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Abstract

In this dissertation, we study the climate sensitivity of the Earth. The climate sensitivity
quantifies the response of the Earth system to radiative forcing, in particular, the radiative
forcing induced by humans. We use both complex climate modelling and observations
from the historical record for this endeavour. We analyse these data sources from the
perspective of a conceptual framework based on the Earth’s energy budget. The foci of
our study are on two wide topics.

The first topic estimates how sensitive the Earth’s climate is to carbon dioxide using the
historical warming. We use two quantities to measure the sensitivity: the transient climate
response (TCR) and the long-term equilibrium climate sensitivity (ECS). Past studies
analysed the historical observations of warming and forcing in the light of the Earth’s
energy budget to estimate TCR and ECS. We ascertain that some of these calculations
underestimate TCR and ECS. First, we analyse the disadvantages of past observational
estimates concerning the uncertainties in the anthropogenic radiative forcing. Based on
this analysis, we select the post-1970s period. Then we link the modelled warming in
this period in complex climate models with the corresponding modelled TCR and ECS.
This relationship between warming and sensitivity, and the observed post-1970s warming
allow us to estimate TCR and ECS. Our TCR estimate is higher than the past estimates,
and we find that this difference can be explained by past studies assuming that the ocean
mixed-layer is equilibrated. Our ECS estimate is also higher than some past estimates
and is in line with other studies that accounted for the effects of an evolving sea-surface
temperature pattern. The evolving sea surface temperature pattern changes the feedback
mechanisms on the warming and temporarily counteract the radiative forcing.

The second topic explores the role of clouds in this temporary dampening of the transient
global warming. We find that the cloud feedback not only acts directly with the sea surface
temperature patterns that arise when the climate system is out of equilibrium, but clouds
also affect other relevant feedback mechanisms. Past studies found that the evolving sea
surface temperature pattern changes the radiative response between decadal and centennial
timescales. A proposed mechanism connects clouds with the evolving pattern. They
also show in observations the relationship between the decadal cloud variations and the
corresponding variations in the radiative response of the Earth. Assisted by a complex
climate model, we find that not only clouds link the evolving pattern with the radiative
response, but also that they influence the remaining relevant mechanisms. To unravel the
role of clouds, we use a cloud-locking technique which inhibits cloud feedback. We find
that: a) clouds explain almost half of the difference in the radiative response between
decadal and centennial timescales, and b) a synergy between cloud processes, lapse-rate and
water-vapour feedback provides the tropical free-tropospheric warming that the proposed
physical mechanism needs.
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Zusammenfassung

In dieser Dissertation untersuchen wir die Klimasensitivität der Erde. Die Klimasensitivität
misst die Reaktion des Erdsystems auf den Strahlungsantrieb unter besonderer Berück-
sichtigung des anthropogenen Strahlungantriebes. Dazu verwenden wir sowohl komplexe
Klimamodelle, als auch historische Beobachtungen. Wir analysieren beide Datenquellen
im physikalisch-konzeptuellen Rahmen des Wärmehaushaltes der Erde. Die Schwerpunkte
unserer Untersuchung liegen auf zwei großen Themengebieten.

Das erste Thema schätzt basierend auf der historischen Erwärmung ab wie sensibel das
Klima der Erde auf Kohlendioxyd reagiert. Wir verwenden zwei Maße, um die Sensitiv-
ität zu messen: die kurzfristige Transient Climate Response (TCR) und die langfristige
Equilibrium Climate Sensitivity (ECS). Vorherige Untersuchungen analysieren historische
Beobachtungen der Erwärmung und des Strahlungsantriebes mit dem Wärmehaushalt der
Erde, um die TCR und die ECS zu berechnen. Wir stellen fest, dass einige dieser früheren
Berechnungen die TCR und die ECS unterschätzen. In dieser Dissertation analysieren wir
zuerst die Nachteile dieser früheren Schätzungen in Bezug auf die Messunsicherheit des
anthropogenen Strahlungsantriebs. Aufgrund der niedriegeren Messunsicherheit des anthro-
pogenen Aerosolstrahlungsantriebes wählen wir für unsere Analyse den Zeitraum ab den
1970-iger Jahren aus. Dann verbinden wir die modellierte Erwärmung in diesem Zeitraum
mit den entsprechenden modellierten TCRs und ECSs. Die ermittelte Beziehung zwischen
Erwärmung und Sensitivität und die tatsächliche Erwärmung seit den 1970-iger Jahren
macht eine neue Schätzungen der tatsächliche TCR und ECS möglich. Unsere Schätzung
der TCR ist höher als die früheren Schätzungen. Wir stellen fest, dass der Unterschied auf
eine Annahme vorheriger Schätzungen zurückführbar ist: Bezüglich des Wärmeaustausches
ist der gutgemischte Ozean stationär. Unsere Schätzung der ECS ist ebenfalls höher als
diejenigen einiger vorheriger Schätzungen. Unsere Schätzung stimmt mit anderen Schätzun-
gen, die die Effekte eines sich entwickelnden Musters der Meeresoberlfächnetemperatur
berücksichtigen, überein. Dieses Muster verändert die Rückkopplungsmechanismen und
wirkt dem Strahlungsantrieb vorläufig entgegen.

Das zweite Thema handelt von der Rolle der Wolken in dieser vorläufigen Dämpfung der
transienten globalen Erwärmung. Wir entdecken, dass die Wolkenrückkopplung nicht nur
eine direkte Wirkung hat, sondern auch, dass die Wolken andere relevante Rückkopplungen
beeinflussen. Vorherige Untersuchungen stellten fest, dass das sich entwickelnde Muster
der Meeresoberflächentemperatur die Strahlungsreaktion zwischen zehn- und hundertjähri-
gen Zeitskalen verändert. Ein möglicher physikalischer Mechanismus, der die Wolken mit
dem sich entwickelnden Muster verknüpft, wurde vorgeschlagen. Die Beziehung zwis-
chen den zehnjährigen Schwankungen der Wolken und den entsprechenden Änderungen
in der Strahlungsreaktion der Erde konnte bereits durch Beobachtungen verifiziert wer-
den. Mit Hilfe eines komplexen Kimamodells finden wir, dass nicht nur die Wolken das
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sich entwickelnde Muster mit der Strahlungsreaktion verknüpfen, sondern auch, dass die
Wolke die übrigen relevanten Mechanismen beeinflussen. Um die Rolle der Wolken zu
untersuchen, verwenden wir eine ”cloud-locking” Technik, die die Wolkenrückkopplung
unterbindet. Unser Resultat ist: a) die Wolken erklären fast die Hälfte der Änderung der
Strahlungsreaktion zwischen zehn- und hundertjährigen Zeitskalen und b) eine Synergie
zwischen Wolkenprozessen, die Temperatur-Gradient- und die Wasserdampfrückkopplung
liefert die tropische frei-troposphärische Erwärmung, die der vorgeschlagene physikalische
Mechanismus benötigt.
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Climate sensitivity, energy cycle and the instrumental
record

Die Erde war da. Grün, blau und weiß.
Wir lebten auf ihrer Haut. Bequem und frei.

Aber der Wechsel kam. Mit uns weg war die Balance.

Fourier (1827) was one of the first to recognise that the atmospheric gases played a role Traces of the
climate change

in increasing the surface temperature of the Earth, given that freezing temperatures would
be the norm if the atmosphere were transparent to the radiation emitted by the sun-warmed
surface. On the wake of the work of Tyndall (1861) on the infrared absorption of various
gases, Arrhenius (1896) was the first to quantify the effect of CO2 in the atmosphere.
He speculated on the role of CO2 in the past variations of the climate. Building upon
these ideas, Callendar (1938) took the estimates of the CO2 actually produced by humans.
With a simple energy balance calculation, he concluded that surface temperature would
appreciably increase due to CO2 concentration increments. He looked into temperature
observations of the time and found trends in the surface temperature consistent with the
CO2 anthropogenic increase. We show in figure 1.1 the observed changes in the global
mean surface temperature and, in comparison, the estimated changes in forcing (IPCC
2013a) along the 20th century and the first years of the 21st century. This figure should
make the reader ask if one can dismiss a relationship between warming and anthropogenic
forcing.

We define the instrumental record as the registry of variables that describe the Earth’s The instrumental
record

climate during the historical period (from the 19th and 21st centuries). During the same
period advances in Earth system science and high-performance computing became the
harbingers of complex Earth system models: numerical models that represent Earth’s
climate through the circulation of the atmosphere and global ocean and the energy cycle
that drives them. The interest in climate science mainly stems from the above-discussed
signs of the ongoing human-induced climate change and the question of how sensitive is
the Earth’s climate to the changes in greenhouse gases and other factors that alter the
energy flow in the system.

Solar shortwave radiation feeds the Earth’s energy cycle. A fraction of this radiation is Energy cycle

reflected by clouds, aerosol particles and surface features. The net shortwave radiation
warms the surface and the atmosphere. Warm bodies emit radiation in such a way that
the absorbed energy is balanced by the emitted energy. The Earth’s emitted radiation
approximately follows the Stefan-Boltzmann law, and it is mostly longwave (or thermal)
radiation. The atmospheric greenhouse gases absorb part of the outgoing thermal radiation,
acting as a blanket, warming more the surface and establishing a vertical temperature
gradient. The remaining radiation that either the atmospheric gases did not absorb or they
did not emit towards the ground leaves the system. Now, tropical regions receive more
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1 Climate sensitivity, energy cycle and the instrumental record
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Figure 1.1: Temperature change and human intervention in the radiative forcing. Global mean
surface temperature anomaly from the dataset (version 2) provided by Cowtan and Way (2014).
The reference period for the temperature anomalies is 1850-1900. The forcing time series are
those collected by the IPCC (IPCC 2013a). Note that the striking temperature increase since the
1970s coincides with the increase of the total anthropogenic forcing after the reduction in the
anthropogenic aerosol forcing.

shortwave radiation than higher latitudes; therefore, there is also a meridional temperature
gradient. In response, mechanisms such as atmospheric and oceanic circulation, convection
and clouds, modify the meridional and vertical gradients, the net incoming shortwave energy
flux at the top of the atmosphere (TOA) and the outgoing longwave radiation (OLR).
If these mechanisms reduce the difference between the TOA incoming and OLR energy
fluxes, they are negative feedback mechanisms. Otherwise, they are positive feedback
mechanisms.

In the outline of the energy cycle presented above, the net radiative forcing is the netForcing, TOA
imbalance and

steady state radiative input that generates a response in the system through the feedback mechanisms.
While the system reacts, there is a non-zero TOA energy imbalance: the difference between
the incoming and outgoing energy fluxes at the TOA. On Earth, the global ocean mainly
stores the TOA imbalance. If the net response of the system reduces the TOA imbalance,
the system is stable to radiative forcing changes. When there are no changes in the radiative
forcing, it attains a steady-state which is characterised by the value of the time-averaged
state variables and zero time-averaged TOA imbalance (Trenberth et al. 2009; Sherwood
et al. 2015).

During the historical period, humans have introduced changes in the radiative forcing.Human-induced
forcing, global
warming and

sensitivity
One example is the increase in atmospheric greenhouse gas concentration, which strengthens
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the net radiative forcing by reducing the transparency of the atmosphere to thermal radiation
and leading to global warming. Some authors suggest that changes in other state variables
scale with changes in global mean surface temperature (e.g. Held and Soden 2006; Lambert
and Webb 2008; Hansen et al. 2010). Therefore, global mean surface temperature changes
are a proxy of the response of the system. The instrumental record can provide the actual
surface temperature, radiative forcing and the TOA imbalance changes. From this data,
one can derive metrics of the sensitivity of the Earth to forcing changes and, hopefully,
project future climate with the help of scenarios of future radiative forcing. Thus, the
sensitivities shall be given as a global mean surface temperature change due to some
reference forcing change (Otto et al. 2013; Mauritsen and Pincus 2017).

Let us make two thought-experiments to get standard definitions of sensitivity. We Definitions of
sensitivity

assume that we start in a steady-state. The first experiment assumes that we increase the
atmospheric CO2 concentration at a rate of 1% yr−1 starting from the pre-industrial level.
After seventy years, the concentration doubles relative to the pre-industrial concentration.
The global mean surface temperature change due to this gradual change in radiative
forcing is the transient climate response (TCR, Gregory and Forster 2008). The second
thought-experiment assumes that we double the pre-industrial concentration and maintain it
afterwards. After the Earth attains a new steady-state, the global mean surface temperature
change is the equilibrium climate sensitivity (ECS, Gregory et al. 2004)

An educated-guess tells us that the global mean surface temperature changes are TCR and ECS from
the instrumental
recordapproximately proportional to forcing changes. Also, we can guess that TCR should be

proportional to the historical global mean surface temperature change. If these assumptions
comply, then the proportionality constant should be the ratio of the forcing changes. In
the case of ECS, we need to adjust the first assumption. We do not know the global mean
temperature change needed to reach the new steady-state from the instrumental record.
However, we know that the thermal capacity of the system stores the TOA imbalance
change, delaying the evolution towards the steady-state. Thus, we assume that global
mean surface temperature changes are proportional to forcing changes minus the TOA
imbalance change that is stored in the system. Thus, we also know that both ECS and the
historical global mean surface temperature change are proportional to the ratio of forcing
changes minus TOA imbalance changes (Otto et al. 2013).

As discussed above, observed forcing and global mean surface temperature changes let Instrumental record
and forcing
uncertaintyus derive an estimate of TCR and ECS. Notwithstanding, it is valid to ask how precise

and accurate these estimates are when using the instrumental record. The first caveat
is that the instrumental record is not uniform in time and space. One of the reasons is
that we went from scarce to denser spatial and temporal coverage during the historical
period (e.g. for the surface temperature as presented by Cowtan and Way 2014). This
problem is not inconsequential for the inference of historical forcing change. In terms of
forcing, the anthropogenic forcing components are challenging except for the better-known
GHG components (Otto et al. 2013; Mauritsen and Pincus 2017; Gregory et al. 2002;
Lewis and Curry 2014). For example, the direct aerosol forcing change in the historical
period is, according to IPCC (2013b), −0.4Wm−2(−1.0–0.1Wm−2, 5-95 percentile range)
and the aerosol-cloud interactions contribute −0.5Wm−2(−1.2–0.0Wm−2). Thus, the
uncertainty is larger than for GHG (IPCC 2013b). The geographical shift of the sources
of aerosol particles and changes in environmental regulations during the 1970s also grant

3



1 Climate sensitivity, energy cycle and the instrumental record

time-varying magnitude and uncertainty (Smith et al. 2011; Stevens 2015; Fiedler et al.
2017). Therefore, the high uncertainty in the historical forcing change coming from the
aerosol component translates in poor precision and accuracy in the estimates of TCR and
ECS.

Let us turn our attention to the observed TOA imbalance. Estimates of the TOATOA imbalance
uncertainty

imbalance can be obtained from satellite measurements of radiative flux, e.g. CERES
instruments and their product CERES-EBAF (Loeb et al. 2009). Given that above 90
percent of the TOA imbalance manifests as an increment in the ocean energy content
(Levitus et al. 2012; Trenberth and Balmaseda 2014), we can also estimate the TOA
imbalance with data from profiling floats, e.g. ARGO floats, from which the energy
stored in the oceans can be derived. Other methods include reconstructions from surface
temperatures and oceanic transport processes (Zanna et al. 2019) or oxygen and carbon
dioxide isotopes (Resplandy et al. 2014). However, such measurment projects’ inception
came after the 1970s, and ocean heat uptake has only been well-observed since the start of
the 21st century (Johnson et al. 2016). Instruments, reconstructions and proxies introduce
other kinds of uncertainty. Thus, additional to the uncertainty coming from the historical
forcing and warming, uncertainty in the observed TOA imbalance produces a wide range of
ECS estimates consistent with the observed warming.

When we estimate TCR and ECS from the instrumental record, we rely upon propor-Pattern-effect

tionality assumptions. Their physical meaning is that feedback mechanisms and the ocean
heat uptake rate are intrinsic characteristics of the system, no matter the state of the
system. Several lines of evidence suggest the contrary (Good et al. 2015; Gregory et al.
2015; Armour 2017). If the feedback mechanisms change, the ECS estimated from the
instrumental record is severely afflicted by construction, given that the rate of the imbal-
ance change would vary with time. In contrast, both the historical and the TCR-defining
forcing should be affected in almost the same proportion and, therefore, the inferred TCR
should not be as afflicted as in the case of ECS. The solution to this problem demands
an understanding of the physical mechanisms that could vary the feedback mechanisms.
Evidence shows that the evolution of the sea surface temperature (SST) spatial pattern
connects ocean heat uptake to cloud and atmospheric lapse-rate feedback mechanisms
(Zhou et al. 2016; Ceppi and Gregory 2017). The proposed physical mechanism is the
tropical deep convection that warms the free-troposphere. This warming propagates and
controls the stability in subsidence regions where stratocumulus clouds form, modulating
the reflected shortwave radiation and, therefore, the TOA imbalance. This connection is
known as the pattern-effect. If we do not account for it, then the inferred ECS would be
underestimated as well as the long-term projections of the global mean surface temperature
change.

Above, we summarised the caveats that the instrumental record presents as a source ofModelling and the
instrumental record

information on the properties of the climate system. The fact is that we have only one
realisation of the Earth’s climate. With the numerical modelling of the Earth system, we
can explore multiple realisations of the instrumental record. It also becomes a useful tool to
explore forcing and feedback mechanisms. The trade-off is that modelling only approximates
the real system: all models are wrong, but some are useful (Box 1976). Earth system
models use process parameterisation through semi-empirical relationships to represent
biochemistry, vegetation, land-atmosphere interactions, convection or cloud physics, for

4



naming some of the parameterised processes (Mauritsen et al. 2012). These approximations
stem from limitations in either spatial and temporal resolution or a lack of understanding
of the processes. Exhaustive representation of more aspects of the Earth system arguably
leads to more accurate representations of it. However, biases persist, e.g. in precipitation.
Despite this, we can easily force our modelled Earth system with the appropriate idealised
forcing and get its TCR and ECS (Mauritsen et al. 2019). Then, we can figure out what
controls the values of these quantities (Mauritsen et al. 2013),Furthermore, we can trace
the relationship between historical warming and climate sensitivity on a simulated historical
period. However, if we want to understand the physical mechanisms suggested by model
output, we need the assistance of simple conceptual modelling to interpret the complex
modelling results (Arrhenius 1896; Callendar 1938; Manabe and Strickler 1964; Budyko
1969; Held et al. 2010; Dacie et al. 2019; Kluft and Dacie 2019; Rohrschneider et al.
2019).

In chapter 2, we present the basic conceptual framework used to interpret the instrumental
record and the model output. Afterwards, in chapter 3, we take the instrumental record,
select a period from it that has less uncertainty in the anthropogenic aerosol forcing
change and during which most of the net anthropogenic forcing change has been applied.
Then, we use the model output from the Climate Model Inter-comparison Project phase 5
(CMIP5) to reduce the uncertainty in the observational estimates of TCR and ECS and
interpret this reduction in terms of the physical insight given by the conceptual framework
(Jiménez-de-la-Cuesta and Mauritsen 2019). In chapter 4, we test the hypothesis that
the cloud feedback contributes the most to the pattern-effect, by contrasting standard
experiments and experiments without cloud feedback in one complex Earth system model.
Throughout this thesis, we emphasise how crucial conceptual understanding is for the
interpretation of the instrumental record and other modelling tools.
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Earth’s energy cycle and the two-layer model

Ahora la vida se tuerce,
El mundo de dolor perece.

Ese mundo verdeazulado ha pasado.
Se hunde agobiado, enfermo, acabado.

We introduced the concept of the energy cycle in chapter 1. In this chapter, we shall
formalise it mathematically with the help of the principle of conservation of energy. The
resulting conceptual framework, the two-layer model, and its mathematical form presented
henceforth, shall be the reference frame to interpret the results in the following chapters.

2.1 Planetary energy budget

The Earth’s climate system obeys the principle of conservation of energy. Gauss’s Forcing and
feedback

divergence theorem ensures that the change in internal energy of the system is equal to the
energy imbalance at the top of the atmosphere (TOA). The energy imbalance at the TOA
is the difference between the net incoming solar radiation flux at TOA and the outgoing
longwave radiation (OLR). If no changes happen in the incoming and outgoing fluxes, the
TOA energy imbalance is zero. If the TOA imbalance is not zero, then the system is
under radiative forcing. Depending on the sign of the radiative forcing, the system gains
or loses internal energy. Thus, its state changes. The state variables, such as surface
temperature, describe the state of the system and, therefore, these variables change. The
feedback mechanisms that we mentioned in chapter 1 respond to the temperature changes,
modify the radiative properties of the system and change the TOA imbalance. If the net
feedback is negative, the system minimises the TOA imbalance. Thus, if the radiative
forcing becomes constant in time and the climate feedback is negative, then there exists a
state where the radiative response of the feedback mechanisms counteract the radiative
forcing, leading to no net gain or loss of internal energy: a stable steady-state.

Let us assume that a stable steady-state exists. Then the feedback mechanisms The planetary
budget equation

counteract small deviations from zero in the TOA energy imbalance. We also assume that
there is intrinsic variability in the system around this steady-state. The complex interactions
between components in the system generate this variability. It can be approximated as
stochastic noise either on the radiation balance (Hasselmann 1976) or the exchange of
energy with the deep oceans. Therefore, the time-averaged value of the TOA imbalance
change is zero at the steady-state. Also, the time-averaged global mean surface temperature
characterises the state. The radiative forcing also determines the steady-state, because
the time-averaged radiative response of the system should cancel out the time-averaged
net radiative forcing in the steady-state. Thus, provided that the system stays in a
neighbourhood of the steady-state, deviations from the time-averaged values of the TOA

7



2 Earth’s energy cycle and the two-layer model

imbalance, radiative forcing, and response at the steady-state describe any other state.
Henceforth, N, F and R are the deviations from the steady-state for the TOA imbalance,
forcing and response, respectively. Then we write the principle of conservation of energy as

N = F + R (2.1)

The interplay of forcing and response through feedback mechanisms gives the name of the
forcing-feedback framework to this theory (Sherwood et al. 2015).

In this formulation, the steady-state reduces equation (2.1) to the expression 0 = 0 + 0Form in equilibrium

with N = F = R = 0. If the system finds another steady-state after a forcing perturbation,
the corresponding TOA imbalance anomaly is 0 and equation (2.1) becomes R = −F: the
system’s response balances the forcing.

2.1.1 General definitions of ECS and TCR

We now formulate the quantities at the spotlight of this thesis: the equilibrium climate
sensitivity (ECS) and the transient climate response (TCR). These measures of the
sensitivity to the radiative forcing show the effects of the changes in radiative forcing as
global mean surface temperature changes.

Let us assume that we start at a steady-state Earth with atmospheric CO2 concentra-General definition of
ECS

tion at pre-industrial levels. We abruptly double the CO2 concentration and maintain it
afterwards. Thus, F(0) = 0, F(t) = F2x for t > 0. Here, F2x ≈ 3.7Wm−2 is the radiative
forcing due to the doubling. Just after the sudden forcing, N = F2x. The system will
gradually respond by counteracting the forcing anomaly, R = N− F2x. If the system attains
another steady-state compatible with F = F2x, then the global mean surface temperature
change at the new equilibrium defines ECS (Gregory and Forster 2008).

The abrupt forcing in the definition of the ECS is only a convenience. Provided thatAbrupt forcing and
other equilibrium

sensitivities the system has no bifurcations and that the period in which the radiative forcing changes
is finite, the radiative forcing evolution from zero to the doubling can be applied in any way
imaginable, and there will be no difference in the new steady-state that defines the ECS.
However, the new steady-state can differ depending on the feedback mechanisms that are
included. If the global carbon cycle, the ice sheet or the vegetation evolve, we define more
general steady-states that define other equilibrium sensitivities such as the Earth System
Sensitivity (ESS Lunt et al. 2010).

We look now at the transient response of the system to radiative forcing. If the systemGeneral definition of
TCR

is under a continuously-changing forcing, it does not attain another steady-state. To
explore the transient behaviour, we use a forcing that evolves with a similar timescale
as the length of the historical period. Let us assume that we start at a steady-state
Earth with atmospheric CO2 pre-industrial conditions. Then we raise concentration at
a rate of 1% yr−1 compound, an exponential growth. The time of the doubling is at
t2x = ln(2)/ ln(1.01) ≈ 70 yr. Since Arrhenius (1896) times, we know that the radiative
forcing due to CO2 is an approximately-logarithmic function of the concentration. Thus,
the forcing evolves linearly F(t) = (F2x/t2x)t, where F(t2x) = F2x. The global mean surface
temperature change at t = t2x defines TCR (Gregory and Forster 2008).

These definitions rest on idealised experiments coming from the modelling world.Modelling quirks

However, in practice, these definitions are not followed strictly. For example, given that
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complex climate models have internal variability, TCR is not the global mean surface
temperature change at the time of the doubling but typically taken to be the average
global mean surface temperature change in a 20-year period centred at t2x. This averaging
smooths the variability coming from the complex interactions between the components of
the Earth system. In the case of fully coupled models, the time to attain a new steady-state
in the ECS-defining experiment can be in the order of millennia due to the ocean’s thermal
capacity. Thus, an accurate estimate of ECS is not affordable usually. Therefore, we use a
linear ordinary least-squares regression of annually-averaged global mean TOA imbalance
change on the global mean surface temperature change using the first 150 years of the
experiment. With the regression line, we extrapolate to N = 0, and the corresponding
global mean surface temperature change is the estimate of ECS (Gregory et al. 2004).

2.1.2 Evolution of the energy cycle and thermal capacity

Gauss’s theorem ensures the equality of the TOA imbalance and the change in the internal Evolution of the
energy cycle

energy of the system. Although the Earth is not in thermodynamical equilibrium with its
surroundings and, thus, a thermodynamical temperature of the planet remains undefined,
surface temperature changes are related to the amount of energy that is gained or lost by
the planet. Thus, the global mean surface temperature change T is related to the change in
internal energy via the concept of thermal capacity. Assuming that T completely describes
the state, then N := CṪ, where Ṫ := dT/dt. Thus, the equation (2.1) is a first-order
differential equation that describes the evolution of Earth’s energy cycle. The thermal
capacity of the system C is the amount of energy needed to change the temperature of
the system in one degree Kelvin. Thus, C delays global warming and sets a timescale to
achieve equilibrium. Therefore, the value of C should not modify ECS but affects TCR.

Usual thermal capacities have units of JK−1. Dimensional analysis of N := CṪ results in Units of the thermal
capacity

[C] = JK−1m−2. Then C is a thermal capacity per unit of area. The high thermal capacity
of water makes the global ocean the main energy reservoir in the Earth system. One can
argue that Earth’s crust is large enough to supersede the global ocean, but the conductivity
of rock and soil restricts the thermally-active crust to only a few metres in comparison to
the kilometres provided by the fluid ocean. Therefore, we refer all thermal capacities in the
Earth system to the volumetric thermal capacity of pure water, cw = 4.181× 106 JK−1m−3.
Thus, C = hcw, where h is the depth of a layer of water covering the whole Earth with a
thermal capacity per unit of area equivalent to C.

2.2 Linearisation of the planetary budget equation

There is no closed mathematical expression for the radiative response. A first approximation Climate feedback
parameter

to the radiative response considers the overall contribution of all the feedbacks and assumes
feedbacks that only depend on T. We linearise such radiative response using the usual Taylor
power series R(T) = R(0) + R′(0)T+ . . . . We assume that the series exists and converges
around the steady-state. By construction, R(0) = 0 and we write R(T) = R′(0)T + . . . ,
where R′(T) := dR/dT. The factor λ := R′(0) is the climate feedback parameter (Gregory
et al. 2004) and measures how the system counteract TOA imbalance changes expressed as
changes in surface temperature stemming from TOA imbalance changes. We assume that
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λ is an intrinsic characteristic of the system. Later, we will discuss how this assumption
breaks. With the proposed linearisation, equation (2.1) becomes

N = CṪ ≈ F + λT (2.2)

where [λ] = Wm−2 K−1 and λ < 0 in a stable Earth system.
Using the definition of ECS in equation (2.2), we obtain that ECS ≈ −F2x/λ. For TCR,Linearised definition

of ECS and TCR
we solve the differential equation (2.2) and obtain the solution TCR ≈ (ECS/t2x){(C/λ)[1−
exp((λ/C)t2x)]+ t2x}. These equations confirm that C only affects the transient behaviour,
but not the final steady-state.

2.3 Timescales in the Earth system

The planetary thermal capacity sets the timescale to attain a steady-state. The Earth’sUpper- and
deep-ocean layers

global ocean is the energy reservoir of the system, as explained in chapter 1. However,
the ocean stratification establishes two regimes in the storage. We have an ocean layer
directly in contact with the atmosphere which is kept well-mixed by winds. We call both
the atmosphere and this well-mixed layer the upper-ocean layer. Under the thermocline,
we find a stratified ocean with a slow circulation. It is the deep-ocean layer. Circulation
brings energy from the tropics to the high latitudes. High-latitude wind-driven upwelling
brings cold water from the deep ocean that warms, absorbing the energy that came from
the tropics. This water goes further into the high latitudes and again sinks into the
deep ocean. This process transfers energy from the mixed to the deep-ocean layer and
is the so-called deep-ocean heat uptake. It shall depend not only on the global mean
surface temperature change but also on the changes in the global mean temperature of
the deep ocean. Presumably, it is to first order a function of the difference between both
temperature changes. If the global mean surface temperature changes more than the deep
ocean temperature, net energy should flow into the deep ocean.

We can estimate the thermal capacities of the upper- and deep-ocean layers takingThermal capacities

into account the dry air and the ocean water thermal capacities. We can also take into
account the presence of water vapour and phase changes, as well as land’s thermal capacity.
The contributions to the Earth’s thermal capacity, in terms of depths of layers of pure
water, reveal that dry air contributes with ∼ 2m. Water vapour with phase changes
amount ∼ 1m. In comparison, land only contributes ∼ 0.01m, whereas the 75-metre-depth
mixed layer (covering 75% of the Earth’s surface) contributes with ∼ 52m. Thus, the
upper-ocean layer thermal capacity is equivalent to a global layer of ∼ 55m of pure water.
However, the largest thermal capacity in the Earth system is that of the 4000-metre-depth
deep-ocean layer: ∼ 3000m, two orders of magnitude larger than the upper-ocean layer.
These estimates show why most of the TOA imbalance goes into the global ocean.

With the thermal capacities presented above, we can roughly estimate the timescales inTimescales

the Earth system. Thermal capacity determines how much energy is needed to change in
one Kelvin the temperature. Thus, we need an estimate of how much energy per unit time
is introduced per one Kelvin change. For the upper ocean, an estimate of this quantity is
λ. In the case of the deep ocean, it is the rate at which the deep ocean uptakes heat from
the upper ocean. We call this γ. Some model-based estimates are λ ∼ −1.3Wm−2 K−1
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and γ ∼ 0.7Wm−2 K−1 (Geoffroy et al. 2013a). Then the timescales are the ratios of the
thermal capacities to the aforementioned rates. Thus, τu = Cu/|λ| = hu(cw/|λ|) ≈ 6 yr
and τd = Cd/|γ| = hd(cw/|γ|) ≈ 570 yr. In these rough estimates we consider that the
layers are decoupled. The coupling extends the timescale of the upper ocean and reduces
the deep ocean’s. Regardless of the coupling, the upper ocean sets a decadal timescale,
whereas the deep ocean provides a centennial timescale to the Earth system.

2.4 The two-layer model

The budget equation (2.1) describes the global energy cycle. However, in the previous Non-linearised
two-layer model

section, we discussed the timescales set by the upper-ocean and deep-ocean layers, both
connected by the deep-ocean heat uptake. Thus, we can rewrite the planetary budget
equation (2.1) depending on two other budget equations corresponding to each one of the
layers. Thus, the system of equations is:

N = Nu + Nd
Nu = CuṪu = F + R − H

Nd = CdṪd = H

(2.3)

In the system (2.3), there are three equations: first is the planetary energy budget. Second
and third equations are the upper- and deep-ocean budgets, respectively. Each compartment
has its own temperature change but Tu is equivalent to the global mean surface temperature
change. The new term in these equations is H, the deep-ocean heat uptake. This term
does not alter the planetary budget, which still is N = F + R, as can be seen by adding the
expressions for Nu and Nd.

Coupled climate models show a non-linear relationship between TOA imbalance and Equations with
explicit
pattern-effectglobal mean surface temperature change, which means that the climate feedback parameter

λ is not constant, depending on the evolution of the system. Given that λ has been
defined as a derivative evaluated at the neighbouring steady-state, the inconstancy of the
climate feedback parameter possibly reveals that the linear approximation of the radiative
response is overly coarse, the feedbacks depend on the actual state of the system, or some
feedbacks depend on other state variables. Although one can argue non-linearity and state
dependency for some feedbacks (Good et al. 2015; Gregory et al. 2015; Senior and Mitchell
2000; Voss and Mikolajewicz 2001; Colman and McAvaney 2009; Caballero and Huber
2013; Jonko et al. 2013; Block and Mauritsen 2013; Meraner et al. 2013), the non-linear
relationship between TOA imbalance and global mean surface temperature in models has
found an explanation in feedbacks that vary with other state variables: an evolving sea
surface temperature pattern varies cloud feedback mainly (Zhou et al. 2016; Andrews
et al. 2015). This spatial pattern is also related to the deep-ocean heat uptake (Held et al.
2010; Winton et al. 2010; Armour et al. 2013; Geoffroy et al. 2013b). Thus, R has a
component that not only depends on global mean surface temperature change but the
difference Tu − Td. Let us call R∗ the component that only depends on Tu, then R− R∗
is this component that depends on Tu − Td. We conveniently reformulate it in terms of
H because from the perspective of the upper-ocean R − R∗ can be seen as a modified
deep-ocean heat uptake. If we use R∗ in the equation of the upper ocean of the system
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(2.3), we obtain that the deep-ocean heat uptake from the perspective of the upper ocean
is H∗ = H− (R− R∗). The equations (2.3) with the explicit pattern-effect are

N = Nu + Nd
Nu = CuṪu = F + R∗ − H∗

Nd = CdṪd = H

(2.4)

The planetary budget equation becomes F+R∗− (H∗−H) = F+R. Thus, the conservation
of energy remains.

2.5 Linearised two-layer model

Deep-ocean heat uptake does not have a precise mathematical expression. As we postulatedForm of heat uptake
terms

above, energy transfer depends on the state of the upper- and deep-ocean layers. We
linearise with H(Tu,Td) ∼ H(0, 0) + γ(Tu − Td) + . . . , where γ is the rate at which the
energy transfer happens when the difference Tu−Td changes. By construction H(0, 0) = 0.
Also, H∗ should have a similar form, and the only modification is a prefactor to the γ
coefficient. Thus, the linearised equations (2.4) are

N = Nu + Nd
Nu = CuṪu ≈ F + λ∗Tu − εγ(Tu − Td)
Nd = CdṪd ≈ γ(Tu − Td)

(2.5)

where λ∗ is the climate feedback parameter that only contains Tu-dependent feedbacks, γ
is the heat uptake rate that has units of Wm−2 K−1 and ε is the efficacy parameter that is
a non-dimensional quantity. Henceforth, for the sake of simplicity, we will write λ instead
of λ∗.

Explicitly, the pattern-effect term is H− H∗ = (1− ε)γ(Tu − Td). No pattern-effectTransient behaviour
and the

pattern-effect means that the pattern-effect term vanishes for any state of the system. Thus, the pattern-
effect only vanishes if ε = 1. During ECS-defining experiments in complex climate models,
the pattern-effect increases the effective response of the system in the first decades. As
the temperature anomaly gradient between upper- and deep-ocean layers becomes smaller
in later decades, the pattern-effect becomes weaker. These arguments are in favour of an
efficacy parameter greater than one. We shall expand on this in chapter 4, where we will
discuss the role of clouds in the pattern-effect.

2.6 Zero-layer approximation and the instrumental record

Although the definition of ECS remains simple and formally coincides with the one obtained
from equation (2.2), the introduction of two layers to include the upper- and deep-ocean
timescales comes with the price of a non-trivial analytical solution of system (2.5). Indeed,
TCR case is non-trivial, but we can use our knowledge on the two timescales in the Earth
system, decouple the system and obtain simple and powerful expressions for TCR and ECS
in terms of transient changes in global mean surface temperature.

Let us assume that (i) Nu ≈ 0 and (ii) Td ≈ 0 although Ṫd := dTd/dt is not zeroZero-layer
assumptions

(if it were, then Nd ≈ 0). These assumptions mean that the upper-ocean is close to a
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steady-state, but that the deep ocean works as an infinite sink of energy. Forcing changes
should be in timescales shorter than centennial of the deep-ocean but longer than the
decadal of the upper-ocean. These are the zero-layer assumptions. If we apply them to the
system (2.5), we obtain the following set of equations

N ≈ 0 + Nd
0 ≈ F + λTu − εγTu
Nd ≈ γTu

(2.6)

These are the expressions of the zero-layer approximation. The planetary energy budget
is approximately equal to the deep ocean’s, which increases linearly with Tu. But the
key point here is that the equations become diagnostic: forcing evolution completely
determines temperature evolution: Tu ≈ −F/(λ− εγ). From this simple expression, we
can work out approximate expressions for TCR and ECS. Given that F(t2x) = F2x, then Approximate ECS

and TCR
we immediatly obtain the following expression TCR = Tu(t2x) ≈ −F2x/(λ− εγ). If we use
this to substitute λ− εγ in the diagnostic equation, then we obtain Tu ≈ (F/F2x)TCR for
any time t. Similarly, if we use the equation for Nd and the definition ECS ≈ −F2x/λ, we
obtain ECS ≈ [F2x/(F− εN)]Tu for any time t.

With the above expressions, we can estimate TCR or ECS from slices in the instrumental TCR and ECS from
the instrumental
recordrecord where we think that the zero-layer assumptions are valid. Let us take two times t1

and t2 in the historical period and assume that in both points the zero-layer assumptions
are valid. Thus, in both points, Tu(ti) ≈ (F(ti)/F2x)TCR. If we subtract both expressions
∆Tu = Tu(t2)− Tu(t1) ≈ [(F(t2)− F(t1))/F2x]TCR = (∆F/F2x)TCR or

TCR ≈
F2x
∆F
∆Tu (2.7)

where ∆F and ∆Tu are the changes in the forcing and the global mean surface temperature
between times t1 and t2. In an analogous manner, we obtain an expression for ECS

ECS ≈
F2x

∆F− ε∆N∆Tu (2.8)

The expression (2.8) appears to be linear in ∆Tu, but ∆N also depends on ∆Tu. Thus, it is
non-linear in ∆Tu. More important is that both expressions (2.7) and (2.8) clearly have
the observed changes in forcing and imbalance in the denominators.

Apart from algebraic properties, the differences between equations (2.7) and (2.8) explain ECS, TCR and
pattern-effect

why the pattern effect should not affect calculations of TCR if the zero-layer approximation
is valid. The estimation of ECS considers the instantaneous action of the deep-ocean heat
uptake and the pattern-effect, whereas the TCR estimate is affected in equal proportion
between the idealised experimental definition and the instrumental record. Most of the
authors that inferred ECS using the zero-layer approximation also made another assumption:
no pattern-effect (ε = 1). We show in chapter 3 that this additional assumption leads
to low-biased estimates of ECS. We also show that the zero-layer assumption Nu ≈ 0
leads to TCR being low-biased. Failure of this assumption means that the upper ocean has
absorbed part of the forcing, and the inferred TCR should be higher.
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2.7 Complex modelling, observations and the conceptual framework

As we have seen in these first chapters, the instrumental record poses several caveats for Complex modelling
and instrumental

recordthe estimation of TCR, ECS and, therefore, projections of the ongoing climate change.
However, tools such as the complex Earth system models can help us in the task to
overcome some of these problems. First, we can simulate the instrumental record. If we
force models with reconstructed external forcing from the instrumental record, we can
obtain the modelled realisations of the instrumental record.

It is true that biases exist inside models —because of parameterisations and approxi-Modeled vs observed

mations. Nevertheless, if they work appropriately, we can test hypotheses about feedback
mechanisms, their contributions to modelled TCR and ECS and their effects on the
simulated instrumental record. Then we can compare with the instrumental record and
determine the importance of a given process. Moreover, because models should comply
with the theory presented above concerning the energy cycle, we can use multi-model
ensembles to derive the relationship between modelled warming and either TCR or ECS
(equations (2.7) and (2.8)).

F 8 f
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Emergent constraints on TCR and ECS from post-1970s
warming

Should we leave you? As trash treat you?
Alas, where is my home now? Can you tell?

You were our mother and we have failed.

Submitted to Nature Geoscience on 2 November 2018, accepted on 3 September 2019
and published online on 7 October 2019 (Jiménez-de-la-Cuesta and Mauritsen 2019).
Here it is adapted not only the main matter, but the online methods section and the
downloadable supplementary material.

Future global warming is determined by both greenhouse gas emission pathways Abstract

and Earth’s transient- and equilibrium climate response to doubled atmospheric CO2.
Energy-balance inference from the instrumental record typically yields central esti-
mates of the transient response around 1.3 K and the equilibrium response of 1.5-2.0
K which is at the lower end of those from contemporary climate models. Uncertainty
arises primarily from poorly known aerosol-induced cooling since the early industriali-
sation and a temporary cooling induced by evolving sea surface temperature patterns.
Here we present an emergent constraint on post-1970s warming, taking advantage
of the weakly-varying aerosol cooling during this period. We derive a relationship
between the transient response and the post-1970s warming in CMIP5 models. We
thereby constrain, with the observations, the transient response to 1.67 K (1.17-
2.16, 5th-95th percentile). This is a 20 percent increase relative to energy-balance
inference stemming from previously neglected upper-ocean energy storage. For the
equilibrium climate sensitivity, we obtain a best estimate of 2.83 K (1.72-4.12) con-
tingent on the temporary pattern-effects exhibited by climate models. If the real
world’s surface temperature pattern-effects are substantially stronger, then the up-
per bound equilibrium sensitivity may be higher than found here.

3.1 Challenges estimating sensitivities

Future global warming is determined by greenhouse gas emission pathways, and Earth’s Definitions and
challenges

transient climate response (TCR) and equilibrium climate sensitivity (ECS) (Hawkins and
Sutton 2009; Grose et al. 2018). ECS is the Earth’s long-term sensitivity to a doubling of
atmospheric CO2 over pre-industrial levels. ECS can be estimated from periods spanning
typically thousands of years in which the system can attain statistical stationarity. Some
palæoclimates qualify for this task (Rohling et al. 2012). On the other hand, the estimation
of the Earth’s transient response to increasing forcing or TCR requires a highly resolved
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period of gradual warming. This requirement restricts us to the instrumental record
warming as the primary source of information. Unfortunately, the anthropogenic forcing
since the pre-industrial times is poorly known (Otto et al. 2013; Mauritsen and Pincus
2017; Gregory et al. 2002; Lewis and Curry 2014) and the energy imbalance of the Earth,
which mostly consists of the flow of energy into the deep oceans, is only well-observed in
the 21st Century (Johnson et al. 2016). On top of these uncertainties, inhomogeneous
sea surface temperature (SST) patterns, hereafter referred to as pattern-effects, can
temporarily dampen the transient warming (Held et al. 2010; Winton et al. 2010), e.g. by
inducing more low-level clouds (Zhou et al. 2016) and, thereby, permitting a larger true
ECS than that inferred from the historical warming with the help of a simple energy balance
framework(Armour 2017; Andrews et al. 2018). Thus, the disequilibrium of the Earth
climate system during the instrumental record warming poses several major challenges
in the determination of climate sensitivity. This study presents a method to overcome
several of these challenges and identifies upper-ocean heat content as an essential factor
low-biasing past estimates of TCR from the instrumental record.

A significant limitation of the studies that infer Earth’s climate sensitivity from 20thAerosol cooling
uncertainty

Century warming is the poorly known anthropogenic radiative forcing (Otto et al. 2013;
Mauritsen and Pincus 2017; Gregory et al. 2002; Lewis and Curry 2014). Whereas the
forcing from increasing greenhouse gas concentrations is sufficiently certain, the anthro-
pogenic aerosol-induced cooling is highly uncertain. This uncertainty leaves substantial
room for interpretation of the instrumental record: if the aerosol cooling was strong, such
that the total anthropogenic forcing is weak, Earth’s climate sensitivity has to be large,
or vice-versa (Kiehl 2007). The aerosol cooling, nevertheless, exhibited a rapid increase
up until around 1970. Hereafter, air quality restrictions on pollutants resulted in an only
slowly-changing global aerosol cooling (Smith et al. 2011; Stevens 2015; Fiedler et al.
2017). Thus, focusing on this shorter period, though offering less warming signal than the
full record, could offer a period with stronger total anthropogenic forcing and potentially
overcome the aerosol uncertainty problem (Otto et al. 2013; Gregory and Forster 2008;
Bengtsson and Schwartz 2013).

3.2 Constraining TCR

We indeed find a tight linear relationship between climate models’ warming over theEmergent constraint
on TCR

post-1970s period and their TCR, with a near-zero offset (Figure 3.1a, Table S3.4). We
evaluate the statistical significance of the relationship with a leave-one-out method which
indicates that the slopes and offsets obtained are not depending strongly on specific models
(Methods). The statistical relationship is in line with the theoretical expectation that the
historical warming is proportional to TCR (Methods). In contrast, no such proportionality
of the centennial warming to TCR is found, presumably due to inter-model spread in aerosol
cooling on this timescale (Forster et al. 2013). We use the identified relationship as an
emergent constraint to infer TCR from the well known post-1970s temperature record,
whereby the observed warming (∆Tu) is projected on TCR via the emergent constraint slope
(s) and the small offset (e) such that TCR = s∆Tu + e. Uncertainty in the three terms is
propagated to a combined uncertainty in TCR using Monte-Carlo sampling (Methods).

This straightforward technique gives us a median TCR of 1.67 K (Figure 3.2, TableTCR expected value
and distribution
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Figure 3.1: Emergent constraints based on the 1970-2005 warming on (a) TCR and (b) ECS. Thin lines show inference using
energy balance (blue) and the two-layer model (orange) frameworks, whereas the thick black line shows the relationship found
in the CMIP5 ensemble (grey dots, Table S3.2) fitted using orthogonal distance regression (Methods). Each dot is an ensemble
mean over all available realisations of the historical experiment. The MPI-ESM1.2-highECS and GFDL-ESM2G models were
not used in the regression. The dashed line is the 5-95 percent statistical prediction band for the regression. The probability
distribution on the x-axis is based on the average of five data sets and an estimate of systematic error plus natural variability
found in a large model ensemble. The observational distribution is mapped via the fitted relationship to obtain the probability
of TCR and ECS as shown on the y-axes. Stated estimates are median and 5-95th percentiles.
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Figure 3.2: Probability distributions of TCR: the here derived emergent constraint is shown in black
and energy balance estimates based on observations in blue. Horizontal lines show the median and
the 5-95th percentile range.

S3.5). This median is roughly 20 percent higher than the energy-balance inferred values
for the post-1970s warming period (1.41 K), the later period 1970-1989 to 2005-2015
(1.54 K) and the centennial warming (1.42 K). Moreover, the emergent constraint places
considerably less likelihood on lower TCRs than any of the energy-balance estimates (Figure
3.2), e.g. the probability of TCR being below 1 K decreases from 2.2-9.6 percent to a
merely 1.5 percent (Table S3.5). The centennial warming inference gives a 5.6 percent
probability that TCR exceeds 2.5 K, whereas both the emergent constraint and energy-
balance inference based on post-1970s warming place near-zero probability at such large
TCR: chiefly a consequence of the tighter constraint on aerosol cooling for the post-1970s
period. If we vary in a reasonable range the assumed natural temperature variability on the
post-1970s warming, the uncertainty in the TCR estimate varies scanty and, instead, it is
dominated by the relationship coefficients.

The larger median TCR found with the emergent constraint could either be caused byAerosol forcing
uncertainty do not

increse median TCR a stronger aerosol cooling increase in models during the post-1970s or by the underlying
assumptions of energy-balance inference. It turns out that aerosol forcing is an unlikely
candidate. For instance, the MPI-ESM1.1 model show larger TCR/∆Tu ratios than assumed
in energy-balance inference, despite the fact that it has a weaker increase in aerosol cooling
(Mauritsen et al. 2019). This behaviour is consistent with aerosol-forcing uncertainty not
being a dominant source of uncertainty on post-1970s warming. Furthermore, since a
majority of models have weaker TCR to post-1970s warming than MPI-ESM1.1, a strong
aerosol cooling in CMIP5 models, in general, is not a viable explanation for the higher TCR
obtained using the emergent constraint compared to energy balance.

Instead, we find a plausible physical explanation for the larger median TCR. Energy-Physical grounds for
the larger TCR

balance inference of TCR relies on the zero-layer assumption, wherein the heat capacity
of the upper ocean is neglected (Methods). This assumption is only valid if the forcing
increases gradually over multiple decades and the increase is slow enough that the upper
ocean, atmosphere and land are approximately in equilibrium. Until the equilibrium between
these components is attained, the system warms less than expected from the zero-layer

18



3.2 Constraining TCR

approximation since part of the energy is stored in the upper ocean (Gregory et al. 2015).
For instance, this happens when the forcing rapidly changes, e.g. in the cooling arising
from explosive volcanic eruptions (Gregory et al. 2016). In the historical record, the bulk of
the warming occurred over just a few decades since the 1970s and, therefore, the validity
of the zero-layer assumption is questionable. Indeed, if we relax this assumption and use
the two-layer model instead (see Methods), we obtain a slope indistinguishable from that
obtained with the emergent constraint based on complex climate models. Thus, it is
plausible that the zero-layer assumption has low-biased previous inferences (Otto et al.
2013; Mauritsen and Pincus 2017; Lewis and Curry 2014) of TCR from the instrumental
record.

Low-frequency natural variability in global mean temperature can introduce a non-forced Exploring natural
variability

signal in the instrumental record. The non-forced signal is typically handled by the selection
of two periods with similar states of natural variability, for instance, related to El Niño and
the Atlantic multidecadal oscillation (AMO) (Lewis and Curry 2014). A challenge with
the post-1970s period is that the AMO index shifted from negative to positive, leading
to a possible contribution of natural variability to global warming. We find, however,
model-based evidence that the shift is forced: across most models the positive shift in AMO
occurs in the historical simulations, even when subtracting the contribution from global
warming which can be done on large ensembles (Methods, Figure S3.4). Hence, we do not
compensate for AMO change in this study, but remark that a blind compensation for an
assumed unforced AMO would lead to both a reduction of the observed ∆Tu and a change
in the emergent constraint (Table S3.7), which means a merely 10 percent reduction of
the median TCR (Figures S3a, S5 and Table S3.8).

Out-of-range TCR would be possible if post-1970s aerosol cooling change deviates Challenging the
lower-bound TCR

considerably from the IPCC AR5 best estimate of -0.15 Wm−2 (Table S3.3). Even
though the precursor emissions stagnated (Smith et al. 2011), an argument for a weakly
strengthening aerosol cooling is the geographical shift in the emissions from the North
Atlantic towards East Asia and other tropical regions. As the relationship between aerosol
concentrations and reflected sunlight is logarithmic, the geographic shift distributes the
same amount of aerosols in a larger and more sunny region, leading to a strengthened
aerosol cooling. The described behaviour is in line with a majority of models (Shindell et al.
2011). Thus, a constant or weakening aerosol cooling change would allow a lower TCR to
match post-1970s warming, as some models show (Regayre et al. 2014; Zhao et al. 2018).
If the aerosol cooling best estimate would be zero, the energy-balance inferred median
TCR reduces by 12 percent.

We now challenge the upper bound on TCR by constructing a version of the MPI- Challenging the
upper-bound TCR

ESM1.2 model with strong positive cloud feedbacks resulting in high-end TCR of 2.3
K and ECS of 4.8 K (Figure 3.1, Methods). A new feature of the MPI-ESM1.2 model
over the predecessor MPI-ESM1.1 is the representation of aerosol-cloud interactions as
a parameterised Twomey-effect (Fiedler et al. 2017; Mauritsen et al. 2019). With an
unaltered total aerosol forcing of around -0.6 Wm−2 relative to pre-industrial, the model
clearly warms more than observed from 1960 onward (Figure 3.3). With an enhanced
total aerosol cooling of -1.2 Wm−2 both centennial and post-1970s warming agrees with
observations (Figures 3.1 and 3.3). However, for a long period between 1940 and 2000, the
model is on average colder than observed. Further enhancement of the aerosol cooling leads
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Figure 3.3: Comparison of the MPI-ESM-1.2-highECS model to observations. The curves show
the instrumental temperature record and model runs with different aerosol-cooling strengths. The
model was run four times with each aerosol setting, and the ensemble mean is displayed.

to a negative total forcing starting in the 1960s, leading to inconsistency with observed
warming during that period. Thus, larger TCR than indicated by the emergent constraint,
paired with stronger aerosol cooling, yields an implausible historical temperature evolution.

3.3 Constraining ECS

We now explore if post-1970s warming can constrain ECS. For constraining ECS fromEmergent constraint
on ECS

non-equilibrium states, we need information on deep-ocean heat uptake (Hansen et al.
1985) and pattern-effects. Energy-balance inference of ECS usually does not consider
the pattern-effects that can temporarily dampen the warming (Armour 2017; Andrews
et al. 2018). We assume that the form of the relationship between warming and ECS is
ECS = ∆Tu/(s’ − e’∆Tu), where the parameter s’ is related to post-1970s forcing and
e’ represents the combined damping by the deep-ocean heat uptake and pattern-effects
(Methods, Table S3.4). Using the same methods as with the TCR case, we find a median
ECS of 2.83 K, which is 20-30 percent above the energy-balance inferred value (Figures
3.1 and 3.4, Table S3.6). Whereas the probability for ECS exceeding 4.5 K is similar to
energy-balance estimates, the likelihood of an ECS below 1.5 K is reduced from 4-23 to
only 2.4 percent (Table S3.6). An earlier study (Armour 2017) used idealised runs with
CMIP5 models to correct the energy-balance inferred ECS from centennial warming and
obtained an ECS of 2.9 K (1.7-7.1). Our estimate is consistent with this result and our
considerably smaller upper bound can be ascribed to a less uncertain aerosol cooling change
during the post-1970s era.

The higher median ECS arise primarily from the pattern-effects that temporarily bufferExplaining the shift
to higher ECSs

the warming (Armour 2017). Pattern-effects are represented in the two-layer framework as
the deep-ocean heat uptake efficacy ε. From climate models (Geoffroy et al. 2013b), ε is
1.28 (range: 0.83-1.82) and the deep-ocean heat uptake coefficient γ is 0.73 Wm−2K−1

(0.5-1.16). The product εγ (0.93 Wm−2K−1) controls the relationship between transient
and equilibrium warming as can be shown. We run the two-layer model. Running the
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Figure 3.4: Probability distributions of ECS, otherwise as Figure 3.2.

two-layer model with the model mean value of the εγ delivers a striking similarity to the
emergent constraint relationship (Figure 3.1). If we introduce the uncertainty on εγ, the
resulting relationships encompass almost all CMIP5 models (Figure 3.5b) and potentially
explain much of the inter-model spread. The reader should note that εγ has no impact on
the emergent constraint of TCR (Figure 3.5a) because both transient historical warming and
TCR are affected in equal proportion by εγ. This independence of TCR to pattern-effects
further corroborates our main finding: the difference between the TCR from the emergent
constraint and energy-balance inference is primarily due to upper-ocean warming.

3.4 Summary

Taking into account the disequilibrium of the Earth system —including that of the upper
ocean— is crucial to inferring climate sensitivities from the instrumental record. Foremost,
the oceans buffer anthropogenic warming for centuries by both sequestering most of the
trapped energy into the deep ocean and through a pattern of sea surface temperature that
enables the atmosphere to radiate more efficiently to space. If pattern-effects of the Earth
are stronger than that indicated by models, as recently suggested in a study (Andrews
et al. 2018), then higher ECS than that found by our emergent constraint cannot be ruled
out. Hence, low ECS values would be even less likely than found here and by Armour
(2017). Finally, the here-gained insight that the often-neglected upper ocean dampens
transient warming and, consequently, impacts inferred TCR, has particular value since the
instrumental record is practically the only period with sufficient temporal resolution to
estimate Earth’s TCR, and thus justifies an upward revision of the central estimate and
the tightening range of uncertainty.

3.5 Methods

3.5.1 Observational data, model output and radiative forcing

We use observations of global mean surface temperature from five different datasets: Temperature
datasets
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Figure 3.5: Exploration of the impact of pattern-effects, as represented by the product εγ (Methods),
on the relationship between post-1970s warming on a) TCR and b) ECS. A range of values of
pattern-effects is shown as shaded from magenta to green. Note that these curves mostly overlap
for the case of TCR (panel a).
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HadCRUT4.6 (Morice et al. 2012), NOAA GlobalTemp (Vose et al. 2012) (known before
as MLOST, gridded version obtained from NOAA/OAR/ESRL PSD web site), GISTEMP
(Hansen et al. 2010) (gridded version obtained from NOAA/OAR/ESRL PSD web site),
Berkeley (Rohde et al. 2013), and Cowtan and Way 2.0 dataset (Cowtan and Way 2014).
Some of these datasets take different approaches to extrapolate to un-observed regions,
where possibly regional warming has been faster than globally. However, there is not much
difference between their post-1970s warming (Table S3.1), and in fact, the dataset with the
strongest warming (HadCRUT4.6) does not apply extrapolation so observational coverage
is probably a minor issue over this period. Although the datasets agree closely, we choose
to average and use the spread as an estimate of structural uncertainty. Uncertainty from
natural variability is determined from a 100-member ensemble of historical climate model
simulations using the MPI-ESM1.1 model, and this dominates over structural uncertainty.
In practice, we generate five gaussians centred at the mean values from the temperature
datasets, and randomly sample these distributions to construct a joint distribution that
integrates not only the differences in the datasets but also the internal variability estimate.

Climate model output from CMIP5 models listed in Table S3.2 were obtained through Climate model
output

the Earth System Grid Federation nodes. Here control experiments with constant pre-
industrial boundary conditions (piControl), historical boundary conditions for 1850-2005
(historical), gradually increasing CO2 at a rate of 1 percent per year (1pctCO2) and
with abruptly quadrupled CO2 (abrupt4xCO2) were downloaded in as many realisations as
were available. The results were averaged when multiple realisations were available (see
Table S3.2).

To compare models and observations, we use surface temperature instead of surface air Surface vs.
two-meter
temperaturestemperature. This is because the oceans cover 70 percent of the Earth’s surface most of the

observations used to estimate global temperature change are actually surface temperatures,
not surface air temperatures as is observed on land. Furthermore, surface air temperature
in models is a diagnosed quantity, and unlike surface temperature without direct influence
on the results, e.g. the radiative response. Models indicate that the difference in global
mean change between these is approximately 6 percent, and thus if ECS and TCR in
terms of surface air temperature are sought then the results found here should be adjusted
slightly upward. Since about 30 percent of the observed temperatures are already surface
air temperatures, the upward adjustment should be about 4 percent.

We calculate TCR and ECS from anomalies of the surface temperature in the 1pctCO2 Methodology for
modelled TCR and
ECSand abrupt4xCO2 simulations by first subtracting the longterm mean from piControl.

TCR as the mean temperature in a 20-year period around year 70 of the 1pctCO2 experiment
when CO2 is doubled. ECS is calculated using the de-facto standard method of a linear
regression of planetary imbalance over surface temperature change of the first 150 years
of the abrupt4xCO2 experiment (Andrews et al. 2012). The temperature change in the
post-1970s period is taken as the difference of the mean surface temperature anomaly in
1970-1989 to the mean temperature anomaly in 1994-2005. We chose to have the 5-year
gap to reduce the influence of the Mt. Pinatubo volcanic eruption.

We must remark that the aforementioned definition of ECS is only an approximation. About the
approximation on
ECSOnly the steady-state of a abrupt2xCO2 would provide the true value of ECS. The

approximation underestimates the true ECS because the pattern-effect tends to enhance
the warming at the end of the abrupt forcing runs. On the other hand, since the forcing does
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3 Emergent constraints on TCR and ECS from post-1970s warming

not precisely scale in a logarithmic fashion and the water vapour feedback is stronger in a
warmer climate, our estimate of ECS is larger than the one derived from the abrupt2xCO2
experiments. In summary, pattern-effect and larger response work in opposite directions
and cancel out roughly (Maria Rugenstein, personal communication).

The GFDL-ESM2G model was excluded from the calculation of the regressions sinceModel exclusion

it was well outside the 5-95 percentile prediction band: The GFDL-ESM2G model’s
historical simulation shows large post-1970s warming, even though its TCR is the lowest
found among models. Given that we have only one realisation for this model (Table S3.2),
that the closely related GFDL-ESM2M model which differ only in its ocean component is
in line with the behaviour of other models, and that the aerosol forcing cannot explain the
result (Ming Zhao, personal communication), we consider that this outlying behaviour is due
to the model’s internal variability expressing itself in this single realisation. The evolution
of the historical run depends on the point of the pre-industrial control used as the initial
condition. There are fluctuations in this base state (unforced variability), that may change
the warming in the period. As the model had only one run, that can be affected by the
initial conditions, and the warming was more substantial than what the climate responses
suggested, we excluded the model. In support of this last point, GFDL-ESM2G shows a
warming of 0.60 K with a TCR of 1.07 and an ECS of 2.13. For instance, CANESM2 (5
ensemble members) has a warming of 0.61 K with a TCR of 2.29 K and an ECS of 3.65
K, which are higher climate responses for the same warming. Moreover, GFDL-ESM2M
with one realisation has a warming of 0.41 K with a TCR of 1.21 K and an ECS of 2.23 K;
or FGOALS-G2 also has lower warming of 0.37 K with a TCR of 1.34 K and an ECS of
3.29 K (See Table S3.2).

Whereas the emergent constraint relies only on the global mean surface temperatureRadiative forcing
data

change, the interpretive energy-balance framework and the two-layer model integration, as
will be described below, requires in addition radiative forcing. We take the forcing from
greenhouse gases, aerosols, ozone, stratospheric water vapour, land use, contrails, solar
variability, and black carbon on snow from Annex II of the Intergovernmental Panel on
Climate Change (IPCC) Fifth Assessment (IPCC 2013a). The forcing from a doubling
of atmospheric CO2, F2x is set to 3.71 Wm−2, which is consistent with the tabulated
forcing. Uncertainty in each component, except post-1970s aerosol forcing and greenhouse
gas forcing, is taken from Ref. Mauritsen and Pincus 2017, which is based on the IPCC
assessment report. Uncertainty in post-1970s aerosol forcing is assessed to be small and
is modelled as a gaussian with a standard deviation of 0.1 Wm−2, allowing a 7 percent
probability of a weakening post-1970s aerosol cooling. Uncertainty in the well-mixed
greenhouse gas forcings are assumed relative to the forcing strength and are therefore
reduced for the post-1970s periods. Forcing changes and assumed uncertainties are
tabulated in Table S3.3 for the three different periods.

3.5.2 Emergent-constraint regression model

The regression model used in the emergent constraint on post-1970s global warming is
derived from the the energy-balance framework. To do so we notice that we can substitute
back ∆N ≈ γ∆T and perform a coordinate transformation such that expressions purely in
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terms of the temperature evolution are obtained:

TCR = s∆T + e (3.1)

ECS =
∆T

s’− e’∆T (3.2)

where s = F2x/∆F, s’ = ∆F/F2x and e’ = εγ/F2x. Additionally, we introduce an off-set in
Equation (3.1) which should be indistinguishable from zero and can be considered a test
whether sufficient information is contained in the CMIP5 model ensemble.

We apply Orthogonal Distance Regression (ODR) that considers uncertainty in the
independent variable (Boggs et al. 1987) to fit the theoretically derived models that link
post-1970s warming to TCR and ECS, Equations (3.1) and (3.2). Equal weighting of
each model is applied. Models that supply only one or a few ensemble members will induce
uncertainty in the regression that is due to natural variability, which inflates the estimates
of uncertainty in TCR and ECS as we also account for natural variability in the distribution
of observed post-1970s warming. Nevertheless, we deem this is a minor effect as most
models supply multiple ensemble members (Table S3.2). We perform the regression on the
set of model ensemble means.

We take a Monte-Carlo approach to estimate the uncertainty in TCR and ECS from
the emergent constraints. With the results of the regression algorithm, we generate a
joint distribution of the parameters and the error in the estimation, taking into account
the covariance of the parameters. We draw random samples of parameters from this
distribution to generate the distribution of the prediction uncertainty, which is the 5-95
percentile range around regression curves, as shown in Figure 3.1. We generate a joint
distribution of parameters, error in estimation and the observed temperature change in the
post-1970s, draw random samples and calculate with them the corresponding TCRs and
ECSs. These sets of TCRs and ECSs form the predicted distributions for TCR and ECS,
and from them, we obtain the 5th, 50th (median) and 95th percentiles (Tables S5 and S6).

3.5.3 Statistical measure of the robustness

We use one metric that can show the statistical goodness-of-fit. The metric is a jackknife.
It consists of the calculation of a set of regressions where we leave out one of the data
points. For both TCR and ECS, the results for the jackknife (Figure S3.1) show that all
the jackknife regressions are close to the respective regressions based on all models. Thus,
we show that the derived relationships are statistically robust and support the physical
significance of the results, which are the actual finding. Moreover, for both TCR and ECS,
in Figure S3.2, we show that the distributions derived from the jackknife regressions are
not appreciably broader than the distributions derived from the regressions based on all
models. The median values are also not far from the median from the full regressions.

3.5.4 Experiments with MPI-ESM1.2-highECS

To explore the upper bound of the constrained ECS and TCR, we modified the Max-Planck-
Institut MPI-ESM1.2 coupled model to have stronger positive cloud feedbacks. Foremost,
the modifications alter the mixing rate between lower and middle troposphere, a feature
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that can explain half of the variance of ECS in the CMIP5 ensemble (Sherwood et al.
2014; Brient et al. 2016). The shallow mixing dries the lower troposphere by exporting
the moisture out of the boundary layer. The mixing rate increases with warming and
how it increases depends on the initial mixing rate. Thus, as the Earth warms, a higher
initial mixing ratio dries the boundary layer and promotes a decrease in the shallow clouds,
resulting in a positive cloud feedback. To do so, we increased the shallow mixing by reducing
the lateral entrainment rate in the shallow convective parameterisation. To enhance shallow
clouds in the base state, such that they can contribute to cloud feedback, the critical
relative humidity profile was altered. Further, the negative mixed-phase cloud feedback
dominant at mid- to high latitudes were weakened by enhancing a cloud ice concentration
threshold for the fast conversion from cloud liquid to cloud ice. Finally, to explore the
influence of uncertainty in aerosol cooling, we modify the parameterisation of aerosol-cloud
induced forcing. In MPI-ESM1.2 the aerosol forcing is parameterised using a Twomey effect
which is sensitive to the assumed background cloud condensation nuclei concentration
(Fiedler et al. 2017; Stevens et al. 2017). To obtain a stronger aerosol cooling, we reduce
the assumed background concentration by a factor of ten to hundred. The stronger cooling
is considered a surrogate for non-Twomey aerosol-cloud interactions not represented by
the model.

3.5.5 Internal variability: the AMO–IPO correction

We calculate SST indices for the major modes of variability, the AMO,Niño 3.4 and IPO,
for each of the experiments the CMIP5 models following. We obtain the monthly and
the corresponding yearly time series. Using the results from piControl experiments, we
find for each model an empirical linear relationship between SST index and GMST in an
equilibrium state. We select one of the Pacific Ocean modes and the AMO and regress
GMST over them using the model

TpiControl = β0 + β1AMOpiControl + β2SPIpiControl

where SPI is either Niño 3.4 or IPO. With the coefficients βi obtained from the regressions,
in principle, we can correct the other experiments (1pctCO2,abrupt4xCO2 and historical)
for the influence of these internal variability patterns using indices values for each experiment

Tcorr = T− β0 − β1AMO− β2SPI (3.3)

To have a standard for the corrections, instead of using each model coefficients, we
compute the correction with the coefficients obtained for the MPI-ESM1.1 100-member
ensemble. Most of the coefficients for the other models are similar in magnitude to those
of MPI-ESM1.1 (Table S3.11). Because the index of the IPO includes northern, southern
and equatorial zones of the Pacific basin, we consider SPI = IPO, although the coefficients
with Niño 3.4 are similar. Table S3.10 is analogous to Table S3.2, but using the corrections.
When a comparison between tables is made, it is evident that TCR and ECS differences
are small, but ∆T differences are large. This suggests that historical forcing projects on
these modes of variability, meaning they are partly forced.

From gridded datasets of the observations, we can also calculate the indices and apply
the correction to obtain a corrected time series of the GMST. Corrected temperature
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datasets now can be used to repeat the analyses. A summary of the corrections for the
observations is given in Table S3.1.

Data Availability CMIP5 data can be accessed through ESGF nodes. HadCRUT4 data
is provided by the UK Met Office Hadley Centre. NOAA/OAR/ESRL PSD dataset website
provided the NOAA GlobalTemp dataset as well as the GISTEMP dataset. BEST was
downloaded from the Berkeley Earth website. Cowtan and Way 2.0 dataset is provided
from the authors website. Forcing data comes from the IPCC AR5 WG1 report.

F 8 f
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Figure S3.1: Jackknife or Leave-one-out regressions for (a) TCR and (b) ECS. Grey lines are the
regressions leaving out each one of the grey dots that are CMIP5 ensemble members (means for
each model). The heavy black line is the regression using all the grey dots. Dotted lines show the
5-95 percentile region of the black line regression.
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Figure S3.2: Jackknife or Leave-one-out distribution estimates for (a) TCR and (b) ECS. Grey lines
show the 5-95 percentile range of the Jackknife-derived PDFs for TCR and ECS. The grey dots
represent the position of the median value of the distributions. Black heavy lines show the same
range and the actual distribution obtained from the full regressions.
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Figure S3.3: Regression results with a correction for AMO–IPO modes of SST variability. (a)
TCR and 1970-2005 warming and (b) the corresponding results for ECS. Thin lines show reference
estimates using usual energy balance (blue) and the two-layer model (orange) frameworks, whereas
the heavy black line shows the corresponding functional relationship found in the CMIP5 ensemble
(grey dots, Table S3.10).
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Figure S3.4: AMO–IPO correction in the MPI-ESM1.1. Here is shown the mean time series of
the 100 historical runs without correction (black) and with correction (red).
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Figure S3.5: Probability density functions of TCR with AMO–IPO correction. Usual energy
balance estimates based on observations (blue) and the functional relationship between TCR and
warming from CMIP5 ensemble constrained by the observed warming (black).
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Figure S3.6: Probability density functions of ECS with AMO–IPO correction. Usual energy balance
estimates based on observations (blue) and the functional relationship between TCR and warming
from CMIP5 ensemble constrained by the observed warming (black).
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Figure S3.7: Comparison of the regression of TCR and ECS (with AMO–IPO correction) over
warming in the post-1970s period from CMIP5 models (black) and the energy balance (blue) and
two-layer model (shaded from magenta to green in terms of the product εγ).
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3 Emergent constraints on TCR and ECS from post-1970s warming

monthly yearly
Dataset # of sets ∆T (K) rel. corr. (%) ∆T (K) rel. corr. (%)

BEST 1 0.40 −26 0.40 −38
CowtanWay2.0 1 0.40 −25 0.40 −36
GISTEMP1.2.0.0 1 0.38 −24 0.38 −35
HadCRUT4.6.0.0 100 0.41 −24 0.41 −35
NOAAGlobalTemp4.0.1 1 0.37 −24 0.37 −35

Table S3.1: Post-1970s warming in the instrumental record. Means of the datasets and relative
correction with AMO–IPO.
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3.5 Methods

Model Physics TCR (K) ECS (K) # of Runs ∆T (K) std. dev.

BCC-CSM1-1 1 1.76 2.78 3 0.50 0.06
BCC-CSM1-1-M 1 2.08 2.79 3 0.50 0.09
BNU-ESM 1 2.48 3.86 1 0.58 0.00
CANESM2 1 2.29 3.65 5 0.61 0.04
CNRM-CM5 1 1.94 3.19 9 0.44 0.06
CNRM-CM5-2 1 1.65 3.36 1 0.36 0.00
ACCESS1-0 1 1.73 3.64 1 0.42 0.00
ACCESS1-3 1 1.57 3.38 3 0.31 0.03
CSIRO-MK3-6-0 1 1.67 3.88 9 0.38 0.08
INMCM4 1 1.23 1.91 1 0.20 0.00
IPSL-CM5A-LR 1 1.92 3.89 6 0.58 0.11
IPSL-CM5A-MR 1 1.93 3.97 3 0.50 0.02
IPSL-CM5B-LR 1 1.41 2.46 1 0.28 0.00
FGOALS-G2 1 1.34 3.29 3 0.37 0.01
MIROC-ESM 1 1.99 4.55 3 0.37 0.03
MIROC5 1 1.43 2.59 5 0.38 0.08
HADGEM2-ES 1 2.32 4.17 4 0.42 0.02
MPI-ESM-LR 1 1.90 3.39 3 0.38 0.04
MPI-ESM-MR 1 1.92 3.23 3 0.45 0.04
MPI-ESM-P 1 1.89 3.23 2 0.42 0.07
MPI-ESM1.1 0 1.66 2.80 100 0.35 0.07
MPI-ESM1.2-highECS 1 2.28 4.79 5 0.51 0.07

2 2.28 4.79 4 0.29 0.04
3 2.28 4.79 5 0.43 0.06
4 2.28 4.79 5 0.49 0.10

MRI-CGCM3 1 1.54 2.59 3 0.26 0.08
GISS-E2-H 1 1.65 2.29 6 0.37 0.03

2 1.75 2.26 6 0.36 0.02
3 1.80 2.44 6 0.41 0.04

GISS-E2-R 1 1.39 2.02 6 0.36 0.04
2 1.35 2.07 6 0.32 0.05
3 1.53 2.29 6 0.39 0.03

CCSM4 1 1.69 2.83 6 0.50 0.03
NORESM1-M 1 1.34 2.64 3 0.33 0.03
GFDL-CM3 1 1.66 3.70 5 0.46 0.08
GFDL-ESM2G 1 1.07 2.13 1 0.60 0.00
GFDL-ESM2M 1 1.21 2.23 1 0.41 0.00

Table S3.2: Summary of parameters for the earth system models. The first column shows the name
of the model or ensemble. The second column is the physics setting as classified in ESGF. The
third and fourth columns are the TCR and ECS. The last three columns show information about
the warming in the post-1970s: the number or historical runs, the mean ∆T and the spread
represented by the standard deviation. Models with zero standard deviation are those with only one
realisation.
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3 Emergent constraints on TCR and ECS from post-1970s warming

Value (Wm−2)

Quantity 1859–1882 to 05–15 70–89 to 05–15 70–89 to 95–05

N (Second period)1 0.71± 0.06 0.71± 0.06 0.61± 0.05
N (First period)2 0.15± 0.07 0.27± 0.04 0.27± 0.04
∆N 0.56± 0.10 0.44± 0.07 0.35± 0.06
∆F3 2.16± 0.59 1.29± 0.18 1.09± 0.18

Contribution to ∆F4

GHG 2.53± 0.18 1.10± 0.08 0.77± 0.05
Aerosol −0.69± 0.55 −0.13± 0.10 −0.15± 0.10
Black carbon on snow 0.02± 0.02 −0.01± 0.02 −0.01± 0.02
Stratospheric water vapor 0.06± 0.03 0.01± 0.03 0.01± 0.03
Land use change −0.10± 0.06 −0.01± 0.06 −0.01± 0.06
Ozone 0.29± 0.12 0.06± 0.12 0.04± 0.12
Contrails 0.05 0.04 0.02
Natural 0.00 0.25 0.42

Table S3.3: Forcing input for energy balance inference from observations.

TCR ECS
e s e’ s’

(−0.14± 0.33)K 4.59± 0.80 (0.35± 0.22)K−1 0.28± 0.09

Table S3.4: Regression coefficients with standard errors for the TCR and ECS.

%

Type Initial Final TCR (K) 5-95% (K) P(<1.0 K) P(>2.5 K)

Constrain 1970 - 1989 1995 - 2005 1.67 1.17 - 2.16 1.5 0.3
Energy Balance 1970 - 1989 1995 - 2005 1.41 0.90 - 2.14 9.6 1.3
Energy Balance 1970 - 1989 2005 - 2015 1.54 1.09 - 2.15 2.2 0.9
Energy Balance 1859 - 1882 2005 - 2015 1.42 0.95 - 2.56 7.7 5.6

Table S3.5: Summary of some statistics of the TCR probability density functions. Columns show
calculation method, initial and final periods, median value and 5-95 percent interval. The last two
columns show the likelihood of a TCR lesser than 1.0 K and greater than 2.5 K, respectively.
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3.5 Methods

%

Type Initial Final ECS (K) 5-95% (K) P(<1.5 K) P(>4.5 K)

Constrain 1970 - 1989 1995 - 2005 2.83 1.72 - 4.12 2.4 2.2
Energy Balance 1970 - 1989 1995 - 2005 2.07 1.24 - 3.76 14.9 2.2
Energy Balance 1970 - 1989 2005 - 2015 2.33 1.53 - 3.89 4.2 2.2
Energy Balance 1859 - 1882 2005 - 2015 1.92 1.17 - 4.75 23.0 5.7

Table S3.6: Summary of some statistics of the ECS probability density functions. Columns show
calculation method, initial and final periods, median value and 5-95 percent interval. The last two
columns show the likelihood of an ECS lesser than 1.5 K and greater than 4.5 K, respectively.

With AMO–IPO correction
TCR ECS

e s e’ s’
(0.06± 0.33)K 5.62± 1.07 (0.38± 0.31)K−1 0.22± 0.09

Table S3.7: Regression coefficients for the TCR and ECS. Presented with standard errors.

With AMO–IPO correction %

Type Initial Final TCR (K) 5-95% (K) P(<1.0 K) P(>2.5 K)

Constrain 1970 - 1989 1995 - 2005 1.48 0.96 - 1.98 6.3 0.0
Energy Balance 1970 - 1989 1995 - 2005 0.92 0.46 - 1.52 60.2 0.1
Energy Balance 1970 - 1989 2005 - 2015 1.06 0.65 - 1.57 41.7 0.0
Energy Balance 1859 - 1882 2005 - 2015 1.27 0.84 - 2.30 18.1 3.5

Table S3.8: Summary of some statistics of the TCR probability density functions. Columns show
calculation method, initial and final periods, median value and 5-95 percent interval. The last two
columns show the likelihood of a TCR lesser than 1.0 K and greater than 2.5 K, respectively.

With AMO–IPO correction %

Type Initial Final ECS (K) 5-95% (K) P(<1.5 K) P(>4.5 K)

Constrain 1970 - 1989 1995 - 2005 2.13 1.01 - 3.41 18.4 0.4
Energy Balance 1970 - 1989 1995 - 2005 1.19 0.57 - 2.19 73.7 0.1
Energy Balance 1970 - 1989 2005 - 2015 1.42 0.84 - 2.35 57.4 0.1
Energy Balance 1859 - 1882 2005 - 2015 1.71 1.03 - 4.28 35.5 4.4

Table S3.9: Summary of some statistics of the ECS probability density functions. Columns show
calculation method, initial and final periods, median value and 5-95 percent interval. The last two
columns show the likelihood of an ECS lesser than 1.5 K and greater than 4.5 K, respectively.

37



3 Emergent constraints on TCR and ECS from post-1970s warming

Model Physics TCR (K) ECS (K) # of Runs ∆T (K) std. dev.

BCC-CSM1-1 1 1.80 2.73 3 0.41 0.05
BCC-CSM1-1-M 1 2.10 2.73 3 0.39 0.07
BNU-ESM 1 2.49 3.74 1 0.50 0.00
CANESM2 1 2.32 3.56 5 0.44 0.04
CNRM-CM5 1 1.98 3.09 9 0.34 0.06
CNRM-CM5-2 1 1.70 3.25 1 0.26 0.00
ACCESS1-0 1 1.77 3.58 1 0.28 0.00
ACCESS1-3 1 1.61 3.29 3 0.18 0.03
CSIRO-MK3-6-0 1 1.73 3.84 9 0.26 0.05
INMCM4 1 1.24 1.80 1 0.16 0.00
IPSL-CM5A-LR 1 1.97 3.61 6 0.43 0.03
IPSL-CM5A-MR 1 1.99 3.85 3 0.38 0.05
IPSL-CM5B-LR 1 1.45 2.38 1 0.16 0.00
FGOALS-G2 1 1.32 3.09 3 0.27 0.01
MIROC-ESM 1 2.05 4.38 3 0.26 0.01
MIROC5 1 1.49 2.46 5 0.27 0.04
HADGEM2-ES 1 2.31 4.02 4 0.28 0.03
MPI-ESM-LR 1 1.98 3.31 3 0.32 0.03
MPI-ESM-MR 1 1.95 3.16 3 0.33 0.01
MPI-ESM-P 1 1.97 3.15 2 0.36 0.03
MPI-ESM1.1 0 1.67 2.73 100 0.28 0.05
MPI-ESM1.2-highECS 1 2.34 4.39 5 0.38 0.05

2 2.34 4.39 4 0.15 0.02
3 2.34 4.39 5 0.29 0.04
4 2.34 4.39 5 0.38 0.07

MRI-CGCM3 1 1.60 2.53 3 0.17 0.08
GISS-E2-H 1 1.66 2.24 6 0.28 0.02

2 1.75 2.22 6 0.26 0.02
3 1.80 2.40 6 0.30 0.02

GISS-E2-R 1 1.39 2.00 6 0.25 0.04
2 1.39 2.05 6 0.23 0.03
3 1.50 2.25 6 0.28 0.04

CCSM4 1 1.76 2.79 6 0.40 0.02
NORESM1-M 1 1.37 2.59 3 0.25 0.03
GFDL-CM3 1 1.71 3.64 5 0.30 0.06
GFDL-ESM2G 1 1.05 2.05 1 0.40 0.00
GFDL-ESM2M 1 1.13 2.12 1 0.31 0.00

Table S3.10: Summary of parameters with AMO–IPO correction. The first column shows the
name of the model or ensemble. The second column is the physics setting as classified in ESGF.
The third and fourth columns are the TCR and ECS. The last three columns show information
about the warming in the post-1970s: the number or historical runs, the mean ∆T and the
spread represented by the standard deviation. Models with zero standard deviation are those with
only one realisation.
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3.5 Methods

AMO–Niño 3.4 AMO–IPO
monthly yearly monthly yearly

Model Physics β1 β2 β1 β2 β1 β2 β1 β2

BCC-CSM1-1 1 0.15 0.06 0.32 0.06 0.14 0.11 0.30 0.08
BCC-CSM1-1-M 1 0.34 0.05 0.78 0.05 0.32 0.09 0.78 0.08
BNU-ESM 1 0.23 0.07 0.39 0.08 0.19 0.11 0.32 0.11
CANESM2 1 0.30 0.08 0.45 0.09 0.22 0.12 0.34 0.12
CNRM-CM5 1 0.30 0.05 0.50 0.07 0.29 0.07 0.49 0.08
CNRM-CM5-2 1 0.35 0.05 0.94 0.06 0.35 0.06 0.97 0.06
ACCESS1-0 1 0.29 0.08 0.45 0.10 0.28 0.11 0.44 0.11
ACCESS1-3 1 0.21 0.08 0.25 0.10 0.19 0.10 0.23 0.10
CSIRO-MK3-6-0 1 0.26 0.09 0.31 0.12 0.24 0.11 0.30 0.11
INMCM4 1 0.13 0.06 0.19 0.07 0.13 0.08 0.21 0.07
IPSL-CM5A-LR 1 0.20 0.09 0.32 0.08 0.19 0.09 0.32 0.07
IPSL-CM5A-MR 1 0.22 0.08 0.30 0.09 0.18 0.10 0.26 0.09
IPSL-CM5B-LR 1 0.22 0.07 0.31 0.07 0.22 0.06 0.31 0.06
FGOALS-G2 1 0.24 0.06 0.65 0.03 0.25 0.08 0.66 0.04
MIROC-ESM 1 1.36 −0.01 3.41 −0.41 1.51 −0.08 3.27 −0.37
MIROC5 1 0.30 0.09 0.43 0.08 0.27 0.10 0.39 0.09
HADGEM2-ES 1 0.29 0.08 0.41 0.10 0.31 0.09 0.44 0.09
MPI-ESM-LR 1 0.22 0.09 0.33 0.09 0.21 0.10 0.35 0.09
MPI-ESM-MR 1 0.18 0.08 0.28 0.09 0.18 0.09 0.29 0.08
MPI-ESM-P 1 0.22 0.08 0.34 0.09 0.21 0.10 0.33 0.09
MPI-ESM1.1 0.23 0.09 0.32 0.09 0.22 0.09 0.33 0.08
MPI-ESM1.2-highECS 1 0.38 0.07 0.44 0.07 0.39 0.07 0.47 0.06

2 0.38 0.07 0.44 0.07 0.39 0.07 0.47 0.06
3 0.38 0.07 0.44 0.07 0.39 0.07 0.47 0.06
4 0.38 0.07 0.44 0.07 0.39 0.07 0.47 0.06

MRI-CGCM3 1 0.15 0.06 0.27 0.06 0.15 0.08 0.27 0.07
GISS-E2-H 1 0.18 0.07 0.31 0.06 0.18 0.09 0.31 0.07

2 0.23 0.07 1.23 0.03 0.24 0.08 1.28 0.02
3 0.48 0.06 2.00 −0.05 0.52 0.06 1.99 −0.07

GISS-E2-R 1 0.17 0.07 0.31 0.07 0.18 0.07 0.34 0.06
2 0.18 0.07 0.27 0.06 0.20 0.06 0.29 0.05
3 0.24 0.07 0.33 0.07 0.25 0.07 0.35 0.06

CCSM4 1 0.24 0.06 0.40 0.06 0.19 0.08 0.33 0.08
NORESM1-M 1 0.27 0.06 0.47 0.05 0.22 0.08 0.40 0.07
GFDL-CM3 1 0.62 0.04 1.36 0.00 0.65 0.03 1.55 −0.08
GFDL-ESM2G 1 0.31 0.09 0.44 0.09 0.31 0.10 0.45 0.09
GFDL-ESM2M 1 0.33 0.06 0.50 0.05 0.29 0.08 0.46 0.07

Table S3.11: Coefficients of the regression of piControl GMSTs and SST patterns. In all cases,
the offset parameter β0 is close to zero and is not listed but is used in the calculations. Highlighted
are the results of the MPI-ESM1.1 ensemble.
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The central role of clouds in the evolution of the climate
feedback parameter in response to forcing

But in the meantime this is only one future.
Dónde no hay nada y todo es oscuro.

Wir können entscheiden die Wissenschaft zu folgen.

An evolving sea surface temperature pattern changes the cloud feedback between Abstract

decadal and centennial timescales. We find that this change in the cloud feedback
not only explains almost half of the change in the climate feedback parameter but
also controls the remaining mechanisms explaining the parameter change. By using
a cloud locking technique, we prevent that clouds respond to the sea surface temper-
ature pattern in the MPI-ESM1.2 model and the lapse-rate feedback weakens. The
weakening substantially reduces the tropical free-tropospheric warming across both
timescales. As some authors have proposed, the role of clouds in the evolution of
the climate feedback parameter depends on the tropical free-tropospheric warming.
Thus, the synergy between the cloud and lapse-rate feedbacks induces the warming
that the lapse-rate feedback cannot provide alone.

4.1 Introduction

The climate feedback parameter λ represents the response of Earth’s feedback mechanisms λ varies

that counteract an energy imbalance at the top of the atmosphere (TOA) generated,
for instance, by radiative forcing. This TOA energy imbalance entails changes in the
surface temperature, and the feedback mechanisms respond to these changes (Sherwood
et al. 2015; Schlesinger and Mitchell 1987), gradually reducing the TOA energy imbalance.
Hence, the ratio of the change in global mean TOA imbalance to the change in global mean
surface temperature defines the climate feedback parameter. We estimate the climate
feedback parameter in models with abrupt forcing experiments in which we quadruple
the atmospheric CO2 concentration starting from pre-industrial conditions (abrupt4xCO2
experiments). In these experiments, one usually regresses the annual averages of global
mean TOA imbalance change on the corresponding global mean surface temperature
change (Gregory et al. 2004). Depending on the period used to compute the regression,
the climate feedback parameter changes (Senior and Mitchell 2000; Andrews et al. 2015).
Commonly, a curvature in a plot of annually-averaged global mean TOA imbalance versus
surface temperature shows the inconstancy of the climate feedback parameter: in the first
decades of the experiment the climate feedback parameter is more negative than thereafter
in most climate models.

This noticeable change in the climate feedback parameter poses questions such as
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4 The central role of clouds in the evolution of the climate feedback parameter in response to forcing

which feedback mechanisms contribute to the inconstancy and if these changes exist
under different forcing. Some authors identified, under different forcing pathways, that
the feedback mechanisms depend on the system’s base state (Good et al. 2015; Gregory
et al. 2015; Senior and Mitchell 2000; Voss and Mikolajewicz 2001; Colman and McAvaney
2009; Caballero and Huber 2013; Jonko et al. 2013; Block and Mauritsen 2013; Meraner
et al. 2013). In these cases, the feedback mechanisms contribute to the climate feedback
parameter depending on the applied forcing, thereby explaining part of the inconstancy as
state-dependence. Other authors formulate the inconstancy as a time-dependence in terms
of the regional contributions of feedback mechanisms in relation to an evolving surface
temperature pattern (Winton et al. 2010; Armour et al. 2013). Notwithstanding this
discussion between state- or time-dependence, several studies found a relationship between
the climate feedback parameter inconstancy and variations in the cloud feedback as well as
in high-latitude mechanisms such as surface-albedo feedback (Senior and Mitchell 2000;
Block and Mauritsen 2013; Andrews et al. 2015; Winton et al. 2010; Armour et al. 2013).

In the ensemble of the climate model intercomparison project phase five (CMIP5),Cloud feedback and
∆λ

Andrews et al. (2015) found that cloud feedback mainly evolves in the tropical regions.
They connect this changing cloud feedback to an evolving sea surface temperature (SST)
pattern induced by the CO2 forcing. This SST pattern consists of regions that warm at
different rates compared to the global mean and that this pattern changes between early
and later periods after a forcing has been applied. Between the decadal and centennial
timescales, the tropical deep-convective regions warm less than the global mean, whereas
subsidence regions warm more. Zhou et al. (2016) proposed that the free-tropospheric
warming provided by the tropical deep convection remotely warms the air aloft subsidence
regions where low-level stratocumuli form. The warming aloft leads to more stratocumuli
by increasing low-level atmospheric stability. More stratocumuli reflect more shortwave
radiation, leading to a temporary dampening of global warming. As the SST pattern
evolves, the subsidence regions warm more and catch up with the remote free-tropospheric
warming. Therefore, stability reduces and stratocumuli wane, reflecting less shortwave
radiation. Observations link decadal cloud variations with variations in Earth’s energy
budget (Zhou et al. 2016; Mauritsen 2016), giving foundations to the mechanism. Ceppi
and Gregory (2017) also showed a correlation between the SST pattern and lapse-rate and
surface-albedo feedbacks in CMIP5 models.

We investigate the role of clouds in the evolution of the climate feedback parameterObjectives and
results

within the context of one complex climate model, the Max Planck Institute Earth System
Model version 1.2.01p1 (MPI-ESM1.2 Mauritsen et al. 2019). We use a cloud-locking
technique to prevent that clouds evolve following the SST pattern. Without cloud feedback,
and by construction without cloud feedback changes, we evaluate not only the direct role
of clouds in the evolution of the climate feedback parameter but also possible influences on
other feedback mechanisms. We conclude that the role of clouds goes beyond a purely
radiative cloud feedback mechanism.

4.2 Preparatory enquiries

To show the inconstancy of the climate feedback parameter λ in the CMIP5 ensemble,CMIP5 and
MPI-ESM1.2 ∆λ

we inspect results from the abrupt4xCO2 experiment. We define two periods in these
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Figure 4.1: Inconstancy of λ. TOA imbalance - surface temperature plot for an abrupt quadrupling
of atmospheric CO2. Dots are annual averages. Blue lines are regressions using years 1-20 (early
period), whereas red lines use years 21-150 (late period). Clear thin lines and small hollow dots
depict the CMIP5 ensemble. Solid thick lines and large dots show the Max-Planck-Institute Earth
System Model version 1.2.01p1 (MPI-ESM1.2) and dotted lines and large hollow dots show seven
experiments with cloud-locking in the MPI-ESM1.2 model. In most models, the slope (λ) becomes
less negative as time goes by.

experiments: the early period includes the first twenty years, and the late period goes from
year 21 to year 150 (figures 4.1 and 4.2). The regressions on the early period data show
a more negative slope than those done on the late period: In most models, the change
in temperature relative to the TOA imbalance change during the early period is smaller
than during the late period. The ensemble mean change in the climate feedback parameter
between late and early periods is ∆λ = 0.49 Wm−2K−1 (-0.14 to 1.08, 5-95 percentile
range). The MPI-ESM1.2 model also shows a ∆λ comparable with the CMIP5 ensemble
mean: 0.51 Wm−2K−1 (0.11 to 0.85, 5-95 percentile range).

The SST pattern is defined as the regression of the local surface temperature change MPI-ESM1.2 and
SST pattern

on the global mean surface temperature change (Andrews et al. 2015). The comparison
between regressions using early and late periods in the MPI-ESM1.2 model shows the
pattern’s evolution in this model (figure 4.3). The Southeastern and Northeastern Pacific
regions warm more during the late period, as well as the Southern Ocean and the North
Atlantic region, which is consistent with the Zhou et al. (2016) mechanism that we described
in the introduction. MPI-ESM1.2 SST pattern is also similar to the pattern found in the
CMIP5 models by Andrews et al. (2015).

We can also check if the MPI-ESM1.2 model shows such an expected variation in the MPI-ESM1.2 and
shortwave cloud
feedback
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Figure 4.2: Modelled climate feedback parameter for CMIP5 models, MPI-ESM1.2-highECS, MPI-ESM1.1 Grand Ensemble
and MPI-ESM1.2 free- and locked-cloud experiments. Blue distributions correspond to the early period (years 1 to 20). Red
distributions correspond to the late period (years 21 to 150). Dark grey distributions correspond to the complete abrupt4xCO2
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Figure 4.3: SST pattern in MPI-ESM1.2 for an abrupt4xCO2 experiment. The slope of the regression
of local surface temperature change on global mean surface temperature change. Top panel: Early
period (years 1-20). Bottom panel: Late period (years 21-150). Middle panel: Late-Early.
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4 The central role of clouds in the evolution of the climate feedback parameter in response to forcing

shortwave cloud feedback between early and late periods (figure 4.4). There is a more
negative shortwave cloud feedback during the early period in the trade regions, that switch
to mostly positive feedback during the late period. Thus, these results show that the
MPI-ESM1.2 model is suitable for studying the mechanism presented by Zhou et al. (2016).

4.3 Methods

Cloud-locking The idea of cloud-locking is that the cloud properties seen by the radiation
do not change across the forced experiments, thereby leading to zero cloud feedback.
Using this technique, one can assess the effect of cloud feedback mechanisms on a given
phenomenon. Researchers have used the technique to study the influence of the cloud
feedbacks on surface temperature change (Wetherald and Manabe 1988), the cloud-induced
amplification of the El Niño Southern Oscillation (ENSO) (Rädel et al. 2016) and its
periodicity (Middlemas et al. 2019), as well as the storm tracks and mid-latitude eddy-driven
jets (Grise et al. 2019). Other studies have locked other feedback mechanisms and studied
their influence, e.g. of water-vapour feedback (Hall and Manabe 1999) and surface-albedo
feedback in surface temperature (Hall 2004; Graversen and Wang 2009), multiple feedback
mechanisms role in polar amplification (Langen et al. 2012; Graversen et al. 2014), or to
study synergies between feedback processes (Mauritsen et al. 2013).

In this work, the cloud-locking consists of prescribing the cloud water and ice content,Cloud-locking
implementation

as well as the cloud fraction, used in the radiative transfer calculations. The prescribed
fields come from a pre-industrial control experiment with evolving clouds. The method of
specifying the clouds in the locked-cloud experiments differs across studies. Usually, stored
cloud fields are prescribed in sequence, either repeating a single year or a sequence of years,
though some studies concerned with sub-annual natural variability randomly shuffle the
prescribed fields by selecting a given day and time from a set of years of stored clouds
(Rädel et al. 2016; Olonscheck et al. 2019). In this study, we store seven years of clouds
and run locked-cloud experiments with each one of them at a time. Thereby we wish
to preserve an annual cycle but suppress inter-annual variability, while at the same time
exploring the possible influence of the choice of year that is prescribed. To this end,
we selected the years by their El Niño 3.4 index in the free-cloud pre-industrial control
experiment. We choose three years with positive index and three with negative index.
We select each one of the three years from years with strong, medium and weak index,
respectively. Additionally, we choose another case with positive index, corresponding to
the year with the strongest positive index in the free-cloud pre-industrial control run. With
each of the seven stored years, we run a locked-cloud pre-industrial control and, starting
from this control, an abrupt4xCO2 experiment.

4.4 Global mean results and SST pattern under cloud-locking

All the locked-cloud experiments evolve essentially in the same manner, regardless of theComparison of λ

prescribed clouds used in each experiment. From the slopes of the early-period regressions,
we find that the free-cloud λ is −1.68 Wm−2 K−1 (−1.84 to −1.42, 5-95 percentile range)
and it is within the range of the locked-cloud ensemble: −1.60 Wm−2K−1 (−1.78 to
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Figure 4.4: Shortwave cloud feedback in MPI-ESM1.2 for an abrupt4xCO2 experiment. Top panel:
Early period (years 1-20). Bottom panel: Late period (years 21-150). Middle panel: Late-Early.
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4 The central role of clouds in the evolution of the climate feedback parameter in response to forcing

−1.38, 5-95 percentile range). In contrast, late-period free-cloud λ is −1.16 Wm−2K−1

(−1.38 to −0.94) and more positive than the lock-cloud ensemble mean: −1.30Wm−2 K−1

(−1.40 to −1.19, 5-95 percentile range). Hence there is a statistically significant change
in feedback between the eperiments which is is in line with our expectation.

The other very notable aspect that the locked-cloud abrupt4xCO2 experiments show isCloud radiative
adjustment

a lack of cloud radiative forcing adjustment. The adjustment happens at the beginning of
the run when the change in forcing modifies the atmospheric temperature, not necessarily
with a linkage to the surface temperature. The perturbed temperature profile alters clouds
and increases the initial TOA imbalance (Sherwood et al. 2015). If clouds do not change,
then the adjustment cannot happen, and the system starts with a smaller global mean
TOA imbalance (figure 4.1).

Nevertheless, turning our attention again to the change in λ, we find that the locked-Comparison of ∆λ

cloud ensemble mean change in the climate feedback parameter is ∆λ =0.31 Wm−2K−1

(0.05 to 0.52, 5-95 percentile range) in comparison with the 0.51 Wm−2K−1 (0.11 to
0.85) of the free-cloud experiment (figure 4.2). Thus, in MPI-ESM1.2, clouds explain
0.19 Wm−2 K−1 (−0.29 to 0.65) of the change in the climate feedback parameter: almost
a half of the difference in the free-cloud experiment. These results are consistent with
the SST pattern-effect mechanism. By cancelling cloud feedback, the locked-cloud late
period does not lose stratocumuli, thereby changing less the climate feedback parameter
between the early and the late period. However, the ∆λ in the locked-cloud experiments
is not negligible, considering that its value and uncertainty are within the CMIP5 5-95
percentile range of −0.14 to 1.08 Wm−2K−1 and zero is not included in the locked-cloud
5-95 percentile range. Thus, it is of value to understand this remaining non-cloud pattern
effect, which, if mechanistically sound, could add confidence to the overall sign of the
pattern effect.

To investigate the origin of this remaining change in the climate feedback parameter,SST pattern in
locked-cloud
experiments we first inspect the SST pattern of the locked-cloud experiments (figure 4.5). Because

experiments behave globally in a similar fashion, we take one of them, obtain its SST
pattern and analyse the zonal mean compared to the free-cloud case (figure 4.6). We
detect the similarities in the pattern: both free- and locked-cloud experiments present
polar amplification, as well as a shift of the warming from the Northern Hemisphere to the
Southern Hemisphere between the early and late periods. However, during the early period,
the Southern Ocean warms more in the locked- than in the free-cloud experiment. The
southern polar amplification during the late period also becomes stronger in the locked-
than in the free-cloud case. In contrast, the northern polar amplification during the early
period is weaker in the locked- than in the free-cloud case. Notwithstanding, apart from
high- and middle-latitude differences, the locked-cloud southern and equatorial tropics warm
in the same proportion during the early and late periods.

Since the tropospheric warming plays an essential role in the Zhou et al. (2016)Vertical changes

mechanism, we now examine the vertical temperature changes (figure 4.7) across the
locked-cloud ensemble. In the tropics, during the early and late periods and in both
locked- and free-cloud experiments, the free troposphere warms in a similar proportion
to the corresponding surface warming, signalling the role of the tropical deep convection
in warming the profile. However, the free troposphere consistently warms less in the
locked-cloud ensemble than in the free-cloud experiment. Thus, the rise of the tropical anvil
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Figure 4.5: SST pattern in the MPI-ESM1.2 model for an abrupt4xCO2 experiment with cloud-
locking. The slope of the regression of local surface temperature change on global mean surface
temperature change. Top panel: Early period (years 1-20). Bottom panel: Late period (years
21-150). Middle panel: Late-Early. Same colour scale as in figure 4.3. Note the stronger southern
polar amplification during the late period in comparison to the free-cloud case.
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Figure 4.6: Warming pattern in the free and locked-cloud abrupt4xCO2 experiments. The slope of
the regression of local surface temperature change on global mean surface temperature change.
Zonal mean. Blue is the early period (years 1-20). Red is the late period (years 21-150). Dashed
lines mark the 5-95 percentile range in the estimate of the slope. Top panel: Free-cloud case.
Bottom panel: Locked-cloud case.
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4.5 Feedback analysis

clouds provides the necessary tropical free-tropospheric warming that regulates the stability
in the subsidence regions, thereby enabling changes in cloud feedback. In the middle and
high latitudes, the profiles are similar between locked- and free-cloud experiments. In the
southern middle latitudes, the free-cloud experiment shows the shift in the magnitude
of the warming between early and the late periods. This shift is part of the Zhou et al.
(2016) mechanism that controls the stability in the subsidence regions. Although the shift
is also present in the locked-cloud ensemble, it becomes less prominent. In the northern
hemisphere, the shift is inverted and reduced in magnitude, possibly by the influence of
northern hemisphere landmasses.

The weaker tropical warming also suggests changes in other feedback mechanisms such
as the water-vapour feedback and with that explaining the remaining difference in the
climate feedback parameter between the early and late periods. To investigate this, we apply
the partial radiation perturbations (PRP) technique to one of the locked-cloud experiments
and analyse the components of the TOA imbalance.

4.5 Feedback analysis

Partial radiation perturbations The partial radiation perturbations technique separates
the influence of individual state variables on the radiative flux. The technique takes a
reference for a given state variable s and compares the radiation calculations with the actual
state (R(x)) and that with the actual state but with the variable s in the reference state
(R(x∗)). Thus, the difference R(x)− R(x∗) is the contribution to the radiative flux of the
change in the state variable (Wetherald and Manabe 1988; Colman and McAvaney 1997).
Some biases result from the implicit assumption that the state variables are temporarily
uncorrelated (Colman and McAvaney 1997). To solve this problem, one can take a reference
value for all the variables and make four radiative flux calculations. Then one calculates a
forward and a backward difference. To alleviate the decorrelation, one takes the average of
the differences. This technique is computationally far more expensive than the radiative
kernels (Soden et al. 2008). However, radiative kernels assume a linear relationship in the
response function (Soden et al. 2008), which is unsuitable for certain feedbacks such as
clouds (Klocke et al. 2013) and other feedbacks under strong forcing (Mauritsen et al.
2019; Meraner et al. 2013). Instead, partial radiation perturbations give a complete solution
for all feedbacks, only limited by the spectral resolution and the numerical approximations
of the radiative transfer scheme.

The free-cloud experiment has positive cloud feedback, whereas cloud-locking is zero by Global lapse-rate
and water-vapour
feedbacksconstruction (figure 4.8). The lapse-rate feedback decreases in magnitude in the locked-

cloud experiment (See also table S4.1). The difference between early and late periods is
more substantial than in the free-cloud case. The same, though with opposite sign, occurs
to the magnitude of the water-vapour feedback. Remarkably, the sum of the lapse-rate and
water-vapour feedbacks and their change between the early and late periods is almost the
same in the locked- and free-cloud experiments (table S4.1). Thus, a significant fraction of
the remaining change in the climate feedback parameter comes from this almost-invariant
joint contribution of lapse-rate and water-vapour feedbacks.

The differences in the zonally-averaged lapse-rate feedback between early and late Zonally-averaged
lapse-rate and
water-vapour
feedbacks

periods in the free-cloud case are limited to the deep tropics and the high latitudes (figure
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Figure 4.8: Feedback mechanisms in the free- and locked-cloud experiments. The diagrams show
the shape of their probability distributions with the 5-95 percentile range and the median as a black
dot. Blue distributions are the estimates using the early period (years 1-20). Red distributions come
from the late period (years 21-150). Grey distributions are the difference between the late and the
early periods. Top panel: Free-cloud case. Bottom panel: Locked-cloud case.
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4.5). The lock-cloud case is shifted to more positive values in general, thereby explaining the
weaker global lapse-rate feedback. Despite this shift, the lock-cloud northern tropical and
middle latitudes behave in a similar way as in the free-cloud case. In contrast, the lock-cloud
southern hemisphere presents the strongest differences between early and late periods,
broadening the change in the lock-cloud global lapse-rate feedback between timescales.
The strongest differences come from the Southern Ocean. Albeit a similar shift to weaker
values as in the lapse-rate feedback case, the water-vapour feedback in the early period
behaves in almost the same fashion between the free- and locked-cloud experiments outside
the tropics (figure 4.4). During the late period, the difference in the southern tropics is
striking: the free-cloud case presents a strongly positive peak at the equator, whereas the
lock-cloud experiment shows no such peak and the southern tropical water-vapour feedback
remains below the early period levels.

The above-described features of the lapse-rate and water-vapour feedbacks are consistentSynergy of clouds,
lapse-rate and
water-vapour

feedback
with the weaker free-tropospheric warming that we presented in figure 4.7. Thus, the weaker
lapse-rate and water-vapour feedbacks stem from the weaker tropical free-tropospheric
warming. Therefore, evolving tropical clouds enhance warming, leading to stronger lapse-
rate feedback. A warmer troposphere can also contain more water-vapour, enhancing the
atmospheric absorptivity of infrared radiation in the tropics and, thereby compensating
for the strengthened lapse-rate feedback. Although the difference between early and
late periods in the combined lapse-rate plus water-vapour feedback does not appreciably
change between locked- and free-cloud experiments, these results show the intricate role of
the clouds in determining the combined feedback strength. The outstanding robustness
of the combined feedback to whether or not clouds are present could be explained by
state-dependencies. Other studies suggest that the water-vapour feedback is enhanced
in warmer climates (e.g. Meraner et al. 2013; Popp et al. 2016). Since quadrupled CO2
impose a sizeable forcing, we might be seeing such enhanced feedback in the course of our
experiments. The compensation between lapse-rate and water-vapour feedbacks appears
outstandingly robust to whether or not cloud changes are present, considering that it is
almost equal between the locked- and free-cloud experiments, showing the intricate role of
clouds in determining their strength.

Planck feedback decreases in magnitude between locked- and free-cloud experimentsGlobal Planck and
surface-albedo

feedbacks (figure 4.8). Prominently, the Planck feedback is weaker during the locked-cloud late period
than during the early period, whereas in the free-cloud case occurs the converse (see also
table S4.1). This reversal in the behaviour provides a positive difference in the locked-cloud
Planck feedback between the early and late periods. This positive difference sums up
to the positive difference provided by the surface-albedo feedback. The locked-cloud
surface-albedo feedback not only becomes stronger than in the free-cloud case but also its
difference between early and late periods becomes larger (figure 4.8). Therefore, Planck
and surface-albedo feedback explain the rest of the difference that the lapse-rate and
water-vapour feedbacks does not explain.

The zonally-averaged surface-albedo feedback behaves in a similar way between free-Zonally-averaged
Planck and

surface-albedo
feedbacks

and locked-cloud experiments, as the main changes are in the high latitudes (figure 4.9).
However, the magnitude of the changes explains the enhanced locked-cloud global surface-
albedo feedback. With comparable magnitudes during the early and late periods, the
southern high-latitude surface-albedo feedback is stronger than in the free-cloud case.
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Figure 4.9: Lapse-rate feedback in free- and locked-cloud experiments. Zonal mean. Blue is the early
period (years 1-20). Red is the late period (years 21-150). Dashed lines mark the 5-95 percentile
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4.6 Conclusions

Albeit the locked-cloud Planck feedback shows a general shift to less negative values,
the behaviour of the locked-cloud experiment stays in line with the free-cloud experiment
(figure 4.10). However, the locked-cloud northern tropics present a stronger weakening
between early and late periods than in the free-cloud experiment. In contrast to the
free-cloud experiment, the lock-cloud Planck feedback substantially strengthens in the
Southern Ocean and the southern high-latitudes. These high-latitude changes in the Planck
and surface-albedo feedbacks are in line with the high-latitude changes in the lapse-rate
feedback. Thus, the Southern Ocean possibly has the key to understand the remaining
difference in the climate feedback parameter between the early and late periods.

4.6 Conclusions

We showed with a cloud-locking technique that clouds explain almost half of the difference
in the climate feedback parameter λ between the early and late periods in the MPI-ESM1.2
model. In comparison to the free-cloud case, we detected reduced tropical free-tropospheric
warming in the locked-cloud experiments. This reduced warming stems from non-rising
tropical anvil clouds in the locked-cloud experiment, that possibly modified other feedback
mechanisms such as water-vapour feedback, explaining the remaining difference. Therefore,
we analysed the feedback mechanism contributions using the partial radiation perturbations
technique. On the one hand, we found a weakened lapse-rate and water-vapour feedbacks:
a result consistent with the reduced free-tropospheric warming. Locked clouds reduce the
free-tropospheric warming in the tropics, thereby weakening the lapse-rate feedback. The
reduced tropical free-tropospheric warming also decreases the amount of water vapour in
the troposphere, thereby weakening the water-vapour feedback. On the other hand, the
remaining changes in λ come from the high-latitude contributions of the surface-albedo
and the Planck feedback, with particular emphasis in the Southern Ocean.

In summary, in the MPI-ESM1.2 model, we found that clouds are the most influential
element that explains the variation of the climate feedback parameter in the abrupt4xCO2
experiment. Cloud processes, in particular the rise of tropical anvil clouds with warming and
their synergy with the lapse-rate feedback, produce the necessary tropical free-tropospheric
warming that controls the stability in subsidence regions. Deep clouds warm the tropical
free troposphere, responding to the evolving sea surface temperature pattern and induce a
delay in the surface warming by enhancing shallow cloudiness in the trade regions.

F 8 f
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Figure S4.1: Surface-albedo feedback in free- and locked-cloud experiments. Zonal mean. Blue
is the early period (years 1-20). Red is the late period (years 21-150). Dashed lines mark the
5-95 percentile range in the estimate of the feedback. Top panel: Free-cloud case. Bottom panel:
Locked-cloud case.
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Figure S4.2: Planck feedback in free- and locked-cloud experiments. Zonal mean. Blue is the early
period (years 1-20). Red is the late period (years 21-150). Dashed lines mark the 5-95 percentile
range in the estimate of the feedback. Top panel: Free-cloud case. Bottom panel: Locked-cloud
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Figure S4.3: Cloud feedback in free- and locked-cloud experiments. Zonal mean. Blue is the early
period (years 1-20). Red is the late period (years 21-150). Dashed lines mark the 5-95 percentile
range in the estimate of the feedback. Top panel: Free-cloud case. Bottom panel: Locked-cloud
case.
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Discussion and Conclusion

I’ve seen things you people wouldn’t believe. Attack ships on fire
off the shoulder of Orion. I watched C-beams glitter in the dark

near the Tannhäuser Gate. All those moments will be lost in time,
like tears in rain. Time to die.

Roy Batty. Blade Runner. David W. Peoples and Rutger Hauer

Climate sensitivity indexes, such as TCR and ECS, provide a measure of the system
response to forcing. Therefore, climate projections need precise estimates of climate
sensitivity to finely determine the future effects of the present anthropogenic intervention
on the climate system (Grose et al. 2018). Historical warming lets us obtain estimates
of climate sensitivity. However, uncertainty in the anthropogenic aerosol forcing and the
variations in the feedback mechanisms controlled by the evolving sea-surface temperature
warming pattern difficult the interpretation of the historical warming in terms of climate
sensitivity. Throughout this dissertation, we use simple physical concepts to shed light in
complex model results. We refine the climate sensitivity estimates with the help of complex-
modelling output by reducing the uncertainty and explaining the reduction on physical
grounds. We also study the underlying physical mechanisms leading to the uncertainty in
the long-term projections due to the evolving sea-surface temperature warming pattern.

We use in chapter 3 the popular multi-purpose method of emergent constraints to
interpret the historical warming in terms of TCR and ECS. In essence, an emergent
constraint is a statistical device. The idea is simple. We have two variables. One is
observable. The other is complicated to measure, a model parameter or a modelled
quantity. If we have an ensemble of models, then we can look for a statistical model that
relates, in the ensemble, both quantities. If we find such a relationship, we can constrain
the non-observable variable by using the observable quantity and the derived statistical
relationship. Numerous studies use the emergent constraints and, therefore, there is an
extensive discussion on its use (Klein and Hall 2015; Qu et al. 2018). In the case of
TCR and ECS, studies have focused in two observables: clouds (Sherwood et al. 2014;
Brient et al. 2016) and surface temperature change (Bender et al. 2010; Hargreaves et al.
2012; Hargreaves and Annan 2016; Renoult et al. 2020). As with any statistical technique,
one should be careful: statistical relationships do not guarantee real physical relationships
(Caldwell et al. 2014). Our study uses the conceptual framework (chapter 2) as a basis for
the emergent constraints on TCR and ECS. Thus, we duly solved one of the caveats of the
emergent constraints framework. We are only limited by the validity of the approximations
made to construct the conceptual models.

The more constant anthropogenic aerosol forcing during the post-1970s period suggest
that the analysis of the warming during this period can improve the estimates of TCR
and ECS. We interpret the relationships of the post-1970s warming and climate sensitivity
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as modelled in the CMIP5 ensemble. The CMIP5-based relationship between post-1970s
warming and TCR shows a better agreement with the analogous relationship derived
from the two-layer model (figure 3.1, panel a). The better agreement with the two-layer
model indicates that the upper ocean is not close to the frequently assumed steady-state
(zero-layer approximation) during the post-1970s period. Instead, during this period the
upper ocean buffers part of the forcing. This buffering is not unthinkable, given that a
significant fraction of the anthropogenic forcing has been applied after 1970 (figure 1.1).
Thus, because more complex climate models also simulate this buffering, when using the
CMIP5-based relationship between warming and TCR as an emergent constraint on TCR,
our TCR estimate is higher than the usual estimates using the zero-layer approximation.
Furthermore, the likelihood of lower TCRs is substantially reduced not only because the
aerosol forcing is more certain during the post-1970s period, but also because we consider
the upper-ocean energy storage. Hence, we used basic physical understanding to appreciate
the underlying cause of the reduction in the uncertainty and an increment in the TCR
estimate. Our results (Jiménez-de-la-Cuesta and Mauritsen 2019) have been confirmed to
hold also for the CMIP6 ensemble in a recent paper under public discussion by Nijsse et al.
(2020), where they derive the emergent constraint instead using Bayesian methods.

The analogous relationship between post-1970s warming and ECS shows another use
of the conceptual framework. Although here the emergent constraint on ECS using the
observed warming is not as successful as in the TCR case, we also show that the usual
zero-layer approximation fails to represent the model behaviour. CMIP5 behaviour is also
closer to the relationship derived from the two-layer model, which includes the sea-surface
temperature pattern effect (figure 3.1, panel b). Then here we find another cue that
confirms the field’s course: towards understanding the influence of the atmosphere-ocean
interactions. We opted to follow the course, and then the research of chapter 4 began.
We find that not only clouds have a substantial role in the sea-surface temperature pattern
effect, but also the evolving tropical clouds provide the necessary tropical free-tropospheric
warming that fuels the mechanism presented by (Zhou et al. 2016). Thus, we find that
tropical clouds substantially control the trade stratocumuli, which are central to delay the
surface warming (Zhou et al. 2016; Ceppi and Gregory 2017; Mauritsen 2016). Given that
a sizeable amount of the remaining non-cloud sea-surface temperature pattern effect comes
from the lapse-rate and water-vapour feedback mechanisms, the robust quasi-constancy
of the sum of their strengths and that other studies indicate an enhancement of the
water-vapour feedback mechanism in warmer climates (Meraner et al. 2013; Popp et al.
2016); we ought to ask if this remaining non-cloud sea-surface temperature pattern effect
comes from state-dependency. Moreover, this highlights the essential and intricate role of
cloud processes and cloud feedback in the determination of climate sensitivity.
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