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Abstract

We study symmetry properties of quaternionic Kähler manifolds obtained by the HK/QK
correspondence. To any Lie algebra g of infinitesimal automorphisms of the initial hyper-
Kähler data we associate a central extension of g, acting by infinitesimal automorphisms
of the resulting quaternionic Kähler manifold. More specifically, we study the metrics
obtained by the one-loop deformation of the c-map construction, proving that the Lie
algebra of infinitesimal automorphisms of the initial projective special Kähler manifold
gives rise to a Lie algebra of Killing fields of the corresponding one-loop deformed c-map
space. As an application, we show that this construction increases the cohomogeneity
of the automorphism groups by at most one. In particular, if the initial manifold is
homogeneous then the one-loop deformed metric is of cohomogeneity at most one. As
an example, we consider the one-loop deformation of the symmetric quaternionic Kähler
metric on SU(n, 2)/S(U(n)× U(2)), which we prove is of cohomogeneity exactly one.
This family generalizes the so-called universal hypermultiplet (n = 1), for which we
determine the full isometry group.
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deformation, isometry groups, cohomogeneity one
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1 Introduction

In the late 1980’s, physicists working on string theory discovered a new method of con-
structing quaternionic Kähler manifolds of negative scalar curvature, which was dubbed
the (supergravity) c-map. A local description of the resulting metrics was first given by
Ferrara and Sabharwal [FS90], and they were described in differential-geometric terms by
Hitchin [Hit09].

The input for the c-map (recalled in more detail in Section 2) is a projective special Kähler
(PSK) manifold, which we will denote by M̄ . It arises as the Kähler quotient by a dis-
tinguished circle action on an associated manifold M , which caries a conical affine special
Kähler (CASK) structure. As shown in [ACM13, ACDM15], the supergravity c-map can be
described as a two-step process. The first, called the rigid c-map, consists of passing from
the corresponding CASK manifold M to its cotangent bundle N := T ∗M , and defining a
natural (pseudo-)hyper-Kähler structure on the latter. The circle action on M lifts to a
so-called rotating (circle) symmetry of the hyper-Kähler structure on N , and plays a crucial
role in the the second step, the HK/QK correspondence. This correspondence produces a
quaternionic Kähler manifold N̄ of the same dimension out of any hyper-Kähler manifold
with rotating symmetry, completing the following diagram:

M N

M̄ N̄

rigid c

C∗ HK/QK

supergravity c

(1)

A one-parameter deformation of the c-map was discovered by Robles-Llana, Saueressig and
Vandoren [RSV06]. It is known as the one-loop deformed c-map because of its physical
origin as a perturbative quantum correction to the Ferrara-Sabharwal metric. It is obtained
by modifying the Ferrara–Sabharwal metric by introducing a real parameter c. When c = 0,
one recovers the Ferrara–Sabharwal metric. Curiously, c has a vey simple meaning on the
hyper-Kähler side: It parametrizes the additive freedom in choosing a Hamiltonian for the
lifted circle action. This key observation means that, by working on the hyper-Kähler side
of the correspondence, we can treat the c-map and its one-loop correction simultaneously.

The HK/QK correspondence has been a subject of interest for both physicists and mathe-
maticians (see, for instance, [APP11, ACM13, Hit13, Hit14, ACDM15, MS15]). It was first
discovered by Haydys in the Riemannian setting [Hay08] and subsequently generalized to
allow for indefinite metrics [ACM13, ACDM15]. It is this latter form which can be used for
the c-map construction. Nevertheless, the output of the c-map and its one-loop deforma-
tion is a positive-definite quaternionic Kähler manifold, which is moreover complete if the
initial PSK manifold was complete and c ≥ 0 [CDS17]. Summarizing and extending the
previous remarks, the HK/QK correspondence assigns a quaternionic Kähler manifold with
a nowhere-vanishing Killing field to any (possibly indefinite) hyper-Kähler manifold with
rotating circle symmetry. Conversely, any quaternionic Kähler manifold with a Killing field
locally arises in this fashion.

Another perspective on the HK/QK correspondence was advanced by Macia and Swann
[MS15]: They showed that it can be recovered as a variation on the twist construction,
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a general duality between manifolds endowed with torus action, introduced by Swann in
earlier work [Swa10]. One advantage of the twist construction, which we review in Section 2
together with some facts about the relevant aspects of special Kähler geometry, is that it
provides a precise prescription for carrying tensor fields on N which are invariant under the
natural circle action over to N̄ . Invariant vector fields, in particular, arise naturally in the
context of the c-map. Infinitesimal automorphisms of the CASK structure on M respect its
distinguished circle action, and we show that they can be lifted to vector fields on N which
respect the rigid c-map structure on N .

With this in mind, we investigate the HK/QK correspondence in the presence of additional
symmetries preserving the rigid c-map structure in Section 3. We prove that, under the
HK/QK correspondence as well as under its one-parameter deformation, these give rise to
isometries of the resulting quaternionic Kähler manifold. Applying this to the c-map, we
show that the (identity component of the) automorphism group of the PSK manifold M̄
injects into the isometry group of its (one-loop deformed) c-map image N̄ . As a corollary,
we find that if Aut M̄ acts with cohomogeneity k, then the isometry group of N̄ acts with
cohomogeneity at most k + 1 for every c 6= 0, and at most k for c = 0 (the latter was
previously known).

In Section 4, we apply our results to the study of a series of examples, namely the quater-
nionic Kähler manifolds obtained by applying the c-map to complex hyperbolic space CHn =
SU(n, 1)/U(n). The undeformed c-map yields the non-compact Wolf spaces SU(n+1, 2)/S(U(n+
1)× U(2)), which is a homogeneous PSK manifold. These can be characterized as the only
complete, simply connected quaternionic Kähler manifolds with negative scalar curvature
which are also Kähler. In the physics literature, the case n = 0 is known as the “universal
hypermultiplet”. The one-loop deformed c-map yields a one-parameter deformation of the
symmetric metric, and we investigate its isometry group. It follows from our results that it
acts with cohomogeneity at most one and by using results from [CST20], where curvature
formulas for the HK/QK correspondence are derived, we prove that the isometry group acts
by cohomogeneity exactly one in all dimensions. This shows that our results are sharp in this
family of examples and proves, in particular, that the one-loop deformed Ferrara–Sabharwal
metric is not homogeneous, even locally. In the case of the universal hypermultiplet, we
determine the full isometry group.
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Science Foundation (DFG) under the Research Training Group 1670, and under Germany’s
Excellence Strategy – EXC 2121 “Quantum Universe” – 390833306.
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2 Preliminaries

In this section, we set the stage for the rest of this paper, briefly recalling the most important
background material. In particular, the terminology and notation introduced here will be
used throughout Section 3, where we prove our main results.

2.1 Twist construction and the HK/QK correspondence

As mentioned in the introduction, Macia and Swann [MS15] studied the HK/QK correspon-
dence from the point of view of Swann’s twist construction. This is a general procedure
which, given a manifold with torus action, produces a new (“twist”) manifold with twisted
torus action, uniquely determined by some choices of twist data on the original manifold.
Moreover, geometric structures which are invariant under the torus action on the original
manifold unambiguously correspond to invariant (twisted) structures on the twist manifold.
The twisting construction is a duality in the sense that the original manifold can be recovered
by appropriately twisting the twist manifold.

For example, given a (pseudo-)hyper-Kähler manifold with circle action—as produced, for
instance, by the rigid c-map—the twist construction can be applied. Macia and Swann
investigated the geometry of the resulting twist manifold and showed that, after deforming
the original metric and choosing appropriate twist data, the twist of the deformed metric
defines a quaternionic Kähler metric on the resulting manifold. Their formulas reproduce
the explicit expressions for the HK/QK correspondence found in [ACDM15], casting it as a
special case of the twist construction. In this section, we introduce the basic language of the
twist construction and, following Macia and Swann, outline its application to the HK/QK
correspondence.

2.1.1 The twist construction

For our purposes, it suffices to describe the twist construction for circle actions; the interested
reader is referred to [Swa10] for twists of higher-dimensional torus actions.

Consider a manifold N equipped with an S1-action generated by a vector field Z ∈ X(N).
To apply the twist construction, we consider an auxiliary manifold, namely the total space
P of an S1-principal bundle πN : P → N . We furthermore equip this principal bundle with
a principal S1-connection η ∈ Ω1(P ) with curvature ω. We wish to lift the vector field Z
to P such that it preserves the connection η and commutes with the principal circle action.
We will then obtain the twist of M by dividing out the action generated by this lifted vector
field. Regarding the existence of such a lift, we have:

Proposition 2.1 ([Swa10]). A lift as above exists if and only if ιZω is an exact one-form, i.e.
ιZω = −dfZ for some Hamiltonian function fZ ∈ C∞(N).

Concretely, the lift is given by ZP = Z̃ +π∗NfZXP , where Z̃ denotes the horizontal lift with
respect to η, and XP generates the principal circle action. Note in particular that, in order
to uniquely specify ZP , one needs to fix a choice of Hamiltonian function. Thus, in order to
lift the circle action we must specify the following twist data:
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(i) A vector field Z ∈ X(N) generating a circle action on N .

(ii) A closed, integral two-form ω (i.e. with integral periods) with respect to which Z is
Hamiltonian. Up to isomorphism, this form determines a unique principal circle bundle
πN : P → N , which admits a connection η whose curvature is ω.

(iii) A choice of Hamiltonian function fZ for Z with respect to ω, which we assume is
nowhere-vanishing (equivalently, the lifted vector field ZP is transverse to H := ker η).

For given twist data, we can define the twist of N as follows:

Definition 2.2. For (Z,ω, fZ) as above, we call the quotient space N̄ := P/〈ZP 〉 the twist
of N with respect to the twist data (Z,ω, fZ).

If both Z and ZP generate free and proper actions, the twist is a smooth manifold.

We now have the double fibration

N P N̄
πN πN̄

The connection η on P determines a horizontal distribution H, which is pointwise identified
with the tangent spaces to N and to N̄ , by means of the respective projections. This induces
identifications between tensor fields in the following manner:

Definition 2.3. We say that vector fields X ∈ X(N) and X ′ ∈ X(N̄) are H-related, and write
X ′ ∼H X, if their horizontal lifts to P (with respect to η) are equal. We say that differential
forms α on N and α′ on N̄ are H-related if (π∗Nα)◦PH = (π∗

N̄
α′)◦PH, where PH : TP → H,

U 7→ U−η(U)XP , is the projection onto H. The definition of H-relatedness is now extended
to arbitrary (p, q)-tensors by demanding compatibility with tensor products.

Remark 2.4.

(i) Twisting is automatically compatible with contractions of tensor fields.

(ii) Given some tensor field on N , the existence of a (well-defined) H-related tensor field
on N̄ implies that its lift is invariant under both XP and ZP . The expression Z̃ =
ZP − (π∗fZ)XP (where Z̃ denotes the horizontal lift) then forces the original tensor
field on N to be Z-invariant. Thus, the twist construction only allows one to carry
Z-invariant tensors on N over to N̄ .

(iii) The vector field ZN̄ := (πN̄ )∗(XP ) ∈ X(N̄) plays a role dual to Z in the following
sense. If one performs a twist on N̄ with respect to the data (ZN̄ , (f

−1
Z ω)′, (f−1

Z )′),
where primes denote H-relatedness, one recovers the original manifold N .

Z-invariant tensor fields on N and, dually, ZN̄ -invariant tensor fields on N̄ , are determined
by their respective lifts to P . Therefore, one can uniquely determine H-related tensor fields
in terms of the twist data. For instance, the twist construction uniquely assigns toX ∈ X(N)
the vector field X ′ = (πN̄ )∗(X̃), where X̃ denotes the horizontal lift of X. One can also
check how natural operations, such as the Lie bracket, behave under twisting:

Lemma 2.5 ([Swa10]).
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(i) If h is a Z-invariant symmetric (0, 2)-tensor on N , then the H-related symmetric (0, 2)-
tensor h′ on N̄ is determined by

π∗N̄h
′ = π∗Nh− 2η ∨ π∗N (f

−1
Z ιZh) + η2π∗N (f

−2
Z h(Z,Z))

(ii) If X(N) ∋ X,Y ∼H X ′, Y ′, i.e. X̃ = X̂ ′ and similarly for Y (where the tilde and hat
denote the respective horizontal lifts), we have

[X ′, Y ′] ∼H [X,Y ] + f−1
Z ω(X,Y )Z

Since we will be interested in producing Killing fields on twist manifolds, we show explicitly
how the Lie derivative of a symmetric (0, 2)-tensor behaves under the twist:

Lemma 2.6. Let V ∼H V ′ be vector fields and h ∼H h′ be symmetric (0, 2)-tensors. Then
LV ′h′ ∼H LV h− 2f−1

Z (ιV ω) ∨ (ιZh).

Proof. The Leibniz rule tells us that for two vector fields X,Y on M , we have

π∗N
(
(LV h)(X,Y )

)
= LṼ (π

∗
Nh(X̃, Ỹ ))− π∗Nh([̃V,X], Ỹ )− π∗Nh(X̃, [̃V, Y ])

From lemma 2.5, we have

[̃V, Y ] = ̂[V ′, Y ′]− π∗N (f
−1
Z F (V, Y )) · Z̃

and therefore we find

π∗N
(
(LV h)(X,Y )

)
=

(
L
V̂ ′(π

∗

N̄h
′)
)
(X̂ ′, Ŷ ′)

+ π∗N (f
−1
Z ω(V,X))π∗N̄h

′(Z̃, Ỹ ) + π∗N (f
−1
Z ω(V, Y ))π∗N̄h

′(X̃, Z̃)

= π∗N̄
(
(LV ′h′)(X ′, Y ′)

)
+ π∗N

(
2f−1
Z (ιV ω) ∨ (ιZh)

)
(X̃, Ỹ )

Bringing the second term to the left-hand side yields the claimed result.

2.1.2 Elementary deformations

Given a hyper-Kähler manifold with circle action, it is natural to expect that—after choosing
suitable twist data—its twist manifold also admits interesting (quaternionic) structures. In
this setting, Macia and Swann [MS15] investigated when the twist construction yields a
quaternionic Kähler manifold. They discovered that, in order to obtain a quaternionic Kähler
metric on the twist manifold, the original hyper-Kähler structure must first be modified. To
study these modifications, they introduced the notion of elementary deformations of hyper-
Kähler metrics, which we now discuss.

We start from a hyper-Kähler manifold (N, g, Ii) with Kähler forms ωi (i = 1, 2, 3). For
notational convenience, we will also define ω0 = g and I0 = id. To apply the twist construc-
tion, we need a circle action generated by a vector field Z. We will require that the action
generated by Z is compatible with the quaternionic Hermitian structure in the sense that
Z preserves g, as well as the subbundle of End(TM) spanned by I1, I2 and I3. We define
one-forms αi(·) = ωi(Z, ·), i = 0, 1, 2, 3, as well as the symmetric (0, 2)-tensor gα =

∑3
i=0 α

2
i .

When Z is nowhere-vanishing, this is proportional to the restriction of the metric g to the
quaternionic span HZ = 〈Z, I1Z, I2Z, I3Z〉 of Z.
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Definition 2.7. Given a pseudo-hyper-Kähler manifold (M,g, Ii), an elementary deformation
of g is a (pseudo-)Riemannian metric on (M, Ii) of the form gH = a · g + b · gα for nowhere-
vanishing a, b ∈ C∞(M).

The action of LZ on 〈I1, I2, I3〉 ⊂ EndTM is linear, because ∇Ii = 0. Furthermore, the
Leibniz rule implies that LZ ∈ so(3). Therefore, the action of Z is either trivial, or conjugate
to

LZI1 = 0 LZI2 = I3 LZI3 = −I2

after suitable normalization of Z. In the latter case, we say that Z generates a rotating circle
symmetry of (M,g, Ii). In the following, we will consider only such rotating symmetries.
In fact, we will make one further assumption, namely that the action generated by Z is
ω1-Hamiltonian: ιZω1 = −dfZ for some moment map fZ ∈ C∞(M). Such a hyper-Kähler
manifold, equipped with ω1-Hamiltonian rotating circle symmetry, is precisely the input of
the HK/QK correspondence.

2.1.3 The HK/QK correspondence

It was shown by Haydys [Hay08] that, given a rotating circle symmetry on a hyper-Kähler
manifold, one can construct a bundle over it which admits the structure of a hyper-Kähler
cone. The hyper-Kähler cone then gives rise to a quaternionic Kähler manifold by the
inverse of the Swann bundle construction [Swa91]. His construction is known as the HK/QK
correspondence.

These results (which Haydys obtained under the assumption that all metrics involved are
positive definite), were extended to metrics of arbitrary signature in [ACM13], with control
over the signature of the resulting quaternionic Kähler metrics. In particular, necessary
and sufficient conditions for the resulting metric to be positive definite were given, and
shown to include not only definite but also indefinite initial data. In this way, the authors
of [ACM13, ACDM15] were able to obtain the supergravity c-map as a special case of the
HK/QK correspondence with indefinite initial data. As part of this work, they gave a simple
expression (cf. [ACDM15, Theorem 2]) for the quaternionic Kähler metric constructed in
the HK/QK correspondence, which is precisely the metric given in the theorem below.

Macia and Swann [MS15] then showed that the above-mentioned metric can be obtained
from a combination of an elementary deformation and a twist, applied to the initial hyper-
Kähler manifold. Furthermore, they characterized those elementary deformations and twist
data that lead to a quaternionic Kähler metric. In summary, one obtains the following
result:

Theorem 2.8 ([Hay08]; [ACM13]; [ACDM15]; [MS15]). Let (M,g, Ii) be a (possibly indefinite)
hyper-Kähler manifold equipped with rotating circle symmetry Z, such that ω1 is integral
and the lift ZP generates a free and proper action. Denoting the Hamiltonian function of
Z with respect to ω1 by fZ , one can associate a (possibly indefinite) quaternionic Kähler
manifold (N̄, gQ) as follows. Let gH be an elementary deformation of g with respect to Z,
and consider the twist manifold (N̄, gQ), where gQ ∼H gH with respect to the twist data
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(Z,ωH, fH). Then (N̄, gQ) is quaternionic Kähler if and only if

ωH = k(ω1 + dα0) fH = k(fZ + g(Z,Z))

gH =
B

fZ
g +

B

f2Z
gα

where B, k ∈ R \ {0} are constants.

Remark 2.9.

(i) B and k simply scale the metric and curvature of P , respectively. In the following,
we will set them to 1. Since the Hamiltonian function fZ is unique only up to an
additive constant, there is an implicit dependence of the construction on this additional
parameter. In the case of the c-map, this parameter governs the so-called one-loop
deformation of the quaternionic Kähler metric.

(ii) For the convenience of the reader, we provide a dictionary to translate between the
notation used for the various objects living on the hyper-Kähler manifold in this article,
in the work by Macia and Swann [MS15], and in the paper [ACDM15] by Alekseevsky,
Cortés, Dyckmanns and Mohaupt:

This article Macia & Swann ACDM

Z X −1
2Z

fZ −(µ− c) −1
2f

η θ η
α0 α0 −1

2β
ωH F ω1 −

1
2dβ

fH −a 1
2f1

gH −gH 2g′

2.2 Special Kähler geometry and the c-map

2.2.1 Special Kähler structures

In this section, we review the c-map and the various manifolds involved in this construc-
tion.

Definition 2.10. An affine special Kähler manifold (M,g, ω,∇) is a pseudo-Kähler manifold
(M,g, ω) endowed with a flat, torsion-free connection ∇ such that ∇ω = 0 and d∇J = 0,
where J is the complex structure on M .

For the c-map, the relevant class of affine special Kähler manifolds is the following:

Definition 2.11. An affine special Kähler manifold (M,g, ω,∇) is called conical (or a CASK
manifold) if it admits a vector field ξ, called the Euler field, which satisfies ∇ξ = ∇LCξ =
idTM , where ∇LC denotes the Levi-Civita connection of g. We will furthermore assume
throughout this paper that {ξ, Jξ} generates a principal C∗-action, and that D := span{ξ, Jξ}
is negative definite with respect to g, while the orthogonal complement D⊥ is positive defi-
nite.
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The Euler field is homothetic and holomorphic, while Jξ is holomorphic and Killing (cf.
Proposition 3 of [CM09]).

Lemma 2.12. The Euler field is always ∇-affine, while Jξ is ∇-affine if and only if ∇ = ∇LC.

Proof. Since ∇ is flat we may use local, parallel vector fields X,Y and compute

(Lξ∇)XY = Lξ(∇XY )−∇[ξ,X]Y −∇X([ξ, Y ]) = ∇XY = 0

where we used [ξ, Y ] = −∇Y ξ = −Y . Analogously, we obtain

(LJξ∇)XY = −∇X([Jξ, Y ]) = ∇X(∇Y (Jξ)) = ∇X((∇Y J)ξ + J∇Y ξ)

= ∇X((∇ξJ)Y + J∇Y ξ) = ∇X(JY ) = (∇XJ)Y

where we used ∇ξJ = (Lξ + ∇ξ)J = 0 and ∇ξ = idTM in the penultimate step. This
expression vanishes if and only if ∇ is the Levi-Civita connection.

The following fact is well-known (see, for instance, [CHM12, MS15]).

Lemma 2.13. The function f = 1
2g(ξ, ξ) defines both a Hamiltonian function for Jξ and a

Kähler potential for gM .

Proof. ∇ξ = idTM implies df = g(ξ, ·) = −ω(Jξ, ·). Furthermore ddcf = −dJ∗df =
d(ω(Jξ, J ·)) = d(ω(ξ, ·)) = ω, where we used ∇ω = 0 and ∇ξ = idTM .

Since ξ generates a homothetic R>0-action, dividing out the C∗-action on a CASK manifold
amounts to fixing a level set for the moment map 1

2g(ξ, ξ)—we will take the level where
g(ξ, ξ) = −1 for notational convenience—and subsequently taking the quotient by the circle
action generated by −Jξ.

Definition 2.14. A projective special Kähler (PSK) manifold M̄ is the Kähler quotientM�S1

of a CASK manifold M by the S1-action generated by the Hamiltonian Killing field −Jξ.

The natural notion of symmetry in this setting is the following:

Definition 2.15.

(i) An automorphism of a CASK manifold (M,gM , ωM ,∇, ξ) is a diffeomorphism of M
which preserves gM , ωM , ∇ and ξ.

(ii) Let M̄ = M � S1 be a PSK manifold. An automorphism of M̄ is a diffeomorphism of
M̄ induced by an automorphism of the CASK manifold M .

Lemma 2.16. If X ∈ X(M) generates a one-parameter group ϕt of automorphisms of a
CASK manifold (M,gM , ωM ,∇, ξ), then X is ωM -Hamiltonian.

Proof. Defining α := 1
2d

c(g(ξ, ξ)) ∈ Ω1(M), Lemma 2.13 asserts ωM = dα. Then ρ := α(X)
is a candidate Hamiltonian function. We compute its differential:

dρ = dιXα = (LX − ιXd)α = LXα− ιXωM

Thus, it suffices to check that LXα = 0. Since α = −1
2J

∗(dg(ξ, ξ)), this follows from the
fact that X preserves J , g and ξ.
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Definition 2.17.

(i) An infinitesimal automorphism of a CASK manifold (M,gM , ωM ,∇, ξ) is a vector field
X ∈ M such that its local flow preserves the CASK data on M . The Lie algebra of
such vector fields is denoted by aut(M).

(ii) An infinitesimal automorphism of a PSK manifold is a vector field X̄ induced by an
infinitesimal automorphism of the corresponding CASK manifold (note that the latter
always project, since they commute with ξ and Jξ). The corresponding Lie algebra is
denoted by aut(M̄).

Proposition 2.18. Consider the natural map ϕ : aut(M) → aut(M̄) induced by the projec-
tion π :M → M̄ .

(i) If ∇ 6= ∇LC, then ϕ is a isomorphism, with inverse X̄ 7→ XH − π∗hX̄Jξ, where XH

denotes the horizontal (that is, perpendicular to D) lift of X̄ and hX̄ is a uniquely
determined Hamiltonian for X̄ with respect to the Kähler form ωM̄ on M̄ .

(ii) If ∇ = ∇LC, then ϕ induces an isomorphism between aut(M)/(R · Jξ) and aut(M̄),
with inverse X̄ 7→ XH−π∗hX̄Jξ, where hX̄ is now any Hamiltonian for X̄ with respect
to ωM̄

Proof. Since the C∗-action generated by {ξ, Jξ} is homothetic, the distribution D⊥ of vectors
orthogonal to the vertical distribution D = span{ξ, Jξ} defines a principal connection in the
C∗-bundle M → M̄ .

Now consider an infinitesimal automorphism X ∈ aut(M), which projects to X̄ ∈ aut(M̄).
We can decompose X = XH +XV into its horizontal and vertical components, where XH

is the horizontal lift of X̄. Since X preserves both gM and ξ, we have 0 = LX(gM (ξ, ξ)) =
2gM (∇LC

X ξ, ξ) = 2gM (X, ξ), i.e. X is orthogonal to ξ.

Thus, we may write XV = −fXJξ for some function fX ∈ C∞(M). Since XH is C∗-
invariant, we obtain that 0 = [X, ξ] = [XV , ξ] = ξ(fX)Jξ and similarly for Jξ. This
shows that fX is constant on the fibers of the projection, hence of the form π∗hX̄ for some
hX̄ ∈ C∞(M̄). We now show that hX̄ is uniquely determined if ∇ 6= ∇LC, and up to additive
constant in case ∇ = ∇LC. Indeed, let X and X ′ be two infinitesimal CASK automorphisms
projecting to X̄. Then X ′ −X = π∗(hX̄ − h′

X̄
)Jξ must be both Killing and ∇-affine. The

first condition implies that hX̄ − h′
X̄

is constant. In case ∇ 6= ∇LC, the latter then implies
that it vanishes (by Lemma 2.12).

We claim that hX̄ is a Hamiltonian of X̄ with respect to the Kähler form ωM̄ of M̄ . The
principal connection D⊥ induces a principal S1-connection on the bundle S = {g(ξ, ξ) =
−1} ⊂M over M̄ , which has −Jξ as its fundamental vector field. We denote its connection
one-form by θ = g(Jξ, ·). Differentiating this equation, we obtain dθ = ωM |S = π∗SωM̄ ,
where πS : S → M̄ is the projection map. Since X is an infinitesimal CASK automorphism,
LXθ = 0, which means that

0 = dιXθ + ιXdθ = π∗dhX̄ + (π∗ωM)(X, ·) = π∗(dhX̄ + ωM̄(X̄, ·))

This finishes the proof.
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An extrinsic perspective on special Kähler geometry is developed in [ACD02]. It is proven
that any simply connected affine special Kähler manifold M of complex dimension n +
1 admits a (holomorphic, non-degenerate, Lagrangian) immersion into T ∗Cn+1 such that
the standard special Kähler structure on T ∗Cn+1 induces the given affine special Kähler
structure on M . In fact, such an immersion is given by the graph of an exact one-form. This
implies that the special Kähler structure is determined by a holomorphic function on an open
subset of Cn+1 satisfying a certain non-degeneracy condition. Thus, any simply connected
special Kähler manifold may be regarded as a domain U ⊂ Cn+1 endowed with a holomorphic
function F which determines the special Kähler structure completely. F is known as the
holomorphic prepotential of U . An analogous theorem holds for CASK manifolds, requiring
that the domain and the holomorphic function are conical in the appropriate sense, and by
projectivizing one obtains an identification of the corresponding PSK manifold M̄ with an
open set in CPn, inducing the PSK structure.

More generally, any affine special Kähler manifold M can be covered by open sets Uα, called
special Kähler domains, on which the affine special Kähler structure arises in this fashion.
By picking suitable global coordinates {zI}I=0,1,...,n on Cn+1 and possibly shrinking the open
sets Uα, we may assume that (the image of) each Uα is contained in {z0 6= 0} ⊂ Cn+1. From
now on, we will only consider special Kähler domains of this type.

In case M is a CASK manifold, projectivizing CASK domains yields local identifications
of the corresponding PSK manifold M̄ with subsets of {z0 6= 0} ⊂ CPn. To each such
PSK domain Ūα we may canonically associate a Kähler potential, defined analogously to
the standard potential for the Fubini–Study metric on CPn. Recall from lemma 2.13 that
1
2g(ξ, ξ) defines a global Kähler potential on M . Identifying the CASK and PSK domains
with their imagines in Cn+1 and CPn, the function

Kα := log

( 1
2g(ξ, ξ)

|z0|2

)

now defines a Kähler potential on Ūα.

Remark 2.19. We revisit the case ∇ = ∇LC from the previous lemma. Then, the short
exact sequence

0 R · Jξ aut(M) aut(M̄) 0

of Lie algebras splits. To see this, let us first assume that M is simply connected. Then,
in light of the above discussion, we can (globally) realize it as a complex Lagrangian sub-
manifold of T ∗Cn+1 (where n = dimC M̄). From the condition ∇ = ∇LC, it follows that it
is contained in a linear subspace, and that there exists a global, holomorphic prepotential
of the form F =

∑
aijz

izj , where the real matrix (Nij) := 2 Im(aij) is of signature (n, 1).
In fact, the condition ∇ = ∇LC is equivalent to the vanishing of the third derivatives of
F [Fre99]. This implies that aut(M) = u(n, 1) and aut(M̄) = su(n, 1), with R · Jξ = u(1)
the center of u(n, 1), so the sequence splits. In case π1(M) = Γ is non-trivial, we can write
M = M̃/Γ, where M̃ is the universal covering, which is also a CASK manifold. Then we
have R · Jξ = u(1) ⊂ aut(M) = aut(M̃)Γ ⊂ aut(M̃) = u(n, 1) = u(1) ⊕ su(n, 1), which
implies that aut(M) = u(1)⊕ h, where h ⊂ su(n, 1).
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2.2.2 The rigid and supergravity c-maps

As mentioned in the introduction, the (supergravity) c-map and its one-loop deformation
construct a complete quaternionic Kähler manifold N̄ of negative scalar curvature out of
any complete PSK manifold M̄ . We first describe it under the assumption that M̄ is a PSK
domain [CDS17]. Then, we may regard M̄ as a subset of CPn endowed with a canonical
Kähler potential K, and the corresponding CASK manifold M as a domain in Cn+1 equipped
with a holomorphic function F .

As a smooth manifold, N̄ is simply the direct product M̄ × R2n+4, but its Riemannian
structure given by the one-loop deformed Ferrara–Sabharwal metric gcFS is not that of a
product. To write this metric down explicitly, we use global coordinates. On M̄ ⊂ CPn we
use homogeneous coordinates (z0 : z1 : · · · : zn), which under the standard identification
{z0 6= 0} ∼= Cn correspond to coordinates (X0 ≡ 1,X1, . . . ,Xn) on Cn. Though X0 ≡ 1, it
will nevertheless appear in the following expressions to simplify notation. We further have
coordinates (ρ, φ̃, ζI , ζ̃I) on R>0 × R × Rn+1 × Rn+1 ∼= R2n+4. With respect to these, and
denoting the Kähler metric on M̄ by gM̄ , gcFS, c ≥ 0, is given by

gcFS =
ρ+ c

ρ
gM̄ + gcG (2)

where

gcG :=
1

4ρ2
ρ+ 2c

ρ+ c
dρ2 +

1

4ρ2
ρ+ c

ρ+ 2c

(
dφ̃+

n∑

I=0

(ζIdζ̃I − ζ̃Idζ
I) + cdcK

)2

+
1

2ρ

n∑

I,J=0

(
JIJdζ

IdζJ + J IJ(dζ̃I +RIKdζ
K)(dζ̃J +RJLdζ

L)

)
(3)

+
2c

ρ2
eK

∣∣∣
n∑

I=0

(XIdζ̃I + FIdζ
I)
∣∣∣
2

In this expression, (FI), (JIJ) and (RIJ) are determined by the derivatives of the holo-
morphic prepotential F , and constant on each copy of R2n+4. Their precise definitions can
be found in [CDS17], but will not be relevant in the following. We note that, for any two
c1, c2 > 0, the metrics gc1FS and gc2FS are isometric [CDS17].

It was explained in [CDS17] how to define the c-map for arbitrary PSK manifolds. In the
case c = 0 the construction is locally identical to the c-map for special Kähler domains, with
the only global difference being that N̄ may fail to be globally trivial as a bundle over M̄ .
This corresponds to the fact that, after covering M̄ by PSK domains, transition functions
must be used to patch the different domains together.

For c > 0, however, this patching does not immediately preserve the metric gcFS: One
must first divide out the isometric Z-action which sends φ̃ 7→ φ̃ + 2πc, thereby making the
coordinate φ̃ periodic. Thus, in order to define the one-loop deformed c-map on arbitrary
PSK manifolds, one locally works with bundles with fiber R>0 ×S1 ×R2n+2 instead. Then,
the metric gcFS is invariant under the transition functions, and therefore patches together to
a global quaternionic Kähler metric. Note that its coordinate expression does not change.

The resulting manifold N̄ is best thought of as a bundle of Lie groups over the PSK manifold
M̄ . If M̄ is a PSK domain, we may endow each fiber with a group structure by casting
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R2n+4 ∼= R>0 × R2n+3 as the Iwasawa subgroup of SU(n + 2, 1), which we will denote by
G(n+2). This is a one-dimensional, solvable extension of the Heisenberg group of dimension
2n + 3, which is parametrized by the coordinates (φ̃, ζ̃I , ζ

I) in the above notation. With
respect to these coordinates, the group multiplication takes the following form:

(eλ, α, ṽI , v
I)·(ρ, φ̃, ζ̃I , ζ

I)

=
(
eλρ, eλφ̃+ α+ eλ/2

(∑

I

ṽIζ
I − vI ζ̃I

)
, ṽI + eλ/2ζ̃I , v

I + eλ/2ζI
)

(4)

In the case of PSK domains (or if c = 0), this action endows N̄ with the structure of a
principal G(n+2)-bundle. In the general case (for c > 0), when the φ̃-coordinate is periodic,
one no longer has an action of all ofG(n+2) on the fibers, since the one-dimensional extension
fails to respect the quotient. However, shifts in φ̃ are central in Heis2n+3, hence its action
descends to N̄ , and we may take the appropriate cyclic quotient to obtain a free action.
Regarding the compatibility of the Ferrara–Sabharwal metric and its one-loop deformation
with these actions, we have the following basic result.

Lemma 2.20. Consider a c-map space N̄ equipped with the the (one-loop deformed) Ferrara–
Sabharwal metric gc

FS
. Then Heis2n+3 acts by isometries for every c ≥ 0, and all of G(n+2)

acts by isometries in case c = 0.

Proof. Let U ⊂ M̄ be a PSK domain, so that N̄ restricts to a trivial bundle over U . Using
the notation introduced above, the metric gcFS then takes the form given by equations (2)
and (3), and the action of G(n + 2) is given by (4). In case M̄ was not globally a PSK
domain and c > 0, only the subgroup Heis2n+3 has a well-defined action on N̄ . Since the
group acts purely in the fiber directions, it is enough to check that its elements leave gcG
invariant and preserve the function ρ+c

ρ to verify that they act by isometries. That this is

the case for elements of the form (0, α, ṽI , v
I) ∈ Heis2n+3 ⊂ G(n+ 2) follows easily from an

explicit computation.

The remaining elements, which are of the form (eλ, 0, 0, 0) ∈ G(n+ 2), only act on N̄ when
either c = 0 or M̄ is globally a PSK domain (and c > 0). In the former case, they act by
isometries. In the latter, we observe that for λ 6= 0, these elements preserve neither the
function ρ+c

ρ nor gcG, and therefore do not induce isometries.

Corollary 2.21. Let M̄ be a complete, simply connected PSK manifold of (real) dimension
2n, and Γ ⊂ Heis2n+3 a cocompact lattice. Then the (universal covering of the) one-loop
deformed c-map space (N̄, gc

FS
), c ≥ 0, associated to M̄ admits a smooth quotient N̄/Γ,

which is a complete quaternionic Kähler manifold with fundamental group Γ.

Proof. If either c = 0 or M̄ is a PSK domain, N̄ is itself simply connected, and carries a
free and isometric action of Heis2n+3. In case M̄ is not a PSK domain and c > 0, this is
still true for its universal covering (which we also denote by N̄ for notational convenience).
The quotient by Γ is smooth, complete, and has fundamental group Γ by construction.

This direct description gives a satisfactory (global) definition of the c-map, but makes it
difficult to study the properties of the c-map. For instance, there is no obvious way to
compute the isometry group of (N̄, gcFS) other than by direct inspection of the coordinate
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expressions. An alternative, locally equivalent, formulation is summarized by (1), which we
now explain in more detail.

The cotangent bundle of an affine special Kähler manifold carries a (pseudo-)hyper-Kähler
structure which admits a rather simple description. Let (M,gM , ωM ,∇) be a special Kähler
manifold. The special Kähler connection induces a splitting

T (T ∗M) ∼= THN ⊕ TVN ∼= π∗(TM)⊕ π∗(T ∗M) (5)

With respect to this splitting, we define

g =

(
gM 0

0 g−1
M

)
I1 =

(
JM 0
0 J∗

M

)
I2 =

(
0 −ω−1

M

ωM 0

)
I3 = I1I2 (6)

where we omitted pullbacks to simplify the notation. A priori, these tensor fields (only)
endow N := T ∗M with an almost hyper-Hermitian structure. However, (N, g, ωa) is in fact
hyper-Kähler if (and only if) (M,gM , ωM ,∇) is special Kähler (see, for instance, [ACD02]).
In case M is a CASK manifold, the map which sends M to N , equipped with the above
hyper-Kähler structure, is called the rigid c-map. It is also well-known that, in this case, N
carries a natural rotating circle symmetry (cf. [ACM13]):

Lemma 2.22. Let (M,gM , ωM ,∇, ξ) be a CASK manifold, and (N, g, Ii), i = 1, 2, 3, its
cotangent bundle, equipped with the rigid c-map hyper-Kähler structure. Then the vector
field Z = −J̃ξ on N , where the tilde denotes the ∇-horizontal lift, generates a rotating circle
symmetry. In other words, LZg = LZω1 = 0, LZω2 = ω3 and LZω3 = −ω2.

Since Z is horizontal, ω1(Z, ·) = π∗ωM (Z, ·). By Lemma 2.13, the rotating circle symmetry
is Hamiltonian with Hamiltonian function −1

2π
∗(gM (ξ, ξ)) = −1

2g(Z,Z). As explained in
the previous section, one may now apply the HK/QK correspondence to obtain the Ferrara–
Sabharwal metric [ACDM15, MS15].1 Though −1

2g(Z,Z) is a natural choice of Hamiltonian
function for Z with respect to ω1, it is not unique. We may choose to work with the
function fZ = −1

2g(Z,Z)−
1
2c for any c ∈ R instead (the normalization of c is conventional).

This induces a change in the twist data used in the HK/QK correspondence, since fH =
fZ+g(Z,Z) is shifted as well. Consequently, there is a one-parameter freedom in the HK/QK
correspondence (cf. Remark 2.9), which precisely reproduces the one-loop deformation of the
Ferrara–Sabharwal metric [MS15].

There are two main advantages to the HK/QK correspondence over the direct description
of the c-map. Firstly, since the one-loop deformation of the c-map corresponds to a simple
shift in the Hamiltonian function fZ on the hyper-Kähler side of the correspondence, it is
much simpler to treat the undeformed c-map simultaneously with its one-loop deformation.
Secondly, the twist construction makes it possible to compute tensor fields on the c-map
image N̄ in terms of their counterparts on the hyper-Kähler manifold N . We will exploit
both of these in the following.

1Due to global issues when dividing out the lifted circle action on the S
1-bundle over N , the HK/QK

correspondence may produce a manifold which is not globally diffeomorphic to the manifold N̄ obtained
by the direct c-map construction given above. Nevertheless, the approaches are locally equivalent (as can
be seen by picking a local transversal slice for the action generated by ZP ), and therefore we may use the
HK/QK correspondence to study tensor fields on N̄ .
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3 Symmetry properties of the HK/QK correspondence and the
c-map

We now investigate the behavior of the HK/QK correspondence and the c-map in the pres-
ence of symmetries. We will show that under the supergravity c-map as well as under its
one-loop deformation, the identity (connected) component of the automorphism group of
the initial projective special Kähler manifold is a subgroup of the isometry group of the
resulting quaternionic Kähler manifold. In the undeformed case, this result was already
known (see e.g. [CDJL17, App. A]), but our usage of the HK/QK correspondence ensures
that our results remain valid also for the one-loop corrected supergravity c-map.

In addition to isometries of the quaternionic Kähler manifold coming from the automor-
phisms of the PSK manifold, there is a solvable group G(n+ 2) of dimension 2n+ 4 acting
on the quaternionic Kähler manifold, with orbits transverse to the orbits of the automor-
phism group of the PSK manifold (see, for example, [CHM12]). In the undeformed case,
it acts isometrically. In the deformed case, however, only its nilradical, a codimension one
Heisenberg subgroup, acts by isometries (see Theorem 3.16).

3.1 Automorphisms under the HK/QK correspondence

As explained in Section 2, the input for the HK/QK correspondence is a (connected) hyper-
Kähler manifold (N, g, Ii) (i = 1, 2, 3) equipped with a so-called rotating symmetry, i.e. a
circle action which is isometric and ω1-Hamiltonian—with Hamiltonian function fZ—and
whose generating vector field Z satisfies LZω2 = ω3, LZω3 = −ω2.

We now want to consider this set-up in the presence of additional symmetries. Since we are
interested in the connected component of the identity of the appropriate symmetry groups,
we may work infinitesimally.

Definition 3.1. By an (infinitesimal) symmetry of a hyper-Kähler manifold with rotating
symmetry, we understand a vector field Y ∈ X(N) which is Killing and triholomorphic
as well as ω1-Hamiltonian, and preserves the Hamiltonian function fZ . The space of such
vector fields will be denoted by aut(N, fZ).

We note that this implies that [Y,Z] = 0, since Z = −ω−1
1 (dfZ), where we interpret ω1 as

an isomorphism TM → T ∗M .

Our aim is to produce a Killing field YQ, associated with Y , on the quaternionic Kähler
manifold N̄ , which results from applying the HK/QK correspondence to N with the above
data. The first step is to apply the elementary deformation, chosen according to Theorem 2.8,
such that the deformed metric gH = 1

fZ
g + 1

f2
Z

gα is H-related to a quaternionic Kähler

metric gQ on the twist manifold N̄ . The relevant twist data are (Z,ωH, fH), defined as in
Theorem 2.8 (we set k = 1, cf. Remark 2.9).

Lemma 3.2. The vector field Y is ωH-Hamiltonian, and preserves the elementary deforma-
tion gH of the metric. The corresponding Hamiltonian function fY (unique up to an additive
constant) is Z-invariant.
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Proof. We assumed that Y is ω1-Hamiltonian; call its Hamiltonian function ϕ. Then we
have

ιY ωH = −dϕ+ ιY dα0 = −d(ϕ+ g(Z, Y ))

where we used Cartan’s formula and the fact that Y preserves both g and Z.

It follows directly from our assumptions LY g = 0, LY Z = 0, LY fZ = 0 and LY ωi = 0
(i = 1, 2, 3) that Y also preserves gH = 1

fZ
g + 1

f2
Z

gα.

To check Z-invariance of fY := ϕ+g(Z, Y ), we note LZ(g(Z, Y )) = 0 because Z is Killing and
commutes with Y . Thus, it suffices to calculate LZϕ = ιZdϕ = −ω1(Y,Z) = −dfZ(Y ) =
0.

Since Y is Z-invariant, we can now use the twist construction to define an H-related vector
field Y ′ on the (quaternionic Kähler) twist manifold N̄ . Since we want to produce an
infinitesimal isometry of the quaternionic Kähler metric gQ, we use Lemma 2.6 to see that
Y ′ will be Killing with respect to gQ precisely if we have

LY gH − 2f−1
H (ιY ωH) ∨ (ιZgH) = 0 (7)

Since LY gH = 0 and the second term does not generally vanish, we will modify Y (in a
Z-invariant way!) to ensure its twist will be a Killing field. A natural choice is to add
a term proportional to the distinguished vector field Z. The following shows that this is
indeed the right approach:

Lemma 3.3. There exists a Z-invariant function ψ ∈ C∞(N) such that the twist of YH :=
Y + ψZ is Killing.

Proof. We write YH = Y + ψZ for some arbitrary ψ ∈ C∞(N), and attempt to solve
Equation (7). Since both Y and Z preserve gH, we find LYHgH = LψZgH = 2(dψ)ιZgH.
Since Y and Z are both ωH-Hamiltonian, we have:

LYHgH − 2f−1
H (ιYHωH) ∨ (ιZgH) =

(
2(dψ) − 2f−1

H (−dfY − ψdfH)
)
∨ ιZgH

and thus it suffices, in order for this expression to vanish, to solve the differential equation

dψ = −
1

fH
dfY −

ψ

fH
dfH

This equation is solved by ψ = − fY
fH

, which therefore satisfies our requirements. The function
ψ is Z-invariant because both fY and fH are.

Thus, the twist of the vector field YH = Y − f−1
H fY Z yields a Killing field Y ′

H =: YQ of
gQ. Recall that ZN̄ is the Killing field on N̄ which plays a role analogous to Z under the
HK/QK correspondence.

Lemma 3.4. The above-constructed Killing field YQ on N̄ commutes with ZN̄ .

Proof. Since YQ ∼H YH, its horizontal lift to P is XP -invariant—otherwise YH would not
be well-defined. The claim now follows from compatibility of the Lie bracket with the
pushforward.
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Denoting the space of Killing fields on N̄ that commute with ZN̄ by aut(N̄, ZN̄ ), we have
now proven:

Proposition 3.5. Given any Y ∈ aut(N, fZ), the vector field YQ =
(
Y − fY

fH
Z
)′

is an element

of aut(N̄, ZN̄ ).

Remark 3.6. Our choice of a Hamiltonian function fY introduces some non-uniqueness in
the definition of YQ. A different choice f̂Y := fY + C for some C ∈ R leads to a new

vector field ŶQ = YQ − C
fZ
Z ′ = YQ + CZN̄ , where we used that Z̃ = ZP − fZXP , hence

(πN̄ )∗Z̃ = −fZZN̄ . In summary, YQ is unique up to a constant multiple of ZN̄ .

Running through our argument for linearly independent vector fields, we find:

Proposition 3.7. Given a basis {Yj}, j = 1, . . . ,dim aut(N, fZ), of aut(N, fZ), any set of
choices of Hamiltonian functions fYj with respect to ωH gives rise to an injective, linear map

ϕ : aut(N, fZ) aut(N̄, ZN̄ )

Y =
∑

j αjYj YQ =
∑

j αjY
Q
j

where Y Q
j := Yj,Q =

(
Yj −

fYj
fH
Z
)′

.

Proof. Linearity of the map is clear. To prove injectivity, note that the process of twisting
a vector field consists of the composition of two point-wise isomorphisms, and therefore

introduces no kernel. Thus, ϕ(Y ) = 0 if and only if YH = 0, i.e. Y =

∑
j αjfYj
fH

Z. Any vector
field of the form ψZ for ψ ∈ C∞(N) satisfies LψZg = 2(dψ)ιZg, hence is Killing if and only
if ψ is constant. But since Z generates a rotating circle symmetry, no non-zero multiple of
it preserves ω2 or ω3. Because Y is triholomorphic, ψ ≡ 0, so kerϕ = {0}.

Both aut(N, fZ) and aut(N̄, ZN̄ ) naturally come equipped with the structure of a Lie algebra.
It is natural to ask if (any of) the maps from Proposition 3.7 are Lie algebra homomorphisms.
It turns out that this is generally not quite the case:

Theorem 3.8. Let {Yj}, j = 1, . . . , k be a basis of a Lie subalgebra g ⊂ aut(N, fZ) satisfying
[Yj , Yk] =

∑
l c
l
jkYl. Then

[Y Q
j , Y

Q
k ] =

∑

l

cljkY
Q
l +AjkZN̄

for constants Ajk = ω′
H(Y

′
j , Y

′
k) −

∑
l c
l
jkf

′
Yl

. Thus, g induces a (k + 1)-dimensional Lie

subalgebra gQ = span{Y Q
j , ZN̄ | j = 1, . . . , k} ⊂ aut(N̄, ZN̄ ), which is a (possibly trivial)

central extension of g.

Proof. Expanding in terms of the Yj, we have:

[Y H
j , Y

H
k ] =

∑

l

cljkYl −

([
fYj
fH

Z, Yk

]
+

[
Yj,

fYk
fH

Z

])
+

[
fYj
fH

Z,
fYk
fH

Z

]
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As in the proof of Lemma 3.4, the last term vanishes, and dfH(Yj) = 0 for every j. Thus,
the expression simplifies to

[Y H
j , Y

H
k ] =

∑

l

cljkYl +
1

fH
(Yk(fYj )− Yj(fYk))Z =

∑

l

cljkYl −
2

fH
ωH(Yj, Yk)Z

Now we use Lemma 2.5:

[Y Q
j , Y

Q
k ] ∼H [Y H

j , Y
H
k ] +

1

fH
ωH(Y

H
j , Y

H
k )Z = [Y H

j , Y
H
k ] +

1

fH
ωH(Yj , Yk)Z

=
∑

l

cljkYl −
1

fH
ωH(Yj , Yk)Z

Since −
(

1
fH
Z
)′

= ZN̄ , we have [Y Q
j , Y

Q
k ] =

∑
l c
l
jkY

′
l + ω′

H(Y
′
j , Y

′
k)ZN̄ . Using the relation

Y Q
j = (Y H

j )′ = Y ′
j − (fYjf

−1
H Z)′ = Y ′

j + f ′YjZN̄ can also write this as

[Y Q
j , Y

Q
k ] =

∑

l

cljkY
Q
l +

(
ω′
H(Y

′
j , Y

′
k)−

∑

l

cljkf
′
Yl

)
ZN̄

which was to be shown.

To check that the combination ω′
H(Y

′
j , Y

′
k)−

∑
l c
l
jkf

′
Yl

is indeed constant, it suffices to show

that its twist is. Thus, we compute the differential of ωH(Yj, Yk) −
∑

l c
l
jkfYl . Applying

Cartan’s formula multiple times and using dωH = 0 we write the first term as

LYkιYjωH − ιYkLYjωH = ιYjLYkωH + ι[Yk,Yj ]ωH − ιYkLYjωH

Both the first and last term vanish, since the vector fields Yj all preserve ωH. Thus, we find

d
(
ωH(Yj , Yk)−

∑

l

cljkfYl

)
= ωH([Yk, Yj ], ·) +

∑

l

cljkωH(Yl, ·) = 0

since [Yk, Yj ] =
∑

l c
l
kjYl.

The constants Ajk define a two-cocycle α := 1
2AjkY

∗
j ∧Y ∗

k ∈ Z2(g), where {Y ∗
j } denotes the

dual basis of g∗. It is well-known that the corresponding cohomology class [α] vanishes if
and only if the extension is trivial. In other words, we have:

Corollary 3.9. Under the assumptions of Theorem 3.8, if the class [α] ∈ H2(g) is trivial,
there exists a redefinition Ȳ Q

j := Y Q
j + βjZN̄ such that ḡ := span{Ȳ Q

j | j = 1, . . . , k} ⊂ gQ
is a subalgebra isomorphic to g, and gQ = ḡ⊕ RZN̄ .

Corollary 3.10. If g ⊂ aut(N, fZ) is semi-simple, then it gives rise to an isomorphic subal-
gebra ḡ ⊂ aut(N̄, ZN̄ ).

Proof. This follows from Whitehead’s lemma, which asserts that H2(g) = 0 for every
semisimple Lie algebra g.
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3.2 Application to the c-map

Now we apply the above results to the supergravity c-map. We consider a PSK manifold M̄ ,
which, by definition, is the Kähler quotient M � S1 of a CASK manifold (M,gM , ωM ,∇, ξ)
by the circle action generated by −Jξ, where ξ is the Euler field on M , and J its complex
structure.

Recall from Section 2 that applying the supergravity c-map to M̄ yields the same result as
applying the rigid c-map to M , and composing it with the HK/QK correspondence. This
fact allows us to study the supergravity c-map in the presence of symmetries through the
HK/QK correspondence, which we discussed in the previous section. We will now verify
that (infinitesimal) automorphisms of the PSK manifold M̄ naturally lead, through the
rigid c-map, to the set-up considered in Section 3.1.

An automorphism of the PSK manifold M̄ is, by definition, induced by an automorphism
ϕ of the CASK manifold M . Any diffeomorphism of M admits a canonical lift to a diffeo-
morphism Φ of its cotangent bundle, using the pullback on one-forms: If αp is a covector at
p ∈M , we define Φ((p, αp)) = (ϕ(p), (ϕ−1)∗αp) (or in other words, Φ = (ϕ−1)∗).

Lemma 3.11. Let M be a CASK manifold and N = T ∗M its cotangent bundle, endowed
with the rigid c-map hyper-Kähler structure. If ϕ is an automorphism of the CASK structure
on M and Φ its canonical lift to N , then Φ preserves the full hyper-Kähler structure of N ,
i.e. Φ∗g = g and Φ∗ωi = ωi, i = 1, 2, 3.

Proof. Since ϕ preserves the special Kähler connection, Φ preserves the splitting (5). Thus,
we may use the expressions in Equation (6). But then, g, I1, and I2 are explicitly defined
in terms of tensor fields preserved by ϕ, hence they are preserved by Φ.

Now we consider the infinitesimal case. Assume that the initial CASK manifold M (or
equivalently the PSK manifold M̄) admits a one-parameter group of automorphisms ϕt,
generated by some vector field X. The one-parameter group Φt of canonical lifts generates
a vector field Y ∈ X(N), which can be expressed as follows:

Lemma 3.12. Let (∇X)∗ : T ∗M → T ∗M be the adjoint of the endomorphism ∇X of
TM , and η ∈ Γ(TVN) the (fiberwise) Euler field on T ∗M = N . Under the isomorphism
TVN ∼= π∗(T ∗M), we may view (∇X)∗ as an endomorphism of the vertical tangent bundle,
and hence apply it to η. Then Y = X̃ − (∇X)∗(η), where X̃ is the ∇-horizontal lift of X.

Proof. Since the proposed formula for Y certainly specifies a lift of X, we need only check
that it is the canonical one. It is a basic fact from symplectic geometry that a diffeomor-
phism of T ∗M is the canonical lift of a diffeomorphism of M if and only if it preserves the
tautological one-form λ. Therefore, it suffices to check LX̃−(∇X)∗(η)λ = 0.

Since ∇ is flat, we may choose local ∇-affine coordinates (qi) on M . With respect to local
canonical coordinates (qi, pj) on T ∗M , we have η =

∑
pi

∂
∂pi

and consequently

X̃ − (∇X)∗(η) =
∑(

Xi ∂

∂qi
−
∂Xi

∂qj
pi

∂

∂pj

)
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With respect to any set of canonical coordinates, λ =
∑
pidq

i, so we compute

LX̃−(∇X)∗(η)λ =
∑(

pidX
i −

∂Xi

∂qj
pidq

j

)
= 0

proving our claim.

Lemma 3.11 shows that the canonical lift Y of an infinitesimal CASK automorphism X
preserves the full hyper-Kähler structure of N = T ∗M . Hence, to prove that our discussion
of automorphisms under the HK/QK correspondence applies, we need only verify that the

lifted action is ω1-Hamiltonian and preserves fZ , the Hamiltonian function of Z = −J̃ξ with
respect to ω1.

Lemma 3.13. Let ϕt, Φt, and Y ∈ X(N) be as above. Then

(i) The action generated by Y is ω1-Hamiltonian as well as ω3-Hamiltonian.

(ii) Y preserves fZ .

Proof.

(i) Since ω3 is the canonical symplectic structure on T ∗M , it is given by ω3 = −dλ. Since
Y is the canonical lift of X, it preserves λ, and is ω3-Hamiltonian with Hamiltonian
function −λ(Y ).

Since the special Kähler connection on M is symplectic, ωM has constant coefficients
(ωM )ij with respect to any choice of ∇-affine coordinates (qi). With respect to the
corresponding canonical coordinates (qi, pj) on N , we therefore have

ω1 =
∑(

(ωM )ijdq
i ∧ dqj + (ωM )ijdpi ∧ dpj

)

where (ωM )ij are the coefficients of the inverse matrix. Using Lemma 3.12, we find

ιY ω1 =
∑(

2(ωM )ijX
idqj − 2(ωM )ij

∂Xk

∂qi
pkdpj

)

By Lemma 2.16, the first term is given by −π∗dfX , where fX is a Hamiltonian function
for X with respect to ωM . Since X preserves the special Kähler connection, its coeffi-
cients with respect to the ∇-affine coordinates are affine functions, i.e. ∂X

i

∂qj
is constant

for every i, j. Therefore, the second term is given by −d
(∑

Sjkpkpj
)
, where we defined

a new tensor field S ∈ Sym2((TVN)∗) by setting Sjk :=
∑

(ωM )ij ∂X
k

∂qi
. In invariant

terms, S = ω1((∇X)∗−, ·)
∣∣
TVN

, where we regard (∇X)∗ as an endomorphism of TVN ;
its symmetry follows from the fact that 0 = LXωM = (∇X −∇X)ωM and that ωM is
parallel with respect to ∇. Then

∑
Sijpipj = S(η, η), where η =

∑
pi

∂
∂pi

∈ Γ(TVN)
is the fiberwise Euler field. Thus, we have found

ιY ω1 = −d(π∗fX + S(η, η)

In particular, Y is ω1-Hamiltonian.

(ii) Since fZ = −1
2π

∗gM (ξ, ξ) and X preserves both gM and ξ, its canonical lift Y auto-
matically preserves fZ .
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Proposition 3.14. Given a PSK manifold M̄ and underlying CASK manifold M , there is
an injective linear map aut(M̄) → aut(N, fZ), where N is the image of M under the rigid
c-map.

Proof. By Proposition 2.18, there exists an injective linear map aut(M̄) → aut(M). In case
the special Kähler connection ∇ on M does not equal the Levi-Civita connection, this is
even a canonical isomorphism. By Lemmata 3.11 and 3.13, the canonical lift of any element
of aut(M) to N = T ∗M lies in aut(N, fZ). By functoriality of the pullback this defines a
homomorphism aut(M) → aut(N, fZ), which is obviously injective as well.

Combining this with our results from Section 3.1, we have several interesting consequences:

Theorem 3.15. Let M̄ be any PSK manifold, and N̄ its image under the supergravity c-
map. Then there exists an injective, linear map from aut(M̄) into aut(N̄, ZN̄ ), the algebra
of Killing fields on N̄ which commute with ZN̄ . This is true for the quaternionic Kähler
metrics on N̄ induced by the (undeformed) supergravity c-map, as well as their one-loop
deformations.

Proof. This follows immediately by composing the maps constructed in Proposition 3.14 and
Proposition 3.7 (note that the latter introduces a certain freedom of choice, cf. Remark 3.6).

Theorem 3.16. Let M̄ be a PSK manifold of real dimension 2n and set m = dim aut(M̄).
Let (N̄, gc

FS
), c ≥ 0, be its image under the (one-loop corrected) supergravity c-map. Then

the isometry group of (N̄, gc
FS

) has dimension at least m+ 2n+ 3.

Proof. Thinking of N̄ as a bundle over M̄ , we already know from Lemma 2.20 that, for
every c ≥ 0, we have an isometric action of Heis2n+3 (possibly with discrete stabilizer),
which restricts trivially to M̄ . By contrast, all isometries generated by the Killing fields
constructed by means of Theorem 3.15 certainly act non-trivially on the base PSK manifold,
hence they are independent of such fiberwise isometries.

In case c = 0 the group of fiberwise isometries is even of dimension 2n + 4 (again, see
Lemma 2.20), so we recover Proposition 23 of [CDJL17]:

Corollary 3.17. Let M̄2n be a PSK manifold with m = dim aut(M̄). Then the isometry
group of (N̄, g0

FS
), its image under the (undeformed) supergravity c-map, has dimension at

least m+ 2n + 4.

The next corollary generalizes Corollary 24 of [CDJL17], where only the case c = 0 was
considered:

Corollary 3.18. Let M̄2n be a PSK manifold such that its automorphism group acts with
cohomogeneity k. Then the isometry group of (N̄, gc

FS
) acts with cohomogeneity at most

k + 1. If c = 0, the isometry group acts with cohomogeneity at most k.
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Recall that all known homogeneous quaternionic Kähler manifolds of negative scalar cur-
vature are Alekseevsky spaces, that is, quaternionic Kähler manifolds which admit a simply
transitive, completely solvable group of isometries [Ale75, dWvP92, Cor96]. It is known
that, with exception of the quaternionic hyperbolic spaces, they can all be obtained from
the c-map [dWvP92].

Corollary 3.19. For all Alekseevsky spaces, with exception of the quaternionic hyperbolic
spaces, the one-loop deformation of the Ferrara-Sabharwal metric defines a one-parameter
deformation by complete quaternionic Kähler manifolds (N̄, gc

FS
), c ≥ 0, which admit a

group of isometries acting with cohomogeneity one.

Since there are many examples of complete, simply connected PSK manifolds [CHM12], in-
cluding homogeneous spaces [dWvP92, AC00] and manifolds of cohomogeneity one [CDJL17],
this result yields many examples of quaternionic Kähler manifolds with non-trivial funda-
mental group.

In the next section, we study the one-loop deformations of the non-compact Wolf spaces
SU(2, n)/S(U(2) × U(n)) in more detail. For this series of examples, we show that the
above results are sharp, i.e. that the one-loop deformed Ferrara–Sabharwal metric is of
cohomogeneity precisely one.
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4 Examples

Certainly the most basic example of a PSK manifold is the space consisting of a single point.
Applying the c-map to it, we obtain the simplest and (certainly in the physics literature)
most prominent example of the c-map. The resulting four-dimensional quaternionic Kähler
manifold2 is known as the universal hypermultiplet. The universal hypermultiplet, which
we will denote by N̄0, is diffeomorphic to R4, but the (undeformed) Ferrara–Sabharwal
metric casts it as a non-compact Wolf space, namely the complex hyperbolic plane CH2 =
SU(1, 2)/U(2). The one-loop deformed universal hypermultiplet is not symmetric, and in
fact not even locally homogeneous. This follows from the results of [CS18], which we will
review below. Thus, even the trivial PSK manifold yields an interesting quaternionic Kähler
manifold.

The (undeformed) universal hypermultiplet N̄0 = SU(1, 2)/S(U(1)×U(2)) is the first in an
infinite series of non-compact Wolf spaces. Indeed, for any k ≥ 0 the (4k + 4)-dimensional
symmetric space

N̄k :=
SU(k + 1, 2)

S(U(k + 1)× U(2))

is quaternionic Kähler. These spaces can be characterized as the only Riemannian manifolds
which are simultaneously quaternionic Kähler of negative scalar curvature, and Kähler.

Each N̄k can be constructed by applying the c-map. Consider

Mk =

{
(z0, . . . , zk) ∈ Ck+1

∣∣∣∣ |z0|2 >
k∑

j=1

|zj |
2

}

We can view this domain in Ck+1 as an affine special Kähler manifold by equipping it with
the trivial special Kähler connection ∇ = d and the standard flat, indefinite Kähler structure
of signature (k, 1):

gMk
=

k∑

j=1

|dzj |
2 − |dz0|

2

ωMk
=
i

2

( k∑

j=1

dzj ∧ dz̄j − dz0 ∧ dz̄0

) (8)

With the position vector field ξ =
∑k

µ=0

(
zµ

∂
∂zµ

+ z̄µ
∂
∂z̄µ

)
as Euler field, Mk is a CASK

domain. The vector field −Jξ is (up to sign) just the generator of the standard U(1)-
action of the unit complex numbers on Ck+1 which leaves the full CASK structure invariant,
and by taking the Kähler quotient we obtain (the projective model of) complex hyperbolic
space CHk, which is therefore a PSK domain. Applying the supergravity c-map to CHk,
one obtains N̄k (see, for instance, [CDS17]). In the following, our main interest is in the
one-loop deformations of these symmetric metrics.

The coordinate z0 on Mk plays a distinguished role in the c-map construction. Accord-
ingly, the case k = 0 is qualitatively different and fundamentally simpler from its higher-
dimensional generalizations. In this case, which we discuss first, we are able to compute the

2As is usual, we call a four-manifold quaternionic Kähler if it is (anti-)self-dual and Einstein.
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full isometry group of the one-loop deformed Ferrara–Sabharwal metric. Its action on N̄0

is of cohomogeneity one, and it follows from Corollary 3.18 that the isometry group acts
with cohomogeneity at most one on the higher-dimensional generalizations as well. In fact,
our results in [CST20] imply that it acts with cohomogeneity precisely one. We summarize
these results below.

4.1 The universal hypermultiplet

Since the universal hypermultiplet is diffeomorphic to R>0 ×R3, we may use global coordi-
nates (ρ, φ̃, ζ, ζ̃), with respect to which the (one-loop deformed) Ferrara–Sabharwal metric
takes the following form [CS18]:

gcN̄0
=

1

2ρ2

[
ρ+ 2c

ρ+ c
dρ2 +

ρ+ c

ρ+ 2c
(dφ̃+ ζdζ̃ − ζ̃dζ)2 + 2(ρ+ 2c)

(
dζ̃2 + dζ2

)]

For c = 0, this is the complex hyperbolic metric on CH2, normalized such that the reduced
scalar curvature ν = 1

4n(n+2) scal (where n is the quaternionic dimension) equals −1. On
the other hand, as c→ ∞, gc

N̄0

tends to a metric of constant curvature. While both of these
limiting cases are well understood, less is known for finite c > 0. In this section, we compute
the full isometry group of this metric. First, let us note that, by Lemma 2.20, we have a
free and isometric action of the three-dimensional Heisenberg group, which is transitive on
the level sets of the coordinate ρ.

Lemma 4.1. The norm of the curvature endomorphism R :
∧2 T ∗M →

∧2 T ∗M of (N̄0, g
c
N̄0

)
is given by

‖R‖2 = 6

(
1 +

ρ6

(ρ+ 2c)6

)

In particular, for any c > 0, ‖R‖2 is an injective function of ρ.

Proof. An explicit eigenbasis for the (self-adjoint) curvature operator was constructed in [CS18].
With our normalization, the corresponding eigenvalues are

λ1 = −

(
1 + 2

ρ3

(ρ+ 2c)3

)
, λ2 = −1 , λ3 = −

(
1−

ρ3

(ρ+ 2c)3

)

with multiplicities µ1 = 1, µ2 = 3 and µ3 = 2, respectively. This means that

‖R‖2 =
∑

i

µiλ
2
i = 6

(
1 +

ρ6

(ρ+ 2c)6

)

as claimed.

Since all scalar curvature invariants are invariant under isometries, we deduce:

Corollary 4.2. There are no isometries of the deformed Ferrara–Sabharwal metric which
change the value of the coordinate ρ. In particular, (N̄0, g

c
N̄0

) is not a homogeneous space.
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Lemma 4.3. Any isometry ϕ of the one-loop deformed Ferrara–Sabharwal metric gc>0
N̄0

is of

the form ϕ(ρ, φ̃, ζ̃, ζ) = (ρ, ψ(φ̃, ζ̃ , ζ)), where ψ : R3 → R3 preserves the symmetric bilinear
form αλ := λ(dφ̃+ ζdζ̃ − ζ̃dζ)2 + dζ̃2 + dζ2 for every λ ∈ (0, c/8).

Proof. We rewrite the metric as

gcN̄0
=

1

2ρ2

(
ρ+ 2c

ρ+ c
dρ2 + 2(ρ+ 2c)αλ(ρ)

)

where λ(ρ) = 1
2

ρ+c
(ρ+2c)2 ∈ (0, c/8) for all ρ > 0. This makes it clear that any diffeomorphism

of the given form is an isometry.

Conversely, any isometry ϕ must preserve the level sets of ρ. Since it is an isometry, it
furthermore preserves the unit normal bundle of each such hypersurface, or equivalently
leaves the normal vector field ∂

∂ρ invariant up to sign. The first observation implies that

ϕ(ρ, φ̃, ζ̃, ζ) = (ρ, ψ(ρ, φ̃, ζ̃, ζ)), where ψ preserves αλ for every λ ∈ (0, c/8). The second fact
implies that ψ is independent of ρ, proving that ϕ is of the claimed form.

Lemma 4.4. The Killing algebra of (N̄0, g
c>0
N̄0

) is spanned by the Killing vectors

X1 :=
∂

∂φ̃
, X2 =

∂

∂ζ
− ζ̃

∂

∂φ̃
X3 =

∂

∂ζ̃
+ ζ

∂

∂φ̃
, X4 = ζ̃

∂

∂ζ
− ζ

∂

∂ζ̃

Proof. We know that any Killing vector must be tangent to the level sets Hρ of ρ. For
any such hypersurface, {X1,X2,X3} provides a global trivialization of the tangent bundle.
Therefore, any Killing vector is of the form X = f1X1 + f2X2 + f3X3 for ρ-independent
functions fi ∈ C∞(Hρ), which we assume are not all constant. By the previous Lemma,
LXαλ = 0. Combining this with the fact that each Xi, i = 1, 2, 3, preserves αλ, we obtain

2λ
(
df1 − 2ζ̃df2 + 2ζdf3

)(
dφ̃+ ζdζ̃ − ζ̃dζ

)
+ 2

(
dζ̃ ∨ df3 + dζ ∨ df2

)
= 0

Since this equation must hold for every λ ∈ (0, c/8), the two terms actually vanish indepen-
dently:

(
df1 − 2ζ̃df2 + 2ζdf3

)(
dφ̃+ ζdζ̃ − ζ̃dζ

)
= 0

(
dζ̃ ∨ df3 + dζ ∨ df2

)
= 0

The latter implies that f2 depends only on ζ̃ while f3 only depends on ζ, with the constraint
that ∂f2

∂ζ̃
= −∂f3

∂ζ . This forces these derivatives to be constant, and we conclude that f2 and

f3 are affine functions. By adding constant multiples of X2 and X3, we may in fact arrange
that these functions are linear, i.e. f2 = kζ̃ and f3 = −kζ for some k ∈ R. Plugging this
into the first equation, we find

(
df1 − kd(ζ̃2 + ζ2)

)(
dφ̃+ ζdζ̃ − ζ̃dζ

)
= 0

and deduce that f1 = k(ζ̃2+ζ2), up to a constant which we may remove by adding a multiple
of X1. In conclusion, we have

X = k
(
(ζ̃2 + ζ2)X1 + ζ̃X2 − ζX3

)
= kX4

This proves the claim.
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Theorem 4.5. The isometry group of the one-loop deformed Ferrara–Sabharwal metric on
the universal hypermultiplet is Heis3 ⋊O(2).

Proof. The isometry group acts on the Killing algebra by isomorphisms, and in particular
preserves its center, which is spanned by ∂

∂φ̃
. Thus, any isometry ϕ of gc>0

N̄0

must be of the

form ϕ(ρ, φ̃, ζ̃, ζ) = (ρ, χ(φ̃, ζ̃ , ζ), ψ(ζ̃ , ζ)), where χ : R3 → R and ψ : R2 → R2 are smooth
maps. By the same argument as in the proof of the preceding Lemma, ϕ must also preserve
the symmetric bilinear forms (dφ̃ + ζdζ̃ − ζ̃dζ)2 and dζ̃2 + dζ2. Recognizing the latter as
the Euclidean metric on R2, we see that ψ must be a Euclidean motion. Thinking of R2 as
C, with complex coordinate ξ = ζ̃ + iζ, we have ψ(ξ) = eiθ(ξ + u) or ψ(ξ) = e−iθ(ξ̄ + ū),
where u ∈ C.

Imposing that ϕ also preserves (dφ̃+ Im(ξ̄dξ))2, we find

d
(
φ̃± χ(φ̃, ξ)

)
= Im(ξdξ̄)± Im(ψ(ξ)dψ(ξ))

We look for solutions of this equation, given our general form for ψ(ξ). Since the left-hand
side is exact, so must the right-hand side. For ψ(ξ) = eiθ(ξ + u), this only happens if the
negative sign is chosen, while for ψ(ξ) = e−iθ(ξ̄ + ū) the positive sign must be chosen. This
leads to the differential equation

d
(
φ̃+ Im(uξ̄)± χ(φ̃, ξ)

)
= 0

whose general solutions are easily read off:

χ(φ̃, ξ) = ∓
(
φ̃+ Im(uξ̄) + k

)

where k ∈ R is an arbitrary constant. The translations in φ̃ and ξ determine a normal
subgroup isomorphic to Heis3, while rotations and reflections in the (ζ̃ , ζ)-plane give rise to
the O(2)-subgroup.

4.2 Higher-dimensional hypermultiplet manifolds

To obtain the higher-dimensional symmetric spaces N̄k = SU(k+1,2)
S(U(k+1)×U(2)) and their one-

loop deformations, we start with complex hyperbolic space CHk. Introducing complex
coordinates {Xj} on the unit ball B2n ⊂ Cn, the complex hyperbolic metric can be expressed
as:

gCHk =
1

1− |X|2

(∑

j

|dXj |
2 +

1

1− |X|2
|X̄jdXj|

2

)

where |X| =
∑

j |Xj |
2 < 1. On the corresponding CASK manifold Mk we have the standard

linear action of SU(k, 1). It descends to CHk, casting it as the Hermitian symmetric space
SU(k, 1)/U(k). In fact, SU(k, 1) acts by automorphisms of the PSK structure because it
preserves the full CASK structure on Mk (here we use that, in this case, the special Kähler
and Levi-Civita connection coincide), and so we see that CHk is homogeneous as a PSK
manifold.
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The one-loop deformed Ferrara–Sabharwal metric on N̄k
∼= CHk ×R>0 ×R×Rk+1 ×Rk+1

is given in global coordinates (Xj , ρ, φ̃, ζ
I , ζ̃I) by the following bulky expression:

gcN̄k
=
ρ+ c

ρ
gCHk +

1

4ρ2
ρ+ 2c

ρ+ c
dρ2

+
1

4ρ2
ρ+ c

ρ+ 2c

(
dφ̃+

k∑

I=0

(ζIdζ̃I − ζ̃Idζ
I) +

2c

1− |X|2
Im

[ k∑

j=1

X̄jdXj

])2

+
1

2ρ

( k∑

j=1

(
(dζ̃j)

2 + (dζj)2
)
− (dζ̃0)

2 − (dζ0)2
)

+
ρ+ c

ρ

1

1− |X|2

∣∣∣∣(dζ̃0)2 + (dζ0)2 +

k∑

j=1

Xk
(
(dζ̃j)

2 + (dζj)2
)∣∣∣∣

2

Theorem 3.15 implies that the full group SU(k, 1) of PSK symmetries of CHk lifts to a
subgroup of the isometry group of this metric; its orbits are of course 2k-dimensional. Adding
to this the fiberwise isometries (cf. Lemma 2.20), we have found a group of isometries whose
orbits are of dimension 4k + 3, i.e. hypersurfaces, in agreement with the general result
Corollary 3.18.

As in the case of the universal hypermultiplet, we have constructed a group acting by
isometries, we have found that the isometry group acts with cohomogeneity at most one.
A natural question is whether this result can be improved, or in other words, whether it
is possible to find additional isometries which act non-trivially on the coordinate ρ. The
following Theorem, the proof of which is given in [CST20], provides a negative answer in all
dimensions:

Theorem 4.6. The norm of the curvature operator R :
∧2 T ∗M →

∧2 T ∗M of (N̄k, g
c
N̄k

) is
given by

‖R‖2 = n(5n + 1) + 3

(
(n− 1)

ρ

ρ+ 2c
+

ρ3

(ρ+ 2c)3

)2

+ 3

(
(n− 1)

ρ2

(ρ + 2c)2
+

ρ6

(ρ+ 2c)6

)

Corollary 4.7. For any c > 0, the norm of the curvature operator of (N̄k, g
c
N̄k

) is an injective

function of ρ. As a consequence, any isometry of gc>0
N̄k

must preserve ρ.

Proof. Up to an additive constant, the function |R|2 : R>0 → R>0 is the composition of two
functions ϕ,ψ : R>0 → R>0, given by

ϕ(x) =
x

x+ 2c

ψ(x) = 3
(
(x3 + (n− 1)x)2 + x6 + (n− 1)x2

)

The first function is easily checked to be injective. For ψ, assume that ψ(x1) − ψ(x2) = 0
for some x1, x2 ∈ R>0. Then

(x31 + (n− 1)x1)
2 + x61 + (n− 1)x21 − (x32 + (n− 1)x2)

2 − x62 − (n− 1)x22 = 0
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Clearly, this expression vanishes if x1 = x2, and since ψ is even, it also vanishes if x1 = −x2.
Factorizing, we find:

(x1 − x2)(x1 + x2)
(
2(x41 + x42) + 2x21x

2
2 + 2(x21 + x22)(n− 1) + n(n− 1)

)
= 0

The second and third factor are each manifestly positive for x1, x2 ∈ R>0, so the only
possibility is x1 = x2.

As an immediate consequence, we have:

Theorem 4.8. The one-loop deformation gc>0
N̄k

of the Ferrara–Sabharwal metric on N̄k is of

cohomogeneity one. In particular, (N̄k, g
c>0
N̄k

) is not a homogeneous space.
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