl groupoids to which no finite dimensional
diagonal Nichols algebra corresponds.

Definition 2.6. To every braiding matrix qij we define the associated Cartan
matrix (aij) for all i 6= j by

aii = 2 and aij := −min
{
m ∈ Z | q−mii = qijqji or q

(1+m)
ii = 1

}
. (2)

Definition 2.7. We call a root αi q-Cartan, respectively q-truncation, if it
satisfies:

q
aij
ii = qijqji, respectively q

1−aij
ii = 1. (3)

We observe that a root can be both q-Cartan and q-truncation. In partic-
ular we will call a root only q-Cartan, respectively only q-truncation, if it is
exclusively so.

Definition 2.8. The Weyl groupoid is generated by reflections, defined for
every k as:

Rk : Zn −→ Zn

αi 7−→ αi − akiαk

which transform the bicharacter qij into the bicharacter Rk(qij). As we said,
this is a new braiding matrix, possibly different from the original one and with
possibly different associated Cartan matrix. However, the Nichols algebras have
the same dimension and are closely related [HS11, BLS15].

Remark 2.9. With Rk we mean the reflection around the k-th simple root in
the respective Weyl chamber, which can be again expressed in coordinates with
respect to the simple roots α1, . . . , αn in some fixed initial Weyl chamber.

Example 2.10. We consider, as an example, the finite dimensional diagonal
Nichols algebra of rank 3 with the following braiding in an initial Weyl chamber

qii = −1, qijqji = ζ,

with i 6= j and ζ ∈ R3 a primitive third root of unity.
Following Heckenberger, we write the braiding as a diagram, where nodes

correspond to the simple roots αi and are decorated by the braiding qii and
each edge is decorated by the double braiding qijqji:
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−1

−1 −1

ζ ζ

ζ

As it turns out, the overall root system has seven positive roots. If {α1, α2, α3}
are the simple roots in the Weyl chamber shown above, then the positive roots
in this basis are:

{α1, α2, α3, α12, α23, α13, α123}
and the Cartan matrix of this Weyl chamber is:

aIij =

 2 −1 −1
−1 2 −1
−1 −1 2


We now reflect around α2. Then the new simple roots are {α12,−α2, α23} and
the new braiding matrix is:

q12,12 = q23,23 = ζ q22 = −1

q12,2q2,12 = q23,2q2,23 = ζ−1 q12,23q23,12 = 1

which is in diagram notation:

ζ −1 ζζ−1 ζ−1

In this new basis the positive roots are:

{α12, −α2, α23, α1, α3, α123, α13}

and the new Cartan matrix is hence

aIIij =

 2 −1 0
−1 2 −1
0 −1 2


Even though this Cartan matrix is of standard type A3, the root system has
one additional root. The following figure shows the hyperplane arrangement of
the root system in R3 in a projective picture:
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Each of the seven lines corresponds to the hyperplane orthogonal to a root. Each
triangle is a Weyl chamber with the three adjacent hyperplanes corresponding
to the three simple roots. Equilateral triangles (white) correspond to the Cartan
matrix I and right triangles (grey) to the Cartan matrix II.

3 Preliminaries on screening operators

3.1 Vertex algebras and their representation theory

Vertex operator algebras (VOA) are algebras with an extra layer of analysis
[FBZ04] [Kac98]. In particular the multiplication map Y , called vertex opera-
tor, depends on a formal parameter z, and there is a compatible action of the
Virasoro algebra.

There is a notion of vertex algebra modules. Under certain finiteness-
assumptions on a vertex operator algebra V, the category of V-modules has
a tensor product � and a braiding [HLZ10].

Example 3.1. The easiest example of a vertex operator algebra is the n-
dimensional Heisenberg algebra H. Then, the irreducible modules Hv are
parametrised by vectors v ∈ Cn, withH = H0, tensor productHv�Hw = Hv+w,
and braiding given by the scalar eπi(v,w).

From the perspective of our article, this is already an interesting vertex
operator algebra: In the next section we will define screening operators Zvi for
vi ∈ Cn, and the idea of this article is to analyse the algebra generated by
these screening operators, which will be largely determined by the braidings
qij = eπi(vi,vj).

3.2 Screening operators

We now briefly review the notion of screening operators. They go back to [DF84]
and appear throughout vertex operator literature. Our main focus are screening
operators for elements in a module different than the vacuum module, and those
are called non-local screening operators.
Given V a VOA, W module of V and w ∈W . The tensor product W � U with
some other module U is defined in [HLZ06] by the universal property of having
an intertwining operator

Y : W ⊗C U → (W � U)[logz][[z±1/N ]].

If we evaluate Y on our fixed w ∈W , we get a map

Y (w, z) : U → (W � U)[logz][[z±1/N ]]

Taking monodromies around z = 0, we get linear maps into the algebraic closure

Zw : U →W � U.

These maps are called screening operators. If the singularity of Y (w, z) at z = 0
is mild enough, then by the next theorem these screening operators should
fulfil the relations of the Nichols algebra B(W ) associated to the module W .
The braiding of W in the representation category expresses the non-locality
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of Y (w, z). If the singularity at z = 0 is severe, then the screening operators
generate some algebra extension of the Nichols algebra B(W ).
For general VOAs this is work in progress by Huang-Lentner, but for Heisenberg
VOAs and lattice VOAs it has been proven in [Len17]:

Theorem 3.2. Given a non-integral lattice Λ and elements v1, . . . , vn ∈ Λ, we
consider the elements evi in the modules Hvi of the associated Heisenberg VOA
H. The braiding between two elements is

evi ⊗ evj 7→ qij e
vj ⊗ evi ,

where qij := eiπmij , mij := (vi, vj).

Consider the diagonal Nichols algebra B(q) for braiding matrix q = (qij)i,j
generated by elements xvi , then any relation in the Nichols algebra, in degree
(d1, . . . , dn) ∈ Nn, holds for the screening operators Zvi , under the additional
assumption of smallness:

∀J ⊆ I, ∀i, j ∈ J
∑
i<j

didjmij +
∑
i

(
di
2

)
mii > 1−

∑
i

di

where I = {1, . . . , n} is the index set.

Example 3.3. In the case Λ = 1√
pΛg, with Λg the root-lattice of a complex

finite-dimensional simple Lie algebra g, and ` = 2p even integer, we obtain as
B(q) the positive part of the small quantum group uq(g)+ where q is a primitive
`-th root of unity and the braiding is

qij = e
iπ( 1√

pαi,
1√
pαj) = e

2iπ
` (αi,αj) = q(αi,αj),

where αi ∈ Λg.

Lemma 3.4. In particular, by theorem 6.1 of [Len17], theorem 3.2 holds if Λ
is positive definite and mii = (vi, vi) ≤ 1 for vi in a fixed basis.

Theorem 3.2 is a general result. We will now present a refined version,
which will appear in our examples. Roughly, it shows that for the definition of
smallness the assumption not-too-negative can be replaced by not-a-negative-
integer, by analytic continuation. We prove this only in two special cases:

Theorem 3.5 (Continued Smallness). As in the previous theorem, we consider
the action of linear combinations of monomials Zv1 · · ·Zvn of n screening op-
erators on the module Vλ, we will denote mi := (vi, λ) and mij := (vi, vj) for
1 ≤ i, j ≤ n.

a) If all mi are equal ∀i ∈ I and all mij are equal ∀i, j ∈ I, then a relation in
the Nichols algebra B(q) holds for the screening operators Zvi , under the
weaker assumptions which we call continued smallness

mij 6∈ −N
2

k
k = 1, . . . , n.
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b) If there is a distinguished element 1 ∈ I such that all mi are equal ∀i ∈
I, i 6= 1 and all mij are equal ∀i, j ∈ I, i 6= 1, then a relation in the Nichols
algebra B(q) holds for the screening operators Zvi , under the weaker as-
sumption of continued smallness

mij 6∈ −N
2

k
k = 1, . . . , n− 1

m1j + k
mij

2
6∈ −N k = 0, . . . , n− 2.

Proof. Retaking the steps in the proof of theorem 3.2 in [Len17] we consider
the following function (which play roughly the role of structure constants for
multiplying screenings)

F ((mi,mij)ij) =

∫
· · ·
∫

[e0,e2π ]n
dz1 . . . dzn

∏
i

zmii
∏
i<j

(zi − zj)mij

We express this function as quantum symmetrizer of another function:

F (mi,mij) = X F̃ (mi,mij)

F̃ ((mi;mij)ij) :=
1

(2πi)n

n∑
k=0

(−1)k

(
n∏

i=k+1

e2πi mi

) ∑
η∈Sk,n−k

 ∏
i<j, η(i)>η(j)

eπi mij


· Sel((mη−1(i); 0;mη−1(i)η−1(j))ij)

Where Sel indicates the Selberg integral

Sel(mi,m̄i,mij) = Sel((mi; m̄i;mij)i<j)

:=

∫
· · ·
∫

1>z1>...>zn>0

dz1 · · · dzn
∏
i

zmii
∏
i

(1− zi)m̄i
∏
i<j

(zi − zj)mij .

By this result, the Nichols algebra relations are thereby proven to hold if F̃
is analytic at the parameters mi,mij under consideration.

a) In our special situation with equal mij =: mvv and mi =: mvλ we find
from the factorization in [Len17] resp. from the Selberg integral formula:

F̃ (mvλ;mvv) :=

n−1∏
s=0

(
(eπimvv )se2πimvλ − 1

)
· Sel(mvλ; 0;mvv)

Sel(a− 1, b− 1, 2c) =

n−1∏
k=0

Γ(a+ kc)Γ(b+ kc)Γ(1 + (k + 1)c)

Γ(a+ b+ (n+ k − 1)c)Γ(1 + c)

Our goal is to prove that under the assumptions on mvv,mvλ the function
F̃ is analytic.

The Gamma function does not have zeros, and it has poles for negative
integer values of z. Thus the only possible poles are for:
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• Poles:
a+ kc ∈ −N0, k = 0, . . . , n− 1.

These simple poles cancel with the factors ((eπimvv )se2πimvλ−1). So
at these values F̃ is analytic and thus F vanishes according to the
quantum symmetrizer formula and Nichols algebra relations hold.
We remark however, that these exceptionally non-zero values of F̃
give rise to reflection operators [Len17].

• Poles:

1 + kc ∈ −N0, k = 0, . . . , n− 1

⇐⇒ kc ∈ −N, k = 0, . . . , n− 1

⇐⇒ kc ∈ −N, k = 1, . . . , n− 1

• Poles:

1 + (k + 1)c ∈ −N0, k = 0, . . . , n− 1

⇐⇒ (k + 1)c ∈ −N, k = 0, . . . , n− 1

⇐⇒ kc ∈ −N, k = 1, . . . , n

where in the last step we substituted k + 1 with k.

We thus found that to avoid poles we need to ask the condition

k
mij

2
6∈ −N, k = 1, . . . , n.

b) To prove the second point we proceed in the same way, this time isolating
the distinguish element with index equals to 1.

Sel(mi,mij ,m1,m1j)

=

∫ 1

0

. . .

∫ 1

0

n∏
i=2

zm1
1 zmii

n∏
j=2

(z1 − zj)m1j

∏
2≤i<j≤n

(zi − zj)mijdz1 · dz2 . . . dzn

=

∫ 1

0

dz1 z
m1+(n−1)+

∑
m1j+

∑
mij+

∑
mi

1

·
∫ 1

0

. . .

∫ 1

0

n∏
i=2

z̃mii

n∏
j=2

(1− z̃j)m1j

∏
2≤i<j≤n

(z̃i − z̃j)mijdz̃2 . . . dz̃n.

Calling m the power of z1, we have:

Sel(mi,mij ,m1,m1j)

=
(e2πim − 1)/2πi

1 +m

∫ 1

0

. . .

∫ 1

0

n∏
i=2

z̃mii

n∏
j=2

(1− z̃j)m1j

·
∏

2≤i<j≤n

(z̃i − z̃j)mijdz̃2 . . . dz̃n

=
(e2πim − 1)/2πi

1 +m

n−2∏
k=0

Γ(a+ kc)Γ(b+ kc)Γ(1 + (k + 1)c)

Γ(a+ b+ (n+ k − 1)c)Γ(1 + c)
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A similar calculation as in the previous case disregard the pole at 1+m = 0
and a+ kc ∈ −N0.
Then we have poles just for:

• Poles:

b+ kc ∈ −N0, k = 0, . . . , n− 2

⇐⇒ m1j + k
mij

2
6∈ −N k = 0, . . . , n− 2.

• Poles:

1 + (k + 1)c ∈ −N0, k = 0, . . . , n− 2

⇐⇒ kc ∈ −N, k = 1, . . . , n− 1

⇐⇒ k
mij

2
∈ −N k = 1, . . . , n− 1

which are the asserted conditions.

3.3 Central charge

The output of our article are elements v1, . . . vn ∈ Cn, the respective screening
operators of the Heisenberg algebra H, and their algebra relations. We also
wish to fix an action of the Virasoro algebra at a certain central charge on H.
As discussed in [FL17] it is usually desirable to choose the Virasoro structure in
such a way, that it is compatible with the screening operators associated to the
v1, . . . , vn. This gives a unique solution of Virasoro structure and a characteristic
central charge for the situation at hand, which we now compute:

Proposition 3.6. For the Heisenberg algebra, there is a family of Virasoro
structures parametrised by the choice of an element Q ∈ Cn, called background
charge [FF06]. The compatibility condition means that

1

2
(vi, vi)− (vi, Q) = 1 i = 1, . . . , n.

The central charge of the system will be:

c = rank − 12(Q,Q).

In particular for rank = 2, we have as in [Sem11] the explicit formula:

c = 2− 3
|v1(m22 − 2)− v2(m11 − 2)|2

m11m22 −m2
12

(4)

4 Formulation of the classification problem

Definition 4.1. Let Λ be a lattice of rank n, basis {v1, . . . , vn}, bilinear form
( , ) and Cartan matrix aij and let mij := (vi, vj). Given a braiding matrix qij ,
we say that the lattice Λ and the matrix mij realise qij iff
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• we have: eiπmij = qij

• mij satisfies:

A: 2mij = aijmii or B: (1− aij)mii = 2 (5)

• all the reflected matrices Rk(mij) fulfil again (5).

We will say with respect to a realisation mij that a root vi is m-Cartan if mii

satisfies (5)A, and m-truncation if it satisfies (5)B.

[Sem11] asks this condition only for one specific Weyl chamber.

Remark 4.2. We observe that condition (5) is the logarithmic version of (3).

Remark 4.3. Clearly m-Cartan implies q-Cartan and m-truncation implies q-
truncation. The converse is not always true. If a root is both q-Cartan and
q-truncation, then there are two possible solutions in terms of the mij matrix.
An example is the sl(2|1) superalgebra, presented below in example (4.5).

Proposition 4.4. Clearly, if vk is m-Cartan, then Rk(mij) = mij.

Our goals are as follows:

• Given a braiding qij from Heckenberger lists in [Hec05], [Hec06], construct
all the realising mij . In sections 5, 6 and 7.1 we construct the mij while
in section 7.2 we prove that the constructed mij exhaust all cases of Heck-
enberger list in rank 2. In section 8 we do the same for rank 3.

• We compute the central charges for each solution.

• We analyse which Nichols algebras relations hold and which don’t, for the
associated screening operators. This may depend on a free parameter in
the family of solutions.

Example 4.5. We now show an example of this procedure. We consider row 3
of table 1 in [Hec05], described by the braiding matrices:

qI
ij =

 q2 q−1

q−1 −1

 qII
ij =

−1 q

q −1


and corresponding diagrams:

q2 −1q−2 −1 −1q2

I II

with q ∈ C×, q2 6= ±1, simple roots {α1, α2} and {α12, α2} respectively, and a
unique associated Cartan matrix

aI
ij = aII

ij =

 2 −1

−1 2

 .
This describes the Lie superalgebra sl(2|1). The set of positive roots is {α1, α2, α12}
where α1 is only q-Cartan and α2, α12 are only q-truncation (for q2 = −1 this
is not true: all roots are both q-Cartan and q-truncation, which gives more
solution, see remark 4.7).

12



Proposition 4.6. The following mij matrices are realising solutions of the
given braiding and its reflections:

mI
ij =

2r −r

−r 1

 , mII
ij =

 1 −1 + r

−1 + r 1


for all r = p′

p ∈ Q with (p′, p) = 1 such that eiπr = q.

Proof. We check that condition (5)B is satisfied for α2, α12:

m22 =
2

1− a21
= 1

m12,12 =
2

1− a12,2
= 1

while condition (5)A is satisfied for the root α1:

m11 =
2m12

a1,2
= 2r.

The reflection on α1 preserves qij as well as mij , because α1 is m-Cartan.
We check that reflections on α2 and α12, which interchange qIij and qIIij , also

interchange our choices of mI
ij and mII

ij .

Remark 4.7. For q2 6= ±1 this family gives all solutions.
For q2 = −1, we have more choices for the mij-matrices because the roots
become both q-truncation and q-Cartan. Thus we may have solutions fulfilling
either (5A) or (5B). The new (unique) diagram in this case is:

−1 −1−1

to whom correspond several solutions of mij-matrices; for simple roots α1, α2:
let p′ ∈ Z with (p′, 2) = 1,

• if we assume α1 and α2 m-truncation, the unique family of solutions is
given by

mij =

 1 −p
′′

2

−p
′′

2 1

 mij =

 1 −p
′

2

−p
′

2 p′

 mij =

 p′ −p
′

2

−p
′

2 1

 .
These are reflections one of the other by Proposition 4.6 with p′′ = 2− p′.
Other combinations bring to the same solution in different Weyl chambers.

• if we assume α1 and α2 m-Cartan, the unique family of solutions is given
by

mij =

 p′ −p
′

2

−p
′

2 p′


which can be interpreted as coming from sl3 for p = 2.
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5 Cartan type

5.1 q diagram

Let g be a simple Lie algebra with simple roots α1, . . . , αn and Killing form
(αi, αj)g ∈ {−3,−2,−1, 0, 2, 4, 6}. Let q ∈ C× be a primitive `-th root of unity
with ` ∈ Z and let ord(q2) > d with d half length of the long roots. Define a
braiding matrix by

qij = q(αi,αj)g .

Definition 5.1. The finite dimensional Nichols algebra B(q) is called of Cartan
type.

We have that:

• qij is invariant under reflections Rk,

• the Weyl groupoid is the Weyl group associated to g,

• the set of positive roots is the set of roots associated to g,

• the Cartan matrix aij is exactly the Cartan matrix for g.

5.2 Construction of mij

Definition 5.2. Given r ∈ Q, such that r
2 = k

` , with k ∈ Z, (k, `) = 1 we define

mij := (αi, αj)r.

Differently spoken, the lattice Λ of definition 4.1 is, in this case, exactly the
root lattice of g rescaled by r.

Remark 5.3. Usually in literature r = p′

p , e.g. r = 1
p and ` = 2p, q = e

πi
p .

Lemma 5.4. The matrix mij realises the braiding qij for all reflections, and
every simple root is m-Cartan.

Proof. Condition (5) asks

2mij = aijmii or (1− aij)mii = 2 (6)

2mji = ajimjj or (1− aji)mjj = 2. (7)

But from the last point of enumeration 5.1 we have aij =
2(αi,αj)
(αi,αi)

. Hence

mii = (αi, αi)r = 2(αi, αj)r
(αi, αi)

2(αi, αj)
= 2

mij

aij

which is (5)A, saying that the roots are m-Cartan.
Since any reflection leaves the mij invariant (not just the qij) because is a m-
Cartan reflection, condition (5) holds also after reflections.

Lemma 5.5. If `i > 1− aij for i = 1, . . . , n, with `i := `
gdc(`,2di)

as in [Lus90],

then none of the roots are m-truncation.

14



Proof. Assume the root αi is m-truncation, i.e. (1 − aij)mii = 2, this implies:

q
(1−aij)
ii = eiπmii(1−aij) = eiπ·2 = 1. But ord(qii) = ord(q2di) = `i > 1− aij and

we find a contradiction.

Lemma 5.6. If all roots are m-Cartan, then the unique solution for the matrix
mij is the one of definition 5.2. In particular this is the case if `i > 1− aij for
i = 1, . . . , n.

Proof. If all the roots are m-Cartan then if we fix mii for some root αi, the
mixed term mij is fixed by condition 5(A) and so is mjj by the same condition
with reversed indices. Moreover the reflections around m-Cartan roots leave the
system invariant, so the mij are fixed ∀i, j. But then, up to a rescaling there is
a unique solution for mij and this is the one defined in 5.2.

Example 5.7. As a counterexample of the condition of lemma 5.5, we consider
sl3. In this case, aij = −1 ∀i, j and for 2`i = ` = 2p = 4, i.e. qii = −1, the
roots can be considered as m-truncation as well. We thus obtain an additional
solution of mij , which will be understood from reinterpreting sl3, ` = 2p = 4,
as the Lie superalgebra sl(2|1), ` = 2p = 4, treated in the remark of example
4.5.

5.3 Central charge

Recall {v1, . . . , vn} as basis of Λ with mij = (vi, vj).

Proposition 5.8. The central charge of the system is

c = rankg− 12(
1

r
| ρ∨ |2 −2(ρ, ρ∨) + r | ρ |2) (8)

where ρ is the sum of all positive roots.

Proof. The central charge is:

c = rank − 12(Q,Q)

where Q =
∑
j ajvj is the unique combination such that for every i

1

2
(vi, vi)Λ − (vi, Q) = 1

1

2
(vi, vi)Λ −

∑
j

aj(vi, vj)Λ = 1

Rewriting vi = −
√
rαi, with αi root of g, this set of equations bring us to

Q =

√
1

r
ρ∨ −

√
rρ

that on turn gives the central charge as in the statement.

Remark 5.9. The central charge matches with the one of the affine Lie algebra
ĝk at level k + h∨ = 1

r as in [Ara07].
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Remark 5.10. For rank 2 the central charge is

c = 1− 3
(2p′ − 2p)2

2pp′
= 13− 6

p

p′
− 6

p′

p

which is the central charge of the p, p′ model.

5.4 Algebra relations

We now want to determine when the algebra of screenings satisfies Nichols al-
gebra relations. We will again denote d the half length of the long roots.

With the definition of smallness and the results in [Len17], see theorem 3.4,
we get for a rescaled root lattice mij = (αi, αj)r:

Corollary 5.11. If 1
2d ≥ r > 0, then all Nichols algebra relations hold.

Proof. Since we are rescaling by
√
r a positive definite lattice Λ, the only con-

dition for the new lattice to be positive definite is r > 0. We ask moreover
mii = 2dr ≤ 1 for all i. This implies r ≤ 1

2d .

Now we want to analyse the algebra relations in the screening algebra for
arbitrary values of r. To do so we study relation by relation using theorem 3.5.

Definition 5.12. A generator xi is said to satisfy the truncation relation if

x`ii = 0, `i = ord(qii).

A pair of generators xi, xj are said to satisfy the Serre relation if

(adcxi)
1−aijxj = 0, aij = −min

{
m ∈ Z | q−mii = qijqji or q

(1+m)
ii = 1.

}
We denoted the braided commutator by (adcxi)xj := [xi, xj ]c = [xi, xj ]q.

Theorem 5.25 of [Ang08] states a set of defining relations for each finite
dimensional Nichols algebra of Cartan type:

Theorem 5.13. For finite dimensional Nichols algebra of Cartan type uq(g)+,
i.e. with diagonal braiding qij = q(αi,αj) associated to the root system of a Lie
algebra g, the defining relations are as follows

1. For each root α the truncation relation and for each pair of simple roots
αi, αj with q

1−aij
ii 6= 1 the Serre relation.

2. For the following subdiagrams the following additional relations:

• For type A3 with q = −1

−1 −1 −1−1 −1

[(adx2)x1, (adx2)x3]c = 0

• For type B2 or C2 with q = i
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i −1−1

or with q = ζ ∈ R3

ζ ζ−1ζ

[(adx1)2x2, (adx1)x2]c = 0

• For type B3 with q = i

i −1 −1−1 −1

or with q = ζ ∈ R3

ζ ζ−1 ζ−1ζ ζ

[(adx1)2(adx2)x3, (adx1)x2]c = 0

• For type G2 with q = ζ ∈ R6

ζ −1−1

or with q = i

i −ii

[(adx1)3x2, (adx1)2x2]c = 0

[x1, [x
2
1x2x1x2]c]c = 0

[[x2
1x2x1x2]c, [x1, x2]c]c = 0

[[x2
1x2]c, [x

2
1x2x1x2]c]c = 0.

We now apply our refined smallness criteria of theorem 3.5 to these explicit
set of relations to determine the algebra of screening operators in comparison
to the Nichols algebra.

Example 5.14. Let us consider a rank 1 Cartan q-diagram and corresponding
m-solution:

q2

2r

The truncation relation (Z1)n = 0, n = ord(q2) holds, according to 3.5, iff r > 0.

For r < 0 it is further calculated in [Len17] that (Z√rα1
)n = Zn

√
rα1

which
is a local screening. The algebra of screenings is therefore an extension of the
Nichols algebra by a long screening.
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Example 5.15. Let us consider a rank 2 Cartan q-diagram and corresponding
m-solution:

q2

2r

q2d

2rd

q−2d

−2rd

– By the previous example the simple truncation relations hold for r ≥ 0.

We conjecture that in this case the non-simple truncation ([Z1,Z2]n etc.)
also hold for r > 0. But this would either require a reflection theory for
algebra of screenings or a generalization of theorem 3.5.

– The long Serre relation [Z2, [Z2,Z1]] = 0 holds if 2dr 6∈ −N. Does the
long Serre relation may fail if q22 = −1 and r < 0, which is when the
long root α2 is both q-Cartan and q-truncation and when the truncation
relation fails. But for these cases the Serre relation was in theorem 5.13
not required as an independent relation.

– The short Serre relation [Z1, . . . [Z1,Z2] . . .] = 0 which involves d+ 1 times
the first screening, holds if

2r, 3r, . . . , (d+ 1)r 6∈ −N
dr, (d− 1)r, (d− 2)r, . . . , 2r 6∈ N.

In particular:

∗ for d = 1 see the long Serre relations.

∗ for d = 2 holds iff 3r 6∈ −N.

∗ for d = 3 holds iff 2r, 4r 6∈ −N and 2r 6∈ N. But 2r ∈ Z is not
admissible because q 6= −1.

So again the short Serre relation may fail if the short root α1 is both
q-Cartan and q-truncation and the truncation relation fails.

– Extra relations as listed in point (2) of theorem 5.13 apply exactly in the
exceptional cases for the Serre relations above.

Summarizing we have the following possible exceptions:

• for q2 = −1, k ∈ N, k odd, (r < 0, d = 1):

−1

−k
−1

−k
−1

−k
−1

k

−1

k

• for q2 ∈ R2d, k ∈ N, k odd, ∀d (r < 0):

q2

−kd

−1

−k
−1

k

• for q2 = ζ ∈ R3, k ∈ N, k odd, (r < 0, d = 2):
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ζ

− 2
3k

ζ−1

− 4
3k

ζ

4
3k

• for q2 = i, k ∈ N, k odd, (r < 0, d = 2):

i

−k2

−1

−k
−1

−k
−1

k

−1

k

• for q2 = ζ ∈ R3, k ∈ N, k odd, (r < 0, d = 2):

ζ

− 2
3k

ζ−1

− 4
3k

ζ−1

− 4
3k

ζ

4
3k

ζ

4
3k

• for k ∈ N, k odd, (r < 0, d = 3):

i

−k2

−i
− 3

2k

i
3
2k

Proposition 5.16. We consider again a rank 2 Cartan q-diagram

q2

2r

q2d

2rd

q−2d

−2rd

1. If q2d = −1, r < 0 the long Serre relation holds.

2. If ord(q2)= d+ 1, r < 0 the short Serre relation holds.

Proof. 1. The long Serre relation reads

[Z2, [Z2,Z1]−1]+1 = (Z2)2Z1 + Z2Z1Z2 − Z2Z1Z2 − Z1(Z2)2 = [(Z2)2,Z1].

Since r < 0 this is not automatically zero because (Z2)2 6= 0. Despite
this it was studied in [Len17] that (Z2)2 ∼ Z22. Then standard OPE
calculations give: [(Z2)2,Z1] = [Z22,Z1] = 0.

2. This point is a generalization of the previous. We have:

[Z1, . . . , [Z1,Z2] . . .] = (Z1)d+1Z2 − (q−d + q−d+2 + . . .+ qd)(Z1)dZ2Z1 + . . .

=
∑

i+j=d+1

(−1)i(Z1)iZ2(Z1)j
[i+ j]!

[i]![j]!
= [(Z1)d+1,Z2]

= [Z(d+1)α1
,Z2] = 0

where for the penultimate equality we used again results from [Len17] and
for the last one theorem 3.2.
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Remark 5.17. Alternatively this follows conceptually from the fact that this
holds for generic q. One can argue similarly for the other relations or proceed
as in the previous proposition.

In conclusion:

Corollary 5.18. The screening operators algebra is as follows:

• For r ≥ 0 all Nichols algebra relations hold (conjecturally also the non-
simple truncation relations).

• For r < 0 all Nichols algebra relations hold except the truncation relations.

Conjecturally, the non-zero result of the truncation relation are, as above,
themselves local screenings and in the centre of the algebra of screenings.
Hence in these cases we get the positive part of the infinite-dimensional
Kac-Procesi-DeConcini quantum group, also called non-restricted special-
ization [CP94].

Remark 5.19. We remark that for r < 0 products of screenings can be not well
defined.

5.5 Examples in rank 2

Heckenberger row 2

This case of the list is described by the braiding diagram:

q2 q2q−2

with q ∈ C q2 6= 1 and simple roots {α1, α2}. The realising lattice is a rescaled
A2 root lattice i.e. sl3.

The set of positive roots is given by {α1, α2, α12} with unique associate
Cartan matrix:

aij =

 2 −1

−1 2

 .
Proposition 5.20. Defining r as in 5.2 we find that the following mij-matrix
is a realising solution:

mij =

2r −r

−r 2r

 .
Remark 5.21. For q2 = −1, these are all solutions and the roots are both q-
Cartan and q-truncation.
This case is shown in detail in remark 4.7 of example 4.5.

Heckenberger row 4

This case of the list is described by the braiding diagram:

q2 q4q−4

20



with q ∈ C q2 6= ±1 and simple roots {α1, α2}. The realising lattice is a rescaled
B2 root lattice.

The set of positive roots is given by {α1, α2, α12, α112} with unique associate
Cartan matrix:

aij =

 2 −2

−1 2

 .
Proposition 5.22. If q2 6= ±1, then for every possible r defined as in 5.2 the
following mij-matrix

mij =

 2r −2r

−2r 4r


is a realising solution for the braiding.

Remark 5.23. 1. When q2 ∈ R4, the root α2 is q-Cartan and q-truncation.
There is an additional family of solutions when it is m-truncation:

mI
ij =

 2r −2r

−2r 1

 mII
ij =

−2r + 1 2r − 1

2r − 1 1

 for r =
p′

4
, p′ odd,

with simple roots I: {α1, α2} and II: {α12,−α2}.

This lattice can be interpreted as lattice realising the Lie superalgebra
B(1, 1) described in case Heckenberger row 5, which for this choice of q2

has the same q-diagram.

2. When q2 ∈ R3, the root α1 is q-Cartan and q-truncation.
There is an additional family of solutions when it is m-truncation:

mI
ij =

 2
3 −2r

−2r 4r

 mII
ij =

 2
3 − 4

3 + 2r

− 4
3 + 2r 8

3 − 4r


for r = 2+3p′

6 , p′ ∈ Z, with simple roots I: {α1, α2} and II: {−α1, α112}.

This lattice can be interpreted as lattice realising the case Heckenberger
row 6 (a colour Lie algebra), which for this choice of q2 has the same
q-diagram.

Remark 5.24. Note that q2 = −1 is excluded. Indeed for that value, the system
degenerates and the short truncation roots form a lattice of type An1 as described
in [FL17]. Physically it corresponds to n pair of symplectic fermions.

Heckenberger row 11

This case of the list is described by the braiding diagram:

q2 q6q−6
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with q2 6= ±1, q2 6∈ R3 and simple roots {α1, α2}.
The realising lattice is of type G2.

The set of positive roots is given by {α1, α2, α12, α112, α1112, α11122} with
unique associate Cartan matrix:

aij =

 2 −3

−1 2

 .
Proposition 5.25. If q2 6= ±1, q2 6∈ R3, then for every possible r defined as in
5.2 the following mij-matrix

mij =

 2r −3r

−3r 6r


is a realising solution for the braiding.

Remark 5.26. When q2 ∈ R4, the root α1 is q-Cartan and q-truncation.
When it is m-truncation we get:

mI
ij =

 1
2 −3r

−3r 6r

 mII
ij =

 1
2 − 3

2 + 3r

− 3
2 + 3r 9

2 − 12r


with simple roots I: {α1, α2} and II: {−α1, α1112}.

The root α1112 is never m-truncation and it is m-Cartan iff r = 1
4 . But for

this value of r, α1 is also m-Cartan and thus this is not a new solution.

Remark 5.27. When q2 ∈ R6, the root α2 is m-Cartan and m-truncation.
When it is m-truncation we get:

mI
ij =

 2r −3r

−3r 1

 mII
ij =

 1− 4r −1 + 3r

− 3
2 + 3r 1


with simple roots I: {α1, α2} and II: {α12,−α2}.

The root α12 is never m-truncation and it is m-Cartan iff r = 1
6 . But for

this value of r, α2 is also m-Cartan and thus this is not a new solution.

6 Super Lie type

6.1 q diagram

Let g = g0⊕g1 be a simple Lie superalgebra of classical, basic type [FSS96], i.e.
of type A(m,n), B(m,n), C(n+1), D(m,n), F (4), G(3), D(2, 1;α). For these Lie
superalgebras a (non degenerate or zero) Killing form ( , )g is defined.

We now choose a Weyl chamber α1, . . . , αf−1, αf , αf+1, . . . , αn with just
one simple fermionic root αf . We call it the standard chamber according to
[Kac77]. Given α positive root in the standard chamber, we define f(α) the
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multiplicity of αf in α.

We can then split g as the direct sum of vector spaces

g = g′ ⊕ g′′ ⊕m,

where g′ and g′′ are two bosonic connected component generated by the simple
roots α1, . . . , αf−1 and αf+1, . . . , αn respectively, while m is the g′⊕ g′′-module
spanned by all other roots.

We have that m contains g1 and thus in particular contains the g′ ⊕ g′′-
submodule generated by the fermion αf , i.e. the vector space of fermions γ,
with f(γ) = 1. Moreover m may contain bosonic roots δ, with f(δ) positive
even.

Definition 6.1. We can write the inner product ( , )g of two arbitrary simple
roots as

(αi, αj)g = (αi, αj)g′ + (αi, αj)g′′ =


(αi, αj)g′ if i ≤ f, j < f

0 if i ≤ f ≤ j
(αi, αj)g′′ if i ≥ f, j > f.

In particular we assume (αf , αf )g = (αf , αf )g′ = (αf , αf )g′′ = 0.

Definition 6.2. Let q′, q′′ be primitive roots of unity of the same order. Then
to the above data in the standard chamber we associate the braiding matrix qij :

qij =


(q′)(αi,αj)g′ if i ≤ f, j < f

(q′′)(αi,αj)g′′ if i ≥ f, j > f

1 if i > f > j

−1 if i = f = j.

Under certain conditions on the qij , this braiding gives a finite dimensional
Nichols algebra B(q), which we call of Super Lie type.

The reflections will act on the braiding as follow:

• Reflections Rk around bosonic roots αk leave qij invariant.

• ReflectionsRk around fermionic roots αk interchange fermionic and bosonic
roots and may produce a braiding containing −q.

Remark 6.3. In the classification of Nichols algebras in [Hec05] and [Hec06]
we find that the fermion (as in the Lie superalgebra sense of the term) in the
standard chamber αf has qff = −1, i.e. it is q-truncation. This is not true in
general for every fermion as we can see in the following example.

Example 6.4. The case Heckenberger row 5 of table 1 in [Hec05] is described by
two diagrams:

−1 q2q−4 −1 −q−2q4
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I II

corresponding to the simple roots:

I : {α1, α2} II : {−α1, α12}.

This is the Lie superalgebra B(1,1) and α12 is a fermion with q12,12 6= −1.
We will describe this example in detail later on in this section.

6.2 Construction of mij

Definition 6.5. Given p′, p′′ ∈ Z such that (p′, p) = (p′′, p) = 1, we define

r′ := p′

p , r′′ := p′′

p and in the standard chamber:

mS
ij =


(αi, αj)g′r

′ if i ≤ f, j < f

(αi, αj)g′′r
′′ if i ≥ f, j > f

0 if i > f > j

1 if i = f = j.

We notice that if we restrict to g′ or g′′, we get exactly the same result as
in the Cartan type section for p′, p respectively p′′, p.

Lemma 6.6. If we call q′ = eiπr
′

and q′′ = eiπr
′′

, then qij = eiπmij is the
braiding defined in definition 6.2.

Proof. We have mij = 0 if αi and αj are disconnected, so that 1 = eiπ·0 and
mff = 1 for the fermionic root which gives −1 = eiπ·1 as demanded.

Lemma 6.7. In an arbitrary chamber Cγ1,...,γrank we have

mij
C = (γi, γj)g′r

′ + (γi, γj)g′′r
′′ + f(γi)f(γj).

Proof. We write γi =
∑
k xikαk and γj =

∑
l xjlαl and we extend for linearity:

mij
C =

∑
k,l

xikxjlmkl
S

=
∑

k,l∈g′∪{f}

xikxjl(αk, αl)g′r
′ +

∑
k,l∈g′′∪{f}

xikxjl(αk, αl)g′′r
′′ + xifxjf =

= (γi, γj)g′r
′ + (γi, γj)g′′r

′′ + f(γi)f(γj)

where the last equality follows from the definition of f(γ) as the multiplicity of
αf in γ and the fact that on each component g′ and g′′ the roots are spanned
as in a Lie algebra.

Corollary 6.8. A root γ in an arbitrary chamber is

– m-truncation if (γ, γ)g′r
′ + (γ, γ)g′′r

′′ + f(γ)f(γ) = 1

– m-Cartan if, for every simple root βi in the standard chamber,

(γ, βi)g′r
′ + 2(γ, βi)g′′r

′′ + 2f(γ)f(βi)

= aγ,βi((γ, γ)g′r
′ + (γ, γ)g′′r

′′ + f(γ)f(γ)).
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Example 6.9. We consider as an example the Lie superalgebra A(1,1) of rank
3. The simple roots in the standard chamber are {α1, α2 = αf , α3} with inner
product:

(αi, αj) =

 2 −1 0
−1 0 −1
0 −1 2


Hence:

mS
ij =

2r′ −r′ 0
−r′ 1 −r′′
0 −r′′ 2r′′

 , qij =

 (q′)2 (q′)−1 1
(q′)−1 −1 (q′′)−1

1 (q′′)−1 (q′′)2

 .
Remark 6.10. According to [Kac77] we can write the simple roots as

α1 = ε1 − ε2, α2 = αf = ε2 − δ1, α3 = δ1 − δ2,

with vectors εi generating g′ and δi generating g′′.

What remains to do is to see under which conditions the defined mij are
realising solutions of the given braidings.

Lemma 6.11. If γ ∈ g′ i.e. γ =
∑f−1
i=1 aiαi or γ ∈ g′′ i.e. γ =

∑n
i=f+1 aiαi,

then γ is m-Cartan.

Proof. Suppose γ ∈ g′; then

(γ, γ) = (γ, γ)g′ (γ, γ)g′′ = 0

(γ, αi) = (γ, αi)g′ (γ, αi)g′′ = 0

for every arbitrary simple root αi. Moreover f(γ) = 0. So we have that (5)A:

2(γ, αi)g′r
′ + 2(γ, αi)g′′r

′′ + 2f(γ)f(αi) = aγ,i((γ, γ)g′r
′ + (γ, γ)g′′r

′′ + f(γ)f(γ))

becomes:

2(γ, αi)r
′ = aγ,i((γ, γ)r′).

Since γ ∈ g′, we are restricting to one bosonic sector and thus the latter is true
because of definition of aγ,i in the Lie algebra setting.
By linearity in the simple roots αi it is possible to extend this result to every
arbitrary root α =

∑
biαi.

Lemma 6.12. If γ 6= αf is isotropic, i.e. (γ, γ) = (γ, γ)g′ = (γ, γ)g′′ = 0, and
f(γ) = ±1 then γ is m-truncation.

Proof. Condition (5)B for a root to be m-truncation reads:

(γ, γ)g′ + (γ, γ)g′′ + f(γ)f(γ) = 1

which is clearly true under these hypothesis.

We summarize these results in the following:

Corollary 6.13. The matrix mij defined in 6.5 realises the braiding qij for
every root α, with the following possible exceptions:
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1. α is a boson in g′ ∪ g′′, i.e. f(α) is a strictly positive even integer.

2. α is an isotropic fermion with f 6= ±1.

3. α is a non-isotropic fermion.

4. α is a fermion strong orthogonal to another fermion γ, i.e. in their real
span 〈α, γ〉R there aren’t roots.

Proof. • If a boson α belongs to only one bosonic side g′ or g′′, then lemma
6.11 tells us it must be m-Cartan. Otherwise, α is like in (1) and must
be spanned by the standard fermion as well, thus f(α) > 0 even. In this
case lemma 6.11 fails since no Lie algebra Killing form is a priori holding.
We then have to check explicitly for which r′ and r′′ one of condition (5)
holds using Corollary 6.8.

• Let now α be a fermion which is never strong orthogonal to other fermions.
If it is isotropic and f(α) = ±1, thanks to lemma 6.12, it satisfies the M-
condition truncation. If f 6= ±1 or it is non-isotropic, we are back to the
points (2) and (3) of the lemma and we have to check explicitly for which
r′ and r′′ one of condition (5) holds using Corollary 6.8.

• If α and γ are two strong orthogonal fermions, then aαβ = 0. In this case
we have to check for which r′ and r′′

mα,β = (α, β)g′r
′ + (α, β)g′′r

′′ + f(α)f(β) = 0

Remark 6.14. In the examples we didn’t find any boson with f > 2 and any
fermion with f > 1. Thus, point (1) concerns then just bosons with f = 2 and
point (2) never happens.

In conclusion we will now have to look, in every example, if one or more of
the situations described by lemma 6.13 is happening.

Now as last result we state a classification Lemma:

Lemma 6.15. If all the bosonic roots are m-Cartan, then the unique possible
realising solution for the given braiding is the matrix mij of definition 6.5. In
particular this is the case if `i > 1− aij for ∀i 6= f .

Proof. Condition (5) gives a unique solution for the mij in the standard cham-
ber: the fermionic root is m-truncation and thus fixed to mff = 1, while, since
all the other roots are m-Cartan, restricting our study to the two bosonic sec-
tors separately we end up in the same situation of lemma 5.6. Moreover the
compatibility with the reflections fixes the mij in all the chambers.

Example 6.16. We apply lemma 6.13 to example 6.9: after reflecting the
standard chamber set of roots around the fermion α2, we find for new simple
roots: {α12,−α2, α23} the matrix:

mC
ij =

 1 −1 + r′ −1 + r′ + r′′

−1 + r′ 1 −1 + r′′

−1 + r′ + r′′ −1 + r′′ 1

 .
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Exception (4) of lemma 6.13 appears. We then have to ask m23 = 0, i.e.
r′ + r′′ = 1. In that case mij is a realising solution.
This construction realises the Nichols algebra B(q) described by case row 8 of
table 2 in [Hec05] when q 6= ±1.

6.3 Central charge

We will compute the central charge of systems associated to Lie superalgebras
g, with non degenerate Killing form ( , ).

Proposition 6.17. The central charge of the system is c = rank − 12(Q,Q)
with

Q =
ρ∨g′√
r′
− ρg′

√
r′ +

ρ∨g′′√
r′′
− ρg′′

√
r′′ − ρ∨rest

where we denoted by ρg′ the sum of positive roots in g′, ρg′′ the sum of positive
roots in g′′ and ρrest the sum of the remaining positive roots of g.

Proof. The central charge is c = rank − 12(Q,Q) if Q is such that ∀αi simple
root of g

1

2
(−
√
riαi,−

√
riαi)− (−

√
riαi, Q) = 1 where ri =


p′

p if i < f

1 if i = f
p′′

p if i > f.

Let λ∨j =
λj
dj

be such that (αi, λ
∨
j ) = δij . Since ρg =

n∑
i=1

λi, we have that

ρg′ =
∑
i<f

λi, ρg′′ =
∑
i>f

λi and then ρrest = λf . We can thus rewrite Q as:

Q =
ρ∨g′√
r′
− ρg′

√
r′ +

ρ∨g′′√
r′′
− ρg′′

√
r′′ − ρ∨rest =

∑
i

(
1
√
ri
−
√
ridi

)
λ∨i .

Hence the previous equation becomes:

1

2
(−αi

√
ri,−αi

√
ri)− (−αi

√
ri, Q)

=
1

2
2diri +

∑
j

√
ri(

1
√
rj
−√rjdj)(αi, λ∨j ) = 1

6.4 Algebra relations

We now want to determine when the algebra of screenings satisfies Nichols al-
gebras relations for braiding qij .
We will denote again d′, d′′ the half length of the long bosonic root in g′, g′′.

Lemma 6.18. For mij as above, smallness holds under the condition

1

2d′
≥ r′ > 0,

1

2d′′
≥ r′′ > 0, det(mij) > 0.
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Proof. Smallness 3.2 for all monomials holds under the assumptions |αi| ≤ 1,
which means 2d′r′ ≤ 1, 2d′′r′′ ≤ 1, and mij positive definite. By Sylvester’s
criterion, this is equivalent to det(mij) > 0 and to the principal minor being
positive definite. The principal minor is a rescaling of the root lattices g′, g′′, so
it is positive definite for r′, r′′ > 0.

Example 6.19. For type A(n,m) these conditions read

1

2
≥ r′ > 0,

1

2
≥ r′′ > 0,

n

n+ 1
r′ +

m

m+ 1
r′′ < 1.

In [Ang15], theorem 3.1, we find a set of defining relations for each finite
dimensional Nichols algebra of super Lie type. We report them in the following
theorem.

Theorem 6.20. For finite dimensional Nichols algebra of super Lie type with
diagonal braiding qij = q(αi,αj)g′,g′′ for bosonic roots and qii = −1 for the
fermionic root in the standard chamber, associated to the root system of a Lie
superalgebra g, the defining relations are as follows

1. For each root α the truncation relation and for each pair of simple roots
αi, αj with q

1−aij
ii 6= 1 the Serre relation.

2. For the following subdiagrams the following additional relations:

• For type A(2, 0), A(1, 1), D(2, 1;α):

q11 −1 q33q12,21 q23,32

[(adx2)x1, (adx2)x3]c = 0

• For type B(1, 1):

q11 −1q12,21

[(adx1)2x2, (adx1)x2]c = 0

• For type B(2, 1)

q11 −1 q33q12,21 q23,32

[(adx1)2(adx2)x3, (adx1)x2]c = 0

Example 6.21. Let us consider a rank 1 q-diagram and corresponding m-
solution, for a bosonic and fermionic root respectively:

q2

2r

−1

1
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The bosonic truncation relation (Zb)
n = 0, n = ord(q2) holds, according to 3.5,

iff r > 0.
The fermionic truncation relation (Zf )2 = 0 always holds according to 3.5.

Example 6.22. Let us consider a rank 2 super Lie q-diagram and corresponding
m-solution:

q2

2r

−1

1

q−2d

−2rd

In the examples we will found such a diagram just if d = 1, 2.

– By the previous example the simple truncation relations hold for r ≥ 0.

We conjecture that in this case the non-simple truncation ([Z1,Z2]n etc.)
also hold for r > 0. But this would either require a reflection theory for
algebra of screenings or a generalization of theorem 3.5.

– The bosonic Serre relation [Z1, . . . [Z1,Z2] . . .] = 0 (already studied in the
Cartan section), involves d+ 1 times the first screening and holds

∗ for d = 1 iff 2r 6∈ −N.

∗ for d = 2 iff 3r 6∈ −N.

So it may fail if the bosonic root α1 is both q-Cartan and q-truncation
and the truncation relation fails.

– The fermionic Serre relation [Z2, [Z2,Z1]] = 0 holds

∗ for d = 1 iff −r + 1
2 6∈ −N.

∗ for d = 2 iff 2r,−2r + 1
2 6∈ −N.

But 2r ∈ Z is not admissible because q−2d 6= 1.

Summarizing we have the following possible exceptions:

• for k ∈ Z, k odd, d = 1:

−1

k

−1

1

−1

−k

• for q2 = i, k ∈ N, d = 2:

i
1+4k

2

−1

1

−1

−(1 + 4k)

• for q2 = ζ ∈ R3, k ∈ N, k odd, d = 2:

ζ

− 2
3k

−1

1

ζ

4
3k
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In conclusion:

Corollary 6.23. Apart from the possible exceptions above, the screening oper-
ators algebra is as follows:

• For r′, r′′ ≥ 0 all Nichols algebra relations hold (conjecturally also the
non-simple truncation relations).

• For r′, r′′ < 0 all Nichols algebra relations hold except the bosonic trunca-
tion relations.

Conjecturally the algebra of screenings is again the positive part of an
infinite-dimensional Kac-Procesi-DeConcini quantum super group.

• For r′ > 0, r′′ < 0 or r′ < 0, r′′ > 0 the truncation relations on one side
of the Dynkin diagram of the standard chamber fail, and we conjecturally
get the positive part of an corresponding version of an infinite-dimensional
Kac-Procesi-DeConcini quantum super group.

Regarding the Kac-Procesi-DeConcini version of an arbitrary Nichols alge-
bra, see the concept of a pre-Nichols algebra in [Ang14].

6.5 Examples in rank 2

We now present the cases of table 1 in [Hec05] rising from Lie superalgebras of
rank 2. We will check in every case whether the exceptions of corollary 6.13
appear.
In rank 2, there is obviously always just one bosonic sector g′.
In the respective remarks we will express the simple roots in the standard cham-
ber using as in [Kac77] the standard basis εi and δi.

Heckenberger row 3

The case row 3 of table 1 in [Hec05], studied in example 4.5, is realised by the
Lie superalgebra lattice A(1,0). This case is described by the diagrams:

q2 −1q−2 −1 −1q2

I II

with q2 6= ±1 and simple roots I : {α1, α2}, II : {α12,−α2}. The set of positive
roots is given by {α1, α2, α12} with unique associate Cartan matrix and inner
products

aij =

 2 −1

−1 2

 , (αi, αj) =

[
2 −1
−1 0

]
.

Therefore the mij matrix in the standard basis and after reflecting around
α2 are given by:

mI
ij =

[
2r −r
−r 1

]
, mII

ij =

[
1 −1 + r

−1 + r 1

]
.

None of the exceptions of lemma 6.13 appears; therefore mij is a realising solu-
tion ∀r. This result matches with example 4.5.
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Remark 6.24. As observed in example 4.5, if we allow the value q2 = −1 we
obtain row 2 of table 1 in [Hec05].

Remark 6.25. The simple roots in the standard chamber of A(1, 0) can be ex-
pressed by

α1 = ε1 − ε2, α2 = αf = ε2 − δ1.

Heckenberger row 5

Row 5 of table 1 in [Hec05] is realised by the Lie superalgebra lattice B(1,1).
This case is described by the diagrams:

q2 −1q−4 −q−2 −1q4

I II

with q2 6= ±1, q2 6∈ R4 and simple roots I : {α1, α2}, II : {α12,−α2}.
The set of positive roots is given by {α1, α2, α12, α112} with unique associate

Cartan matrix:

aij =

 2 −2

−1 2


and inner product:

(αi, αj) =

[
2 −2
−2 0

]
.

Therefore the mij matrix in the standard basis and after reflecting around
α1 are given by:

mI
ij =

 2r −2r

−2r 1

 mII
ij =

−2r + 1 2r − 1

2r − 1 1

 .
None of the exceptions of lemma 6.13 appears; therefore mij is a realising solu-
tion ∀r.
Remark 6.26. When q2 ∈ R3, the root α1 is q-Cartan and q-truncation. When
it is m-truncation we get:

mI
ij =

 2
3 −2r

−2r 1

 mII
ij =

 5
3 − 4r 2r − 1

2r − 1 1

 mIII
ij =

 2
3 2r − 4

3

2r − 4
3

11
3 − 8r


where III: {−α1, α112} comes after reflecting around α1. The root α112 is never
m-Cartan and it is m-truncation iff r = 1

3 . But for this value of r, α1 is also
m-Cartan and thus this is not a new solution.

Remark 6.27. If we allow q = i the system is the one described in row 4 in
section 5. Also in this case it corresponds to the Lie superalgebra B(1, 1).

Remark 6.28. The roots can be expressed by

α1 = ε1, α2 = αf = δ1 − ε1.
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6.6 Arbitrary rank

We generalize our study to arbitrary rank cases. In every case we will see under
which assumptions the constructed mij matrices are realising solutions.

A(m,n)

q2 q2q−2

· · · −1 · · ·
q−2 q2 q−2

The simple roots in the standard chamber are:

α1, . . . , αf = αm+1, . . . , αm+n+1

with inner product matrix

(αi, αj) =



2 −1

−1
. . .

. . .

. . .
. . .

. . .

. . . 0
. . .

. . .
. . . −1
−1 2


We list all the positive roots. We denote by ∆0 the set of bosons and by ∆1 the
set of fermions according to the literature [Kac77].

∆0 = {αl + . . .+ αk, with l, k < f or l, k > f}
∆1 = {αl + . . .+ αk, with l ≤ f ≤ k, l 6= k}

We now apply the lemmas of the previous section to determine possible
conditions on r′ and r′′ such that the mij matrix defined as in 6.5 is a realising
solution.

• All the bosons are either in g′ or g′′. Then, thanks to lemma 6.11, we
know they are always m-Cartan.

• All the fermions are isotropic and have f = ±1. Thanks to lemma 6.12
we know that if they are not strong orthogonal to any other root they are
m-truncation.

• We now focus on the case of strong orthogonal fermions. Let us consider
two fermions:

γ1 = αl1 + . . .+ αk1 with l1 ≤ f ≤ k1,

γ2 = αl2 + . . .+ αk2 with l2 ≤ f ≤ k2.

They are strong orthogonal if l1 6= l2, k1 6= k2. In this case we have to
check that m12 = (γ1, γ2)g′r

′ + (γ1, γ2)g′′r
′′ + f(γ1)f(γ2) = 0.

We thus compute the inner products in the two bosonic sides. We assume
l1 < l2 and k1 < k2, because every other combination works analogously
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and gives the same result.
Wlog we can assume l2 = l1 + 1 and k2 = k1 + 1 and thus

(γ1, γ2) =(αl1 , γ2) + (αl1+1, γ2) + . . .+ (αf , γ2) + . . .+ (γk1 , γ2)

=(αl1 , αl1+1)g′

+(αl1+1, αl1+1)g′ + (αl1+1, αl1+2)g′

+ . . .

+(αf , αf−1)g′ + (αf , αf ) + (αf , αf+1)g′′

+ . . .

+(αk1 , αk1 − 1)g′′ + (αk1 , αk1)g′′ + (αk1 , αk1+1)g′′

The only term that contributes is (αf , αf−1)g′ + (αf , αf ) + (αf , αf+1)g′′

since the previous terms sum up to zero in g′, and the following terms sum
up to zero in g′′. Hence we have (γ1, γ2) = −1g′ − 1g′′ . Asking m12 to be
zero, means to ask

−1 · r′ − 1 · r′′ + 1 = 0 ⇒ r′ + r′′ = 1

To conclude, the only condition needed for the mij matrix to be a realising
solution is r′ + r′′ = 1.

Remark 6.29. This condition matches with the formulation of A(m,n) in terms
of Nichols algebra diagram ([Hec06], Table C, row 2), where qg′ = q and qg′′ =
q−1. Indeed, if r′ + r′′ = 1 then

qg′qg′′ = eiπ(αi,αi)r
′
eiπ(αj ,αj)r

′′
= eiπ2r′eiπ2r′′ = eiπ2(r′+r′′) = 1,

calling αi a root in g′ and αj a root in g′′.

Remark 6.30. We can write the simple roots in the standard chamber using as
in [Kac77] the standard basis ε1, . . . , εm+1, δ1, . . . , δn+1:

{α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , αm+1 = εm+1 − δ1,
αm+2 = δ1 − δ2, . . . , αm+n+1 = δn − δn+1}

B(m,n)

q−4 q−4q4

· · · −1 · · ·
q4 q−4 q2

The simple roots in the standard chamber are:

α1, . . . , αf = αn, . . . , αm+n

with inner product matrix

(αi, αj) =



4 −2

−2
. . .

. . .

. . .
. . .

. . .

. . . 0
. . .

. . .
. . . −2
−2 2


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All the positive roots are:

∆0 = {αl + . . .+ αk, with l, k < f

αl + . . .+ αk, with l, k > f, k 6= m+ n

αl + . . .+ αm+n, with l > f

αl + . . .+ 2αk + . . .+ 2αm+n, with l < f, k ≤ f
αl + . . .+ 2αk + . . .+ 2αm+n, with l, k > f}

∆1 = {αl + . . .+ αm+n, with l ≤ f
αl + . . .+ 2αk + . . .+ 2αm+n, with l < f < k

αl + . . .+ αk, with l < f < k, k 6= m+ n}

We now apply the lemmas of the previous section to determine possible
conditions on r′ and r′′ such that the mij matrix defined as in 6.5 is a realising
solution.

• All the bosons which are not of the type γlk := αl+. . .+2αk+. . .+2αm+n,
with l < f, k ≤ f , are either in g′ or g′′. Then, thanks to lemma 6.11, we
know they are always m-Cartan.

• For γlk, we need to explicitly ask condition (5).
The inner product is (γlk, γlk) = −2g′ − 4g′′ .

– γlk is m-truncation if 2r′ + 4r′′ = 3.

– γlk is m-Cartan if r′ + r′′ = 1.

• All the fermions which are not of the type γl := αl + . . . + αm+n, are
isotropic and have f = ±1. Thanks to lemma 6.12 we then know that if
they are not strong orthogonal to any other root they are m-truncation.

• For γl, we need to explicitly ask condition (5).
The inner product is (γl, γl) = −1g′′ .

– γl is m-truncation holds if r′′ = 0.

– γl is m-Cartan holds if r′ + r′′ = 1.

• We now focus on the case of strong orthogonal fermions. Let us consider
the fermions:

{γ1 := αl1 + . . .+ αm+n

γ2 := αl2 + . . .+ 2αk2 + . . .+ 2αm+n

γ3 := αl3 + . . .+ αk3}

The fermions γ1 and γ2 are strong orthogonal iff l1 6= l2;
The fermions γ2 and γ3 are strong orthogonal iff l2 6= l3 or k2 6= k3 + 1;
The fermions γ1 and γ3 are strong orthogonal iff l1 6= l3;
Two fermions of type γ2 are strong orthogonal iff have different l2 and k2;
Two fermions of type γ3 are strong orthogonal iff have different l3 and k3;
Asking the condition mij = 0 for those cases, we find again the condition
r′ + r′′ = 1.
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In conclusion, the only condition needed for the mij matrix to be a realising
solution is r′ + r′′ = 1. If this condition is satisfied the bosons with f = 2 as
well as the non isotropic fermions are m-Cartan. If moreover r′ = r′′ = 1

2 then
the bosons with f = 2 are also m-truncation.

Remark 6.31. As in the case of the Lie superalgebras of type A(m,n), the
condition r′ + r′′ = 1 matches with the formulation of B(m,n) in terms of
Nichols algebra diagram ([Hec06], Table C, row 4), where qg′ = q and qg′′ = q−1.

Remark 6.32. We can write the simple roots in the standard chamber using as
in [Kac77] the standard basis ε1, . . . , εm, δ1, . . . , δn:

{α1 = δ1 − δ2, α2 = δ2 − δ3, . . . , αn = δn − ε1,
αn+1 = ε1 − ε2, . . . , αm+n = εm.}

The bosons with f = 2 will be of the form δi + δj , while the non isotropic
fermions will be δi.

C(n)

−1 q2q−2

· · ·
q2 q2q−2 q−4 q4

The simple roots in the standard chamber are:

αf = α1, . . . , αn

with inner product matrix

(αi, αj) =



0 −1

−1 2
. . .

. . .
. . .

. . .

. . .
. . . −1
−1 2 −2

−2 4


.

All the positive roots are:

∆0 = {αl + . . .+ αk, with l 6= 1 k 6= n

αl + . . .+ 2αk + . . .+ 2αn−1 + αn, with l 6= 1 k 6= n

αl + . . .+ αn, with l 6= 1

2αl + . . .+ 2αn−1 + αn, with l 6= 1}

∆1 = {α1 + . . .+ αn

α1 + . . .+ αk, with k 6= 1

α1 + . . .+ 2αk + . . .+ 2αn−1 + αn, with k 6= n}

We now apply the lemmas of the previous section to determine possible
conditions on r′ such that the mij matrix defined as in 6.5 is a realising solution.

35



• Since there is just one bosonic side it is obvious that all the bosons are
m-Cartan.

• All the fermions are isotropic, non strong orthogonal to each other, and
have f = ±1. Thanks to lemma 6.12 we then know that they are m-
truncation.

To conclude, the mij matrix is always a realising solution.

Remark 6.33. We can write the simple roots in the standard chamber using as
in [Kac77] the standard basis ε1, δ1 . . . , δn−1:

{α1 = ε1 − δ1, α2 = δ1 − δ2, . . . , αn−1 = δn−2 − δn−1, αn = 2δn−1}

D(m,n)

q−2 q−2q2

· · · −1 · · ·
q2 q−2 q2

q2

q−2

q2

q−2

The simple roots in the standard chamber are:

α1, . . . , αn = αf , . . . , αn+m

with inner product matrix

(αi, αj) =



2 −1

−1
. . .

. . .

. . . 0
. . .

. . . 2 −1 −1
−1 2 0
−1 0 2


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All the positive roots are:

∆0 = {αl + . . .+ αk, with l, k < f

αl + . . .+ αk, with l, k > f

αl + . . .+ αm+n−2 + αm+n, with l > f

αl + . . .+ 2αk + . . .+ 2αm+n−2 + αm+n−1 + αm+n, with l < f, k ≤ f
αl + . . .+ 2αk + . . .+ 2αm+n−2 + αm+n−1 + αm+n, with l, k > f

2αl + . . .+ 2αk + . . .+ 2αm+n−2 + αm+n−1 + αm+n, with l < f, k ≤ f}

∆1 = {αl + . . .+ αk, with l ≤ f ≤ k
αl + . . .+ αn+m−2 + αn+m, with l ≤ f
αl + . . .+ 2αk + . . .+ 2αm+n−2 + αn+m−1 + αn+m, with l < f < k}

We now apply the lemmas of the previous section to determine possible con-
ditions on r′ and r′′ such that the mij matrix defined as in 6.5 is a realising
solution.

• All bosons except the IV or VI type in the list, are either in g′ or g′′.
Then, thanks to lemma 6.11, we know they are always m-Cartan.

• The bosons of type IV have inner product −2g′ − 4g′′ .

– it is m-truncation if 2r′ + 4r′′ = 3.

– it is m-Cartan if r′ + r′′ = 1.

The bosons of type VI have inner product −4g′′ .

– it is m-truncation if 4r′′ = 3.

– it is m-Cartan if r′ + r′′ = 1.

• All fermions are isotropic and have f = ±1. Thanks to lemma 6.12 we
then know that if they are not strong orthogonal to any other root they
are m-truncation.

• There are many possibility for two fermions to be strong orthogonal. Ask-
ing the condition mij = 0 for those cases, we find again the condition
r′ + r′′ = 1.

In conclusion, the only condition needed for the mij matrix to be a realising
solution is r′ + r′′ = 1. If this condition is satisfied the bosons with f = 2
are m-Cartan. If moreover r′ = r′′ = 1

2 then the boson of type IV are also
m-truncation. Instead if r′ = 1

4 , r
′′ = 3

4 then the boson of type VI are also
m-truncation.

Remark 6.34. As in the previous cases the condition r′ + r′′ = 1 matches with
the formulation of D(m,n) in terms of Nichols algebra diagram ([Hec06], Table
C, row 10), where qg′ = q and qg′′ = q−1.
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Remark 6.35. We can write the simple roots in the standard chamber using as
in [Kac77] the standard basis ε1, . . . , εm, δ1, . . . , δn:

{α1 = δ1 − δ2, . . . , αn = δn − ε1, αn+1 = ε1 − ε2, . . .
. . . αm+n−1 = εm−1 − εm, αm+n = εm−1 + εm}.

The bosons of type IV will be of the form δi + δj , while the one of type VI will
be of the form 2δi.

Sporadic cases

G(3)

−1 q2 q6q−2 q−6

The simple roots in the standard chamber are {α1 = αf , α2, α3} with inner
product

(αi, αj) =

 0 −1 0
−1 2 −3
0 −3 6

 .
There is only one bosonic part g′ and the positive roots are:

{α1, α2, α3, α12, α23, α223, α123, α1223,

α12223, α2223, α22233, α1222233, α122233.}

The mij matrix is given by

mI
ij =

 1 −r 0
−r 2r −3r
0 −3r 6r

 .
• Since there is just one bosonic side it is obvious that all the bosons satisfy

are m-Cartan.

• All the fermions, except for α1223, are isotropic and have f = ±1. Thanks
to lemma 6.12 we then know that they are m-truncation.

• The fermion α1223 is m-Cartan without further assumptions.

• There are no couples of strong orthogonal fermions.

To conclude the mij matrix is a realising solution ∀r.
This construction realise the Nichols algebra B(q) described row 7 of table 2 in
[Hec05] when q 6= ±1, q 6∈ R3.

For this lower rank case we can also show explicitly all the reflections of the
mij matrix: reflecting mI

ij around α1 we find the following

mII
ij =

 1 −1 + r 0
−1 + r 1 −3r

0 −3r 6r

 .
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Reflecting it around α12 we find the following

mIII
ij =

 2r −r −2r
−r 1 −1 + 3r
−2r −1 + 3r 1

 .
Reflecting it around α123 we find the following

mIV
ij =

 6r −3r 0
−3r 1 −1 + 2r

0 −1 + 2r 1− 2r.


Remark 6.36. If q2 ∈ R6, α3 is both q-Cartan and q-truncation. When it is
m-truncation we find

−1

1

ζ

2r

−1

1

ζ−2

−2r

−1

−6r

with ζ ∈ R6. This is a solution iff r = 1
6 . But for this value of r, α3 is also

m-Cartan and thus this is not a new solution.

Remark 6.37. The roots can be expressed by

α1 = αf = δ + ε1, α2 = ε2 α3 = ε3 − ε2

F(4)

q4 q4 q2 −1q−4 q−4 q−2

The simple roots in the standard chamber are {α1, α2, α3, α4 = αf} with inner
product

(αi, αj) =


4 −2
−2 4 −2

−2 2 −1
−1 0

 .
There is only one bosonic part g′ and the rest of the positive roots are:

{α12, α23, α34, α233, α123, α234, α1233, α2334,

α1234, α12233, α12334, α1223334, α122334, α12233344.}

• All bosons except α12233344 are completely in the bosonic sector and thus
are m-Cartan.

• The boson α12233344 is m-Cartan without further assumptions.

• All fermions are isotropic and have f = ±1. Thanks to lemma 6.12 we
then know they are m-truncation.

• We have two couples of strong orthogonal fermions:

{α34, α122334} {α234, α12334}

which give the condition r = 1
3 .

To conclude, the condition for the mij matrix to be a realising solution is r = 1
3 .
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D(2,1; α)

−1

−1 −1

q′ q′′

q′′′

1

1 1

r′ − 2 r′′ − 2

r′′′ − 2

The simple roots in the standard chamber are {α1, α2 = αf , α3} with inner
product:

(αi, αj) =

 2 −2 0
−2 0 −2
0 −2 2


The positive roots are:

{α1, α2, α3, α12, α23, α123, α1223.}

Reflecting the diagram around one of the root (the system is completely sym-
metric in the three roots), we obtain:

q′

r′
−1

1

q′′′

r′′′

(q′)−1

−r′
(q′′′)−1

−r′′′

Exception (4) of lemma 6.13 appears. Imposing that the first and the third
roots are not connected we find the condition r′ + r′′ + r′′′ = 2. In this case
these mij matrices are realising solution.
This corresponds to the condition q′ · q′′ · q′′′ = 1 of case 9 (as well as 10 and
11), rank 3, in table 2 of [Hec05].

7 Rank 2

7.1 Other cases in rank 2: construction

In this section we are going to present the examples of rank = 2 Nichols algebra
which don’t belong to the Cartan and super Lie study of the previous two
sections.

Heckenberger row 6

This case of table 1 in [Hec05] is described by two diagrams:

ζ q2q−2 ζ ζq−2ζ−1q2

I II
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where ζ ∈ R3 and q2 6= 1, ζ, ζ2 and with respectively simple roots:

I : {α1, α2} II : {−α1, α112}.

There is just one associate Cartan matrix:

aij =

 2 −2

−1 2

 .
The set of positive roots is {α1, α2, α12, α112} where α2 and α112 are only q-
Cartan while the others are only q-truncation.

Proposition 7.1. The following mij matrices are realising solutions of the
given braiding and its reflections:

mI
ij =

 2
3 −r

−r 2r

 mII
ij =

 2
3 − 4

3 + r

− 4
3 + r 8

3 − 2r

 .
Proof. First we check that condition (5)B is satisfied for α1:

m11 =
2

1− a12
=

2

3

and condition (5)A is satisfied for α22 and α112:

m22,22 =
2m12

a21
= 2r

m112,112 =
2m112,−1

a112,1
=

8

3
− 2r.

We then check that the reflection around α1 send one mij-matrix to the other
as follows:

mII
ij =

 2
3 − 4

3 + r

− 4
3 + r 8

3 − 2r

 =

−1 2

0 1

T  2
3 −r

−r 2r

−1 2

0 1

 = R1(mI
ij)

Remark 7.2. When q2 ∈ R2, the root α2 is q-Cartan and q-truncation.
When it is m-truncation we get:

mI
ij =

 2
3 −r

−r 1

 mII
ij =

 2
3 − 4

3 + r

− 4
3 + r 11

3 − 4r

 mIII
ij =

 5
3 − 2r r − 1

r − 1 1

 .
with III: {α12,−α2}.
The root α112 is never m-truncation and it is m-Cartan iff r = 1

2 . But for this
value of r, α2 is also m-Cartan and thus this is not a new solution.
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As we can see in [Hel10] truncation and Serre relations are the only defining
relations. We have the following:

Proposition 7.3. The truncation relations hold for every r ≥ 0, while the Serre
relations hold for 2r 6∈ −N and r 6= 1+3k

3 , 2+3k
3 .

Remark 7.4. We could call this case of colour type. It indeed behaves as a
super Lie case except for the fact that mff = 2

3 , and not 1. In particular lemma
6.15 trivially extends to this case as a classification lemma, with the appropriate
changes.

Heckenberger row 9

This case of table 1 in [Hec05] is described by three diagrams:

−ζ2 −ζ2ζ −ζ2 −1ζ3 −ζ−1 −1−ζ3

I II III

where ζ ∈ R12 and with respectively simple roots:

I : {α1, α2} II : {−α1, α112} III : {α12,−α122}.

The associate Cartan matrices are:

aI
ij =

 2 −2

−2 2

 aII
ij =

 2 −2

−1 2

 aIII
ij =

 2 −3

−1 2

 .
The set of positive roots is {α1, α2, α12, α112, α122} where α12 is only q-Cartan
while the others are only q-truncation.

Proposition 7.5. The following mij matrices are realising solutions of the
given braiding and its reflections:

mI
ij =

 2
3 − 7

12

− 7
12

2
3

 mII
ij =

 2
3 − 3

4

− 3
4 1

 mIII
ij =

 1
6 − 1

4

− 1
4 1


Proof. First we check that condition (5)B is satisfied for all the roots:

m11 =
2

1− a12
=

2

3

m22 =
2

1− a21
=

2

3

m112,112 =
2

1− a112,1
= 1

m122,122 =
2

1− a122,12
= 1

and condition (5)A is satisfied for the root α12:

m12,12 =
2m−122,12

a12,112
=

1

6
.
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We then check that the reflections send one mij-matrix to the other as follows:

mII
ij =

 2
3 − 3

4

− 3
4 1

 =

−1 2

0 1

T  2
3 − 7

12

− 7
12

2
3

−1 2

0 1

 = R1(mI
ij)

mIII
ij =

 1
6 − 1

4

− 1
4 1

 =

1 0

1 −1

T  2
3 − 3

4

− 3
4 1

1 0

1 −1

 = R122 ◦ R2(mI
ij)

Corollary 7.6. By formula (4) for rank 2, we have that the central charge of
the system is c = −126.

Proposition 7.7. Truncation and Serre relations always hold, by lemma 3.4.

We conclude this case with a picture illustrating how the set of simple roots
behave under reflections. We write I, II, III, to indicate to which diagram do
the simple roots in each case belong.

{α1,α2}I

{−α1,α112}II {α122,−α2}II

{α12,−α112}III {−α122,α12}III

{α112,−α12}III

R1 R2

R112 R122

sign swap R12

(9)

Heckenberger row 10

This case of table 1 in [Hec05] is described by three diagrams:

−ζ ζ3ζ−2 ζ3 −1ζ−1 −ζ2 −1ζ

I II III

where ζ ∈ R9 and with respectively simple roots:

I : {α1, α2} II : {−α2, α122} III : {α12,−α122}.

The associate Cartan matrices are:

aI
ij =

 2 −2

−2 2

 aII
ij =

 2 −2

−1 2

 aIII
ij =

 2 −4

−1 2

 .
The set of positive roots is {α1, α2, α12, α112, α122, α11122} where α1 and α12 are
only q-Cartan while the others are only q-truncation.
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Proposition 7.8. The following mij matrices are realising solutions of the
given braiding and its reflections:

mI
ij =

 5
9 − 5

9

− 5
9

2
3

 mII
ij =

 2
3 − 7

9

− 7
9 1

 mIII
ij =

 1
9 − 2

9

− 2
9 1


Proof. We check that the roots {α2, α112, α122, α11122} satisfy condition (5)B,
while the root α1 and α12 satisfy condition (5)A.
We check that the reflections send one mij-matrix to the other.

Corollary 7.9. By formula (4) for rank 2, we have that the central charge of
the system is − 1088

5 .

Proposition 7.10. Truncation and Serre relations always hold, by lemma 3.4.

Heckenberger row 12

This case of table 1 in [Hec05] is described by three diagrams:

ζ2 ζ−1ζ ζ2 −1−ζ−1 ζ −1−ζ

I II III

where ζ ∈ R8 and with respectively simple roots:

I : {α1, α2} II : {−α1, α1112} III : {α112,−α1112}.

There is just one associate Cartan matrix:

aij =

 2 −3

−1 2

 .
The set of positive roots is {α1, α2, α12, α112, α1112, α11122} where α2 and α112

are only q-Cartan while the others are only q-truncation.

Proposition 7.11. The following mij matrices are realising solutions of the
given braiding and its reflections:

mI
ij =

 1
2 − 7

8

− 7
8

7
4

 mII
ij =

 1
2 − 5

8

− 5
8 1

 mIII
ij =

 1
4 − 3

8

− 3
8 1


Proof. We check that the roots {α1, α12, α1112, α11122} satisfy condition (5)B,
while the root α2 and α112 satisfy condition (5)A.
We check that the reflections send one mij-matrix to the other.

Corollary 7.12. By formula (4) for rank 2, we have that the central charge of
the system is − 874

7 .

Proposition 7.13. Truncation and Serre relations always hold, by lemma 3.4.
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Heckenberger row 13

This case of table 1 in [Hec05] is described by four diagrams:

ζ6 −ζ−4−ζ−1 ζ6 ζ−1ζ −ζ−4 −1ζ5 ζ −1ζ−5

I II III IV

where ζ ∈ R24 and with respectively simple roots:

I : {α1, α2} II : {−α1, α1112} III : {−α2, α122} IV : {α12,−α122}..

The associate Cartan matrices are:

aI
ij =

 2 −3

−2 2

 aII
ij =

 2 −3

−1 2

 aIII
ij =

 2 −2

−1 2

 aIV
ij =

 2 −5

−1 2

 .
The set of positive roots is {α1, α2, α12, α112, α122, α1112, α11122, α1111222} where
α12 and α1112 are the only q-Cartan roots while the others are only q-truncation.

Proposition 7.14. The following mij matrices are realising solutions of the
given braiding and its reflections:

mI
ij =

 1
2 − 13

24

− 13
24

2
3

 mII
ij =

 1
2 − 23

24

− 23
24

23
12



mIII
ij =

 1 − 19
24

− 19
24

2
3

 mIV
ij =

 1 − 5
24

− 5
24

1
12


Proof. We check that the roots α12 and α1112 satisfy condition (5)A, while the
rest condition (5)B.
We check that the reflections send one mij-matrix to the other.

Corollary 7.15. By formula (4) for rank 2, we have that the central charge of
the system is − 7826

23 .

Proposition 7.16. Truncation and Serre relations always hold, by lemma 3.4.

Heckenberger row 14

This case of table 1 in [Hec05] is described by two diagrams:

ζ −1ζ2 −ζ−2 −1ζ−2

I II

where ζ ∈ R5 and with respectively simple roots:

I : {α1, α2} II : {α12,−α2}.
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The associate Cartan matrices are:

aI
ij =

 2 −3

−1 2

 aII
ij =

 2 −4

−1 2

 .
The set of positive roots is {α1, α2, α12, α112, α1112, α1111222, α11122, α11111222}
where α1, α12, α112 and α11122 are only q-Cartan while the others are only q-
truncation.

Proposition 7.17. The following mij matrices are realising solutions of the
given braiding and its reflections:

mI
ij =

 2
5 − 3

5

− 3
5 1

 mII
ij =

 1
5 − 2

5

− 2
5 1

 .
Proof. We check that the roots α1, α12, α112 and α11122 satisfy condition (5)A,
while the others satisfy condition (5)B.
We check that the reflections send one mij-matrix to the other.

Corollary 7.18. By formula (4) for rank 2, we have that the central charge of
the system is −364.

Proposition 7.19. Truncation and Serre relations always hold, by lemma 3.4.

Heckenberger row 17

This case of table 1 in [Hec05] is described by two diagrams:

−ζ −1−ζ−3 −ζ−2 −1−ζ3

I II

where ζ ∈ R7 and with respectively simple roots:

I : {α1, α2} II : {α12,−α2}.

The associate Cartan matrices are:

aI
ij =

 2 −3

−1 2

 aII
ij =

 2 −5

−1 2

 .
The set of positive roots is

{α1, α2, α12, α112, α1112, α11122, α1111222, α111112222, α111111122222,

α11111222, α1111111122222, α11111112222}

where {α1, α12, α112, α11122, α1111222, α11111222} are only q-Cartan while the oth-
ers are only q-truncation.
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Proposition 7.20. The following mij matrices are realising solutions of the
given braiding and its reflections:

mI
ij =

 6
14 − 9

14

− 9
14 1

 mII
ij =

 2
14 − 5

14

− 5
14 1

 .
Proof. We check that the roots {α1, α12, α112, α11122, α1111222, α11111222} satisfy
condition (5)A, while the others satisfy condition (5)B.
We check that the reflections send one mij-matrix to the other.

Corollary 7.21. By formula (4) for rank 2, we have that the central charge of
the system is −962.

Proposition 7.22. Truncation and Serre relations always hold, by lemma 3.4.

7.2 Classification: rank 2

In this section we are going to prove the following

Theorem 7.23. For all finite dimensional diagonal Nichols algebras of rank =
2, all mij matrices which are realising solutions of the given braiding are the
ones constructed in sections 5, 6 or 7.1.

In order to prove it, we are going to go through table 1 in [Hec05], see
which roots are q-truncation, q-Cartan and compute for every diagram the cor-
responding mij . We will see that for every case, the mij match with one of
the constructed in the previous sections, and that there are no other possible
solutions.

To prove this result we will need the following tools:

Proposition 7.24. We consider a diagram

qii qjjqijqji

where we assume that both {αi, αj} are q-truncation, and apply a reflection Ri
around the root αi

Ri : αi 7−→ −αi
αj 7−→ α

arriving to a new diagram with simple roots {−αi, α := αj − aijαi}.
We have:

1. if β is m-truncation then

mij =
aij

1− aij
− 1

aij(1− aβ,−i)
+

1

aij(1− aji)
(10)

2. if β is m-Cartan then

mij =
aij

1− aij
+

(
1

1−aji −
aij

(1−aij)aβi

)
(− 1

aβi
+ aij)

(11)
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Proof. Since {αi, αj} are only q-truncation, thus m-truncation, we have the
relations

mii =
2

1− aij
mjj =

2

1− aji
.

1. If β is m-truncation then mββ = 2
1−aβ,−i . But for definition of β we have:

mββ = mjj − 2aijmij + a2
ijmii.

Gathering all the information together we get:

2

1− aβ,−i
=

2

1− aji
− 2aijmij + a2

ij

2

1− aij

and from this the final result.

2. This case is completely analogous, with the only difference that β is m-
Cartan and thus mββ =

2mβ,−i
aβi

we will then have:

mββ =
2mβ,−i

aβi
= −2

mij

aβi
+

2aij(
2

1−aij )

aβi

mββ =
2

1− aji
− 2aijmij + a2

ij

2

1− aij
.

The two equations together give the thesis.

Analogously:

Proposition 7.25. We consider a diagram

qii qjjqijqji

where we assume that {αi, αj} are the first q-Cartan and the latter q-truncation.
We apply a reflection around the q-truncation root αj,

Rj : αj 7−→ −αj
αi 7−→ β

arriving to a new diagram associated to the roots: {β := αi − ajiαj , −αj}. We
have:

1. if β is m-truncation then

mij =
aij

1− aijaji

(
1

1− aβ,−j
−

a2
ji

1− aji

)
(12)

2. if β is m-Cartan then

mij =
aijaji
1− aji

· ajiaβ,−j − 2

ajiaijaβ,−j − aβ,−j − aij
(13)
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Heckenberger row 2

We have d = 1 and then `1 = `2 = `
gdc(`,2) . Therefore ` 6= 2 and since aij = −1

we have the following:
If ` > 4 or ` = 3 then by classification lemma 5.6 we get a unique solution,
presented in section 5 Heckenberger row 2.
If ` = 4 then qii = q2 = −1 and the roots are both q-Cartan and q-truncation:

• If both are m-Cartan, we find a unique solution, by lemma 5.6 presented
in section 5 Heckenberger row 2, in the limit case q2 = −1.

• If one of the two is m-truncation, we find a unique solution, presented in
section 6, Heckenberger row 3, in the limit case q2 = −1. This result is a
consequence of lemma 6.15.

• If both are only m-truncation we recognize the matrix

 1 −p
′

2

−p
′

2 1

 which

is the other Weyl chamber in example 4.5.

Heckenberger row 3

We have d = 1 and then `1 = `2 = `
gdc(`,2) . Therefore ` 6= 2 and since a12 = −1

we have the following:
If ` > 4 or ` = 3 then by classification lemma 6.15 we get a unique solution,
presented in section 6 case Heckenberger row 3.
If ` = 4, α1 is both q-Cartan and q-truncation.

• If it is m-Cartan, we find again the unique solution presented in section 6
Heckenberger row 3, in the limit case q2 = −1. This result is a consequence
of lemma 6.15.

• If it is m-truncation we recognize again the matrix

 1 −p
′

2

−p
′

2 1

 which is

the other Weyl chamber in example 4.5.

Heckenberger row 4

We have d = d2 = 2 and then `1 = `
gdc(`,2) , `2 = `

gdc(`,4) . Moreover ` 6= 2, 4,

because q2 6= ±1, and since a12 = −2, a21 = −1 we have the following:
If ` > 8 or ` = 5, 7 then by classification lemma 5.6 we get a unique solution,
presented in section 5 Heckenberger row 4.
If ` = 8 then the long root α2 is both q-Cartan and q-truncation, while α1 is
only q-Cartan.

• If α2 is m-Cartan, we find again the unique solution presented in section
5, Heckenberger row 4, by lemma 5.6.

• If α2 is m-truncation, we find the unique solution presented in section 6,
Heckenberger row 5, in the limit case q2 = i, by lemma 6.15.

If ` = 3, 6 then the short root α1 is both q-Cartan and q-truncation, while α2 is
only q-Cartan.
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• If α1 is m-Cartan, we find a unique solution, presented in section 5 Heck-
enberger row 4, again thanks to lemma 5.6.

• If α1 is m-truncation, we find a family of solution, presented in section 7.1,
Heckenberger row 6, up to rescaling. The uniqueness follows from lemma
6.15, as observed in remark 7.4.

Heckenberger row 5

We have d = 1 and then `1 = `
gdc(`,2) . Moreover ` 6= 2, 4, because q2 6= ±1, and

since a12 = −2 we have the following:
If ` > 6 or ` = 5 then by classification lemma 6.15 we get a unique solution,
presented in section 6 Heckenberger row 5.
If ` = 3, 6 then the bosonic root α1 is both q-Cartan and q-truncation.

• If α1 is m-Cartan, we find again the unique solution presented in section
6 Heckenberger row 5, by lemma 6.15.

• If α1 is m-truncation, we recognize the matrix

 2
3 −2r

−2r 1

 of remark

6.26 which is a solution only for r = 1
3 .

Heckenberger row 6

We have d = 1 and then `2 = `
gdc(`,2) . Moreover ` 6= 2, 3, 6, because q2 6= 1, ζ, ζ2,

with ζ ∈ R3. Since a12 = −1 we have the following:
If ` > 6 or ` = 5 then by classification lemma 6.15 we get a unique solution,
presented in section 7.1 Heckenberger row 6 (see remark 7.4).
If ` = 4 then the root α2 is both q-Cartan and q-truncation.

• If α2 is m-Cartan, we find again the unique solution presented in section
7.1 Heckenberger row 6, by lemma 6.15.

• If α2 is m-truncation, we recognize the matrix

 2
3 −r

−r 1

 of remark 7.2

which is a solution only for r = 1
2 .

Heckenberger row 7

We apply formula (10) to the reflection R1 and R2, since the simple roots α1

and α2 as well as the ones after reflections are only q-truncation and thus m-
truncation. From the first reflection we obtain m12 = − 2

3 , while from the latter
m12 = − 1

2 . Since these results don’t match, it means that there is no possible
formulation of the Nichols Algebra braiding in terms of the mij matrix.

Remark 7.26. We have q-truncation roots αi, αj , with qii = ζ, qjj = ζ−1,
both third roots of unity and it is not possible to realise both of them with
mii = mjj = 2

3 . This is another way to see that this case is not realisable.
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Heckenberger row 8

We apply formula (10) to the reflections R1 and R2, since the simple roots α1

and α2 as well as the ones after reflections are only q-truncation and thus m-
truncation. From the first reflection we obtain m12 = − 3

4 , while from the latter
m12 = − 7

12 . Since these results don’t match, it means that there is no possible
formulation of the Nichols Algebra braiding in terms of the mij matrix.

Heckenberger row 9

We apply formula (10) to the reflection R1 or R2, since the simple roots α1

and α2 as well as the ones after reflections are only q-truncation and thus m-
truncation. The resulting m12 shows that this is the mij appearing in section
7.1. This is thus the only possible solution.

Heckenberger row 10

We apply formula (12) to the reflection R2, since the simple root α1 is only
q-Cartan and thus m-Cartan, while α2 as well as the ones after reflections are
only q-truncation and thus m-truncation. The resulting m12 shows that this is
the mij appearing in section 7.1. This is thus the only possible solution.

Heckenberger row 11

We have d = d2 = 3 and then `1 = `
gdc(`,2) , `2 = `

gdc(`,6) . Moreover ` 6= 2, 3, 4, 6

because q2 6= ±1, q2 6∈ R3. Since a12 = −3 and a21 = −1 we have the following:
If ` > 12 or ` = 5, 7, 9, 10, 11 then by classification lemma 5.6 we get a unique
solution, presented in section 5 Heckenberger row 11.
If ` = 12 then the root α2 is both q-Cartan and q-truncation, while the root α1

is only q-Cartan.

• If α2 is m-Cartan, we find again the unique solution presented in section
5 Heckenberger row 11, by lemma 5.6.

• If α2 is m-truncation, we recognize the matrix

 2r −3r

−3r 1

 of remark

5.26 which is a solution only for r = 1
6 .

If ` = 8 then the root α1 is both q-Cartan and q-truncation, while the root α2

is only q-Cartan.

• If α1 is m-Cartan, we find again the unique solution presented in section
5 Heckenberger row 11, by lemma 5.6.

• If α1 is m-truncation, we recognize the matrix

 1
2 −3r

−3r 6r

 of remark

5.27 which is a solution only for r = 1
4 .
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Heckenberger row 12

We apply formula (12) to the reflections R1, since the simple roots α1 as well as
the ones after reflections are only q-truncation and thus m-truncation, while α2

is only q-Cartan, and thus m-Cartan. The result is m12 = − 7
8 , which matches

with the one of section 7.1.

Heckenberger row 13

We apply formula (10) to the reflection R1 or R2, since the simple roots α1

and α2 as well as the ones after reflections are only q-truncation and thus m-
truncation. The resulting m12 shows that this is the mij appearing in section
7.1. This is thus the only possible solution.

Heckenberger row 14

We apply formula (13) to the reflections R2, since the simple roots α1 as well as
the ones after reflections are only q-Cartan and thus m-Cartan, while α2 is only
q-truncation, and thus m-truncation. The result is m12 = − 3

5 , which matches
with the one of section 7.1.

Heckenberger row 15

We apply formula (10) to the reflections R1 and (11) to R2 since the simple
roots α1 and α2 as well as the ones after R1 are only q-truncation and thus
m-truncation, while the ones after R2 are only q-Cartan, and thus m-Cartan.
From the first reflection we obtain m12 = − 4

5 , while from the latter m12 = − 11
20 .

Since these results don’t match, it means that there is no possible formulation
of the Nichols Algebra braiding in terms of the mij matrix.

Heckenberger row 16

The root α1 is q-Cartan so we can’t start with the system of simple roots α1,
α2 if we want to compare the results of the reflections around them. We then
start with the simple roots α122 and −α2 which are only q-truncation and thus
m-truncation. After reflection R122 we obtain a only q-Cartan, and thus m-
Cartan, simple root. While after reflection R2 we obtain a only q-truncation,
and thus m-truncation, simple root. We then apply (11) to R122 and (10) to
R2 obtaining to different results. Hence there is no possible formulation of the
Nichols Algebra braiding in terms of the mij matrix.

Heckenberger row 17

We apply formula (12) to the reflections R2, since the simple roots α2 as well as
the ones after reflections are only q-truncation and thus m-truncation, while α1

is only q-Cartan, and thus m-Cartan. The result is m12 = − 5
14 , which matches

with the one of section 7.1.
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8 Rank 3

We now rise the rank by one and construct all mij-matrices which realise finite
dimensional diagonal Nichols algebras of rank 3, listed in table 2 of [Hec05].

For Cartan type we will refer to the study of section 5. For super Lie type
we will explicitly compute the realising solutions.
For the other cases, we will see that the mij matrices are completely fixed by
the lower rank: this will imply uniqueness of the solution and make it not just
a construction result but also a classification one.

In particular for these latter cases we will proceed as follows:

• Given a q-diagram in rank 3, we will consider it as two rank 2 q-diagrams
joined in the middle node. We will then associate to both sides the mij-
matrices realising them, found in the rank 2 study. For these mij-matrices
to be compatible, some restriction on the parameter of which they depend
will possibly appear.

• We will then reflect the q-diagram on its q-truncation roots and proceed
again as in the first point for the new diagram.
We reflect until we arrive not just to an already found q-diagram, but also
when the mij realisation is repeated (the mij matrix can be different also
if associated to the same q-diagram).

• We will then have to make sure that all the conditions found on the param-
eters are compatible and acceptable, in order for the rank 3 mij-matrices
to be realising solutions.

The q-diagrams and the associated realising solutions are listed in table 2 of
the Appendix.

Heckenberger row 1

This case belongs to the Cartan section. In particular it corresponds to the Lie
algebras A3 and it is described by the following q-diagram with corresponding
mij solution:

q2

2r

q2

2r

q2

2r

q−2

−2r

q−2

−2r

Remark 8.1. When q2 ∈ R2 the roots are both q-Cartan and q-truncation and
the q-diagram reads

−1 −1 −1−1 −1

We have the following extra solutions:

– When α1 is m-truncation and α2, α3 are m-Cartan we find

−1

1

−1

2r

−1

2r

−1

−2r

−1

−2r
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which is one chamber of the Lie superalgebra A(2, 0) described in Heck-
enberger row 4.

– When α1, α2 are m-truncation and α3 is m-Cartan we find

−1

1

−1

1

−1

2r

−1

r′
−1

−2r

which is a m-solution just for r = 1
2 and r′ = −1. But for these values of

r, r′ the roots α1, α2 are also m-Cartan and thus this is not a new solution.

– When α2 is m-truncation and α1, α3 are m-Cartan we find

−1

2r′
−1

1

−1

2r′′
−1

−2r′
−1

−2r′′

This is a solution either for r′ = 1
2 for which we end up again in the

previous point, or for r′ = 1 − r′′, which gives us one chamber of the Lie
superalgebra A(1, 1) described in Heckenberger row 8.

– When α1, α3 are m-truncation and α2 is m-Cartan we find

−1

1

−1

2r

−1

1

−1

−2r

−1

−2r

which is another chamber of the Lie superalgebra A(1, 1) described in
Heckenberger row 8.

– When the roots are all m-truncation we find

−1

1

−1

1

−1

1

−1

r′
−1

r′′

This is a solution either for r′ = −r′′ − 2 which is again a chamber of the
Lie superalgebra A(1, 1), or for r′ = r′′ = −1 for which the roots are also
m-Cartan and thus does not give a new solution.

Heckenberger row 2

This case belongs to the Cartan section. In particular it corresponds to the Lie
algebras B3 and it is described by the following q-diagram with corresponding
mij solution:

q4

4r

q4

4r

q2

2r

q−4

−4r

q−4

−4r

Remark 8.2. When q2 ∈ R4 the roots α1, α2 are both q-Cartan and q-truncation
and the q-diagram reads
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−1 −1 i−1 −1

For all the possible combinations of m-truncation and m-Cartan roots, no new
solution is found. In some cases we find the Lie superalgebra B(2, 1) described
in Heckenberger row 5.

Remark 8.3. When q2 ∈ R3 the root α3 is both q-Cartan and q-truncation and
the q-diagram reads

ζ2 ζ2 ζζ−2 ζ−2

with ζ ∈ R3. The case when it is m-truncation is a solution only for r = 1
3 for

which the root is also m-Cartan and thus does not give a new solution.

Heckenberger row 3

This case belongs to the Cartan section. In particular it corresponds to the Lie
algebras C3 and it is described by the following q-diagram with corresponding
mij solution:

q2

2r

q2

2r

q4

4r

q−2

−2r

q−4

−4r

Remark 8.4. If q2 ∈ R4, α3 is both q-Cartan and q-truncation and the q-diagram
reads

i

2r

i

2r

−1

1

−i
−2r

−1

−4r

The case when it is m-truncation is a solution iff r = 1
4 for which it is actually

also m-Cartan. So this is not a new solution.

Heckenberger row 4

Row 4 of table 2 in [Hec05] corresponds to the Lie superalgebra A(2, 0).
The simple roots in the standard chamber are {α1 = αf , α2, α3}. We then have
just a bosonic part g′. The inner products is given by:

(αi, αj) =

 0 −1 0
−1 2 −1
0 −1 2


and therefore:

−1

1

q2

2r

q2

2r

q−2

−2r

q−2

−2r

Reflecting around α1 we find the following

−1

1

−1

1

q2

2r

q2

−2 + 2r

q−2

−2r

Reflecting around the second root we find a symmetric result.
The roots satisfy condition (5) ∀r and therefore this mij is a realising solution.
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Heckenberger row 5

Row 5 of table 2 in [Hec05] corresponds to the Lie superalgebra B(2, 1).
The simple roots in the standard chamber are {α1 = αf , α2, α3}. We then have
just a bosonic part g′. The inner products is given by:

(αi, αj) =

 0 −2 0
−2 4 −2
0 −2 2


and therefore:

−1

1

q4

4r

q2

2r

q−4

−4r

q−4

−4r

Reflecting around α1 we find the following

−1

1

−1

1

q2

2r

q4

−2 + 4r

q−4

−4r

and after another reflection around the second root we find the following

q4

4r

−1

1

−q−2q−4

−4r

q4

−2 + 4r 1− 2r

The roots satisfy condition (5) ∀r and therefore this mij is a realising solu-
tion.

Remark 8.5. If q2 ∈ R4 then the root α2 is both q-Cartan and q-truncation.
This case has been already studied in details in Heckenberger row 2 remark 8.2.

Remark 8.6. If q2 ∈ R3 then the root α3 is both q-Cartan and q-truncation.
When it is m-truncation we get:

−1

1

ζ2

4r

ζ

2
3

ζ−2

−4r

ζ−2

−4r

This is a solution iff r = 1
3 . But for this value of r, α3 is also m-Cartan and

thus this is not a new solution.

Heckenberger row 6

Row 6 of table 2 in [Hec05] corresponds to the Lie superalgebra C(3).
The simple roots in the standard chamber are {α1 = αf , α2, α3}. We then have
just a bosonic part g′. The inner products is given by:

(αi, αj) = −

 0 −1 0
−1 2 −2
0 −2 4


and therefore:
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−1

1

q2

2r

q4

4r

q−2

−2r

q−4

−4r

Reflecting around α1 we find the following

−1

1

−1

1

q4

4r

q2

−2 + 2r

q−4

−4r

Reflecting around α12 we find the following

−1

q2 −1

q−2 q4

q−2

1

2r 1

−2r −2 + 4r

−2r

The roots satisfy condition (5) ∀r and therefore this mij is a realising solu-
tion.

Remark 8.7. If q2 ∈ R4, α3 is both q-Cartan and q-truncation. When it is
m-truncation we find

−1

1

i

2r

−1

1

−i
−2r

−1

−4r

This is a solution iff r = 1
4 . But for this value of r, α3 is also m-Cartan and

thus this is not a new solution.

Remark 8.8. The simple roots in the standard chamber can be expressed ac-
cording to [Kac77] by

α1 = αf = ε1 − δ1, α2 = δ1 − δ2 α3 = 2δ2.

Heckenberger row 7

Row 7 of table 2 in [Hec05] corresponds to the Lie superalgebra G(3) and it has
been already explicitly treated as sporadic case of super Lie type in section 6.6.

Heckenberger row 8

Row 8 of table 2 in [Hec05] corresponds to the Lie superalgebra A(1, 1).
The simple roots in the standard chamber are {α1, α2 = αf , α3}. We then
have two bosonic parts g′ and g′′. The inner products is given by:

(αi, αj) =

 2 −1 0
−1 0 −1
0 −1 2


and therefore:
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q2

2r′
−1

1

q−2

2r′′

q−2

−2r′

q2

−2r′′

Reflecting around α2 we find the following

−1

1

−1

1

−1

1

q2

−2 + 2r′

q−2

−2 + 2r′′

Other reflections give different mij matrices as shown in table 2. However,
exception (4) of lemma 6.13, already appears. Indeed to the latter diagram is
associated the following:

mC
ij =

 1 −1 + r′ −1 + r′ + r′′

−1 + r′ 1 −1 + r′′

−1 + r′ + r′′ −1 + r′′ 1

 .
We then have to ask mC

13 = 0, i.e. r′ + r′′ = 1. In this case these mij matrices
are realising solution.

Remark 8.9. The simple roots in the standard chamber can be expressed ac-
cording to [Kac77] by

α1 = ε1 − ε2, α2 = αf = ε2 − δ1, α3 = δ1 − δ2,

with vectors εi generating g′ and δi generating g′′.

Heckenberger row 9-10-11

Rows 9,10,11 of table 2 in [Hec05] correspond to the Lie superalgebra D(2, 1;α)
and it has been already explicitly treated as sporadic case of super Lie type in
section 6.6.

Heckenberger row 12

The first diagram is a composition of the diagrams of rank 2: #2 with q = −ζ−1

and #6 with q = −ζ−1, with ζ ∈ R3.

−ζ−1

2r′

−ζ−1

2r′

ζ−ζ
−2r′

−ζ

2r′′ −2r′′ 2
3

For them to be joint in the middle circle we find r′ = r′′ =: r.
The only q-truncation root is the third. Reflecting on it we find the same
diagram and as matching condition 2r = 8

3 − 2r, i.e. r = 2
3 . But q = eiπr ∈ R6.

So this case is not realisable.
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Heckenberger row 13

This case has two sub cases: ζ ∈ R3 and ζ ∈ R6 and diagram:

ζ

2r′

ζ

2r′
−1ζ−1

−2r′

ζ−2

2r′′ −4r′′ 1

1. Suppose ζ ∈ R3. The first diagram is a composition of the diagrams of
rank 2: #2 with q = ζ and #5 with q = ζ. For them to be joint in the
middle circle we find r′ = r′′ =: r.
The only q-truncation root is the third. Reflecting on it we find a diagram
composition of #4 with q = −ζ−1 and #5 with q = ζ. As matching
condition we find r = −2r+1, i.e. r = 1

3 which is an acceptable condition.
This case is thus realisable by the unique solution with parameter r = 1

3 .

2. Suppose ζ ∈ R6. We proceed analogously, but after reflecting around
the third root we find a diagram which is composition of #6 with q = ζ
and #5 with q = ζ. The condition now is r = 1

6 which is an acceptable
condition.
This case is thus realisable by the unique solution with parameter r = 1

6 .

Heckenberger row 14

This case is not realisable, since one of the diagrams contains diagram #7 of
rank 2 which is on turn not realisable.

Heckenberger row 15

The first diagram is a composition of the diagrams of rank 2: #3 with q = ζ
and #5 with q = ζ, where ζ ∈ R3.

−1

1

ζ

2r′
−1ζ−1

−2r′

ζ

2r′′ −4r′′ 1

For them to be joint in the middle circle we find r′ = r′′ =: r.
After the reflections around R12 ◦ R1 we find the condition r = 1

3 which is
acceptable and gives a unique realisable solution.

Heckenberger row 16

The first diagram is a composition of the diagrams of rank 2: #3 with q = ζ
and #6 with q = −ζ, where ζ ∈ R3.

−1

1

ζ

2r′

−ζζ−1

−2r′

−ζ−1

2
3
−2r′′ 2r′′

For them to be joint in the middle circle we find r′ = 1
3 .

After reflecting on the second root we find the condition r′′ = 5
6 .

This case is thus realisable by the unique solution with parameters r′ = 1
3 and

r′′ = 5
6 .

59



Heckenberger row 17

This case is not realisable, since one of the diagrams contains diagram #7 of
rank 2 which is on turn not realisable.

Heckenberger row 18

The first diagram is a composition of the diagrams of rank 2: #2 with q = ζ
and #6 with q = ζ, with ζ ∈ R9.

ζ

2r′

ζ

2r′

ζ−3ζ−1

−2r′

ζ−1

2r′′ −2r′′ 2
3

For them to be joint in the middle circle we find r′ = r′′ =: r.
The only q-truncation root is the third. Reflecting on it we find the same
diagram and as matching condition r = − 8

3 + 2r, i.e. r = 8
9 .

This case is thus realisable by the unique solution with parameter r = 8
9 .

9 Rank ≥ 4

The construction of all mij-matrices, which realise finite dimensional diagonal
Nichols algebras of rank ≥ 4 can be obtained directly from rank 3. Namely,
for a given q-diagram one has to combine in a coherent way the mij for some
overlapping subdiagrams. It is indeed enough to know rank 3 because the effect
of a reflection Rk on a pair of roots αi, αj and qij , mij only depends on the
rank 3 subdiagram αi, αj , αk.

10 Tables: realising lattices of Nichols algebras
in rank 2 and 3

We now list from [Hec05] all finite-dimensional diagonal Nichols algebras in rank
2 and 3 in terms of their q-diagrams, and below each of them we display the
corresponding realising lattice in terms of mij-diagrams, such that qij = eiπmij

and the reflection compatibility 5 holds.
The numbers of the rows are Heckenberger’s numbering, but sometimes we
subdivide the cases, e.g. 2′, 2′′. Note that we display the Nichols algebras
associated to quantum groups as Heckenberger, in contrast to the notation used
for quantum groups and used in section 5, 6, which means that there is an
additional 2 factor in the q-exponent missing.



Table 1: Realisation of finite dimensional diagonal Nichols algebras of rank 2.

row Braiding Conditions

2′

−1 −1−1

−rr r One solution according to A2 (see 2′′).

−1 −1−1

−rr 1

−1 −1−1

−2 + r1 1 One solution according to A(1, 0) (see 3).

2′′

q qq−1

−rr r q 6= ±1 Cartan, A2

3

q −1q−1

−rr 1

−1 −1q

−2 + r1 1 q 6= ±1 Super Lie, A(1, 0)

4′

i −1−1

−2rr 2r
i ∈ R4

One solution according to B2 (see 4′′′).

i −1−1

−2rr 1

i −1−1

−2 + 2r−r + 1 1 One solution according to B(1, 1) (see 5).

4′′

ζ ζ−1ζ

−2rr 2r
ζ ∈ R3

One solution according to B2 (see 4′′′).

ζ ζ−1ζ

−2r2
3

2r

ζ ζ−1ζ

− 8
3 + 2r2

3
8
3 − 2r

One solution according to 6.

4′′′

q q2

2r

q−2

−2rr q 6= ±1, q 6∈ R3,R4 Cartan, B2

5

q −1q−2

−2rr 1

−q−1

1− r
−1q2

−2 + 2r 1 q 6= ±1, q 6∈ R4 Super Lie, B(1, 1)

6

ζ

2
3

qq−1

−r r

ζ

2
3

ζq−1ζ−1q

− 8
3 + r 8

3 − r ζ 6∈ R3, q 6= 1, ζ, ζ2

7
ζ −1−ζ ζ−1 −1−ζ−1

ζ ∈ R3 No solution

8

−ζ−2 −ζ2−ζ3 −ζ−2 −1ζ−1 −ζ2 −1−ζ

−ζ3 −1ζ −ζ3 −1−ζ−1

ζ ∈ R12 No solution



9

−ζ2

2
3

−ζ2

2
3

ζ

− 7
6

−ζ2

2
3

−1ζ3

− 3
2 1

−ζ−1

1
6

−1−ζ3

− 1
2 1

ζ ∈ R12

10

−ζ
5
9

ζ3

2
3

ζ−2

− 10
9

ζ3

2
3

−1ζ−1

− 14
9

−ζ2

1
9

−1ζ

− 4
91 1

ζ ∈ R9

11

q q3

3r

q−3

−3rr q 6∈ R3, q 6= ±1 Cartan, G2

12

ζ2

1
2

ζ−1

7
4

ζ

− 7
4

ζ2

1
2

−1−ζ−1

− 5
4

ζ

1
4

−1−ζ

− 3
41 1

ζ ∈ R8

13

ζ6

1
2

−ζ−4

2
3

−ζ−1

− 13
12

ζ6

1
2

ζ−1

23
12

ζ

− 23
12

−ζ−4

2
3

−1ζ5

− 19
12

ζ

1
12

−1ζ−5

− 5
12 11

ζ ∈ R24

14

ζ

2
5

−1ζ2

− 6
5

−ζ−2

1
5

−1ζ−2

− 4
5 11

ζ ∈ R5

15

ζ −1ζ−3 −ζ −1−ζ−3

−ζ−2 −1ζ3 −ζ−2 −1−ζ−3

ζ ∈ R20 No solution

16

−ζ ζ5−ζ−3 ζ3 −ζ−4−ζ4

ζ5 −1−ζ−2 ζ3 −1−ζ2

ζ ∈ R15 No solution

17

−ζ
6
14

−1−ζ−3

− 9
7

−ζ−2

2
14

−1−ζ3

− 5
7 11

ζ ∈ R7



Table 2: Realisation of finite dimensional diagonal Nichols algebras of rank 3.

row Braiding Conditions

1′

−1
r

−1
r

−1
r

−1

−r
−1

−r One solution according to A3 (see 1′′).

−1

1

−1
r

−1
r

−1

−r
−1

−r
−1 −1 −1−1 −1

1 1 r−2 + r −r
One solution according to A(2, 0) (see 4).

−1
r

−1

1

−1−1

−r
−1

−2 + r 2− r
−1 −1 −1−1 −1

−1 −1 −1−1 −1 −1 −1 −1−1 −1

1 1 1r − 2 −r

1 r 1−r −r 1 2− r 1−2 + r −2 + r One solution according to A(1, 1) (see 8).

1′′

q

r

q

r

q

r

q−1

−r
q−1

−r q 6= ±1 Cartan, A3

2′

−1

2r

−1

2r

i
r

−1

−2r

−1

−2r
i ∈ R4

One solution according to B3 (see 2′′).

−1

1

−1

2r

i
r

−1

−2r

−1

−2r

−1 −1 i−1 −1

−1 −1 i−1 −1

1 1 r−2 + 2r −2r

2r 1 −r + 1−2r −2 + 2r One solution according to B(2, 1) (see 5).

2′′

q2

2r

q2

2r

q

r

q−2

−2r

q−2

−2r q 6= ±1,
q 6∈ R4

Cartan, B3

3

q

r

q

r

q2

2r

q−1

−r
q−2

−2r q 6= ±1 Cartan, C3

4

−1 q qq−1 q−1 −1 −1 qq q−1

1 r r−r −r 1 1 r−2 + r −r
q 6= ±1 Super Lie, A(2,0)

5

−1 q2 qq−2 q−2 −1 −1 qq2 q−2

q2 −1 −q−1q−2 q2

1 2r r−2r −2r 1 1 r−2 + 2r −2r

2r 1 −r + 1−2r −2 + 2r q 6= ±1,
q 6∈ R4

Super Lie, B(2,1)

6

−1 q q2q−1 q−2

−1

q −1

q−1 q2

q−1

1

r 1

−r 2r − 2

−r

−1 −1 q2q q−2

1 r 2r−r −2r

1 1 2r−2 + r −2r

q 6= ±1 Super Lie, C(3)



7

−1 q q3q−1 q−3

−1

q −1

q−1 q3

q−2

1

r 1

−r 3r − 2

−2r

−1 −1 q3q q−3

q3 −1 −q−1q−3 q2

1 r 3r−r −3r

1 1 3r−2 + r −3r

3r 1 1− r−3r −2 + 2r q 6= ±1,
q 6∈ R3

Super Lie, G(3)

8

q −1 q−1q−1 q −1 −1 −1q q−1

−1 q −1q−1 q−1 −1 q−1 −1q q

r 1 2− r−r −2 + r 1 1 1r − 2 −r

1 r 1−r −r 1 2− r 1−2 + r −2 + r q 6= ±1 Super Lie, A(1, 1)

9, 10, 11

q′ −1 q′′(q′)−1 (q′′)−1

−1

−1 −1

q′ q′′

q′′′

1

1 1

r′ − 2 r′′ − 2

r′′′ − 2

q′ −1 q′′′(q′)−1 (q′′′)−1

q′′ −1 q′′′(q′′)−1 (q′′′)−1

r′ 1 r′′−r′ −r′′

r′ 1 r′′′−r′ −r′′′

r′′ 1 r′′′−r′′ −r′′′ q′, q′′, q′′′ 6= 1,

q′ · q′′ · q′′′ = 1
Super Lie, D(2, 1;α ), r′ + r′′ + r′′′ = 2

12
−ζ−1 −ζ−1 ζ−ζ −ζ

ζ ∈ R3 No solution.

13′

ζ

2
3

ζ

2
3

−1

1

ζ−1

− 2
3

ζ−2

− 4
3

ζ

2
3

−ζ−1

1
3

−1

1

ζ−1

− 2
3

ζ2

− 2
3 ζ ∈ R3 r = 1

3

13′′

ζ

2
6

ζ

2
6

−1

1

ζ−1

− 2
6

ζ−2

− 4
6

ζ

2
6

−ζ−1

2
3

−1

1

ζ−1

− 2
6

ζ2

− 4
3

ζ

7
3

−ζ−1

2
3

−1

1

ζ−1

− 7
3

ζ2

− 4
3 ζ ∈ R6 r = 1

6

14

−1 −ζ−1 ζ−ζ −ζ −1 −1 ζ−ζ−1 −ζ

−ζ−1 −1 ζ−1−ζ −ζ−1

ζ ∈ R3 No solution.



15

−1

1

ζ

2
3

−1

1

ζ−1

− 2
3

ζ

− 4
3 −1

ζ ζ

ζ−1 ζ−1

ζ−1

1

2
3

2
3

− 2
3 − 2

3

− 2
3

−1

1

−1

1

−1

1

ζ

− 4
3

ζ

− 4
3

−1

1

−ζ−1

1
3

−1

1

ζ−1

− 2
3

ζ−1

− 2
3 ζ ∈ R3 r = 1

3

16

−1

1

ζ

2
3

−ζ
5
3

ζ−1

− 2
3

−ζ−1

− 5
3 −1

ζ −1

−1 −ζ

ζ−1

1

2
3 1

−1 − 1
3

− 2
3

−1

1

−1

1

−ζ
5
3

ζ

− 4
3

−ζ−1

− 5
3

ζ

2
3

−1

1

−ζ
5
3

−1

−1

−ζ−1

− 5
3

ζ

2
3

−ζ
5
3

−ζ
5
3

−ζ−1

− 5
3

−ζ−1

− 5
3 ζ ∈ R3 r = 5

6

17

−1 −1 −1−1 ζ

ζ

−ζ −1

−ζ−1 ζ−1

−ζ−1

−1 ζ −1−1 ζ−1

−1 −1 −1ζ −ζ −1 −ζ −1ζ −ζ−1

−1 ζ−1 −1ζ−1 −ζ−1

−1

−1 ζ

−1 ζ−1

−ζ
−1 ζ −1ζ−1 −ζ

−1 −1 ζ−1−1 −ζ−1

ζ ∈ R3 No solution.

18

ζ

16
9

ζ

16
9

ζ−3

2
3

ζ−1

− 16
9

ζ−1

− 16
9

ζ

16
9

ζ−4

8
9

ζ−3

2
3

ζ−1

− 16
9

ζ4

− 8
9 ζ ∈ R9 r = 8

9
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