
UBIQUITY AND THE FAREY GRAPH

JAN KURKOFKA

Abstract. We construct a countable planar graph which, for any two vertices
u, v and any integer k ≥ 1, contains k edge-disjoint order-compatible u–v paths

but not infinitely many. This graph has applications in Ramsey theory, in the

study of connectivity and in the characterisation of the Farey graph.

Figure 1. The whirl graph, coloured

1. Introduction

“One of the most basic problems in an infinite setting that has no finite equivalent
is whether or not ‘arbitrarily many’, in some context, implies ‘infinitely many’.”
(Diestel [10]). For example, Halin [10,15] proved that if a graph contains k disjoint
rays for every integer k, then it contains infinitely many disjoint rays. Substructures
of a given type—subgraphs, minors, rooted minors or whatever—of which there
must exist infinitely many disjoint copies (for some notion of disjointness) in a
given graph as soon as there are arbitrarily (finitely) many such copies are called
ubiquitous [10]. Examples of ubiquity results can be found in [1–8,10,13,15,20,22].

Usually, ubiquity problems are trivial as soon as the substructures considered are
finite. For example, if a graph G contains k disjoint u–v paths for every integer k
and some fixed vertices u and v, we can greedily find infinitely many disjoint u–v
paths in G. Similarly, edge-disjoint paths between two fixed vertices are clearly
ubiquitous. Interestingly, this changes as soon as we require our edge-disjoint paths
to traverse their common vertices in the same order.

Let us call two u–v paths order-compatible if they traverse their common vertices
in the same order. Our first aim in this paper is to show that edge-disjoint order-
compatible paths between two given vertices are not ubiquitous: we shall construct
a graph G, the whirl graph shown in Figure 1, that has two vertices u and v such
that G contains k edge-disjoint order-compatible u–v paths for every integer k, but
not infinitely many. In fact, the whirl graph G will have this property for all pairs
of vertices:

Theorem 1. The whirl graph is a countable planar graph that contains k edge-
disjoint pairwise order-compatible paths between every two of its vertices for every
k ∈ N, but which does not contain infinitely many edge-disjoint pairwise order-
compatible paths between any two of its vertices.
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2 JAN KURKOFKA

Applications. Our result has two applications.

Figure 2. The Farey graph Figure 3. The graph Tℵ0 ∗ t

The Farey graph, shown in Figure 2 and surveyed in [9, 16], plays a role in a
number of mathematical fields ranging from group theory and number theory to
geometry and dynamics [9]. Curiously, graph theory has not been among these
until very recently, when it was shown that the Farey graph plays a central role in
graph theory too: it is one of two infinitely edge-connected graphs that must occur
unavoidably as a minor in every infinitely edge-connected graph. The second graph
is Tℵ0 ∗ t, the graph obtained from the infinitely-branching tree Tℵ0 by joining an
additional vertex t to all its vertices; see Figure 3.

Theorem [18]. Every infinitely edge-connected graph contains either the Farey
graph or Tℵ0 ∗ t as a minor.

This result lies in the intersection of Ramsey theory and the study of connectivity;
see the introduction of [18]. Related results can be found in [10–12, 14, 17, 21]; see
[10, §9.4] or the introduction of [12] for surveys.

The obvious question this theorem raises is whether it is best possible in the sense
that one cannot replace ‘minor’ with ‘topological minor’ in its wording. The whirl
graph and Theorem 1 are needed in [18] to answer this question in the affirmative:

Theorem [18]. The whirl graph is infinitely edge-connected but contains neither
the Farey graph nor Tℵ0 ∗ t as a topological minor.

The second application of the whirl graph and Theorem 1 concerns the first
graph-theoretic characterisation of the Farey graph. Very recently it was shown
that the Farey graph is uniquely determined by its connectivity: up to minor-
equivalence, the Farey graph is the unique minor-minimal graph that is infinitely
edge-connected but such that every two vertices can be finitely separated. A Π-graph
is an infinitely edge-connected graph that does not contain infinitely many inde-
pendent paths between any two of its vertices. A Π-graph is typical if it occurs as
a minor in every Π-graph. Note that any two typical Π-graphs are minors of each
other; we call such graphs minor-equivalent.

Theorem [19]. Up to minor-equivalence, the Farey graph is the unique typical
Π-graph.
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This theorem continues to hold if we require all minors to be tight: A tight minor
is a minor with finite branch sets. A Π-graph is tightly typical it it occurs as a
tight minor in every Π-graph. Note that any two tightly typical Π-graphs are tight
minors of each other; we call such graphs tightly minor-equivalent.

Theorem [19]. Up to tight minor-equivalence, the Farey graph is the unique tightly
typical Π-graph.

The obvious question this theorem raises is whether it is best possible in the sense
that one cannot replace ‘tight’ with ‘topological’. The whirl graph and Theorem 1
are needed in [19] to answer this question in the affirmative:

Theorem [19]. The whirl graph is a Π-graph that contains the Farey graph as a
tight minor but not as a topological minor.

This theorem in turn raises the two questions how exactly the Farey graph is con-
tained in the whirl graph as a minor and how large the branch sets actually are. We
shall use the Cantor set to explicitly determine a Farey graph minor in the whirl
graph with branch sets of size two; see Section 3 for the explicit description of the
Farey graph minor.

Theorem 2. The whirl graph contains the Farey graph as a minor with branch sets
of size two, but not as a topological minor.

This note is organised as follows. We introduce the whirl graph in Section 2
where we also prove Theorem 1, and we prove Theorem 2 in Section 3.

2. Proof of Theorem 1

We use the graph-theortic notation of Diestel’s book [10]. A separation of a graph
H is a set {A,B} such that A∪B = V (H) and H contains no edge between ArB
and B rA. Then A ∩B is the separator of {A,B}.

The whirl graph, shown in Figure 1, is the graph G = (V,E) on V :=
⋃∞

n=1 Vn
where Vn :=

{
0
3n ,

1
3n , . . . ,

3n

3n

}
and with edge set E :=

⋃∞
n=1En where

En :=
{{

3k
3n ,

3k+2
3n

}
,
{

3k+1
3n , 3k+2

3n

}
,
{

3k+1
3n , 3k+3

3n

} ∣∣∣ k ∈ {0, 1, . . . , 3n−1 − 1
}}

.

For every integer n ≥ 1 we define the three subgraphs

G≤n := (Vn,
⋃n

k=1Ek) and Gn := (Vn, En) and G≥n := (V,
⋃∞

k=nEk);

see Figure 4 for an illustration. Note that Gn is a Hamilton path of G≤n for all n.
For the proof of Theorem 1 we need another theorem and a lemma. At the end

of one of my talks at Hamburg that involved order-compatible paths, Joshua Erde
asked: Is there a function f : N → N such that, for every graph H and every two
vertices u and v of H, the existence of at least f(k) many edge-disjoint u–v paths
in H implies the existence of k many edge-disjoint pairwise order-compatible u–v
paths in H? The next day, Jakob Kneip answered the question in the affirmative
for f(k) = k the identity on N:

Theorem 2.1 (Kneip). Let H be any graph, let u and v be any two distinct vertices
of H, and let n be any natural number. If H contains n edge-disjoint u–v paths,
then H also contains n edge-disjoint pairwise order-compatible u–v paths.
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0

1

Figure 4. G1 = G≤1 is black, G≤2 is the union of black and red,
G2 is red, G≥2 is the union of red and blue, and G≥3 is blue

Proof. Given H,u, v, n we suppose that H contains n edge-disjoint u–v paths.
Choose a path-system P of n edge-disjoint u–v paths in H that uses as few edges
of H as possible. Then the paths in P are pairwise order-compatible: For this,
assume for a contradiction that P and Q are paths in P such that P traverses two
vertices x and y as x <P y while Q traverses them as y <Q x. Then uPx ∪ xQv
and uQy ∪ yPv are connected edge-disjoint subgraphs of P ∪Q, so we may choose
one u–v path in each of the two. Now replacing P and Q with these two new paths
yields a system of n edge-disjoint u–v paths using strictly fewer edges of H than P,
since the edges of xPy and yQx are not used by the new paths (contradiction). �

Lemma 2.2. Let u, v ∈ V be any two vertices with u <Q v and let n > 1 be any
integer with u, v ∈ Vn−1. If P ⊆ G≥n is any u–v path, then

Vn−1 ∩ [u, v] ⊆ V (P ) ⊆ V ∩ [u, v]

and P traverses the vertices in Vn−1 ∩ [u, v] in the natural order induced by Q.

Proof. Every vertex x ∈ Vn−1r{0, 1} is a cutvertex of G≥n and the components of
G≥n−x are G≥n[V ∩[0, x) ] and G≥n[V ∩(x, 1] ]. This clearly implies the statement
of the lemma. �

Now we prove Theorem 1:

Proof of Theorem 1. Clearly, G is planar. It is infinitely edge-connected because it
can be written as the edge-disjoint union

⋃
n∈NGn = G. In particular, it follows

from Theorem 2.1 that G contains k edge-disjoint pairwise order-compatible paths
between any two vertices, for every k ∈ N.

It remains to show that G does not contain infinitely many edge-disjoint pairwise
order-compatible paths between any two vertices. For this, let any two vertices u
and v of G be given, say with u <Q v. We pick any integer N > 1 such that
u, v ∈ VN−1. Since all the edge sets E0, E1, . . . are finite, it suffices to show the
following assertion:

Whenever P is any u–v path in G≥N and M ≥ N is the minimal integer such
that G≤M contains P , no u–v path in G≥M+1 is order-compatible with P .
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Let P and M be given. By the minimality of M the path P must have an edge
e in EM . Let x and y be the two consecutive elements of VM−1 ⊆ Q bounding
an interval [x, y] that contains the endvertices of e. We claim that P contains the
subpath xGMy of the 0–1 Hamilton path GM of G≤M .

Indeed, on the one hand the edge e lies on P , so P has a vertex in VM ∩ (x, y).
On the other hand, the separator of the separation {VM r (x, y), VM ∩ [x, y] } of
G≤M is {x, y} while u, v ∈ VM−1 ⊆ VM r (x, y) and G≤M [VM ∩ [x, y] ] = xGMy.
Thus, the u–v path P meeting VM ∩ (x, y) implies that P contains both vertices x
and y and that either xPy = xGMy or yPx is the reverse of xGMy. In either case,
P contains xGMy.

Now let Q be any u–v path in G≥M+1. We show that Q is not order-compatible
with P . For this, we consider the path xGMy that is contained in P . We apply
Lemma 2.2 twice: First, we apply it to u, v,N and P to establish V (P ) ⊆ V ∩ [u, v]
which ensures u ≤ x < y ≤ v in Q. And the second time we apply it to u, v,M + 1
and Q to establish VM∩[u, v] ⊆ V (Q) and that Q traverses the vertices in VM∩[u, v]
in the natural order induced by Q. Altogether, we deduce that Q traverses the
vertices in V (xGMy) ⊆ VM ∩ [x, y] ⊆ VM ∩ [u, v] in the natural order induced by Q.
Since P contains xGMy and xGMy is the path

3k
3M

3k+2
3M

3k+1
3M

3k+3
3M

for the appropriate integer k, the paths P and Q certainly are not order-compatible,
completing the proof. �

3. Finding the Farey graph in the whirl graph

The Farey graph F is the graph on Q ∪ {∞} in which two rational numbers a/b
and c/d in lowest terms (allowing also ∞ = (±1)/0) form an edge if and only if
det
(
a c
b d

)
= ±1, cf. [9]. In this paper we do not distinguish between the Farey graph

and the graphs that are isomorphic to it. For our graph-theoretic point of view it
will be more convenient to work with the following purely combinatorial definition
of the Farey graph that is indicated in [9] and [16].

The halved Farey graph F̆0 of order 0 is a K2 with its sole edge coloured blue.
Inductively, the halved Farey graph F̆n+1 of order n+ 1 is the edge-coloured graph
that is obtained from F̆n by adding a new vertex ve for every blue edge e of F̆n,
joining each ve precisely to the endvertices of e by two blue edges, and colouring all
the edges of F̆n ⊆ F̆n+1 black. The halved Farey graph F̆ :=

⋃
n∈N F̆n is the union of

all F̆n without their edge-colourings, and the Farey graph is the union F = G1∪G2

of two copies G1, G2 of the halved Farey graph such that G1 ∩G2 = F̆0.
It was shown in [19] that any graph contains the Farey graph as a minor with

finite branch sets if it is infinitely edge-connected and does not contain infinitely
many independent paths between any two vertices. As independent paths are order-
compatible, it follows that the whirl graph contains the Farey graph as a minor
with finite branch sets. The result in [19], however, does not provide an explicit
description of the Farey graph minor in the whirl graph, nor does it tell us how large
the branch sets actually are. In our situation, the latter is especially unsatisfactory,
as we already know that infinitely many branch sets must be non-trivial because
the whirl graph does not contain the Farey graph as a topological minor. That is
why in this section we use the Cantor set to explicitly determine a Farey graph
minor in the whirl graph with branch sets of size two.
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Recall that the Cantor set is C :=
⋂∞

n=0

⋃
Cn where C0 := { [0, 1] } and Cn+1 is

obtained from Cn by replacing each interval [a, a+ ∆] ∈ Cn with the two intervals
[a, a+ 1

3∆] and [a+ 2
3∆, a+ ∆].

We define the subgraph G∗ := (C∗, E∗) ⊆ G on C∗ :=
⋃∞

n=1 C
∗
n and with edge

set E∗ :=
⋃∞

n=1E
∗
n where

C∗n :=
{
a, a+ 1

3∆, a+ 2
3∆, a+ ∆

∣∣ [a, a+ ∆] ∈ Cn−1
}

= {x, y | [x, y] ∈ Cn } = Vn ∩ C and

E∗n :=
{
{a, a+ 2

3∆}, {a+ 1
3∆, a+ 2

3∆}, {a+ 1
3∆, a+ ∆}

∣∣ [a, a+ ∆] ∈ Cn−1
}
⊆ En.

We shall find the halved Farey graph (minus one edge) as a contraction minor of G∗.
For this, we write G∗≤n := (C∗n,

⋃n
k=1E

∗
k) and M :=

⋃∞
n=1Mn where

Mn :=
{
{a+ 1

3∆, a+ 2
3∆}

∣∣ [a, a+ ∆] ∈ Cn−1
}
⊆ E∗n;

see Figure 5 for an illustration. We write M≤n :=
⋃n

k=1Mk. If D is an independent
set of edges and H is any graph, then we denote by H/D the contraction minor of
H obtained by contracting the edges in D ∩ E(H).

0

1

x y

Figure 5. On the left: The red edges form M , and together with
the blue edges they form G∗. On the right: F̆ − E(F̆0) with blue
edge set and red vertex set.

Lemma 3.1. There exists an isomorphism G∗/M ∼= F̆ − E(F̆0) that associates 0
and 1 with the two vertices of F̆0.

Proof. Let x and y be the two endvertices of F̆0.
On the one hand, for every n ∈ N the x–y Hamilton path of F̆n formed by the

blue edges of F̆n induces a linear ordering on the vertex set of F̆n in which x is the
least element and y is the greatest, and these orderings are compatible for distinct
numbers n.

On the other hand, for every integer n ≥ 1 the vertex set {0, 1}∪M≤n of G∗≤n/M
inherits the linear ordering ≤n from Q in which 0 <n e <n 1 for all e ∈ M≤n and
{u, v} <n {s, t} if and only if min{u, v} <Q min{s, t} for all uv 6= st ∈ M≤n, and
again these linear orderings are compatible for distinct numbers n.

An induction on n ≥ 1 shows that the unique order-isomorphism ϕn between the
linearly ordered finite vertex sets of G∗≤n/M and F̆n−E(F̆0) is a graph-isomorphism
such that ϕ1 ⊆ · · · ⊆ ϕn. Then the ascending union

⋃∞
n=1 ϕn of these isormor-

phisms is the desired graph-isomorphism between G∗/M and F̆ −E(F̆0) that asso-
ciates 0 and 1 with the two vertices of F̆0. �
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In order to find a Farey graph minor in G, we must find two halved Farey
graph minors in G. For this, we consider copies of G∗ in G that arise by linear
transformation. Every permutation π of Q acts on both the set of graphs H with
V (H) ⊆ Q and the set of edge sets D with D ⊆ [Q]2 by renaming every vertex v
to π(v). Then we write πH and πD for the resulting graph and edge set. Now let
us consider the two permutations π1(x) := (1/9)x+ 3/9 and π2(x) := (1/9)x+ 5/9.
These send G∗ to copies π1G

∗ and π2G
∗ of G∗ that are subgraphs of G. By

Lemma 3.1 we have π1G
∗/π1M ∼= F̆ − E(F̆0) and π2G

∗/π2M ∼= F̆ − E(F̆0) by
isomorphisms that associate the vertices 3/9, 4/9 and 5/9, 6/9 with the two vertices
of F̆0. Joining these two halved Farey graph minors appropriately yields the desired
Farey graph minor, as shown in Figure 6:

3
9

4
9

5
9

6
9

Figure 6. This is G[V ∩ [3/9, 6/9] ]. The two subgraphs π1G
∗

and π2G
∗ are drawn using both red and blue, like in Figure 5.

Theorem 2 states that the Farey graph arises from the subgraph
consisting of the coloured edges by contracting red and orange
while keeping blue and cyan.

Theorem 2. The whirl graph contains the Farey graph as a minor with branch sets
of size two:

F ∼=
(
π1G

∗ ∪ π2G∗ +
{

3
9 ,

5
9

}
+
{

4
9 ,

6
9

}
+
{

3
9 ,

6
9

}) /(
π1M ∪ π2M +

{
3
9 ,

5
9

}
+
{

4
9 ,

6
9

})
where π1G

∗ ∪ π2G∗ +
{

3
9 ,

5
9

}
+
{

4
9 ,

6
9

}
+
{

3
9 ,

6
9

}
⊆ G. But the whirl graph does not

contain the Farey graph as a topological minor. �
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