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A B S T R A C T

In this dissertation I examine how photosynthesis on land has re-
sponded to rising CO2 concentration in recent decades, and how we
can use this knowledge to better predict the evolution of the climate-
carbon system throughout the 21st century.
More than three decades of satellite data reveal widespread and per-
sistent changes in Earth’s ecosystems. The drivers underlying these
changes and the implications for the terrestrial sink of anthropogenic
carbon emissions are controversial.
In the first part of this thesis, I examine a long-term satellite record
of global leaf area observations (1981–2017) and identify clusters of
significant change on the biome level. Using process-based models
and a framework relying on causal theory, I disentangle and attribute
vegetation changes to CO2-induced climatic changes and the CO2 fer-
tilization effect. I show that 40% of Earth’s naturally vegetated surface
is greening, predominately in the extratropics, and 14% is browning,
mostly in the tropics. Although previous studies attributed the green-
ing to CO2 fertilization, I show that only some biomes show a marked
response to this effect, whereas many biomes bear the signature of
climatic changes, i.e. warming and rainfall anomalies. The leaf area
loss in the tropical forests due to increased droughts and long-term
drying could be an early indicator of a slow-down in the terrestrial
carbon sink.
In the second part, I examine if the observed vegetation response to
rising CO2 can be used to reduce uncertainty in the evolution of the
carbon cycle. Using an approach called Emergent Constraint (EC),
I combine satellite observations and multi-model simulations to de-
rive an estimate for the increase in photosynthetic carbon fixation of
northern ecosystems for 2×CO2 (3.4 ± 0.2 Pg C yr−1). Three compara-
ble independent estimates from CO2 measurements and atmospheric
inversions corroborate this result. The EC estimate is considerably
larger than most model projections which suggests that the effect of
rising CO2 concentration on photosynthesis in northern terrestrial
ecosystems is underestimated.
In the third part, I investigate the applicability of the EC method
in a broader context of Earth system sciences. More and more EC
estimates are being reported, however their robustness is controversial.
By means of a thought experiment and analyses of a multi-model en-
semble, I address the main caveats and highlight limitations as well as
potential sources of uncertainty in the application of the EC method.
All parts in this thesis highlight how the variety of observational data
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and the strength of process-based models in conjunction with new
methods advance the understanding of the terrestrial biosphere.
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Z U S A M M E N FA S S U N G

In dieser Dissertation untersuche ich, wie die terrestrische Photosyn-
these auf die steigende CO2-Konzentration der letzten Jahrzehnte
reagiert hat und wie wir dieses Wissen nutzen können, um die Ent-
wicklung des Klima-Kohlenstoff-Systems im 21. Jahrhundert besser
vorherzusagen.
Satellitendaten aus mehr als drei Jahrzehnten zeigen, dass sich die
Ökosysteme der Erde in großem Maßstab verändert haben. Die Treiber,
die diesen Veränderungen zugrunde liegen und die damit verbunde-
nen Auswirkungen auf die Landsenke von anthropogenen Kohlenstof-
femissionen, sind umstritten.
Im ersten Teil dieser Arbeit untersuche ich Langzeit-Satellitenbeo-
bachtungen der globalen Vegetation (Blattfläche, 1981–2017). Unter
Berücksichtigung verschiedener Biome identifiziere ich Regionen, die
sich signifikant verändert haben. Mit Hilfe von prozessbasierten Mo-
dellen und Kausaltheorie trenne ich die Auswirkungen des CO2-
verursachten Düngungs- und Treibhauseffekts auf die Vegetation auf.
Ich zeige, dass 40% der natürlich bewachsenen Erdoberfläche ergrünt,
vornehmlich in den Extratropen, und 14% erbraunen, hauptsächlich
in den Tropen. Frühere Studien haben den CO2-Düngungseffekt als
Haupttreiber der Ergrünung identifiziert. Meine Analyse zeigt, dass
nur einige Biome eine deutliche Reaktion auf diesen Effekt zeigen und
dass Klimaveränderungen (Erwärmung und Niederschlagsanomalien)
in vielen Ökosystemen eine stärkere Auswirkung haben. Der Verlust
von Blattfläche in den Tropenwäldern durch häufiger auftretender
Dürren und/oder stetigen Niederschlagsrückgang könnte ein Vorbote
einer Abschwächung der terrestrischen Kohlenstoffsenke sein.
Im zweiten Teil untersuche ich, ob die beobachteten Veränderungen in
der Vegetation als Folge der steigenden CO2 Konzentration herange-
zogen werden können, um die Entwicklung des globalen Kohlenstoff-
kreislaufs besser abschätzen zu können. Unter der Zuhilfenahme von
Emergent Constraints (EC) kombiniere ich Satellitenbeobachtungen
und Multi-Modell-Simulationen, um die Zunahme der photosynthe-
tischen Kohlenstoffaufname der Ökosysteme in den hohen Breiten
für 2×CO2 vorherzusagen (3.4 ± 0.2 Pg C yr−1). Drei unabhängi-
ge, vergleichbare Schätzungen, die auf CO2-Messungen und atmo-
sphärischen Inversionen basieren, untermauern dieses Ergebnis. Die
EC-basierte Schätzung ist wesentlich höher als die meisten Modell-
vorhersagen, was darauf hindeutet, dass der Einfluss der steigenden
CO2-Konzentration auf die Photosynthese der nördlichen terrestri-
schen Ökosysteme unterschätzt werden könnte.
Im dritten Teil untersuche ich die Anwendbarkeit der EC-Methode im
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allgemeinen Kontext der Erdsystemwissenschaften. Es werden mehr
und mehr EC-Studien durchgeführt, die Ergebnisse sind jedoch kon-
trovers. Anhand eines Gedankenexperiments und der Analyse eines
Multi-Modell-Ensembles untersuche ich die wichtigsten Kritikpunkte
und zeige mögliche Unsicherheitsquellen in der Anwendung der EC-
Methode auf.
Die vorliegende Dissertation zeigt, wie die Vielzahl an Beobachtungs-
datensätzen und prozessbasierten Modellen mit neuen Methoden zum
besseren Verständnis der terrestrischen Biosphäre verknüpft werden
kann.
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1
P L A N T S U N D E R R I S I N G C O 2 – A N E S S AY O N T H E
G L O B A L C H A N G E O F V E G E TAT I O N

How can the events in space and time which take place
within the spatial boundary of a living organism

be accounted for by physics and chemistry?

— Erwin Schrödinger, What Is Life?, 1943

This dissertation is about how terrestrial photosynthesis responds
to rising atmospheric carbon dioxide concentrations, and what this
response tells us about the future land sink of anthropogenic carbon.
In my analyses I employ novel methods which combine multiple
Earth system model simulations, satellite observations, and ground
measurements. This cumulative thesis is structured into three individ-
ual articles attached in Part i, ii and iii. In the first paper, I analyze
long-term satellite observations of global natural vegetation, identify
clusters of significant change, and determine the underlying drivers
using models and a attribution framework based on causal theory
(Winkler et al., submitted). In the second paper, I apply the obtained
knowledge of historical vegetation changes to reduce uncertainty in
projections of the future terrestrial carbon sink using an approach
called Emergent Constraints (Winkler et al., 2019a). In the third paper, I
scrutinize the applicability of the Emergent Constraints method for
different settings and illustrate sources of uncertainty (Winkler et al.,
2019b).

I will summarize the three articles in the form of this essay and
show how my findings contribute to a wider body of research into
global vegetation changes under rising CO2 and their implications for
the terrestrial carbon sink. In order to help the reader understand the
broader research context, I will first describe the role of plants in the
Earth system and start at the very beginning: with an exploration into
the emergence of photosynthesis on Earth.
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plants under rising co2 – an essay on the global change of vegetation

1.1 photosynthesis and earth’s history

The process of photosynthesis converts carbon dioxide (CO2) and
water (H2O) into carbohydrates (CH2O) and the by-product oxygen
(O2), using the energy of incoming sunlight. The continuous supply ofOverall

photosynthesis
reaction equation:

CO2 + H2O→
CH2O + O2

both oxygen and carbohydrates lays the foundation of practically all
life on Earth. But throughout Earth’s history, photosynthesis and its
products also irrevocably altered the inorganic surface of the planet.

Photosynthesis constitutes the only significant source of free oxygen
on Earth’s surface (Lyons et al., 2014). For the first half of Earth’s
history of 4.5 billion years, oxygen was merely a trace gas in the
atmosphere (Holland, 2006; Lyons et al., 2014). The first appearance
of photosynthesis is controversial (Holland, 2006; Lyons et al., 2014;
Foster et al., 2017). The estimates range from 3.8 to 2.35 billion years,
when cyanobacteria, the first photosynthesizing organisms, evolved
and populated the oceans (Holland, 2006; Lyons et al., 2014). Slowly,
oxygen started to rise in the oceans, and later in the atmosphere,
initiating the Great Oxygenation Event approximately 2.45 billionGreat Oxygenation

Event years ago (Holland, 2006). The genesis of the highly reactive free
oxygen left marked fingerprints in the geological rock record, for
example, the emergence of oxidized red soils on land (Lyons et al.,
2014). At first, the atmospheric oxygen concentration remained at
a low level, until ∼0.85 billion years ago, when photosynthesizing
organisms also colonized the continents (Knauth and Kennedy, 2009).
The explosion of photosynthesizing communities on the land surface
caused a sharp increase in atmospheric oxygen and stabilized to the
current level of ∼21% (Holland, 2006; Knauth and Kennedy, 2009)

The continuous photosynthetic replenishment of oxygen sustains an
oxidizing atmosphere with considerable consequences for the Earth
system. For example, Kopp et al. (2005) suggested that the persis-
tent inflow of oxygen depleted the concentration of methane, which
was probably the most significant greenhouse gas in Earth’s atmo-Snowball Earth

sphere around 2.2 – 2.3 billion years ago (Kasting and Catling, 2003).
Photosynthetic oxygen nearly completely removed methane from the
atmosphere, which induced a drastic climate shift to global glaciation,
the so-called Makganyene Snowball Earth (Kopp et al., 2005).

The ability of photosynthesis to harvest energy directly from the
incoming sunlight and store it in organic compounds generates chemi-
cal free energy on the planet (Kleidon, 2010). This free chemical energy
can perform work in the Earth system, for example, by accelerating
geochemical processes (Kleidon, 2010; Spohn and Breuer, 2010). Ros-
ing et al. (2006) stated that photosynthesis contributes about three
times more energy to geochemical cycles than Earth’s internal heat
engine at present day conditions. The authors suggested that this
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1.1 photosynthesis and earth’s history

source of energy fueled granite production, which led to the rise and
stabilization of Earth’s continents (Rosing et al., 2006). Höning et al. The Rise of

Continents(2014) demonstrated that continents would cover only about 10% of
Earth’s surface in a hypothetical world in which life never had existed.
Kleidon (2010) and others (Rosing et al., 2006; Spohn and Breuer, 2010;
Dyke et al., 2011) go further, and speculate that photosynthetically
generated energy and oxygen could even influence the Earth’s inte-
rior, plate tectonics, mantle convection, and thus the geodynamo and
Earth’s magnetic field, where the latter prevents atmospheric escape
and ozone depletion — essential conditions for multicellular life.

In this context, Lovelock and Margulis (1974) formulated the provoca-
tive Gaia hypothesis, which constitutes that Earth is a self-regulating
system. They based their speculations on various processes induced by
life to modify Earth to its net advantage. For instance, life introduced
free oxygen in the atmosphere, which enabled the development of an
effective ozone screen, which again shields organisms from harmful
solar UV radiation (Kasting and Catling, 2003). Another example is Gaia Hypothesis

the already described expansion of land plants and the associated
draw-down of atmospheric CO2 (mainly due to enhanced weathering
rates), which helped to ensure Earth’s long-term habitability (Foster et
al., 2017). The Gaia hypothesis has been heavily criticized, but viewing
Earth as an interconnected system of biological, chemical and physical
processes has stimulated innovative research (Kleidon, 2010).

In modern times, humans started to dominate Earth’s surface and
to change it on global and geological scales (Lewis and Maslin, 2015).
Thus, Crutzen (2002) suggested the introduction of a new geological
epoch, the Anthropocene. The discussion on the beginning of the An-
thropocene is still ongoing. Lewis and Maslin (2015) proposed the
arrival of Europeans in the Americas, which caused a catastrophic
decline of the indigenous population by 95% (about 50 million deaths).
The abandonment of agricultural areas facilitated the regrowth of Anthropocene

forests, which resulted in a carbon sequestration of 5–40 Pg (Lewis
and Maslin, 2015). It is thus speculated that this perturbation of the
global carbon cycle significantly contributed to the decline of atmo-
spheric CO2 peaking between 1570 and 1620, which resulted in a
subsequent cool period, known as the Little Ice Age (Dull et al., 2010;
Lewis and Maslin, 2015).

Zalasiewicz et al. (2008) suggested the onset of the industrial revolu-
tion as a starting point of the Anthropocene. The industrial revolution
is characterized by the extraction and combustion of fossil fuels as
source of energy — solar energy fixated by photosynthesis and stored
in biomass over millions of years. Associated anthropogenic carbon Human Perturbation

of the Carbon Cycleemissions led to a sharp increase in atmospheric CO2 concentration,
unprecedented for at least 15–20 million years (Tripati et al., 2009;
Foster et al., 2017). This drastic human-induced perturbation of the
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plants under rising co2 – an essay on the global change of vegetation

global carbon cycle has significant consequences for the Earth system,
the most prominent being climate change. The biosphere, particularly
plants, play a central role in this, because they are getting more pro-
ductive with rising CO2 concentrations. This phenomenon is the topic
I turn to next.

1.2 plants , co2 and climate

Plants modulate land-atmosphere interactions through the exchange
of energy, water and carbon. Stomata, microscopic pores on the sur-
face of leaves, enable and regulate the gas exchange between the leaf
interior and the atmosphere. In this way, plants absorb and fixate
atmospheric carbon dioxide in sugars. This constitutes the largest flux
in the global carbon cycle (∼120 Pg C yr−1; gross primary production,
GPP; Beer et al., 2010; Schlesinger and Bernhardt, 2013). The assimi-Carbon Cycle

lated sugars are allocated to grow leaves, stems, and roots, as well as
to maintain the plant’s metabolism (∼60 Pg C yr−1; autotrophic respi-
ration; Schlesinger and Bernhardt, 2013). At equilibrium, the carbon
fixed by plants reenters the atmosphere due to microbial respiration
and decomposition processes (∼60 Pg C yr−1; heteotrophic respiration;
Schlesinger and Bernhardt, 2013).

Through their root system, plants absorb water from soils. Especially
trees are capable of pumping up groundwater from deeper soils. Due
to the atmospheric demand for water (i.e. vapor pressure deficit),
plants lose water vapor when opening their stomata (transpiration).
Globally, the transpiration water flux is about 50% larger than theHydrological Cycle

terrestrial evaporation flux (Schlesinger and Jasechko, 2014; Lian et al.,
2018). As a consequence, transpiration constitutes a dominant force in
the continental moisture recycling and accounts for about 40% of the
precipitation over land (Schlesinger and Jasechko, 2014).

In addition to the exchange of moisture and carbon, plants influence
Earth’s surface properties through their persistent structures of leaves
and stems (Kleidon, 2010). Foremost, photosynthetic absorption of
solar radiation decreases the surface albedo. Further, vegetation’s
physical presence increases the surface roughness, which modulatesSurface Energy

Fluxes the near-surface air flow (McPherson, 2007). Both processes affect
the surface energy balance and thus have an impact on prevailing
environmental conditions, such as the surface temperature (Kleidon,
2010; Schlesinger and Bernhardt, 2013).

The strength of these processes strongly depends on the vegetation
type, which is determined by the regional climatological boundary
conditions. Through interspecific (i.e. between species) competition an
optimized plant functional type evolved for different environmental
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1.2 plants , co2 and climate

conditions comprising the seasonal variations of temperature, incom-
ing radiation, and large scale precipitation patterns. Köppen (1884) Climate Zones

used the tight link between climate and vegetation in the definition
and classification of Earth’s climate zones (Köppen, 1884; Köppen,
1923).

In the climate context, changes of vegetation are expressed in
changes in leaf area index (LAI), defined as leaf area per unit ground
area (m2 m−2). A persistent increase in LAI is referred to as vegetation
greening, whereas a decline characterizes browning. Land use and
land cover changes are characterized as direct anthropogenic drivers of
vegetation changes (Chen et al., 2019), and mainly have local climatic Direct and Indirect

Vegetation Changeseffects due to changes of surface properties (neglecting associated
carbon fluxes). Humans also indirectly affect global natural vegeta-
tion through carbon emissions from fossil fuel and biomass burning
(indirect anthropogenic drivers). The enrichment of atmospheric CO2

induces climate changes and the CO2 fertilization effect of plants.

The term "CO2 fertilization" conflates two effects of increased am-
bient CO2 on the physiology of plants. Foremost, photosynthesis is
generally CO2-limited (Lemon, 1983). In the leaf interior, carbon assim-
ilation is preformed by the macromolecule Ribulose 1,5-Bisphosphat
Carboxylase/Oxygenase (RuBisCO), the most abundant enzyme on
Earth (Foyer et al., 2009). However, RuBisCO also preforms photores- CO2 Fertilization

piration, a light-dependent reaction in which CO2 is released and
oxygen is consumed, similar to respiration. The relative rates of car-
bon assimilation and photorespiration are determined by the partial
pressures of CO2 and O2 in the leaf interior, hence, CO2 and O2 com-
pete for RuBisCO (Sharkey, 1988; Foyer et al., 2009). The physiological
functions of photorespiration remain controversial (Foyer et al., 2009).
The RuBisCO machinery evolved under a CO2-rich and oxygen-poor
atmosphere (Section 1.1), hence photorespiration was an insignificant
process under these conditions (Foyer et al., 2009). At present-day Photorespiration

conditions, roughly 25% of the incoming solar energy is used up by
photorespiration, which classifies it to be among the most wasteful
processes on the planet (Sharkey, 1988; Foyer et al., 2009). A back-
of-the-envelope calculation based on the numbers for energy fluxes
provided by Kleidon (2010), indicates that the energy loss due to pho-
torespiration is about four times as high as the current primary energy
consumption by humans. Overall, elevated CO2 concentration in the
interior of leaves stimulates higher rates of carbon and energy fixation
(Leakey et al., 2009; Fatichi et al., 2016).

Simultaneously, the CO2 enrichment in the atmosphere, and thus,
in the leaf interior, decreases the demand of gas exchange between
plants and atmosphere. As a consequence, plants adapt in lower-
ing their stomatal conductance and thereby save soil moisture. The
decrease in water loss through reduced plant transpiration results
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plants under rising co2 – an essay on the global change of vegetation

in an enhanced water-use efficiency (ratio of carbon assimilation toWater-Use Efficiency

transpiration rate; Ukkola et al., 2016; Fatichi et al., 2016). In theory,
both effects – increased carbon assimilation and increased water-use
efficiency – should result in an expansion of leaf area, especially in
environments where plant growth is constrained by water availability
(Donohue et al., 2009; Donohue et al., 2013; Ukkola et al., 2016).

The radiative effect of CO2, namely the absorption and emission
of infrared radiation in the atmosphere (greenhouse effect), induces
climatic changes (temperature, precipitation, and radiation), which
can affect ecosystems in either way. Temperature-limited biomes are
expected to green due to warming and a prolongation of the growing
season (Myneni et al., 1997; Nemani et al., 2003; Park et al., 2016).
Persistent changes in rainfall, the most significant modulator of plant
growth on global scale, can induce vegetation greening in water-Effects of Climatic

Changes limited ecosystems (Fensholt et al., 2012). On the other hand, long-term
drying (Zhou et al., 2014) as well as increased intensity and frequency
of disturbances (Seidl et al., 2017) such as droughts (Bonal et al., 2016)
and wildfires (Goetz et al., 2005; Verbyla, 2011) can induce regional
vegetation browning trends. Changes in cloudiness determine the
amount of radiation that reaches the surface, thus, changes in cloud
cover can trigger or weaken plant growth (Nemani et al., 2003).

Other factors of greening and browning patterns can be associated to
increased nitrogen deposition (in consequence of rising concentration
of nitrogen oxides due to fossil fuel, biomass burning and application
of agricultural synthetic fertilizier; Houlton and Morford, 2014), orOther Factors

ecosystem stress induced by insect outbreaks favored by climatic
changes (Verbyla, 2011). However, these drivers are considered to be
of minor importance on global scale (Zhu et al., 2016).

The terrestrial biosphere and climate interact through a web of feed-
backs (Ciais et al., 2013; Prentice et al., 2015). The most prominent
example are the carbon-climate feedbacks (Friedlingstein et al., 2003;
Schimel et al., 2015). Climate change is expected to reduce the terres-
trial carbon fixation, especially in the tropics, resulting in a positiveCarbon-Climate

Feedbacks feedback in the climate-carbon system (Friedlingstein et al., 2003). On
the other hand, rising CO2 stimulates enhanced terrestrial carbon fixa-
tion through the physiological effects, inducing a negative feedback in
the climate-carbon system (Friedlingstein et al., 2003).

1.3 observational evidence of a globally changing veg-
etation

Over the last decades, several studies reported large-scale changes of
the terrestrial biosphere. In 1996, a team led by David Charles Keeling
demonstrated that plant productivity in the Northern Hemisphere
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1.3 observational evidence of a globally changing vegetation

has increased since the 1960s analyzing the seasonal cycle of atmo-
spheric CO2 concentration (Keeling et al., 1996). More pronounced
seasonal swings of atmospheric CO2 concentration reflect an increased
productivity of land vegetation. Based on the observational records Seasonal Cycle of

Atmospheric CO2from the Mauna Loa Observatory, Hawaii, and stations in the Arc-
tic, the authors showed that northern hemispheric vegetation activity
increased by 20%, and 40% in the Arctic. Moreover, they reported
that phase changes in the seasonal cycle indicate a lengthening of the
growing seasons by about seven days. They argued that increased sur-
face temperatures are the main driver of the enhancement in northern
vegetation activity – an early responder to global warming.

In the following year, Myneni et al. (1997) corroborated these find-
ings using the first spaceborne measurements of Earth’s spectral re-
flectances. Photosynthesizing organisms absorb solar radiation in the
spectrum of visible light (wavelength of ∼ 0.4 – 0.7 µm). So, changes
in the measured reflectances are indicative of changes in the photosyn-
thetic activity of Earth’s surface. Myneni et al. (1997) demonstrated Greening North

that the biospheric activity in the mid and high northern latitudes
increased substantially throughout the 1980s. The satellite observa-
tions also confirmed the evidence of a prolongation of the growing
season. The authors attributed the observed greening trend of the
temperature-limited ecosystems to warming and the reduction in
snow cover.

In 2003, Nemani et al. (2003) demonstrated that the vegetation green-
ing trend is a global phenomenon. Analyzing almost two decades of
satellite observation, they report that especially the tropical forests
exhibit intensified photosynthetic carbon fixation associated to cli-
matic changes, mainly due to cloud cover. Several studies followed
examining the detection of persistent declining trends in leaf area
in the Earth’s forests on regional scale (Goetz et al., 2005; Verbyla, Greening Earth

2011; Zhou et al., 2014). Zhu et al. (2016) presented the first global
driver attribution of observed vegetation changes, focusing on the
greening areas. On the basis of Earth system model simulations and
the rich methodology of the Detection and Attribution discipline (e.g.
Hasselmann, 1993; Ribes et al., 2013), they reported that 70% of the
observed increase in vegetation can be tied to the CO2 fertilization
effect.

Recent results by Chen et al. (2019) are challenging previous studies
which identified the effects of CO2 as main drivers of observed green-
ing. The authors reported that more than one third of the vegetated
area is greening in consequence of human land management, i.e. arti-
ficial irrigation, multiple cropping, and the application of fertilizers Anthropogenic

Vegetationand pesticides (direct drivers). In general, the greening of anthro-
pogenic vegetation has practically no long-term effect on the carbon
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cycle, because CO2 absorbed by agricultural plants quickly reenters
the atmosphere through food consumption.

Natural ecosystems, on the contrary, act as a strong carbon sink
of anthropogenic emissions (Quéré et al., 2018b) and mitigate man-
made climate change (Sitch et al., 2015; Bonan, 2008). A mechanistic
understanding of natural vegetation dynamics in a CO2-enrichedNatural Vegetation

atmosphere is thus critical and helps to answer one of the key ques-
tion in current climate research, where does the anthropogenic carbon go
(Marotzke et al., 2017)?
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1.4 paper 1 : effects of rising co2 on global natural veg-
etation

Paper 1

Several decades of satellite observations reveal widespread and persis-
tent changes of the terrestrial vegetation across the globe. The contro-
versial debate on the mechanisms underlying these changes is ongoing
(Section 1.3). A detailed assessment of regionally dominating drivers
on biome scale, but integrated in the global picture, is lacking. In light
of nearly forty years of continuous satellite observations and the new
generation of Earth system models, I conduct a driver attribution of
global vegetation changes and challenge previous findings. I focus
my analyses on the response of natural vegetation to the two main
indirect drivers: the physiological and radiative effect of rising CO2.
In particular, I formulate the following guiding research questions:

1. How is global natural vegetation changing in response to in-
creasing CO2 concentration? Research questions

in Paper 1
2. What is causing vegetation greening and browning on biome

level?

In this study, I analyze 37 years of global LAI satellite observations
(1982–2017) based on the Advanced Very High Resolution Radiometer
(AVHRR) sensors (Zhu et al., 2013). Although these sensors have
their limitations (Chen et al., 2019), the AVHRR record is unique
in terms of its temporal coverage and opens up the opportunity to
investigate the evolution of Earth’s vegetation while atmospheric
CO2 concentration increased by 65 ppm (341 to 406 ppm). Vegetation
changes, i.e. greening or browning, are defined as annual averaged
LAI sensitivity to rising CO2 relative to the initial years of the record
(1982–1984, denoted Λ). I develop a detailed biome map and identify
spatial clusters of significant greening and browning trends in natural
vegetation.

Further, I conduct a series of historical and factorial simulations
with the latest version of the fully-coupled Max Planck Institute Earth
system model (MPI-ESM, multiple realizations) and make use of a
collection of 13 land surface models (LSMs) driven with observed
climatic conditions (Quéré et al., 2018b, TRENDYv7 ensemble). As a
first step, I examine if the historical simulations capture the observed
behavior of natural vegetation under rising CO2. Next, I analyze fac-
torial simulations to disentangle and quantify the different effects of
rising CO2 on LAI. Each factorial experiment includes all historical
forcings expect one, which is retained at its pre-industrial conditions.
The conventional approach in the field of Detection and Attribution
is the optimal fingerprinting method (Hasselmann, 1993; Ribes et al.,

11
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2013; Zhu et al., 2016). However, this framework is based on assump-
tions which are not suitable for the problem formulated in this study
(Winkler et al., submitted). To overcome these limitations, I propose to
apply the recently introduced approach of Causal Counterfactual The-
ory (Pearl, 2009; Hannart et al., 2016; Hannart and Naveau, 2018). This
technique is anchored in a formal theory of event causation developed
in computer science (Pearl, 2009; Marotzke, 2019). The method allows
us to test if long-term greening/browning trends can be attributed to
the effects of rising CO2 in a probabilistic setting combining necessary
and sufficient causation (PNS). More precisely, I address the question,
what is the probability (i.e. PNS) that a given forcing (e.g. radiative
effect of CO2) has caused an observed long-term change in the system
(e.g. greening of the Arctic).

This is the first study that addresses vegetation browning as well asResults

greening patterns across biomes on global scale. My analysis suggests,
that greening is dominating in terms of area fraction, but browning
clusters are beginning to emerge. Particularly, throughout the recent
two decades, the Earth’s greening trend is slowing down and clus-
ters of browning are intensifying. I find that leaf area is primarily
decreasing in the pan-tropical green belt of dense and biodiverse veg-
etation. Leaf area gain occurs mostly in sparsely vegetated regions in
cold and/or arid climatic zones, and in the temperate forests. Taken
together, vegetation greening occurs mainly in regions of low LAI,
whereas browning happens primarily in regions of high LAI. In a
global comparison, the greening of low LAI and the browning of high
LAI induces a convergence of Earth’s natural vegetation.

I identify clusters of greening and browning across all continents
and conduct a regional driver attribution based on factorial model
simulations. Figure 1 illustrates PNS for all greening and browning
clusters, comparing the radiative, physiological, and the overall effect
of CO2. These results suggest that the physiological effect of CO2 (i.e.
"CO2 fertilization") is merely the dominant driver of increasing leaf
area in the temperate forests, cool arid grasslands and likely the Aus-
tralian shrublands, but might only contribute slightly in other biomes.
This finding questions the study by Zhu et al. (2016), who reported
that CO2 fertilization accounts for ∼70% of the Earth’s greening trend.
My analysis suggests that many clusters of greening and browning
bear the signature of climatic changes. For example, the greening of
Sub-Saharan grasslands and savannas can be explained by increased
rainfall, however, a robust attribution remains inconclusive. Climate
changes, primarily warming and drying, also determine the patterns
of vegetation changes in the northern ecosystems, i.e. greening of
Eurasian boreal forests and North American tundra, but also emerg-
ing browning in Eurasian tundra. Models fail to capture the browning
of the North American boreal forests. In the tropics, models suggest
that rising CO2 has compensatory effects on LAI. Climatic changes
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induce browning, which is outbalanced by greening due to a strong
CO2 fertilization effect in models. Hence, if the physiological effect of
CO2 is neglected, models simulate browning patterns in the tropics
comparable to observations.

The current generation of land surface models lack and/or misrep-
resent essential processes of the terrestrial biosphere. They mainly
fail to capture the full extent of detrimental effects of rising CO2 in
natural ecosystems. Especially, the deficiency of reproducing the ob-
served leaf area loss in the highly productive tropics has considerable
implications on climate-carbon system projections. For the 21st cen-
tury, estimates range from a stable CO2 fertilization-driven carbon
sink to a warming-induced collapse of the system at a certain CO2

concentration (Cox et al., 2000). Hence, the tropical forests have the
potential to crucially influence the evolution of climate in the next
decades, and thus, should be a vital issue in model development and
future research.

1. The Earth is predominantly greening in the extratropics, but
browning clusters are emerging, mainly in the tropics. Key findings in

Paper 1
2. CO2 fertilization is not the globally prevalent driver of green-

ing as previously suggested. Many patterns of greening and
browning can be attributed to climatic changes.
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Figure 1 | Probabilities of sufficient and necessary causation (PNS) of
LAI changes in response to CO2 for eleven clusters. Bar charts
represent PNS of LAI changes in response to the physiological
effect (a, b), radiative effect of CO2 (c, d) and all anthropogenic
forcings (e, f). Different colors represent the identified clusters
of substantial change in LAI. Panels on the left comprise clus-
ters that show consistent greening, panels on the right represent
emerging browning cluster (defined as observed net leaf area loss
in the period 2000–2017). The two types of bar illustrate the two
different ensembles of model simulations (left: MPI-ESM, right:
TRENDYv7).
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1.5 uncertainty in the terrestrial carbon sink

Next, I demonstrate how the obtained knowledge about historical
vegetation changes can be used to reduce the uncertainty of a key
unknown in current climate research – the future terrestrial carbon
sink. But first, I explore the origins of this uncertainty.

Predicting climate change requires knowing where the emitted
CO2 (currently ∼40 Pg CO2 yr−1; Quéré et al., 2018a) goes. The Global
Carbon Project (GCP; Quéré et al., 2018a) regularly reports the updated
global budget of carbon fluxes. The oceanic (∼24%), and particularly,
the airborne (∼46%) fraction are considered to be robust estimates.
Determining the increased carbon uptake by the terrestrial biosphere
is more challenging. As a consequence, GCP did not estimate the land
carbon sink independently, but rather considered it as the residual
from the other terms (∼30%) in the global budget, until recently
(Quéré et al., 2018a). Given that the estimate of the current terrestrial
carbon sink is uncertain, despite the variety of global observations,
naturally, predicting the future terrestrial carbon sink is a complex
endeavor.

The main source of uncertainty arises from the divergence of top-
down (e.g. atmospheric CO2 inversions, satellite observations) and
bottom-up approaches (e.g. ecological in-situ studies). CO2 fertiliza-
tion and warming in temperature-limited ecosystems are expected
to cause enhanced plant growth based on our physiological under-
standing (Section 1.2). From an atmospheric perspective, many studies
find evidence for an increased plant productivity. For instance, the
seasonal cycle of atmospheric CO2 from multi-decadal measurements
(Section 1.3; Keeling et al., 1996; Graven et al., 2013; Wenzel et al.,
2016; Forkel et al., 2016) as well as global atmospheric CO2 transport
models clearly point at an increased carbon uptake by the terrestrial
biosphere (Schimel et al., 2015; Fernández-Martínez et al., 2019). Sev-
eral field studies, however, suggest that no significant carbon uptake
can be determined. For instance, a number of free-air CO2 enrichment
(FACE) experiments revealed that biomass and/or leaf area are not
significantly increasing in response to elevated CO2 (Norby et al., 2003;
Körner et al., 2005; Körner, 2006). However, other in-situ studies found
evidence for increased vegetation productivity resulting from elevated
atmospheric CO2 levels (Leakey et al., 2009). These inconsistent find-
ings and underlying mechanisms are matter of debate (Leakey et al.,
2009; Norby and Zak, 2011). Norby et al. (2010) demonstrated that nu-
trient limitation, primarily nitrogen, suppresses or weakens the effect
of CO2 fertilization. Others suggested that the presence of mycorrhiza
(i.e. symbiosis between fungi and plants) controls the strength of CO2

fertilization (Terrer et al., 2016). Körner (2006) reviewed findings of
FACE experiments across various biomes and concluded that photo-
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synthetic carbon fixation in response to elevated CO2 is by far not as
high as anticipated.

But where does the residual term of ∼3.2 Pg (GCP; Quéré et al.,
2018b) of anthropogenic carbon emissions go every year, if plants do
not absorb considerably more carbon with rising CO2? In my second
study, I employ a new method that combines observations and process-
based model predictions to shed light upon the uncertainty in the
terrestrial carbon sink.

1.6 paper 2 : emergent constraint on projected photo-
synthetic carbon fixation

Paper 2

Pronounced uncertainty in the terrestrial carbon sink results in di-
vergent trajectories of the evolution of the 21st century carbon cycle
(Friedlingstein et al., 2013; Anav et al., 2013; Arora et al., 2013). In
recent years, the concept of Emergent Constraints (EC) arose in this
context, namely, a method to reduce uncertainty in ESM projections
relying on the synergy of observations and historical simulations (Hall
and Qu, 2006; Cox et al., 2013; Klein and Hall, 2015; Wenzel et al.,
2016). The EC method consists of two parts, a linear relationship aris-Emergent

Constraints ing from the collective behavior of a multi-model ensemble and an
observational estimate for imposing a constraint on the projections.
The linear relationship is a physically (or physiologically) based cor-
relation between inter-model variations in an observable entity of
the contemporary climate system (predictor) and a projected variable
(predictand). Combining the emergent linear relationship with observa-
tions of the predictor sets a constraint on the predictand (Knutti et al.,
2017; Klein and Hall, 2015; Cox et al., 2013; Flato et al., 2013).

In my second paper, I apply the EC concept to reduce uncertainty
in multi-model projections of terrestrial photosynthetic carbon fix-
ation (gross primary production, GPP) using historical simulations
and satellite observations of LAI. I focus my analysis on the northern
high latitudes (NHL, north of 60◦ N), because of two reasons. First,
the direct human impact (i.e. land management) can be neglected in
this region, thus, I can assume that the observed changes reflect the
response of natural ecosystems. Second, the observational evidence
of an increased plant productivity in the recent decades is well estab-
lished (e.g. Keeling et al., 1996; Myneni et al., 1997; Graven et al., 2013;
Forkel et al., 2016; Wenzel et al., 2016; Winkler et al., submitted) – an
important requisite in defining a robust predictor.

The enhanced GPP due to the radiative and physiological effects of
CO2 becomes evident in large scale increase in summer time green
leaf area (Myneni et al., 1997; Zhu et al., 2016; Mao et al., 2016; Winkler
et al., submitted). Satellite observations over the last three decades
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reveal that 52% of the vegetated lands in the NHL show statistically
significant greening trends, while only 12% show browning trends,
mostly in the North American boreal forests due to disturbances
(Goetz et al., 2005; Winkler et al., submitted). I therefore hypothesize
that the LAI changes in response to increased CO2 inferred from the
historical period can be used to obtain a constrained estimate of future
GPP enhancement from both the radiative and physiological effects.
In particular, I pursue the following research questions in this study:

1. Can we use the observed greening trends to constrain projec-
tions of photosynthetic carbon fixation under rising CO2? Research questions

in Paper 2
2. If so, is the Emergent Constraint in agreement with other ob-

servational estimates?

I use two sets of simulations available from seven ESMs from the
Coupled Model Intercomparison Project Phase 5 (CMIP5; Taylor et
al., 2012) – one with historical forcings including anthropogenic CO2

emissions for the period 1850–2005, and the second with idealized
forcing (1% CO2 increase per year, compounded annually, starting
from a pre-industrial value of 284 ppm until quadrupling). Leaf area
changes are represented as changes in annual maximum LAI (LAImax),
a good measure in the comparison of observations and models (Cook
and Pau, 2013). The magnitude of the physiological effect is repre-
sented by the CO2 concentration and the radiative effect by growing
degree days (GDD0, > 0◦ C) as plant growth in NHL is principally
limited by the growing season temperature (Nemani et al., 2003). To
avoid redundancy from co-linearity between the two driver variables,
but retain their underlying time-trend and interannual variability, I
use the dominant mode from a principal component analysis of CO2

and GDD0 as the proxy driver (denoted ω). For models and obser-
vations alike, I derive the LAImax sensitivity to the forcing signal ω

(m2 m−2 per unit ω, hereafter greening sensitivity), which constitutes
the predictor in the EC analysis (Figure 2a). The predictand is defined
as the absolute increase in GPP (∆GPP) arising from the combined
radiative and physiological effects for a doubling of the atmospheric
CO2 concentration (2×CO2).

The CMIP5 models show a large spread in both modeled histor- Results

ical greening sensitivities (predictor, Figure 2a and 2b) and ∆GPP
at 2×CO2 (predictand, Figure 2c). The inter-model variation in the
predictor maps linearly to variation in the predictand (Figure 2c).
More precisely, models with low LAImax sensitivity (Figure 2b) project
lower ∆GPP for a given increment of CO2 concentration, and vice
versa. This linear relation in inter-model variation together with the
observed estimate of the predictor renders the application of an EC on
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∆GPP at 2×CO2 possible. Moreover, the probability contours about
the best linear fit across the ensemble together with the uncertainty in
the observed predictor (blue and grey shadings in 2c) allow a robust
characterization of the constrained estimate, namely 3.4 ± 0.2 Pg C
yr−1 for 2×CO2 in NHL (Figure 2d). This EC estimate is ∼60% larger
than the conventionally used multi-model mean value (2.1 ± 1.91 Pg
C yr−1 for 2×CO2 in NHL). To imbue confidence in the EC estimate, I
derive three independent comparable estimates from long-term in-situ
atmospheric CO2 measurements and atmospheric inversions (details
in Winkler et al., 2019a).

The presented LAI-based analyses corroborate the findings of a
substantial increase of plant carbon fixation in the NHL (Keeling et al.,
1996; Forkel et al., 2016; Ciais et al., 2019). These results challenge
the field studies, which could not detect a considerable increase in
carbon fixation under elevated CO2 (Körner, 2006). I argue, that FACE
experiments due to their design of a sharp increase of CO2 concen-
tration (quasi-instant forcing of >100 ppm) are not representative for
the real-world response (annual forcing of 2-3 ppm). In this study, I
demonstrated how the synthesis of observations and models through
the EC concept can help to reduce uncertainty of the future terrestrial
carbon sink. The EC method also has its limitations which is the topic
I turn to next.

1. The greening sensitivity can be used as an Emergent Con-
straint on projections of photosynthesis enhancement in a
2×CO2 world (3.4 ± 0.2 Pg C yr−1 in NHL).Key findings in

Paper 2
2. Independent lines of evidence corroborate the Emergent Con-

straint estimate indicating that most models underestimate
the effect of rising CO2 on photosynthesis.
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Figure 2 | CMIP5 ensemble mean considerably underestimates absolute in-
crease of GPP for a doubling of pre-industrial atmospheric CO2
concentration (2×CO2). a, Observations (black) and CMIP5 histor-
ical simulations (colors) of the first principal component of annual
mean atmospheric CO2 and annual growing degree days above 0
◦C (ω) versus the annual LAImax. All quantities are area weighted
and spatially averaged for NHL (60◦N - 90◦N). b, Bar chart show-
ing the corresponding slopes of the best linear fits, where the
grey bar at the top indicates the standard error. Linear trends are
derived for the period 1982-2016 for observations and 1971-2005
for model simulations, maximizing the overlap and sample size. c,
Linear relationship between the sensitivity of annual LAImax to ω
(x axis) and the absolute increase of high-latitude GPP at 2×CO2.
Each model is represented by an individually colored marker with
error bars indicating one standard deviation (y axis) and standard
error (x axis). The black solid line shows observed sensitivity,
where the grey shading indicates the respective standard error.
The blue line shows the best linear fit across the CMIP5 ensemble
including the 68% confidence interval estimated by bootstrapping
(blue shading; Methods). The intersection of the blue and black
line gives the Emergent Constraint on ∆GPP at 2×CO2 (dashed
black line). d, Probability density functions resulting from Emer-
gent Constraint (blue) and CMIP5 ensemble mean estimates (red,
assuming Gaussian distribution).
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1.7 paper 3 : investigating the applicability of emergent
constraints

The concept of EC constitutes a pivotal method in reducing uncertaintyPaper 3

in climate and carbon cycle projections and becomes evermore popular
(e.g. Mystakidis et al., 2016; Wenzel et al., 2016; Cox et al., 2018; Lian
et al., 2018; Hall et al., 2019). However, a detailed analysis of its
applicability and limitations is lacking.

The robustness of the reported EC estimates is still controversially
debated. For example, Cox et al. (2013), Wang et al. (2014), and Wenzel
et al. (2015) investigated on constraining future terrestrial tropical car-
bon storage using the same set of models and observations. However,
they arrived at different EC estimates and divergent conclusions. Some
reasons for the failure and essential criteria required for successful
application of the EC approach were described previously (Bracegir-
dle and Stephenson, 2012; Klein and Hall, 2015), but this list is far
from complete. Thus, a detailed investigation of potential sources of
uncertainty and limitations of the EC method is needed. In particular,
the guiding research questions of my third study read as follows:

1. What are potential sources of uncertainty in the Emergent Con-
straint approach?Research questions

in Paper 3
2. What are the limitations of the applicability of the Emergent

Constraint method?

In general terms, the EC method utilizes a measurable variable
(i.e. predictor) from the recent historical past to obtain a constrained
estimate of change in an entity (i.e. predictand) that is difficult-to-
measure and/or at a potential future state (i.e. CO2 forcing; Figure
3). This procedure critically depends on, first, accurate estimation
of the predictor from observations and models, and second, on a
robust relationship between inter-model variations in the predictor-
predictand space. Here, I revisit the EC analysis presented in Section
1.6 (Winkler et al., 2019a) and elaborate on key issues related to these
two themes.

First, I address potential uncertainties rooted in spatial aggrega-
tion of data and model simulations, as the EC method is applied
on large areal values of predictor and predictand. This requires an
investigation into uncertainties in the observational data source and
an evaluation of the spatial and temporal variability of the predictor
in both observations and model simulations. Second, the relationship
between the predictor (here LAImax sensitivity to ω) and the predic-
tand (here ∆GPP) across the model ensemble depends on a strong
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coupling among simultaneous changes in the entities. This coupling
depends in a complex manner on the magnitude (level), time-rate of
application (scenarios) and effects (e.g. radiative and/or physiological)
of CO2 forcing. I investigate how each one of these three aspects of
forcing can impair the EC estimate of the predictand (∆GPP).

The observational uncertainty, as in many statistical methods, is Results

an important issue. The EC method, however, is particularly sensi-
tive to observational uncertainty, because the single observational
predictor essentially determines the constrained estimate. On the con-
trary, the emergent linear relationship, the second component of the
EC approach, is established based on a collection of multi-model esti-
mates, where each model gets ’one vote’ (however, some models might
be more influential than others; Bracegirdle and Stephenson, 2012).
Thus, the observational uncertainty has a much larger bearing on the
EC than the uncertainty of each individual model. To overcome this
source of uncertainty, I argue, that various meaningful observations, if
applicable, should be taken into consideration.

A large source of uncertainty is associated with temporal variability
and model-observations comparability of the predictor. The evaluation
of the predictor requires temporal window lengths of sufficient dura-
tion (high signal-to-noise ratio; ∼ 30 years, dependent on the variable).
Further, the estimation of modeled and observed predictor needs to
be based on temporally matching window length and location along
the forcing time line. In other words, it is important that all predic-
tors describe the system for the same state of forcing. For example,
some analyses (e.g. Wenzel et al., 2016) might have yielded different
results and conclusions if model and observational predictors were
temporally matched.

The EC method raises an obvious question – does it not implicitly as-
sume that the key operative mechanisms underpinning the EC relation
remain unchanged because a future system state is being predicted
based on its past behavior (i.e. assumption of linearity)? To investigate
this hypothesis, I perform a thought experiment combining linear
and non-linear predictor-predictand relationships. I demonstrate that
changes in predictor and predictand relate linearly within the model
ensemble, given the models agree on the system dynamics under
increasing forcing. For instance, the relationship underpinning the
EC approach presented in Winkler et al. (2019a), namely, concurrent
changes of ∆GPP and ∆LAImax, saturate at higher CO2 concentra-
tion (i.e. non-linear response for e.g. 3×CO2) I find that all CMIP5
models agree on the this saturation effect, and thus, the predictor-
predictand linear relationship in the ensemble holds. However, at even
higher CO2 concentrations, the models diverge at which point the
predictor-predictand relation breaks down and the EC method fails.
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Another intriguing finding is that photosynthesis seems to exhibit a
pathway-dependence (e.g. different RCP scenarios). This means, that
the projections of enhanced plant productivity vary among different
time rates of forcing, but fixed magnitude (i.e. same increment of CO2).
This aspect could be related to memory effects and/or non-linearities
in the system, which require further investigation and should be taken
into account when estimating the predictand.

In this study, I addressed various aspects of the EC method. My
findings are illustrated by means of a carbon cycle example, however,
they generally contribute to a more robust application of the EC
method in Earth system sciences.

1. Potential sources of uncertainty in the EC method are associ-
ated to model-observation comparability, temporal variability,
and observational data source of the predictor.Key findings in

Paper 3
2. Limitations of the EC method primarily originate from a dis-

agreement between models on system dynamics.
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Figure 3 | Schematic depiction of the Emergent Constraint (EC) method and
factors affecting the uncertainty of the constrained estimate. The
predictor (x axis) is change in annual maximum of green leaf area
index (LAImax) due to unit forcing (CO2 increase and associated
climatic changes) during a representative historical period. It is
termed greening sensitivity in this study. The predictand (y axis)
is projected changes in Gross Primary Productivity (GPP) in re-
sponse to rising CO2 concentration (e.g. for a doubling of the
pre-industrial level). Both the predictor and predictand refer to
large area values, in this case, the entire Northern High Latitudes
(NHL). Inter-model variations (each symbol represents a model)
in matching pairs of predictor and predictand result in a linear
relationship between the two (green band), i.e. the ratio (pre-
dictand/predictor) is approximately constant across the model
ensemble. The slope depends on forcing attributes (gray shading),
such as its level (CO2 concentration), time rate of application (sce-
narios such as various RCPs) and different effects (i.e. fertilization,
radiative, etc.). The observed sensitivity (yellow vertical bar) is
used to find the constrained estimate of the predictand (i.e. change
in GPP). The ability to accurately estimate the predictor depends
on the source of observational data, and its spatial and temporal
variability. Observed (yellow bar) and modeled predictor values
(x coordinate of symbols) must be obtained from matching time
periods, i.e. at the same level of historical forcing, to ensure com-
parability. All these factors, together with the goodness-of-fit of
inter-model variations (width of green shading), finally define the
uncertainty of the derived constrained estimate (blue horizontal
bar with black solid lines depicting the upper and lower bound
of uncertainty).
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1.8 outlook

Erwin Schrödinger in his book What Is Life? (1943) questions whether
life can be accounted for by physics and chemistry (see quotation at
the beginning of this essay). Since Schrödinger wrote those lines, our
scientific understanding of life has advanced considerably. However,
we still are unable to formulate general laws describing the mechanics
of life.

In the context of climate change, this means that the influence of
organisms as well as their capability to adapt to a high-CO2 world
remain unknown. For example, some plant species already adjust and
develop leaves with fewer stomata, because there is a lower demand
for gas exchange with a CO2-enriched atmosphere (Lammertsma et
al., 2011; Boer et al., 2011). But why do some plant species pursue
this strategy and others do not? Will the plants that pursue this
strategy continue to do so? Such questions were already at the center
of attention during the international conference on CO2 And Plants:
The Response Of Plants To Rising Levels Of Atmospheric Carbon Dioxide
in 1982. Lemon (1983) stated in the proceedings of this conference, that
the scientific community of plant physiologists is mainly retrospective,
in that they explain observed changes, but they are not predictive.
Almost four decades later we have access to an extensive collection
of different observational datasets that reflect how plants respond to
rising CO2 concentrations. This not only enables us to explain the
observed changes in a robust way (Winkler et al., submitted), but also
to take the next step and use this knowledge to predict the response
of plants to further rising CO2 (Winkler et al., 2019a; Winkler et al.,
2019b).

The profound changes of Earth’s surface as observed from space re-
flect the human dominance on the planet. In the first part of this thesis,
I demonstrate that the extratropical terrestrial biosphere is predomi-
nantly greening due to warming and the fertilization effect induced
by anthropogenic CO2 emissions. In the tropics, only the sub-Saharan
area exhibits a profound increase in plant productivity, mainly due
to enhanced rainfall, which is an important development for human
livelihood in these semi-arid regions. However, these ecosystems and
thus food security are also particularly susceptible to climatic changes
and variability (Fensholt et al., 2012). This is a vital issue, because
sub-Saharan Africa is expected to account for the majority of global
population growth in the 21st century (Osborne, 2016). Future research
should therefore focus on how precipitation and plant productivity
develop in these regions with further rise in atmospheric CO2 concen-
tration.

Another central finding of my work is that greening trends across
various biomes are slowing down and browning clusters are beginning
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to emerge in consequence of climatic changes. This development is
particularly prominent in the tropical forests. The Amazon, the largest
rainforest, is afflicted by episodic droughts which increase in frequency
(Cai et al., 2014) and intensity (Fasullo et al., 2018). In tropical Africa on
the other hand, the browning of forests is driven by a persistent drying
trend (Zhou et al., 2014). Declining leaf area in the tropical forests
is particularly of concern, because these ecosystems harbor the most
diverse flora and fauna of the planet. My analyses demonstrate that
extratropical and tropical forests show opposed responses to rising
CO2. This asymmetric development should be studied in more detail
to assess how long the extratropics can compensate for the losses in
the tropics.

Since 1870, the terrestrial biosphere absorbed about ∼190 Pg of
carbon, which is approximately equivalent to the cumulative sum
of all carbon emissions due to the combustion of coal (Quéré et al.,
2018b). However, future predictions of the strength of the land carbon
sink are uncertain. In the second and third part of my dissertation, I
address this problem using the method of Emergent Constraints, which
combines large-scale satellite observations, ground measurements and
multiple model simulations. The observational-based constraints sug-
gest that photosynthetic carbon fixation of northern ecosystems in a
high-CO2 world is more substantial than most models predict. I scruti-
nized the method of Emergent Constraints and examined independent
sources of observations to imbue confidence in my findings. My con-
clusions are in line with the growing evidence that the extratropical
ecosystems absorb most of the anthropogenic carbon (Peñuelas et al.,
2017; Song et al., 2018; Ciais et al., 2019). This means that the tropics,
which account for ∼60% of the global gross primary production (Beer
et al., 2010), remain the key uncertainty in the carbon cycle of the 21st

century. In accordance with the findings of this thesis, several studies
(e.g. Cox et al., 2013; Peñuelas et al., 2017; Baccini et al., 2017) suggest
that CO2-induced forest dieback is strengthening, which might cause
the tropics to switch from a net carbon sink to a source. My analyses
show that the current generation of models largely underestimate veg-
etation browning in the tropical rainforests. Hence, the latest climate
projections do not account for the potential of a weakening terrestrial
carbon sink, which could pose a further obstacle in achieving the
international targets as defined by the Paris agreement (Rogelj et al.,
2016). Model development must focus on a better representation of
the response of tropical forests to rising CO2 and associated effects in
order to realize plausible climate projections for the coming decades.

At the time when it was still being discussed whether the CO2

concentration was actually increasing, the Russian scientists Rusin
and Flit (1966) had already recognized the potential of the terrestrial
biosphere in shaping climate. The first lines of their book Man Versus
Climate read as follows: "Plant life and climate are closely linked;
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plants exert a major influence on the climate, but at the same time
are greatly dependent on it" (Rusin and Flit, 1966). The results of my
dissertation on the Earth’s transition to a high CO2 state show that
this statement from half a century ago is even more relevant today.
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the effects of rising co2 on global natural vegetation

Abstract

Long-term satellite data reveal widespread changes of Earth’s land surface.
Regions dominated by human land-use practices are mostly greening due to
direct drivers (i.e. fertilizer application, irrigation, and multiple cropping).
Natural vegetation exhibits patterns of greening and browning across all conti-
nents. Indirect drivers induced by anthropogenic carbon emissions (i.e. CO2
fertilization, climatic changes, and episodic disturbances) are hypothesized
as being key drivers, however, a biome level attribution integrated into the
global picture is lacking. In this study, we analyze the longest satellite-based
record of global leaf area observations (1981–2017). We detect and identify
clusters of significant rates of increase and decrease of leaf area index (LAI) on
a biome level. Based on process-based model simulations (fully-coupled Max
Planck Institute Earth System model and 16 standalone land surface models
driven with an observed climate), we disentangle the effects of rising CO2 on
LAI. Through the use of Causal Counterfactual Theory, we attribute changes
on the biome level to the key drivers in a probabilistic setting. Our analysis
unveils a slowing down of greening and a strengthening of browning trends,
particularly in the last two decades (2000–2017). Decreases in LAI primarily
occurs in regions of high LAI (i.e. tropical forests), whereas increases in LAI
are generally confined to low LAI regions (i.e. northern and arid non-forested
lands). On the global scale, these opposing trends are driving a convergence
of the natural vegetation. We find that many biomes bear the signature of cli-
matic changes through warming (temperature-limited ecosystems) and rainfall
anomalies (northern sub-Saharan regions). CO2 fertilization is the main driver
in the temperate forests and biomes in cold and/or arid climatic zones. These
results question the previously suggested global prevalence of CO2 fertilization.
Models largely underestimate vegetation browning, especially in tropical and
Northern American boreal forests. Persistent leaf area loss in the most produc-
tive ecosystems could be an early indicator of a slow-down in the terrestrial
carbon sink. Models need to better account this effect on natural vegetation for
plausible Earth system projections of the 21st century.

Author Contributions A.J.W. performed the research and drafted the manuscript with
inputs from R.B.M. and V.B., A.J.W. and A.H. conducted the attribution analysis. All
authors contributed ideas and to the interpretation of the results.
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introduction

1 introduction

Almost four decades of satellite observations reveal widespread changes of the terrestrial
vegetation across the globe. These greening and browning trends reflect persistent changes
in the abundance of green leaves, and thus, the rate of photosynthesis. Plants modulate piv-
otal land-atmosphere interactions through the process of photosynthesis. Hence, changes
in photosynthetic activity immediately affects the land-atmosphere exchange of energy
(Forzieri et al., 2017), water (McPherson, 2007; Ukkola et al., 2016) and carbon (Poulter
et al., 2014; Thomas et al., 2016; Winkler et al., 2019a). Several studies reported that the
Earth is largely greening across diverse biomes from Arctic tundra to subtropical drylands
(Myneni et al., 1997; Nemani et al., 2003; Mao et al., 2016; Zhu et al., 2016; Chen et al., 2019;
Winkler et al., 2019a; Winkler et al., 2019b). Others have identified regions of persistent
declining trends in leaf area (Goetz et al., 2005; Verbyla, 2011). The drivers underlying
these long-term vegetation changes, however, remain unclear.

Anthropogenic vegetation (i.e. agriculturally dominated areas) and natural vegetation
should be considered separately due to their distinct origin and properties. A recent study
by Chen et al. (2019) reported that anthropogenic vegetation (35% of the global vegetated
area) is greening in consequence of human land management. The authors identified
artificial irrigation, multiple cropping, and the application of fertilizers and pesticides as
the main drivers of leaf area enhancement (direct drivers). These results challenge the
conclusions of a preceding study by Zhu et al. (2016) claiming that the global greening
trend can be attributed to indirect drivers induced by CO2 emissions, in particular, CO2
fertilization (70%).

In the literature, indirect drivers of vegetation changes usually comprise CO2 fertilization
and climate change, both of which are consequences of rising CO2. The term "CO2
fertilization" conflates two effects of increased ambient CO2 on the physiology of plants.
Foremost, elevated CO2 in the interior of leaves stimulate carbon assimilation, which
enhances plant productivity and could lead to increased biomass (Leakey et al., 2009;
Fatichi et al., 2016). Simultaneously, plant leaves adapt to the CO2-enriched atmosphere
by lowering their stomatal conductance. As a consequence, water loss through plant
transpiration decreases and results in an enhanced water-use efficiency (ratio of carbon
assimilation to transpiration rate Ukkola et al., 2016; Fatichi et al., 2016). In theory, both
effects should result in an expansion of leaf area, especially in environments where plant
growth is constrained by water availability (Ukkola et al., 2016; Donohue et al., 2009;
Donohue et al., 2013).

The radiative effect of CO2 induces climatic changes (temperature, precipitation, and
radiation), which can affect ecosystems in either way. Temperature-limited biomes are
expected to green due to warming and the associated prolongation of the growing season
(Park et al., 2016; Winkler et al., 2019a). But long-term drying (Zhou et al., 2014), as well
as increased intensity and frequency of disturbances (Seidl et al., 2017) such as droughts
(Bonal et al., 2016) and wildfires (Goetz et al., 2005; Verbyla, 2011), can induce regional
vegetation browning trends. Greening and browning patterns can also be associated
with insect outbreaks, local deforestation practices, or nitrogen deposition; however, these
drivers are considered to be of minor importance on a global scale (Zhu et al., 2016).

3



the effects of rising co2 on global natural vegetation

Indirect drivers affect both natural and anthropogenic vegetation, whereas direct drivers
are confined to the latter. Chen et al. (2019) demonstrated that indirect drivers have either
opposing or minor enhancing effects on leaf area of anthropogenic vegetation. In general,
the greening of anthropogenic vegetation has a negligible effect on the carbon cycle, because
carbon absorbed by agricultural plants almost immediately reenters the atmosphere. On
the contrary, natural ecosystems act as a strong carbon sink of anthropogenic emissions
(∼12 Pg CO2 yr−1, ∼30% of CO2 emissions; Quéré et al., 2018) and mitigate man-made
climate change (Bonan, 2008; Sitch et al., 2015; Winkler et al., 2019a). Thus, a mechanistic
understanding of natural vegetation dynamics under rising CO2 is critical and helps to
answer one of the key question in current climate research: Where does the anthropogenic
carbon go (Marotzke et al., 2017)?

In the light of nearly forty years of continuous satellite observations and new results
by Chen et al. (2019), we reassess the driver attribution of global vegetation changes and
challenge previous findings (e.g. Zhu et al., 2016). This study focuses on the response of
natural vegetation under the influence of the two key indirect drivers, the physiological and
radiative effect of rising CO2. Throughout this paper and in accordance with the literature,
the terms "CO2 fertilization" and "physiological effect of CO2" are used interchangeably, as
are "climate change" and "radiative effect of CO2".

Here, we analyze a 37-year record of leaf area index (LAI) satellite observations (1982–
2017, LAI3g, Data and Methods). The LAI3g product is based on the Advanced Very High
Resolution Radiometer (AVHRR) sensors, for which there are a number of shortcomings
(no on-board calibration, no correction of orbit loss, minimal correction for atmospheric
contamination and limited cloud screening; Zhu et al., 2013; Chen et al., 2019). Despite
these limitations, the AVHRR is unique in terms of its temporal coverage, and thereby
opens up the opportunity to investigate on the evolution of Earth’s vegetation while
atmospheric CO2 concentration increased by 65 ppm (341 to 406 ppm). We define greening
and browning as LAI sensitivity to rising CO2 relative to the baseline period 1982–1984
(Data and Methods). Based on a carefully crafted biome map (Figure A2, Table A1, Data
and Methods), we identify spatial clusters of significant vegetation greening and browning
in natural vegetation.

We make use of the latest version of the fully-coupled Max Planck Institute Earth system
model in ensemble-mode (MPI-ESM, Data and Methods) and a collection of 16 land surface
models (LSMs) driven with observed climatic conditions (Quéré et al., 2018, TRENDYv7
ensemble, Data and Methods). As a first step, we analyze historical simulations to examine
if these models capture the observed behavior of natural vegetation under rising CO2.
Next, we analyze factorial simulations to disentangle and quantify the effects of rising CO2
on LAI. Each factorial experiment consists of all historical forcings except one, which is
retained at its pre-industrial conditions (Data and Methods).

The conventional approach in the field of Detection and Attribution is the optimal
fingerprinting method as applied in Zhu et al. (2016). This framework which considers
the observed change to be a linear combination of individual forced signals, is prone to
overfitting, and assumes that linear correlation reflects causation (Hannart and Naveau,
2018). To overcome these limitations, we propose to apply the Causal Counterfactual
Theory which has recently been introduced into climate science (Data and Methods Pearl,
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2009; Hannart et al., 2016; Hannart and Naveau, 2018). The method allows us to test if
long-term greening/browning trends can be attributed to the effects of rising CO2 in a
probabilistic setting combining necessary and sufficient causation (Data and Methods).

This is the first study that addresses vegetation browning as well as greening patterns
across all biomes, integrated into a global picture. In terms of area fraction, greening
is dominant, but browning clusters are intensifying, primarily in the biodiverse tropical
forests. We find that CO2 fertilization is an important driver of greening in some biomes,
but it is not globally prevalent as was previously suggested (Zhu et al., 2016). The surge of
browning areas is most likely tied to long-term drying and droughts. Overall, our findings
suggest that the emerging browning clusters in the high productivity ecosystems might
be a precursor of a weakening land carbon sink, which is not captured by current Earth
system models.
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2 data and methods

Satellite observations of LAI: AVHRR LAI3g product. We used an updated version
(V1) of the leaf area index dataset (LAI3g; Chen et al., 2019) based on the methodology
developed by Zhu et al. (2013). The data provides global year-round LAI observations
at 15-day (bi-monthly) temporal resolution and 1/12 degree spatial resolution. It spans
from July 1981 to December 2017 and is currently the only available record of such length.
The full time series of LAI3gV1 was generated using an artificial neural network and
the latest version (third generation) of the Global Inventory Modeling and Mapping
Studies group (GIMMS) Advanced Very High Resolution Radiometer (AVHRR) normalized
difference vegetation index (NDVI) data (NDVI3g). The latter have been corrected for
sensor degradation, inter-sensor differences, cloud cover, observational geometry effects
due to satellite drift, Rayleigh scattering and stratospheric volcanic aerosols (Pinzon and
Tucker, 2014).

The LAI3g datasets prior to 2000 were not evaluated due to a lack of required field
data (Zhu et al., 2013; Chen et al., 2019). After 2000, the quality of the LAI3g dataset was
assessed through direct comparisons with ground measurements of LAI and indirectly with
other satellite-data based LAI products, and also through statistical analysis with climatic
variables such as temperature and precipitation variability (Zhu et al., 2013). Various
studies used the predecessor LAI3gV0 and the related dataset of fraction of absorbed
photosynthetically active radiation (fapar; Anav et al., 2013; Forkel et al., 2016; Zhu et al.,
2016; Mao et al., 2016; Mahowald et al., 2016; Piao et al., 2014; Poulter et al., 2014; Keenan
et al., 2016) and its successor LAI3gV1 (Winkler et al., 2019a; Chen et al., 2019).

Leaf area index is defined as the one-sided green leaf area per unit ground area in
broadleaf canopies and as one-half the green needle surface area in needleleaf canopies in
both satellite observations and models (ESMs and LSMs). It is expressed in units of m2

green leaf area per m2 ground area. Missing values in the LAI3gV1 dataset are filled using
the climatology of each 16-day composite during 1982-2017. We use the annual averaged
LAI of each pixel in this study.

Characterization of biomes & clusters of significant change. The land cover product of
the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors (MCD12C1; MODIS-
/Terra and Aqua Combined Land Cover Type Climate Modeling Grid (CMG) Yearly Global
0.05 Deg V006, https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_

table/mcd12c1_v006) is the primary source underlying the land cover map used in this
study (hereafter MODIS land cover). The classes from the International Geosphere–
Biosphere Programme (IGBP) in the MODIS land cover product are aggregated as follows:
Tropical Forests include Evergreen Broadleaf Forest (EBF), Temperate Forests include De-
ciduous Broadleaf Forest (DBF) and Mixed Forest, and Boreal Forests include Evergreen
Needleleaf Forest (ENF) and Deciduous Needleleaf Forest (DNF). Savannas include Woody
Savannas and Savannas. Shrublands include Closed Shrublands and Open Shrublands.
Croplands include Croplands and Croplands / Natural Vegetation Mosaic. The class
Others includes Permanent Wetlands, Urban and Built-up Lands, Permanent Snow and Ice,
and Barren. The classes Grasslands and Water Bodies remain unchanged. The MODIS land
cover product provides estimates for the time period from 2001 to 2017 for each pixel. In
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this study we define a representative biome map based on the most frequently occurring
land cover type throughout the period of 17 years.

The MODIS land cover classification does not contain the biome tundra, which is why
we use in addition the land cover product GLDAS2 / Noah version 3.3 that uses a modified
IGBP classification scheme providing the classes Wooded, Mixed or Bare Ground Tundra
(https://ldas.gsfc.nasa.gov/gldas/GLDASvegetation.php, hereafter GLDAS land cover
Rodell et al., 2004). Accordingly, pixels originally of the classes Shrublands, Grasslands,
Permanent Wetlands, or Barren, are converted to Tundra, if classified as Wooded, Mixed or
Bare Ground Tundra in the GLDAS land cover product. The classes Woody Savannas and
Savannas span vast areas across the globe in the MODIS land cover product. We use the
GLDAS classification for these pixels, but only for regions where the MODIS and GLDAS
land cover products disagree. In doing so, we obtain a more accurate global land cover
classification. Table A1 describes in detail how the fusion of the MODIS and GLDAS land
cover products is realized.

As a last step, we integrate the MODIS tree cover product MOD44B (MODIS/Terra
Vegetation Continuous Fields Yearly L3 Global 250 m SIN Grid V006, https://lpdaac.
usgs.gov/dataset_discovery/modis/modis_products_table/mod44b_v006) to account for
the underestimation of forested area in the MODIS land cover product. Areas with tree
cover exceeding 10% are formally defined as forests (MacDicken et al., 2015). Thus, we set
non-forest pixels in the MODIS land cover product above 10% tree cover to Boreal Forest in
the high latitudes 50◦ N/S. For tropical forest (25◦ S – 25◦ N), we increase the threshold
to 20% tree cover to allow for a realistic areal extent of savannas. The pixels in the bands
25◦ N/S – 50◦ N/S remain unchanged, because the MODIS land cover product already
realistically represents the forested area in these latitudes. Table A1 provides a detailed
overview on the conflation of MODIS land cover product, GLDAS land cover product
and the MODIS Tree cover product. The final biome map (originally resolved at 0.05◦) is
regridded to the different resolutions of the AVHRR sensor and the models simulations
(MPI-ESM and TRENDYv7) applying a largest area fraction remapping scheme.

Based on the observational LAI dataset we define various clusters for greening or
browning in most biomes: North American Tundra (NAm Tundra), Eurasian Tundra (EA
Tundra), North American Boreal Forests (NAm Brl F), Eurasian Boreal Forests (EA Brl F),
Temperate Forests (Tmp F), Tropical Forests (Trp F), Central African Tropical Forests (CAf
Trp F), Northern African Savannas and Grasslands (NAf Sv Gl), Southern African Savannas
and Grasslands (SAf Sv Gl), Cool Grasslands (Cool Gl), and Australian Shrublands (Aus Sl).
Some clusters require a more detailed definition of their geographical location and extent:
Southern (Northern) African Savannas and Grasslands represent respective vegetation
type south (north) of the equator including Madagascar. Central African Tropical Forests
represent all tropical forests in Africa. Cool Grasslands refer to grasslands above 30◦ N.

Max-Planck-Institute Earth System Model. MPI-ESM1.2 is the latest version of the state-
of-the-art Max Planck Institute Earth System Model, which participates in the upcoming
sixth phase of the Coupled Model Intercomparison Project (CMIP6; Eyring et al., 2016).
Mauritsen et al. (2019) describes thoroughly the model developments and advancements
with respect to its predecessor, the CMIP5 version (Giorgetta et al., 2013). Here, we use the
low resolution (LR) fully coupled carbon/climate configuration (MPI-ESM1.2-LR), which
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consists of the atmospheric component ECHAM6.3 with 47 vertical levels and a horizontal
resolution of 200 km grid spacing (spectral truncation at T63). The ocean dynamical model
MPIOM is set up on a bi-polar grid with an approximate grid-spacing of 150 km (GR1.5)
and 40 vertical levels. MPI- ESM1.2-LR includes the latest versions of the land and ocean
carbon cycle modules, comprising the ocean biogeochemistry model HAMOCC6 and the
land surface scheme JSBACH3.2 (Mauritsen et al., 2019).

Only the LR variant of the MPI-ESM includes all the important processes relevant for
longer time-scale changes of the land surface, such as a thoroughly equilibrated global
carbon cycle, dynamical vegetation changes, interactive nitrogen cycle, land use transitions,
a process-based fire model (SPITFIRE), and an interactive coupling of all sub-models.
Furthermore, it is possible to run this model configuration to generate 45-85 model years
per real-time day with a modern supercomputer (Mauritsen et al., 2019). This opens up
the possibility to conduct a larger number of realizations for each experiment. Specifically,
we used the initial CMIP6 release of the MPI-ESM version 1.2.01 (mpiesm-1.2.01-release,
revision number 9234). The final CMIP6 version will include further bug fixes, which
are expected to only slightly influence long-term sensitivities of simulated land surface
processes.

We conducted historical simulations (all forcings) and three factorial experiments (all
forcings except one): (a) all historical forcings except the physiological effect of CO2 (No
PE; increasing CO2 does not affect the biogeochemical processes), (b) all historical forcings
except the radiative effect of CO2 (No RE; increasing CO2 does not affect climate), and
(c) all historical forcings except anthropogenic forcings (No CO2). All experiments were
preformed in ensemble-mode (6 realizations per experiment) using the latest CMIP6 forcing
data (1850–2013). Individual realizations were initialized from different points in time of a
prolongation run of the official MPI-ESM1.2-LR pre-industrial control simulation. In doing
so, we account for the influence of climatic modes (e.g. El Niño Southern Oscillation) as a
source of uncertainty in simulating long-term changes.

The simulated time series were shifted by four years to maximize the overlap with the
observational record of 1982–2017.

Land surface models: TRENDYv7. Land-surface models (LSMs) or dynamic global
vegetation models (DGVMs) simulate key physical and biological key processes of the
land system in interaction with the atmosphere. LSMs provide a deeper insight into the
mechanisms controlling terrestrial energy, hydrological and carbon cycles, as well as the
drivers of phenomena ranging from short-term anomalies to long-term changes (Sitch
et al., 2015; Bastos et al., 2018). Here, we analyze the most recent TRENDY ensemble
(version 7) comprising 16 state-of-the-art LSMs which vary in their representation of
ecosystem processes. All models simulate vegetation growth and mortality, deforestation
and regrowth, vegetation and soil carbon responses to increasing atmospheric CO2 levels,
climate change and natural variability (Quéré et al., 2018). Some models simulate an explicit
nitrogen cycle (allowing for potential nitrogen limitation) and account for atmospheric
N deposition (Table A1 in Quéré et al., 2018). Most LSMs include the most important
components of land use and land use changes, but they are far from representing all
processes resulting from direct human land management (Table A1 in Quéré et al., 2018).
A more detailed description of the TRENDYv7 ensemble, model-specific simulation setups
and references can be found in Quéré et al. (2018, Table 4 and Table A1).
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We use output from five simulations: all forcings (S3), physiological effect of CO2 only
(S1), radiative plus physiological effect of CO2 (S2), land-use changes only (S4), and the
control run (S0; no forcings: fixed CO2 concentration of 276.59 ppm and fixed land use
map, loop of mean climate and variability from 1901–1920). The forcing data consist of
observed atmospheric CO2 concentrations, observed temporal patterns of temperature,
precipitation, and incoming surface radiation from the CRU-NCEP reanalysis (Quéré et al.,
2018; Harris et al., 2014), and human-induced land-cover changes and management from
the most recent Land-Use Harmonization (LUH2) dataset (Hurtt et al., 2011; Quéré et al.,
2018).

In this study, we only analyze output for the period 1982–2017 (matching the observa-
tional record) from models providing spatially gridded data for all five simulations. A few
models provide LAI at the level of plant functional types (PFT). We calculate the average
value of all LAI values on PFT level multiplied by their land cover fraction for each grid
cell. All model outputs were spatially regridded to a common resolution of 1◦ based on a
first-order conservative remapping scheme (Jones, 1999).

The design of factorial simulations in TRENDYv7 and by the MPI-ESM are conceptually
different. The MPI-ESM simulations were conducted using the counterfactual approach, i.e.
all forcings are present except the driver of interest. TRENDYv7 provides simulations with
different combinations of drivers as described above. To obtain comparability, we have to
make the assumption that the absence of a specific driver has the same effect, in absolute
values, as its sole presence. Thus, we process the output of the simulations S1, S2, S3 and
S4 to obtain the counterfactual setup as described above for MPI-ESM. It has to be noted
that these simulations are only to some extent comparable. For instance, in the MPI-ESM
we can specifically determine the impact of the radiative effect of CO2, whereas TRENDYv7
uses observed atmospheric fields including changes induced from other drivers, such as
non-CO2 greenhouse gases.

For certain clusters, some models show unreasonable LAI changes and/or extreme inter-
annual variability. To reduce the influence of these extreme models on the overall analysis,
we apply a two-step filtering method for each cluster beforehand. Models are excluded
from the analysis, if they exceed three times the inter-annual variability of observations
and/or show a drastic change (of either sign) of more than 250% between the start and
end of the observational period. Further, we apply a weighting scheme based on the
performance of the all-forcings run for each cluster. We calculate quartic weights based on
the distance between the simulated and observational estimate. These weights are applied
when calculating the multi-model average and standard deviations for the factual and
counterfactual runs.

Atmospheric CO2 concentration. Global monthly means of atmospheric CO2 concentra-
tion are taken from the GLOBALVIEW-CO2 product (for details see http://dx.doi.org/

10.3334/OBSPACK/1002) provided by the National Oceanic and Atmospheric Administra-
tion/Earth System Research Laboratory (NOAA/ESRL).

Processing of the gridded data. Areas of significant change in LAI are estimated using
the non-parametric Mann-Kendall test, which detects monotonic trends in time series. In
this study, we set the significance level to p ≤ 0.1. An alternative statistical test for trend
detection (Cox-Stuart test Sachs, 1997) yields approximately the same results. The trends
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are either calculated for time series on the pixel level or for area-weighted large-scale
aggregated time series (e.g. biome level).

We define greening (browning) either as a positive (negative) temporal trend, or for
better comparison among models and observations, as a positive (negative) LAI sensitivity
to rising atmospheric CO2 concentration, i.e. change in annual average LAI (m2 m−2 ) per
change in CO2 concentration (ppm). To obtain a better global comparison across diverse
biomes, we express these sensitivities relative to the initial LAI level at the beginning of the
observational record (average state from 1982-1984), denoted as Λ (% ppm−1 CO2).

The calculation of yearly net changes in leaf area balances the effects from both statisti-
cally significant browning and greening grid cells. For each cell, we multiply the estimated
trends by the respective grid area. The net change is the sum of all grid cells, where areas
of insignificant change are set to zero.

Models fairly accurately reproduce global patterns of vegetation greening, however, the
fraction of browning is considerably underrepresented. Yet, we can only consider pixels
with significant negative trends in LAI, in observations and models alike, and test models
with respect to driver attribution of browning trends. Thus, the attribution of browning
trends in this paper exclusively refers to browning pixels only.

Models reveal biases in comparison to observations. To obtain informative results in the
attribution analysis, we process the simulations to match the mean and variance of the
observational time-series. Assuming additive and multiplicative biases in simulations, we
apply the following corrections:

b =
σo

σaf
, (1)

a = xo + b× xaf , and (2)

yi = a + b ∗ xi , (3)

where xo represents the mean value and σo the standard deviation of the observational
times series. xaf and σaf are analogous to the all-forcings simulations. All simulated time
series xi are scaled using equation 3, where i ∈ Ω = {factual runs, counterfactual runs}.
This processing step does not affect the nature of simulated trends.

Causal counterfactual theory. The causal counterfactual approach is anchored in a
formal theory of event causation developed in computer science (Pearl, 2009; Marotzke,
2019). Recently, a framework for driver attribution of long-term trends in the context of
climate change has been introduced (Hannart et al., 2016; Hannart and Naveau, 2018), and
increasingly gains popularity (e.g. Marotzke, 2019). Through the use of this method we
can ascertain the likelihood that a certain external forcing has caused an observed change
in the Earth system. More precisely, we address the question of interest in a probabilistic
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setting, i.e. what is the probability that a given forcing (e.g. radiative effect of CO2) has
caused an observed long-term change in the system (e.g. greening of the Arctic).

In the following, we highlight the key ideas and relevant concepts of causal theory. A
detailed description and formal derivations can be found in (Pearl, 2009; Hannart et al.,
2016; Hannart and Naveau, 2018). We define the cause event (C) as "presence of a given
forcing" (i.e. the factual world that occurred) and the complementary event (C) as "absence
of a given forcing" (i.e. the counterfactual world that would have existed in the absence of
a given forcing; Hannart and Naveau, 2018). Further, we define the effect event (E) as the
occurrence of a long-term change (here, greening or browning) and the complementary
event (E) as the non-occurrence of a long-term change (i.e. no persistent vegetation changes).
In making use of numerical models, we can conduct factual runs comprising all forcings
(i.e. historical simulations) as well as simulate counterfactual worlds by switching off a
forcing of interest (i.e. all forcings except one). Based on an ensemble of simulations,
either in a multi-model and/or multi-realizations setup, we derive the so-called factual (p1)
and counterfactual probability (p0), which read p1 = P{E|do(C)} and p0 = P{E|do(C)},
respectively (Hannart and Naveau, 2018). More precisely, p1 describes the probability of the
event E in the real world where forcing C was present, whereas p0 refers to the probability
of the event E in a hypothetical world where forcing C was absent. The notation do(·)
means that an experimental intervention is applied to the system to obtain the probabilities
(Hannart and Naveau, 2018).

The three distinct facets of causality can be established based on the probabilities p1 and
p0:

PN = max
{

1− p0

p1
, 0
}

, (4)

PS = max
{

1− 1− p1

1− p0
, 0
}

, and (5)

PNS = max {p1 − p0, 0} . (6)

PN refers to the probability of necessary causation, where the occurrence of E requires
that of C but may also require other forcings. PS refers to the probability of sufficient
causation, where the occurrence of C drives that of E but may not be required for E to
occur. PNS describes the probability of necessary and sufficient causation, where PN and
PS both hold (Hannart and Naveau, 2018). In other words, PNS may be considered as the
probability that combines necessity and sufficiency. Thus, the main goal is to establish a
high PNS that reflects and communicates evidence for the existence of a causal relationship
in a simple manner (Hannart and Naveau, 2018).

To obtain PNS, we follow the methodology described in detail in Hannart and Naveau
(2018) and derive cumulative distribution functions (CDF) for the factual and counterfactual
worlds, denoted D0 and D1, respectively. Assuming a Gaussian distribution, PNS follows
as

PNS = max{D1(µ1, Σ)− D0(µ0, Σ)} , (7)
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where µ1 and µ0 refer to the mean response of all factual and all counterfactual runs,
respectively. Σ denotes the overall uncertainty and is estimated based on all simulations,
comprising factual, counterfactual, and centuries-long unforced (pre-industrial) model runs
(Hannart and Naveau, 2018, for details see). Finally, the maximum of PNS determines the
sought probability of causation (Hannart and Naveau, 2018). We express probabilities using
the terminology and framework defined by the IPCC (Mastrandrea et al., 2011; Hannart
and Naveau, 2018).
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3 results and discussion

Natural vegetation exhibits a net gain of leaf area over the last decades, but the number
of browning regions is increasing. More than three decades of satellite observations (1982–
2017, Data and Methods) reveal that 40% of Earth’s natural vegetation shows statistically
significant positive trends in LAI (Mann-Kendall test, p < 0.1; Table 1), for a contemporary
increase in atmospheric CO2 of 65 ppm. However, more and more browning clusters are
beginning to emerge across all continents (14%; Table 1). Analyzing three LAI datasets of a
shorter time span (1982-2009), Zhu et al. (2016) reported a considerably smaller browning
fraction of less than 4% and greening percentages ranging from 25% to 50% considering all
global vegetation (i.e. including agriculturally dominated regions). The higher browning
estimate found in the extended record analyzed in this study indicates an intensification of
leaf area loss in recent years.

Earth’s forests respond diversely to rising CO2. A global map of relative change in
LAI per unit rise in atmospheric CO2 (% ppm−1 CO2, denoted Λ, Data and Methods) for
natural vegetation unveils clusters of greening and browning across the globe (Figure 1).
Temperate forests (Λ > 0: 56%) and Eurasian boreal forests (Λ > 0: 53%) are extensively
greening, and thereby, contribute the largest fraction to the enhancement of leaf area on
the planet (Table 2). On the contrary, the global belt of tropical forests, albeit showing
a net greening (Λ > 0: 28%), also feature widespread browning areas (Λ < 0: 16%). In
particular, the Central African tropical forests contain large areas of pronounced negative
sensitivity to CO2 (Λ < 0: 25%). North American boreal forests exhibit the largest fraction
of browning vegetation (Λ < 0: 31%) resulting in an annual net loss of leaf area (Table
1 and 2). The recent development of Earth’s forests as pictured by LAI observations is
generally in line with results based on other data resources. For instance, Song et al. (2018)
analyzed satellite-based datasets of tree cover and reported a net gain of global forested
area, with a net loss in the tropics being compensated by a net gain in the extra-tropics.

Just as in forests, non-forested biomes also indicate divergent vegetation responses to
rising CO2. Tundra in North America is primarily greening (Λ > 0: 46% versus Λ <
0: 7%), whereas in Eurasia, browning is intensifying (Λ > 0: 35% versus Λ < 0: 20%),
especially so in the northern regions of Scandinavia and on the Taymar Peninsula in
Northern Russia. Grasslands in cool arid climates, mainly comprising the Mongolian and
Kazakh Steppe, as well as the Australian shrublands, stand out as prominent greening
clusters (Λ > 0: 40% and 49%, respectively). Although these biomes show a strong positive
sensitivity to rising CO2, they are characterized by a overall low level of LAI. The African
continent, which is still dominated by natural vegetation, reveals an eminently distinctive
change in leaf area. A greening band of savannas and grasslands in the northern regions of
Sub-Saharan Africa and a greening cluster in Southern Africa enclose the browning regions
of equatorial Africa (Figure 1). Overall, the response of LAI to rising CO2 is confined for
some biomes (secular widespread browning of the tropical forests and dominant greening
of the temperate forests), but divergent for others (tundra and boreal forests show a ’North
America – Eurasia’ asymmetry, interestingly, in that they show changes of reversed sign;
Figure 1).
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Net annual gain of leaf area is declining in natural vegetation. Leaf area loss occurs
primarily in densely vegetated biomes (i.e. forests), which outweighs leaf area gain in
rather sparsely vegetated regions (e.g. grasslands). For instance, the vigorously greening
areas of circumpolar tundra result in a leaf area gain of 8.74 × 103 km2 yr−1, which is
almost fourfold outbalanced by a leaf area loss of 34.31 × 103 km2 yr−1 of the browning
regions in the tropical forests (Table 2). To assess the opposed responses of different biomes
to rising CO2 in more detail, we iteratively calculate statistically significant LAI trends for a
time window of advancing initial year (i.e. 1982, 1983, ..., 2000), but fixed final year (2017).
Although the estimated trends become less robust with a shortening of the time series,
this analysis allows us to test for weakening or strengthening responses to further rising
CO2. We show that the fraction of significantly browning regions is increasing over time
reaching a maximum for a time window starting in 1995. The greening fraction evolves
in the opposite direction. The estimates are represented as fractions of the total area of
significant change, because the latter inherently decreases as a result of the Mann-Kendall
test for shorter time windows. As a consequence, the average annual net leaf area gain
of 150.51 × 103 km2 yr−1 for the entire observational period (1982–2017) diminishes with
advancing initial year, approaches zero (1995–2017), and finally rebounds to ∼ 40 × 103

km2 yr−1 (2000–2017; purple line in inset in Figure 1). To obtain comparability between
different time windows, the net leaf area gain estimates were scaled to the total area of
significant change derived for 1982–2017 (unprocessed estimates for period 2000–2017 are
listed in Table A2). Chen et al. (2019) reported a global greening proportion of ∼ 33%
(AVHRR: 21%; Table A2) and a browning proportion of only 5% (AVHRR: 13%; Table A2)
analyzing the MODIS record including anthropogenic vegetation (2000–2017). On a global
scale, LAI trends from MODIS and AVHRR agree over 61% of the vegetated area (Chen
et al., 2019). Disagreement arises primarily in the tropical regions (absence of browning
Central African tropical forests in the MODIS record) and at northern high latitudes (Chen
et al., 2019).

High LAI regions are browning, low LAI regions are greening. The intensification
of browning during the second half of the observational period (2000–2017) results in a
reversal of the sign in terms of net leaf area change in some biomes (e.g. tropical forests,
North American boreal forests, and Eurasian tundra; Table A3). Critically, the tropical
forests display the sharpest transition from a substantial net gain of 24.11 × 103 km2

yr−1 (Table 2) to a comparably strong net loss of leaf area (-18.42 × 103 km2 yr−1; Table
A3). To address the temporal development of positive and negative Λ in more detail, we
calculate time series of area-weighted averages of LAI (Figure 2a). We find that browning
of natural vegetation occurs at a considerably higher level of LAI (on average ∼1.85) than
greening (on average ∼1.32). Throughout the observational period, these two time series
of opposite trends converge towards a LAI of 1.6 (Figure 2a). This convergence of greening
and browning is not only evident in terms of their LAI level (Figure 2a), but also in their
proportions (inset in Figure 1). On the contrary, time series of anthropogenic vegetation,
aggregated for positive and negative Λ, are both confined to a comparable low LAI level (on
average between 1 and 1.25). We next investigate the global LAI distributions of negative
and positive Λ and their development over time. Comparing distributions of the earlier
(1982–1984) with those of the more recent years (2015–2017) reveals that browning primarily
occurs at a high (5–6) and a medium level of LAI (1–2.5; Figure 2b). Greening, however, is
occurring almost entirely at low levels of LAI between 0–1.5. As a consequence, the global
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area-weighted averages of the browning and greening regions are approaching one another
(dashed versus solid vertical lines in Figure 2b), as also depicted by the time series (Figure
2a). Overall, the above results suggest a homogenization of Earth’s natural vegetation with
rising CO2. This homogenization becomes prominent when we compare the distributions
of negative and positive Λ over time using a Q-Q plot (quantile-quantile; Figure 2c). The
relationship between the quantiles is skewed to the left at higher LAI (positive Λ on x-axis,
negative Λ on y-axis), because browning is prevalent at high LAI regions. Over time,
the quantiles of the greening and browning distributions are approaching the 1-1 line
(representing identical distributions), emphasizing their convergence.
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Figure 2 | Observed homogenization of the global natural vegetation. a Time series of the area-
weighted annual average LAI (AVHRR, 1982-2017) of natural and anthropogenic vegetation
for regions of positive and negative sensitivity to rising atmospheric CO2 concentration
(Λ). Only regions of significant change are considered (Mann-Kendall significance test,
p < 0.1). The percentages in brackets in the legend represent the respective proportions
with respect to the total area. b Violin plot comparison of probability density functions
(PDF, Gaussian kernel density estimation; all PDFs scaled to contain the same area) of
LAI distributions of natural vegetation for negative (left) and positive Λ (right), and in
time, 1982-1984 (dashed) versus 2015-2017 (solid). The horizontal lines represent the mean
values for the respective period. c Q-Q (quantile-quantile) plot comparing the distributions
of LAI for negative (x-axis) and positive Λ (y-axis) and their change over time, 1982-1984
(blue dots) versus 2015-2017 (orange dots).
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Table 1 | Greening, browning and non-changing fractions of vegetated area for different biomes
and prominent clusters of change for the time period 1982–2017. Significant changes are
determined by the means of the Mann-Kendall significance test (p < 0.1). The abbreviations
used to describe the different clusters are explained in Section 2.

Area Vegetated Area Positive Λ Fraction Negative Λ Fraction No-Change Fraction

Unit 106 km2 - - -

All Vegetation 109.42 0.43 0.13 0.45

Anthro. Vegetation 15.37 0.6 0.07 0.32

Natural Vegetation 94.05 0.4 0.14 0.47

Biomes

Grasslands 26.77 0.4 0.12 0.48

Tropical Forests 20.32 0.28 0.16 0.55

Boreal Forests 13.69 0.4 0.19 0.41

Temperate Forests 11.2 0.56 0.08 0.36

Shrublands 10.37 0.41 0.1 0.49

Tundra 7.03 0.41 0.14 0.45

Savannas 4.22 0.48 0.13 0.38

Clusters

Cool Gl 12.32 0.4 0.12 0.48

EA Brl F 8.0 0.53 0.1 0.37

NAm Brl F 5.69 0.23 0.31 0.46

NAf Sv Gl 5.6 0.59 0.06 0.35

CAf Trp F 5.35 0.3 0.25 0.45

SAf Sv Gl 4.6 0.24 0.24 0.52

Aus Sl 4.43 0.49 0.03 0.49

EA Tundra 3.57 0.35 0.2 0.44

NAm Tundra 3.46 0.46 0.07 0.47
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The majority of models reproduce the observed convergence of greening and browning
trends. Thus far, we have described in depth the diverse long-term changes of natural
vegetation across all continents and throughout the entire satellite era. We next investigate
the underlying mechanisms driving these greening and browning trends and use the
fully-coupled MPI-ESM and the TRENDYv7 ensemble of observation-driven LSMs (Data
and Methods). As a first step, we examine if these models capture the observed behavior
of natural vegetation under rising CO2. MPI-ESM reproduces the observed browning of
high LAI and the greening of low LAI regions, however, the levels of LAI do not match
the observations (Figure A1). Historical simulations of TRENDYv7 (here 13 models) also
show pronounced changes in vegetation, but feature a quite diverse behavior among the
models (results not shown for brevity). Seven LSMs reproduce observed converging trends
of greening and browning, whereas the other six models show divergent trends. All
TRENDYv7 models are driven with identical atmospheric forcing fields, hence, these six
models most likely lack or incorrectly represent key processes of ecosystem functioning. In
general, simulated greening patterns are comparable to observations (Murray-Tortarolo
et al., 2013; Sitch et al., 2015; Mahowald et al., 2016), but browning, especially in the North
American boreal forests, is underestimated (Sitch et al., 2015).

Models point at the physiological effect of CO2 as main driver of greening on global
scale. Hereafter, we use changes in annual average LAI relative to the baseline period 1982–
1984 (Data and Methods). Expressed in this form, we obtain a better comparability among
biomes, various simulations and the observed signal. Time series of relative LAI changes
from historical simulations (multi-model average for TRENDYv7 and multi-realizations
average for MPI-ESM) are comparable to observations on a globally aggregated level
(Figure 3a and 3b; temporal correlations are low due to high internal variability of the
signal).

We use the framework of Counterfactual Causal Theory (Pearl, 2009; Hannart et al., 2016;
Hannart and Naveau, 2018) to attribute changes in LAI to a given driver in a probabilistic
setting (Data and Methods). Based on the all-forcings (also termed factual) and factorial
runs (also termed counterfactual), we derive probabilities of causation that combines
necessity and sufficiency of each factor (PNS). On global scale, the estimates of observed (∼
1.08 % decade−1) and the factual MPI-ESM estimate (∼ 1.14 % decade−1) are comparable,
whereas the multi-model average of the TRENDYv7 ensemble is overestimated (∼ 1.79
% decade−1; Figure 3c). Omitting CO2-induced climate change (No RE) does not have
a strong effect in the MPI-ESM (∼ 1.04 % decade−1), i.e. the estimate does not differ
considerably from the factual run. The TRENDYv7 models indicate that the positive trend
in LAI can be explained by climate change to some extent (∼ 1.21 % decade−1). However,
PNS are low for the radiative effect of CO2 (Figure 3d). The opposite is the case, when
the physiological effect of CO2 (No PE) is excluded. Both model setups agree that almost
no positive trend in LAI is present in a world without CO2 fertilization (MPI-ESM: ∼
0.18 % decade−1, TRENDYv7: ∼ 0.08 % decade−1; both estimates are lower than internal
variability of ∼ 0.49 % decade−1). As a consequence, high PNS can be established: The
physiological effect of CO2 has in the case of MPI-ESM likely (68%) and in the case of
TRENDYv7 very likely (91% ) caused the positive trend of global LAI in recent decades
(Figure 3d). This result is in line with Zhu et al. (2016) who reported that 70% of global
greening is attributable to CO2 fertilization. Removing both effects of CO2 results in slight
negative trends, probably rooted in gradual deforestation practices (Figure 3c).
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Table 2 | Leaf area gain, loss, and net change for different biomes and prominent clusters of change
for the time period 1982–2017. Significant changes are determined by the means of the
Mann-Kendall significance test (p < 0.1). The abbreviations used to describe the different
clusters are explained in Data and Methods.

Leaf Area Leaf Area Gain Leaf Area Loss Net Leaf Area Change

Unit 103 km2 yr−1 103 km2 yr−1 103 km2 yr−1

All Vegetation 296.87 -85.71 211.16

Anthro. Vegetation 67.12 -6.47 60.65

Natural Vegetation 229.75 -79.24 150.51

Biomes

Grasslands 48.01 -12.51 35.50

Tropical Forests 58.42 -34.31 24.11

Boreal Forests 32.11 -14.45 17.66

Temperate Forests 53.32 -7.45 45.87

Shrublands 10.9 -2.4 8.50

Tundra 8.74 -3.69 5.05

Savannas 17.99 -4.21 13.78

Clusters

Cool Gl 15.06 -3.75 11.31

EA Brl F 25.93 -4.26 21.67

NAm Brl F 6.18 -10.18 -4.00

NAf Sv Gl 23.42 -0.98 22.44

CAf Trp F 16.76 -13.76 3.00

SAf Sv Gl 5.51 -6.76 -1.25

Aus Sl 4.48 -0.16 4.32

EA Tundra 3.96 -3.04 0.92

NAm Tundra 4.78 -0.64 4.14
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The global signal switches to a minor negative trend in the second half of the observa-
tional period. Natural vegetation shows as slight negative trend for the period 2000–2017
(∼ -0.4 % decade−1; Figure 3e). This estimate is within the range of internal variability,
and thus, should be interpreted with caution. Yet, this result points in the direction of an
intensification of vegetation browning and/or weakening of vegetation greening on the
global scale. Note, that the net change in leaf area is still positive when considering only
significantly changing pixels (inset in Figure 1). Models reproduce this reversal in the sign
when the physiological effect of CO2 is excluded or with a complete absence of CO2 forcing
(Figure 3e). Overall, driver attribution on the global scale, as described above and used in
Zhu et al. (2016), neglects the heterogeneity of natural vegetation and the possibility that
divergent responses of different biomes might cancel out. To account for this omission, we
identify eleven clusters of significant change and derive probabilities of causation for each
driver across different vegetation types (Figure 4).
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Figure 3 | Figure caption on the following page.
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Figure 3 | Driver attribution of changing natural vegetation for the entire period versus the sec-
ond half of the observational record. a Time series of the area-weighted annual average
LAI (AVHRR, 1982–2017) for regions of positive (blue dotted line) and negative sensitivity
(red dashed line) to rising atmospheric CO2 concentration (Λ) of natural vegetation. Black
solid line represents the overall signal of all pixels. The percentages in brackets in the
legend represent the greening and browning proportions with respect to the total area.
b Time series of changes in LAI relative to the average state from 1982–1984, comparing
observations (black solid line) with historical simulations, where the green dashed line
denotes the ensemble mean of 13 offline-driven land surface models (TRENDYv7, Data
and Methods), and the purple dotted line denotes the average of an ensemble of multi-
realizations with a fully-coupled Earth system model (MPI-ESM, Data and Methods). The
colored shading represents the 95% confidence interval estimated by bootstrapping. The
correlation coefficients (including significance level) of the observed and simulated time
series are displayed in brackets in the legend. c Bar chart showing relative trends in LAI
(in % yr−1) of the total observed signal (black) and for factual (all historical forcings; ALL)
as well as for counterfactual simulations, i.e. no historical CO2 forcing (No CO2), all
historical forcings except the physiological effect (No PE) or the radiative effect (No RE) of
atmospheric CO2, as estimated by TRENDYv7 (green) and MPI-ESM (purple). The yellow
bar represents internal variability (IV) derived from all simulations (control, factual and
counterfactual). d Probabilities of necessary and sufficient causation (PNS) of the change
in LAI, comparing the physiological (PE) and radiative effect (RE) of CO2 as well as their
combined effect (Both). e as in c but for the period 2000–2017. f as in d but for the period
2000–2017.

Temperate forests prosper with rising CO2, tropical forests are increasingly under pres-
sure. Forests in a temperate climate exhibit a strong positive trend in LAI (∼ 2.53 %
decade−1), which is also seen in the models, albeit slightly overestimated (MPI-ESM: ∼
3.18 % decade−1, TRENDYv7: ∼ 2.69 % decade−1; Figure A3). The physiological effect of
CO2 is the main driver with high PNS (85% for MPI-ESM, 80% for TRENDYv7; Figure 4).
The trends are slightly weaken when only analyzing the second half of the observational
period, but the overall results do not change. Observed warming might have additionally
contributed to enhanced vegetation growth (e.g. growing season extension; Piao et al.,
2011; Park et al., 2016), however, it is not identified as an important driver by models.
Most temperate forests are located in industrialized countries, and thus, are managed
in a sustainable manner for several decades (Currie and Bergen, 2008). It is conceivable,
that some of the positive trend in LAI could be attributed to forestry, however, this is not
captured by the models (i.e. trends are negative when complete CO2 forcing is absent;
Figure A3).

The response of tropical forests to rising CO2 is more complex. The signal over the entire
observational period is slightly positive (∼ 0.3 % decade−1), however, it is within the range
of internal variability. Therefore, no robust driver attribution is practicable (Figure 4 and
Figure A4). TRENDYv7 models show strongly opposed responses of LAI to the different
effects of CO2: LAI decreases when the physiological effect is omitted, but increases when
the radiative effect is omitted. MPI-ESM shows qualitatively the same responses, but less
pronounced (Figure A4). For the second half of the satellite record, the observed trend
switches sign to a pronounced negative trend (∼ -1.4 % decade−1). The models reproduce
this tendency, however, the multi-model average of the TRENDYv7 ensemble is still positive.
During the same time period, the opposed reactions to CO2 in the factorial runs are more
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strongly marked (Figure A4). These results suggest that browning caused by CO2-induced
climate change is compensated by greening affiliated to CO2 fertilization on the biome
level. Based on there findings we hypothesize that the physiological effect of CO2 is strong
in models and outbalances the negative effect of climate change in the tropical forests
(Kolby Smith et al., 2016). As a consequence, the all-forcings simulations fail to reproduce
the observed patterns of strengthening vegetation browning in the tropics (Zhou et al.,
2014; Song et al., 2018).

Droughts in the Amazon basin, long-term drying of tropical Africa. The Amazonian
tropical forests are frequently afflicted by severe droughts. Several studies have shown
that most of these droughts, e.g. in 1997 (Williamson et al., 2000), in 2010 (Xu et al., 2011),
and 2015 (Jiménez-Muñoz et al., 2016), are strongly modulated by the El Niño Southern
Oscillation (ENSO), but not exclusively (e.g. in 2005; Marengo et al., 2008) . Heavy droughts
have diverse impacts on tropical ecosystems (Bonal et al., 2016), the most prominent being
an increase in wildfires and tree mortality. Recently, perennial legacy effects have been
identified which lead to persistent biomass loss in the aftermath of severe droughts (Saatchi
et al., 2013; Yang et al., 2018). For instance, some regions were still recovering from the
impact of the megadrought of 2005 when the next major drought began in 2010 (Saatchi
et al., 2013). Such droughts and associated wildfires are predicted to increase in frequency
(Cai et al., 2014) and intensity (Fasullo et al., 2018) as a consequence of the ENSO-related
amplification of heat waves. Overall, these recurrent droughts result in long-term browning
trends (Xu et al., 2011), inline with our results of intensified browning of Amazonian forests
(Figure 1).

In contrast to episodic droughts in the Amazon, African tropical forests have experienced
a long-term drying trend since the 1970s (Malhi and Wright, 2004; Asefi-Najafabady and
Saatchi, 2013; Zhou et al., 2014). The origin of this pronounced decreasing trend in rainfall
is still under debate. Precipitation in equatorial Africa is expected to increase under
climate change (Weber et al., 2018), so it is hypothesized that this trend is associated
with the Atlantic Multidecadal Oscillation and/or changes in the West African Monsoon
system (Asefi-Najafabady and Saatchi, 2013). Long-term drying in rainforests could also
be connected to the physiological effect of rising CO2. Recently, it has been demonstrated
that the reduction in stomatal conductance and transpiration induces a drier, warmer, and
deeper boundary layer, resulting in a decline in local rainfall (Langenbrunner et al., 2019).
Regardless of what the origins may be, this long-term water deficit has led to pronounced
vegetation browning in recent decades (∼ -2.3 % decade−1 for 2000–2017; Zhou et al., 2014),
which is not captured by models (Figure A5). Accordingly, no robust attribution is possible
with this set of models. Interestingly, the MODIS record does not reflect this pronounced
browning cluster (Chen et al., 2019), though it has been reported in other independent
observational datasets (Zhou et al., 2014). Also the latest atmospheric CO2 inversions
have identified negative trends of carbon uptake for this region (Fernández-Martínez et al.,
2019).

Deforestation practices can explain some part of the observed gradual browning in
African tropical forests (Mayaux et al., 2013; Tyukavina et al., 2018) and in the Amazon
(Song et al., 2015). In South-Asia, however, deforestation plays a crucial role in the browning
of the pristine tropical forests. Significant negative trends align strongly with patterns of
drastic deforestation during recent decades, described in detail by Stibig et al. (2014).
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Figure 4 | Probabilities of sufficient and necessary causation (PNS) of LAI changes in response
to CO2 for eleven clusters. Bar charts represent PNS of LAI changes in response to the
physiological effect (a, b), radiative effect of CO2 (c, d) and all anthropogenic forcings
(e, f). Different colors represent the identified clusters of substantial change in LAI.
Panels on the left comprise clusters that show consistent greening, panels on the right
represent emerging browning clusters (observed net leaf area loss in the period 2000–
2017; attribution is conducted only for significant decreasing trends, Data and Methods).
The two types of bar illustrate the two different ensembles of model simulations (left:
MPI-ESM, right: TRENDYv7).

Climate change drives an asymmetrical development of North American and Eurasian
ecosystems. The boreal forests show pronounced positive trends in Eurasia (Observations:
∼ 2.69 % decade−1, MPI-ESM: ∼ 3.48 % decade−1, and TRENDYv7: ∼ 2.08 % decade−1),
which can mostly be attributed to amplified warming of the temperature-limited northern
high latitudes (PNS = 71% for TRENDYv7, PNS = 44% for MPI-ESM; Figure A6). North
American boreal forests exhibit a negative response to rising CO2, which has amplified
over the last two decades (∼ -0.95 % decade−1, 2000–2017). Models do not reproduce the
dominant browning (Figure A7), which is most likely connected to the inadequate represen-
tation of disturbances (Sitch et al., 2015). Several studies have proposed that browning has
occurred as consequence of droughts, wildfire, and insect outbreaks in the North American
boreal forests (Goetz et al., 2005; Sitch et al., 2015; Beck and Goetz, 2011). Macias Fauria and
Johnson (2008) showed that the frequency of wildfires is strongly related to the dynamics of
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large-scale climatic patterns (Pacific Decadal Oscillation, El Niño Southern Oscillation, and
Arctic Oscillation) and thus, cannot be tied conclusively to anthropogenic climate change.
However, there is also evidence that the residing tree species suffer from drought stress
induced by higher evaporative demands as the temperature rises (Verbyla, 2011). Moreover,
models lack a representation of the asymmetry in tree species distribution between North
America and Eurasia, which could explain their divergent reactions to changes in key
environmental variables (Abis and Brovkin, 2017). Further observational evidence for the
browning of North American boreal forests and the associated decline in net ecosystem
productivity can also be inferred from CO2 inversion products (Fernández-Martínez et al.,
2019; Bastos et al., 2019).

Tundra ecosystems also reveal a dipole-type development between North America and
Eurasia, however with a reversed sign. Hence, North American tundra is strongly greening
(Observations: ∼ 4.23 % decade−1, MPI-ESM: ∼ 4 % decade−1, and TRENDYv7: ∼ 4.51
% decade−1), which is virtually certain (PNS = 99% for TRENDYv7) and about likely as not
(PNS = 51% for MPI-ESM) caused by warming (Figure A8). The trend decreases for the
period 2000–2017, which could be linked to the warming hiatus in the years 1998–2012
(Bhatt et al., 2013; Ballantyne et al., 2017; Hedemann et al., 2017). This is in line with the
observed slow down in tundra greening due to short-term cooling after volcanic eruptions
(Lucht et al., 2002).

Eurasian tundra show a positive trend for the years 1982–2017, but a reversal in trend
sign for the years 2000–2017 (Figure A9). Models exhibit some evidence of a strengthening
browning signal, but fail to capture the full extent of the emerging browning clusters
seen in observations. If we only consider the grid cells that show significant browning in
observations and models, we are able to conduct a robust driver attribution. According
to the TRENDYv7 ensemble, the browning cluster in Eurasian tundra can very likely be
attributed to CO2 induced climate change (PNS = 93%, PNS = 47% for MPI-ESM). These
results are in line with studies showing that tundra ecosystems are susceptible to warm
spells during growing season (Phoenix and Bjerke, 2016) and exposed to frequent droughts
(Beck and Goetz, 2011). The asymmetry between Eurasia and North America can be
explained by changes in large-scale circulation. Eurasia is cooling through increased
summer cloud cover, whereas North America is warming through more cloudless skies
(Bhatt et al., 2013; Bhatt et al., 2014). Also linkages between regional Arctic sea ice retreat,
subsequent increasing ice-free waters, and regional Arctic vegetation dynamics have been
described (Bhatt et al., 2014).

Vegetation in arid climates is greening, except in South America. Non-forested greening
clusters beyond the high northern latitudes coincide with semi-arid to arid climates (Park et
al., 2018). The Northern Sub-Saharan African savannas and grasslands greened extensively
in recent decades (∼ 4.63 % decade−1; Figure A10), which is reproduced by the observation-
driven TRENDYv7 models (∼ 4.55 % decade−1), and is likely caused by climatic changes
(PNS = 68%). No robust attribution is feasible based on the MPI-ESM simulations. However,
it is noteworthy, that the fully-coupled Earth system model points to climate change having
a negative effect in these regions, thus, not reproducing the increase in rainfall observed
(Figure A10). This provides evidence for the hypothesis that African precipitation anomalies
are not induced by rising CO2, but rather follow a multidecadal internal climatic mode
(Asefi-Najafabady and Saatchi, 2013).
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Internal variability in LAI changes is strong in the Southern African grasslands and
savannas, and thus, no robust long-term change can be identified (Figure A11). It has been
shown that shrublands in more southern regions are greening as response to increased
rainfall (Fensholt and Rasmussen, 2011). In general, the literature suggests that greening
and browning patterns in arid climates are mainly driven by precipitation anomalies
(Fensholt and Rasmussen, 2011; Fensholt et al., 2012; Gu et al., 2016; Adler et al., 2017).
Close resemblance arises when comparing the spatial patterns of precipitation trends
throughout the satellite era (Adler et al., 2017) with significant changes in vegetation
in arid environments, especially so on the African continent. Decreased rainfall in arid
South America coincides with strong browning clusters (Fensholt et al., 2012). This is in
disagreement with the expected strong manifestation of CO2 fertilization in water-limited
environments (Ukkola et al., 2016).

Australian Shrublands show a persistent positive LAI trend (∼ 3.84 % decade−1), in-
termittently perturbed by climatic extreme events (e.g. strong anomalous rainfall with
subsequent extensive vegetation greening in 2011 (Poulter et al., 2014, Figure A12). Models
reproduce the steady greening of Australia, but no robust driver attribution is feasible
due to strong internal variability. However, both model setups point at the physiological
effect of CO2 as the dominant driver (Figure A12). These results are in line with recent
studies (Donohue et al., 2009; Ukkola et al., 2016) showing that CO2 fertilization enhanced
vegetation growth by lowering the water limitation threshold.

Grasslands in the cool arid climates exhibit persistent positive trends (∼ 2.03 % decade−1,
Figure A13). Simulated estimates are in the range of the observations (MPI-ESM: ∼ 2.33 %
decade−1 and TRENDYv7: ∼ 1.81 % decade−1). Our analysis suggests that the positive
response of cool arid grasslands to rising CO2 can be explained by the physiological effect
of CO2 (PNS = 85% for TRENDYv7, PNS = 88% for MPI-ESM). These ecosystems are
dominated by C3-type plants (Still et al., 2003), which are susceptible to CO2 fertilization
(Sage et al., 2012), thus, consistent with our results. In the warm arid areas, C4-type
grasses dominate (Still et al., 2003), which are less sensitive to the physiological effects of
CO2 (Sage et al., 2012). As discussed above, vegetation changes there are mostly driven
by precipitation anomalies, although CO2 fertilization might also contribute to a limited
degree (Sage et al., 2012).
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4 conclusions

In this paper, we examine almost four decades of global LAI observations under rising
atmospheric CO2 concentration. We find that the Earth’s greening trend is weakening
and clusters of browning are beginning to emerge, and critically, expanded during the
last two decades. Leaf area is primarily decreasing in the pan-tropical green belt of dense
vegetation. Leaf area gain occurs mostly in sparsely vegetated regions in cold and/or arid
climatic zones, and in the temperate forests. Taken together, vegetation greening occurs
mainly in regions of low LAI, whereas browning happens primarily in regions of high LAI.
As a consequence, the time series of the aggregated greening and browning signals are
approaching another and induce a convergence of Earth’s natural vegetation.

We identity clusters of greening and browning across all continents and conduct a
regional driver attribution based on factorial model simulations. Our results suggest that
the physiological effect of CO2 (i.e. CO2 fertilization) is the dominant driver of increasing
leaf area only in the temperate forests, cool arid grasslands and likely the Australian
shrublands, and might only make a small contribution in other biomes. This finding
questions the study by Zhu et al. (2016) identifying CO2 fertilization as prevalent driver
of the Earth’s greening trend. We find that many clusters of greening and browning bear
the signature of climatic changes. The greening of Sub-Saharan grasslands and savannas
can be explained by increased rainfall, however, a robust attribution remains inconclusive.
Climate changes, primarily warming and drying, determine the patterns of vegetation
changes in the northern ecosystems, i.e. greening of Eurasian boreal forests and North
American tundra, but also emerging browning in Eurasian tundra. Models fail to capture
the browning of the North American boreal forests. In the tropics, models suggest that
rising CO2 has compensatory effects on LAI. Climatic changes induce browning, which is
outweighed by greening due to a strong physiological effect in the models. Hence, if we
neglect the physiological effect of CO2, models simulate emerging browning in the tropics
comparable to observations. This lends support to previous findings on the browning of
tropical forests caused by climatic changes, covering recurrent droughts in the Amazon as
well as long-term drying trends in Africa.

Models represent a simplified view of the real world reduced to its essential processes.
Some of these processes are underrepresented or lacking in the current generation of land
surface models. Whether they are driven with observed climatic conditions or operate in a
fully-coupled Earth System model, they fail to capture the full extent of negative effects of
rising CO2 in natural ecosystems. Especially, the deficiency of reproducing the observed
leaf area loss in North American boreal and tropical forests – biomes which account
for a large part of the photosynthetic carbon fixation – has considerable implications on
future climate projections. Hence, model development should concentrate on not only a
better representation of disturbances such as droughts and wildfires, but also on revising
the implementation of processes associated with the physiological effect of CO2, which
currently offsets browning induced by climatic changes.

Another vital issue for future research is the impact of large-scale climatic patterns
on vegetation. All three major clusters of browning are hypothesized to be associated
with temperature or precipitation anomalies modulated by climatic modes. Various heavy
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droughts in the Amazon were attributed to El Niño events (Bonal et al., 2016), the long-
term drying trend in tropical Africa is possibly connected to the Atlantic Multidecadal
Oscillation (Asefi-Najafabady and Saatchi, 2013), and disturbances in North American
boreal forests are likely controlled by an interplay of large-scale climatic patterns (Pacific
Decadal Oscillation, El Niño Southern Oscillation, and Arctic Oscillation; Macias Fauria
and Johnson, 2008). Little is known about how these large-scale pattern might change in
a warming climate. Current Earth system models struggle in simulating these climatic
modes and related precipitation patterns, which is likely rooted in their coarse spatial
resolution. New tools, such as high resolution simulations or large ensembles, open up
new possibilities to study these phenomena.

Finally, we point out that the impacts of leaf area changes are not comparable between
biomes. Regarding biodiversity, the consequences of leaf area loss in the tropical forests,
harboring the most diverse flora and fauna of the planet, are not compensated for by leaf
area gain in the temperate and arctic ecosystems. This discrepancy also holds for the
carbon cycle perspective, e.g. an additional leaf in the tundra does not offset the reduction
in primary productivity of a leaf lost in the tropical rain forest. Thus, our results indicating
a substantial loss of tropical leaf area every year are of concern. A recent study suggested
that the tropical forests have already switched to being a net source of carbon (Baccini
et al., 2017). The uncertainty in future projections is large, ranging from a stable CO2
fertilization-driven carbon sink to a collapse of the system at a certain CO2 concentration
(Cox et al., 2000). Altogether, the tropical forests have the potential to crucially influence
the evolution of climate throughout the 21st century and should be a vital issue for future
research.
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Figure A1 | Observations versus MPI-ESM. Time series of area-weighted annual average LAI (left:
AVHRR, right: MPI-ESM) for regions of positive (blue line) and negative sensitivity
(red line) to rising atmospheric CO2 concentration (Λ) of natural vegetation. Black line
represent the overall signal of all pixels.

Table A1 | Scheme for mapping land covers used in this study from the International Geosphere-
Biosphere Programme (IGBP) classes provided by MODIS (https://lpdaac.usgs.
gov/dataset_discovery/modis/modis_products_table/mcd12c1_v006) and classes from
Global Land Data Assimilation System (GLDAS, (Rodell et al., 2004)). MODIS tree
cover product (https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_
table/mod44b_v006) was used to account for the underestimated forested area in MODIS
land cover product. Further details are depicted in Data and Methods section of the main
paper.
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Table A1 | Table caption on the previous page.

IGBP Land Cover Type Land Cover This Study

Evergreen Needleleaf Forests (ENF) Boreal Forest

Evergreen Broadleaf Forests (EBF) Tropical Forest

Deciduous Needleleaf Forests (DNF) Boreal Forest

Deciduous Broadleaf Forests (DBF) Temperate Forest

Mixed Forests (MF) Temperate Forest

Closed Shrublands Shrublands
Tropical Forests for tree cover > 20% and 25◦ S – 25◦ N
Boreal Forests for tree cover > 10% and > 50◦ N/S

Open Shrublands Shrublands
Tundra for Wooded, Mixed or Bare Ground Tundra in GLDAS
Tropical Forests for tree cover > 20% and 25◦ S – 25◦ N
Boreal Forests for tree cover > 10% and > 50◦ N/S

Woody Savannas 1. Step:
Tropical Forests for 25◦ S – 25◦ N
2. Step:
Temperate Forests for DBF or MF in GLDAS
Boreal Forests for ENF or DNF in GLDAS
3. Step:
Temperate Forests for 25◦ N/S – 50◦ N/S
Boreal Forests for > 50◦ N/S

Savannas Savannas
Croplands for Croplands in GLDAS
Grasslands for Grasslands in GLDAS
Shrublands for Open or Closed Shrublands in GLDAS
Tropical Forests for tree cover > 20% and 25◦ S – 25◦ N
Boreal Forests for tree cover > 10% and > 50◦ N/S

Grasslands Grasslands
Tundra for Wooded, Mixed or Bare Ground Tundra in GLDAS
Tropical Forests for tree cover > 20% and 25◦ S – 25◦ N
Boreal Forests for tree cover > 10% and > 50◦ N/S

Permanent Wetlands Others
Tundra for Wooded, Mixed or Bare Ground Tundra in GLDAS

Croplands Croplands

Urban and Built-up Lands Others

Cropland/Natural Vegetation Mosaics Croplands

Permanent Snow and Ice Others

Barren Others
Tundra for Wooded, Mixed or Bare Ground Tundra in GLDAS

Water Bodies Water

35



the effects of rising co2 on global natural vegetation

Figure
A

2
|

Land
cover

m
ap

for
broad

vegetation
classes.

G
lobal

m
ap

of
the

d
istribu

tion
of

broad
land

cover
typ

es
based

on
the

International
G

eosphere-B
iosphere

Program
m

e
(IG

B
P)

classification,aggregated
in

anthropogenic
(C

ropland
s)

and
seven

naturalvegetation
classes

(Tropical,Tem
perate,and

BorealForests,Savannas,G
rasslands,Shrublands,and

Tundra).The
inset

table
show

s
the

arealextent
of

each
land

cover
type.Supplem

entary
Table

1
provides

a
detailed

overview
on

the
conflation

of
the

three
land

and
forest

cover
products

used
to

develop
this

m
ap.Further

details
are

depicted
in

the
D

ata
and

M
ethods

section
of

the
m

ain
paper.

36



supplementary information

1985 1990 1995 2000 2005 2010 2015
Time, yr

1.60

1.70

1.80

1.90

2.00

2.10

2.20

2.30

A
nn

ua
l

av
er

ag
e

L
A

I,
m

2
m
−2

a

Positive Λ (56%)

Negative Λ (8%)

Total signal

1985 1990 1995 2000 2005 2010 2015
Time, yr

0

5

10

15

20

R
el

at
iv

e
ch

an
ge

in
L

A
I,

%

b

MPI-ESM (r=0.48, p=0.003)

TRENDYv7 (r=0.54, p=0.00068)

OBS

OBS IV

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
el

at
iv

e
tr

en
d

in
L

A
I,

%
de

ca
de
−1

c

ALL No PE No RE No CO2

1982–2017

MPI-ESM TRENDYv7

PE RE Both
0.0

0.2

0.4

0.6

0.8

1.0

P
N

S

d
1982–2017

MPI-ESM

TRENDYv7

OBS IV

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
el

at
iv

e
tr

en
d

in
L

A
I,

%
de

ca
de
−1

e

ALL No PE No RE No CO2

2000–2017

MPI-ESM TRENDYv7

PE RE Both
0.0

0.2

0.4

0.6

0.8

1.0
P

N
S

f
2000–2017

MPI-ESM

TRENDYv7

Figure A3 | Figure caption on the following page.
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Figure A3 | Temperate Forests: Driver attribution of changing vegetation for the entire period
versus the second half of the observational record. a Time series of the area-weighted
annual average LAI (AVHRR, 1982–2017) for regions of positive (blue dotted line) and
negative sensitivity (red dashed line) to rising atmospheric CO2 concentration (Λ) of
natural vegetation. Black solid line represent the overall signal of all pixels. The
percentages in brackets in the legend represent the greening and browning proportions
with respect to the total area. b Time series of changes in LAI relative to the average state
from 1982–1984, comparing observations (black solid line) with historical simulations,
where the green dashed line denotes the ensemble mean of 13 offline-driven land surface
models (TRENDYv7, Data and Methods), and the purple dotted line denotes the average
of an ensemble of multi-realizations with a fully-coupled Earth system model (MPI-
ESM, Data and Methods). The colored shading represents the 95% confidence interval
estimated by bootstrapping. The correlation coefficients (including significance level) of
the observed and simulated time series are displayed in brackets in the legend. c Bar
chart showing relative trends in LAI (in % yr−1) of the total observed signal (black) and
for factual (all historical forcings; ALL) as well as for counterfactual simulations, i.e. no
historical CO2 forcing (No CO2), all historical forcings except the physiological effect
(No PE) or the radiative effect (No RE) of atmospheric CO2, as estimated by TRENDYv7
(green) and MPI-ESM (purple). The yellow bar represents internal variability (IV) derived
from all simulations (control, factual and counterfactual). d Probabilities of necessary
and sufficient causation (PNS) of the change in LAI, comparing the physiological (PE)
and radiative effect (RE) of CO2 as well as their combined effect (Both). e as in c but for
the period 2000–2017. f as in d but for the period 2000–2017.
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Figure A4 | Tropical Forests – caption analogous to Figure A3.
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Figure A5 | Central African Tropical Forests – caption analogous to Figure A3.
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Figure A6 | Eurasian Boreal Forests – caption analogous to Figure A3.
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Figure A7 | North American Boreal Forests – caption analogous to Figure A3.
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Figure A8 | North American Tundra – caption analogous to Figure A3.
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Figure A9 | Eurasian Tundra – caption analogous to Figure A3.
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Figure A10 | Northern African Savannas Grasslands – caption analogous to Figure A3.
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Figure A11 | Southern African Savannas Grasslands – caption analogous to Figure A3.
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Figure A12 | Australian Shrublands – caption analogous to Figure A3.
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Figure A13 | Cool Grasslands – caption analogous to Figure A3.
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Table A2 | Greening, browning and non-changing fractions of vegetated area for different biomes
and prominent clusters of change for the time period 2000–2017. Significant changes
are determined by the means of the Mann-Kendall significance test (p < 0.1). The
abbreviations used to describe the different clusters are explained in Data and Methods.

Area Vegetated Area Positive Λ Fraction Negative Λ Fraction No-Change Fraction

Unit 106 km2 - - -

All Vegetation 109.42 0.21 0.13 0.66

Anthro. Vegetation 15.37 0.33 0.09 0.58

Natural Vegetation 94.05 0.19 0.14 0.68

Biomes

Grasslands 26.77 0.22 0.12 0.66

Tropical F. 20.32 0.11 0.19 0.7

Boreal F. 13.69 0.19 0.18 0.63

Temperate F. 11.2 0.26 0.07 0.67

Shrublands 10.37 0.21 0.09 0.69

Tundra 7.03 0.14 0.14 0.72

Savannas 4.22 0.17 0.11 0.72

Clusters

Cool Gl 12.32 0.26 0.12 0.62

EA Brl F 8.0 0.23 0.14 0.63

NAm Brl F 5.69 0.14 0.23 0.63

NAf Sv Gl 5.6 0.18 0.1 0.72

CAf Trp F 5.35 0.09 0.23 0.69

SAf Sv Gl 4.6 0.07 0.19 0.74

Aus Sl 4.43 0.29 0.02 0.69

EA Tundra 3.57 0.13 0.2 0.67

NAm Tundra 3.46 0.15 0.08 0.77
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Table A3 | Leaf area gain, loss, and net change for different biomes and prominent clusters of change
for the time period 2000–2017. Significant changes are determined by the means of the
Mann-Kendall significance test (p < 0.1). The abbreviations used to describe the different
clusters are explained in Data and Methods.

Leaf Area Leaf Area Gain Leaf Area Loss Net Leaf Area Change

Unit 103 km2 yr−1 103 km2 yr−1 103 km2 yr−1

All Vegetation 140.25 -79.68 60.57

Anthro.Vegetation 40.69 -5.9 34.78

Natural Vegetation 99.56 -73.78 25.79

Biomes

Grasslands 25.12 -11.65 13.47

Tropical F. 18.85 -37.27 -18.42

Boreal F. 15.02 -11.13 3.88

Temperate F. 26.29 -5.43 20.86

Shrublands 5.77 -1.85 3.91

Tundra 2.39 -2.68 -0.28

Savannas 5.97 -3.57 2.41

Clusters

Cool Gl 10.23 -3.0 7.24

EA Brl F 11.82 -4.24 7.58

NAm Brl F 3.2 -6.9 -3.69

NAf Sv Gl 6.26 -1.25 5.01

CAf Trp F 3.5 -13.16 -9.66

SAf Sv Gl 1.52 -5.19 -3.67

Aus Sl 3.15 -0.12 3.02

EA Tundra 0.97 -2.23 -1.26

NAm Tundra 1.43 -0.45 0.97
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earth system models underestimate carbon fixation by plants in the high latitudes

Abstract

Most Earth system models agree that land will continue to store carbon due
to the physiological effects of rising CO2 concentration and climatic changes
favoring plant growth in temperature-limited regions. But they largely disagree
on the amount of carbon uptake. The historical CO2 increase has resulted in
enhanced photosynthetic carbon fixation (Gross Primary Production, GPP),
as can be evidenced from atmospheric CO2 concentration and satellite Leaf
Area Index (LAI) measurements. Here, we use leaf area sensitivity to ambient
CO2 from the past 36 years of satellite measurements to obtain an Emergent
Constraint (EC) estimate of GPP enhancement in the northern high latitudes
at two-times the pre-industrial CO2 concentration (3.4 ± 0.2 Pg C yr−1). To
imbue confidence, we derive three independent comparable estimates from CO2
measurements and atmospheric inversions. Our EC estimate is 60% larger than
the conventionally used multi-model average (44% higher at the global scale).
This suggests that most models largely underestimate photosynthetic carbon
fixation and therefore likely overestimate future atmospheric CO2 abundance
and ensuing climate change, though not proportionately.

Author Contributions A.J.W. performed the research. All authors contributed ideas and
to the interpretation of the results. R.B.M. and A.J.W. drafted the manuscript with inputs
from G.A.A. and V.B.
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introduction

1 introduction

Predicting climate change requires knowing how much of the emitted CO2 (currently
∼40 Pg CO2 yr−1) will remain in the atmosphere (∼46%) and how much will be stored
in the oceans (∼24%) and lands (∼30%; Quéré et al., 2018). Earth system models (ESM)
show a large spread in projected increase of terrestrial photosynthetic carbon fixation
(GPP; Ciais et al., 2013; Zhao and Zeng, 2014; Friedlingstein et al., 2013; Anav et al., 2013;
Arora et al., 2013) and are thought to overestimate current estimates (Anav et al., 2013;
Kolby Smith et al., 2016), although the latter is also subject of debate (Anav et al., 2013;
De Kauwe et al., 2016; Campbell et al., 2017; Welp et al., 2011; Koffi et al., 2012). Historical
increase of atmospheric CO2 concentration, from 280 to current 400 ppm, has resulted in
enhanced GPP due to its radiative (Nemani et al., 2003) and physiological effects (Leakey
et al., 2009; Thomas et al., 2016), which is indirectly evident in amplified seasonal swings
of atmospheric CO2 concentration (Forkel et al., 2016; Keeling et al., 1996; Graven et al.,
2013) and large scale increase in summer time green leaf area (Myneni et al., 1997; Zhu
et al., 2016; Mao et al., 2016). Thus, these observables, expressed as sensitivities to ambient
CO2 concentration, might serve as predictors of changes in GPP (Cox et al., 2013; Wenzel
et al., 2014; Wenzel et al., 2016; Mystakidis et al., 2016) and help to reduce uncertainty in
multi-model projections of terrestrial carbon cycle entities.

This study is focused on the northern high latitudes (NHL, north of 60◦ N) where
significant and linked changes in climate (Screen and Simmonds, 2010) and vegetation
(Forkel et al., 2016) have been observed in the past three to four decades: 52% of the
vegetated lands show statistically significant greening trends over the 36-year record of
satellite observations (1981 to 2016, Methods; Zhu et al., 2013), while only 12% show
browning trends, mostly in the North American boreal forests due to disturbances (Figure
1; Goetz et al., 2005). We therefore hypothesize that the greening sensitivity (i.e. LAI
changes in response to changes in the driver variables) inferred from the historical period
of CO2 increase can be used to obtain a constrained estimate (Wenzel et al., 2016) of future
GPP enhancement from both the radiative and physiological effects (Figure A1).

State-of-the-art fully coupled carbon-climate ESMs vary in their representation of many
key processes, e.g. vegetation dynamics, carbon-nitrogen interactions, physiological effects
of CO2 increase, climate sensitivity, etc. This results in divergent trajectories of evolution
of the 21st century carbon cycle (Friedlingstein et al., 2013; Anav et al., 2013; Arora et al.,
2013). To capture this variation, we use two sets of simulations (Taylor et al., 2012) available
from seven ESMs (Wenzel et al., 2016) from the Coupled Model Intercomparison Project
Phase 5 (CMIP5) - one with historical forcings including anthropogenic CO2 emissions for
the period 1850–2005 and the second with idealized forcing (1% CO2 increase per year,
compounded annually, starting from a preindustrial value of 284 ppm until quadrupling).
In our analyses, the magnitude of the physiological effect is represented by the CO2
concentration and the radiative effect by growing degree days (GDD0, > 0◦ C, Methods) as
plant growth in NHL is principally limited by the growing season temperature (Nemani
et al., 2003). Leaf area changes can be represented either by changes in annual maximum
LAI (LAImax Cook and Pau, 2013) or growing season average LAI – we use the former
because of its ease and unambiguity, as the latter requires quantifying the start- and
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Figure 1 | Greening (LAI increase) and browning trends during 1981 to 2016 in the northern high
latitudes. Statistically significant (Mann-Kendall test, p < 0.1) trends in summer (June to
August) average LAI are color coded. Non-significant changes are shown in grey. White
areas depict ice sheets or barren land. Details of the LAI data set are provided in Methods.
The figure was created using the cartographic python library Cartopy (Release: 0.16.0).
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end-dates of the growing season, something that is difficult to do accurately in NHL (Park
et al., 2016) with the low-resolution model data.

Here, we apply the concept of Emergent Constraints to reduce uncertainty in multi-model
projections of GPP using historical simulations and satellite observations of LAI focusing on
NHL. We find that the EC estimate is 60% larger than the commonly accepted multi-model
mean value, in line with a recent study that assessed the impact of physiological effects
of higher CO2 concentration on GPP of northern hemispheric extra-tropical vegetation
(Wenzel et al., 2016). Detailed independent analyses of in-situ CO2 measurements and
atmospheric inversions imbue confidence in our conclusions. Our central finding is, the
effect of ambient CO2 concentration on terrestrial photosynthesis is larger than previously
thought, and thus, has important implications for future carbon cycle and climate.

2 results

Large inter-model spread in greening sensitivity. The enhancement in NHL greenness
throughout the observational period relates linearly to both increasing quantities, GDD0
and CO2 concentration, in general agreement between models and observations (Forkel
et al., 2016; Zhu et al., 2016; Mahowald et al., 2016). To avoid redundancy from co-linearity
between the two driver variables, but retain their underlying time-trend and interannual
variability (Table A1), we use the dominant mode from a principal component analysis
of CO2 and GDD0 as the proxy driver (denoted ω) in subsequent analysis (Methods).
Expressed in this compact form, greenness level (Figure 2a) as well as greening sensitivity
to (hereafter greening sensitivity, Figure 2b) span a wide range across the multi-model
ensemble. All models with low greenness levels (LAImax < 0.75 m2 m−2) tend to simulate
low greening sensitivities (< 0.015 m2 m−2 LAImax per 1 unit ω), relative to observations.
These models (NorESM1-ME, CESM1-BGC, and CanESM2) lack a representation of dy-
namic vegetation, i.e. do not allow plant functional type shifts in response to changing
simulated climate, and/or show overly strong nitrogen limitations on plant growth and
thus fail to capture GPP enhancement and its re-investment in green leaf area (Table A2).
The other four models behave randomly – some reproduce observed greenness levels
(LAImax ∼ 1.7 m2 m−2) but not the greening sensitivities (∼ 0.045 m2 m−2 LAImax per 1
unit ω) and the others vice versa. Whether this is because these four models in common
lack carbon-nitrogen interactions, or are missing some other key processes, is not known
(Mahowald et al., 2016), but the end result is a large range in model simulated greening
sensitivity (hereafter LAImax sensitivity), during the historical period (0.022 – 0.075 m2 m−2

LAImax per 1 unit ω).

Emergent Constraint on projected increase of GPP. What is known, however, is the strong
linear relationship between modelled contemporaneous changes in LAImax and GPP arising
from the combined radiative and physiological effects of CO2 enrichment in the range
1×CO2 to 2×CO2 (Figures A2 and A3). As a result, models with low LAImax sensitivity
(Figure 2b) project lower ∆GPP for a given increment of CO2 concentration, and vice versa.
Thus, the large variation in modelled historical LAImax sensitivities (Figure 2b) linearly
maps to variation in ∆GPP at 2×CO2 (Figure 2c; r = 0.98, P = 0.0001), with the consequence
that the uncertainty of the multi-model mean ∆GPP is large enough to undermine its value
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Figure 2 | CMIP5 ensemble mean considerably underestimates absolute increase of GPP for a
doubling of pre-industrial atmospheric CO2 concentration (2×CO2). a, Observations
(black) and CMIP5 historical simulations (colors) of the first principal component of
annual mean atmospheric CO2 and annual growing degree days above 0 ◦C (ω) versus the
annual LAImax. All quantities are area weighted and spatially averaged for NHL (60◦N -
90◦N). b, Bar chart showing the corresponding slopes of the best linear fits, where the
grey bar at the top indicates the standard error. Linear trends are derived for the period
1982-2016 for observations and 1971-2005 for model simulations, maximizing the overlap
and sample size. c, Linear relationship between the sensitivity of annual LAImax to ω (x
axis) and the absolute increase of high-latitude GPP at 2×CO2. Each model is represented
by an individually colored marker with error bars indicating one standard deviation (y
axis) and standard error (x axis). The black solid line shows observed sensitivity, where
the grey shading indicates the respective standard error. The blue line shows the best
linear fit across the CMIP5 ensemble including the 68% confidence interval estimated by
bootstrapping (blue shading; Methods). The intersection of the blue and black line gives
the Emergent Constraint on ∆GPP at 2×CO2 (dashed black line). d, Probability density
functions resulting from Emergent Constraint (blue) and CMIP5 ensemble mean estimates
(red, assuming Gaussian distribution). Details in Methods.

6



results

– e.g. 2.1 ± 1.91 Pg C yr−1 for 2×CO2 in NHL. This linear relation in inter-model variation
between ∆GPP at 2×CO2 and historical LAImax sensitivities allows using the observed
sensitivity as an Emergent Constraint (EC) on GPP estimation at 2×CO2. Moreover, the
probability contours about the best linear fit together with the uncertainty of observed
sensitivity (blue and grey shadings in Figure 2c) allow a robust characterization of the
constrained estimate (Wenzel et al., 2016), namely 3.4 ± 0.2 Pg C yr−1 for 2×CO2 in NHL
(Figure 2d). This EC estimate is 60% larger than the multi-model mean value. Wenzel et al.
(2016) reported a similar result for NHL (37% ± 9% vs. 20% - 25% for relative GPP increase
at 2×CO2) and a somewhat smaller number for the extra-tropical vegetation in the northern
hemisphere, both for the physiological effect only (Figure A4 shows that the radiative and
physiological effects each contribute about half of the total GPP enhancement). Together,
these results indicate that most models are largely underestimating photosynthetic carbon
fixation, which is in contrast to previous studies (Anav et al., 2013; Kolby Smith et al., 2016)
that suggested an over-sensitivity of ESMs to atmospheric CO2. Below, we provide three
independent lines of evidence, i.e. not using LAImax but atmospheric CO2 measurements,
to buttress our EC estimate.

Independent lines of evidence. First, the seasonal cycle of CO2 concentration in the
NHL, which shows a winter maximum due to respiratory processes and a late-summer
minimum due to photosynthetic drawdown, may be considered as a proxy for NHL
carbon exchange with the atmosphere (Forkel et al., 2016; Keeling et al., 1996; Graven
et al., 2013). Analyses of long-term measurements at NHL stations, Point Barrow (BRW,
Alaska) and Alert Nunavut (ALT, Canada), reveal that this seasonal cycle has changed
over time, dominated by a decreasing trend in the annual CO2 minimum (Figure 3a, b).
Nearly all of this change can be attributed to the land, as the trend in the abutting Arctic
ocean flux is ∼15 times smaller (Figure 3d; Methods). This strengthening of the seasonal
swings of CO2 concentration relates to photosynthesis rather than respiration changes
(Forkel et al., 2016; Keeling et al., 1996; Graven et al., 2013) and thus features changes in
GPP. So, if the EC estimate is closer to the true value of ∆GPP at 2×CO2, then, models
matching the EC estimate (e.g. MIROC-ESM) must also better simulate the changing
CO2 seasonal cycle measured at the NHL stations, in comparison to models that over-
(e.g. HadGEM2-ES) or underestimate (e.g. CESM1-BGC). Indeed, the MIROC-ESM best
reproduces the average observed seasonal cycle, and critically, the change in summertime
minimum over time at both stations, in comparison to the other models (Figure 3a, b).
None of the models reproduce the observed phase of the seasonal cycle, which suggests a
recurring problem among models in their representation of vegetation phenology (Anav
et al., 2013). Nevertheless, the model that projects ∆GPP matching the LAImax based EC
estimate is also the one that best captures the changes in observed seasonal cycle suggesting
that the EC estimate, rather than the corresponding multi-model mean, best represents the
true value of ∆GPP at 2×CO2. Thus, the multi-model mean is a large underestimate.

Second, measured changes in the amplitude of CO2 seasonal cycle can be regarded as
a metric of changes in NHL GPP (Forkel et al., 2016; Keeling et al., 1996; Graven et al.,
2013; Wenzel et al., 2016). This is not necessarily the case in ESMs, because uncertainty in
wintertime carbon release processes influences considerably the annual CO2 maximum and
hence the amplitude – variations unrelated to photosynthetic activity (Graven et al., 2013).
To better isolate the effect of photosynthetic carbon fixation in the seasonal CO2 signal,
we use the slope of summertime drawdown instead of its amplitude. With the observed
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Figure 3 | Lines of evidence in support of the Emergent Constraint estimate of NHL GPP. a,
Detrended seasonal cycle of Point Barrow (71.3◦ N, 203.4◦ E) CO2 concentration at two
time periods, 1974–79 (dashed) and 2000–2005 (solid), from observations (black) and
selected CMIP5 models (colored) spanning the full range of LAImax sensitivity (low-end:
CESM1-BGC, closest-to-observations: MIROC-ESM, and high-end: HadGEM2-ES). b, As
in a, but showing the detrended seasonal cycle of Alert Nunavut (82.5◦ N, 297.7◦ E) CO2
concentration at the two time periods, 1985–90 (dashed) and 2000–2005 (solid). c, Changes
in the slope of summertime drawdown of CO2 concentration over a 30-year period in
representative models and observations at both stations (Methods). Grey bars denote one
standard deviation. d, Seasonal cycle of CO2 fluxes into NHL land (green, 60◦ N - 90◦ N,
historical simulation, average of 3 realizations, MPI-ESM-LR) and Arctic Ocean (blue, 65◦

N, historical simulation, average of 10 realizations, MPI-ESM-HR), for two time periods,
1970–75 (dashed) and 2000–2005 (solid). Shading indicates one standard deviation.
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lengthening of the growing season (Park et al., 2016) and general enhancement of GPP,
the CO2 concentration is increasingly tugged downward relative to the steady increasing
trend. At both stations, the drawdown slope decreased over a period of 30 years (ALT:
−1.04 ± 0.18 ppm month−1 30yr−1 and BRW: (−0.68 ± 0.12 ppm month−1 30yr−1; Figure
3c; Methods). The models also show a decreasing slope but disagree on the magnitude
(Figure 3c). Again, we note that the MIROC-ESM best reproduces the observed change
in drawdown slope at both stations. Likewise, HadGEM2-ES considerably overestimates
and CESM1-BGC underestimates the decline of the drawdown slope. According to the
hypothesized EC approach (Figure A1), this is rooted in MIROC-ESM correctly capturing
the sensitivity of an observable (LAImax in Figure 2b or BRW and ALT drawdown slope
in Figure 3c) to CO2 concentration. Consequently, this agreement in changes in CO2
drawdown slope between long-term measurements and the closest-to-observations model
in terms of greening sensitivity provides further support for the EC estimate of ∆GPP at
2×CO2 and suggests that the multi-model mean is a large underestimate.

Third, the available longest records of carbon exchange between the land/ocean and
atmosphere (1980-2015) indicate that NHL lands changed from being a small carbon source
in the early 1980s to a strong sink in the mid-2010s (Figure A5) meaning that the net
biome production (NBP) increased – Jena CarboScope (JENA; Rödenbeck et al., 2003)
∆NBP: 0.31 ± 0.09 Pg C yr−1 and the Copernicus Atmosphere Monitoring Service (CAMS;
Chevallier et al., 2010) ∆NBP: 0.78 ± 0.04 Pg C yr−1. NBP fluxes include emissions from
disturbances, such as fire, and heterotrophic respiration, which may have increased due to
warming over the period of record. Accordingly, the derived changes in NBP from the CO2
inversion products can be considered as conservative estimates of NPP enhancement. The
EC estimate using greening observations translates to a land net primary production (NPP)
enhancement of about 0.32 ± 0.02 Pg C yr−1, when adjusted for CO2 concentration increase
over the period of the atmospheric CO2 inversion datasets (Methods). This estimate better
agrees with the JENA estimate than the multi-model mean (0.19 ± 0.18 Pg C yr−1). All
three, however, do not overlap with the CAMS estimate. Hence, the available evidence
from inversion studies of atmospheric CO2 measurements indicates NPP changes in NHL
comparable to or larger than our EC estimate, and therefore the multi-model mean to be
an underestimate.

3 discussion

The causes for model underestimation can perhaps be traced to representation of carbon-
nitrogen interactions and vegetation dynamics. Models that strongly underestimate
(CESM1-BGC, NorESM-ME, and CanESM2) show excessive nitrogen limitation (in CanESM2,
the CO2 fertilization effect is down-regulated based on ambient and elevated CO2 experi-
ments; Arora et al., 2013). These models also lack simulation of vegetation cover dynamics,
and thus, do not reproduce the observed northward shift of vascular plants and the as-
sociated higher productivity of shrubs and trees (Arora et al., 2013). On the other hand,
models that overestimate (HadGEM2-ES) show overly strong CO2 fertilization effect and
consequently excessive greening, presumably due to a lack of nitrogen limitation (Wen-
zel et al., 2016; Anav et al., 2015). The model MIROC-ESM, which is closest to the EC
estimate, stands out in its implementation of photosynthetic response to CO2. Unlike the
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biogeochemical approach in other models, MIROC-ESM uses an empirical approach that
implicitly includes nutrient limitation (Arora et al., 2013; Ito and Oikawa, 2002).

Although the Arctic represents only a small fraction of the terrestrial biosphere, the
rapid climatic changes in NHL and uncertainties associated with the net carbon balance
emphasize the need for further detailed analysis. The tendency for GPP underestimation in
NHL by models reported here is also seen at the global scale (Figure A6). This, together with
another recent study (Wenzel et al., 2016), suggests that most models are underestimating
photosynthetic carbon fixation by plants and thus possibly overestimating atmospheric
CO2 and ensuing climatic changes (Ciais et al., 2013; Friedlingstein et al., 2013; Arora et al.,
2013).

4 methods

Observational LAI product (LAI3gV1). The new version (V1) of the leaf area index data
set is an update of the widely used LAI3g data set (Zhu et al., 2013). It was generated using
an artificial neural network (ANN) and the latest version (third generation) of the Global
Inventory Modeling and Mapping Studies group (GIMMS) Advanced Very High Resolution
Radiometer (AVHRR) normalized difference vegetation index (NDVI) data (NDVI3g). The
latter have been corrected for sensor degradation, intersensor differences, cloud cover,
solar zenith angle, viewing angle effects due to satellite drift, Rayleigh scattering and
stratospheric volcanic aerosols (Pinzon and Tucker, 2014). The ANN model was trained
with overlapping data of NDVI3g and Collection 6 Terra MODIS LAI product (Yan et al.,
2016a; Yan et al., 2016b), and then applied to the full NDVI3g time series to generate the
LAI3gV1 data set. This data set provides global and year-round LAI observations at 15-day
(bi-monthly) temporal resolution and 1/12 degree spatial resolution from July 1981 to
December 2016. Currently, it is the only data set that spans this long period.

The quality of the previous version (V0) of the GIMMS LAI3g data set was evaluated
through direct comparisons with ground based measurements of LAI, indirectly with
other estimates from similar satellite-data products, and also through statistical analysis
with climatic variables, such as temperature and precipitation variability (Zhu et al., 2013).
The LAI3gV0 data set (and related fraction vegetation-absorbed photosynthetically active
radiation data set) has been widely used in various studies (Anav et al., 2013; Forkel et al.,
2016; Zhu et al., 2016; Mao et al., 2016; Mahowald et al., 2016; Piao et al., 2014; Poulter
et al., 2014; Keenan et al., 2016). The new version LAI3gV1 used in our study is an update
of that earlier version.

For both, observational and CMIP5 data, LAI is defined as the one-sided green leaf area
per unit ground area in broadleaf canopies and as one-half the green needle surface area in
needleleaf canopies. It is expressed in units of m2 green leaf area per m2 ground area. In
this study, we use the annual maximum value of LAI, LAImax, to quantify the greenness
level of a surface. LAImax is less influenced by cloudiness and noise; accordingly, it is most
useful in investigations of long-term greening and browning trends. The drawback of
LAImax is the saturation effect at high LAI values (Myneni et al., 2002). However, this is
less of a problem in high latitudinal ecosystems which are mostly sparsely vegetated, with
LAImax values typically in the range of 2 to 3.
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The bi-monthly GIMMS LAI3gV1 data are merged to a monthly temporal resolution
by averaging the two composites in the same month. Then, for model and observational
data alike, the two-dimensional global fields are cropped to the northern high latitudinal
band defined as 60◦ N to 90◦ N, averaged in space and temporally reduced to the annual
maximum value.

Although the AVHRR data underlying the LAI data in this study have corrections for
various deleterious effects (Pinzon and Tucker, 2014), the data may still contain residual
non-vegetation related effects. Therefore, we sought confirmation of the greening trend
(Zhu et al., 2016), on which the current study relies, from a more reliable but shorter record
from the MODIS sensors (Yan et al., 2016a; Yan et al., 2016b). These data are well calibrated,
cloud-screened and corrected for atmospheric effects, especially tropospheric aerosols.
The sensor-platforms are regularly adjusted to maintain precise orbits. All algorithms,
including the LAI algorithm, are physics-based, well-tested and currently producing the
sixth generation data sets. The results, not shown here for brevity, illustrate global scale
greening, across all latitudinal zones and broad vegetation classes. Zhang et al. (2017) also
reported matching greening trends between the latest (Version 6) MODIS and AVHRR
(Version 3) vegetation index data sets.

We also found that the LAImax sensitivity derived with MODIS LAI data matched well
with that obtained from the AVHRR LAI data (results not shown for brevity). Whether this
indicates that the 17-year MODIS record from the period 2000 to 2016 captures information
similar to the longer AVHRR record (1981 to 2016), or is simply a fortuitous occurrence,
is not known, and deserves further study. In the present context, however, this adds
confidence to the AVHRR LAI data used in our study.

Temperature data from ECMWF ERA-Interim. Estimates of surface air temperature at 2
m height are from the widely used global atmospheric reanalysis product ERA-Interim by
ECMWF (Dee et al., 2011, for details see: https://www.ecmwf.int/en/research/climate-
reanalysis/era-interim). The global temperature fields were retrieved at a resolution
of 0.5◦ × 0.5◦ for monthly mean estimates derived from daily means. Other reanalysis
products with similar specifications (NCEP/NCAR reanalysis, University of Delaware Air
Temperature & Precipitation, and GHCN/CAMS reanalysis product) were also investigated.
The differences among the various products were found to be minor.

CMIP5 models used in this study. In this study, we analyze a set of the most recent
climate-carbon simulations of seven ESMs participating in the fifth phase of the Coupled
Model Intercomparison Project, CMIP5 (Taylor et al., 2012). The model data were obtained
from the Earth System Grid Federation, ESGF (https://esgf-data.dkrz.de/projects/
esgf-dkrz/). Seven ESMs provided output for the variables of interest for simulations
esmHistorical, 1pctCO2, esmFixClim, and esmFdbk.

The esmHistorical simulation spans the period 1850 to 2005 and was driven by observed
conditions such as solar forcing, emissions or concentrations of short-lived species and
natural and anthropogenic aerosols or their precursors, land use, anthropogenic as well
as volcanic influences on atmospheric composition. The models are forced by prescribed
anthropogenic CO2 emissions, rather than atmospheric CO2 concentrations.

1pctCO2 is an idealized fully coupled carbon/climate simulation initialized from steady
state of the preindustrial control run and atmospheric CO2 concentration prescribed to
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increase 1% yr−1 until quadrupling of the preindustrial level. The simulations esmFixClim
and esmFdbk and are set up as the 1pctCO2 with the difference, that in esmFixClim
(esmFdbk) only the radiative effect from increasing CO2 concentration is included, while
the carbon cycle sees the preindustrial CO2 level (vice versa; Taylor et al., 2012; Taylor et al.,
2009).

Historical simulation with MPI-ESM higher-resolution setup. MPI-ESM-HR is the
coupled high-resolution setup of the latest version of the Max-Planck-Institute Earth
System Model MPI-ESM1.2, which is the baseline for the upcoming Coupled Model
Intercomparison Project Phase 6 (CMIP6). Here, the atmospheric component ECHAM6.3
has 95 vertical levels and twice the horizontal resolution (∼100km) than the CMIP5 version.
The ocean component MPIOM is set up on a tripolar grid at nominal 0.4◦ horizontal
resolution (TP04) and 40 vertical levels. MPI-ESM1.2 includes the latest versions of the land
and ocean carbon cycle modules, comprising the ocean biogeochemistry model HAMOCC
and the land surface scheme JSBACH. The forcing components for the historical simulation
are chosen from CMIP5 (Methods) as at the time the simulations were conducted CMIP6
forcing was not available (Müller et al., 2018).

Atmospheric CO2 concentration data. Monthly means of atmospheric CO2 concen-
tration at Point Barrow (71.3◦ N, 203.4◦ E) and Alert Nunavut (82.5◦ N, 297.7◦ E) are
taken from the Global Monitoring Division measurement datasets (co2_brw_surface-
insitu_1_ccgg_MonthlyData respectively co2_alt_surface-flask_1_ccgg_month) provided by
the National Oceanic and Atmospheric Administration / Earth System Research Laboratory
(NOAA / ESRL). Global monthly means of atmospheric CO2 concentration are taken from
the GLOBALVIEW-CO2 product (for details see http://dx.doi.org/10.15138/G3259Z)
also available at NOAA / ESRL.

Atmospheric CO2 inversion products. Atmospheric CO2 inversions estimate surface-
atmosphere net carbon exchange fluxes by utilizing CO2 concentration measurements,
a transport model and prior information on anthropogenic carbon emissions as well as
carbon exchange between atmosphere and land respectively ocean (Peylin et al., 2013). We
choose two products, which cover the longest time period (1980-2015) and are regularly
updated, the Jena CarboScope (JENA; Rödenbeck et al., 2003, version s81_v3.8, for details
see http://www.bgc-jena.mpg.de/CarboScope/s/s81_v3.8.html), and the Copernicus
Atmosphere Monitoring Service (CAMS; Chevallier et al., 2010, version v15r2, for details see
http://atmosphere.copernicus.eu/documentation-supplementary-products#greengas-

fluxes) inversion systems. Both products provide monthly mean net flux estimates on a
spatial resolution of 3.75◦ latitude and 5◦ longitude (JENA) and 1.875◦ latitude and 3.75◦

longitude (CAMS).

Calculation of growing degree days above 0◦ C (GDD0). The global temperature fields
from the reanalysis and model data are cropped to the northern high latitudinal band
and averaged in space. The resulting one-dimensional time-series is converted to growing
degree days above 0◦ C by multiplying the days of each month with the respective monthly
mean estimate if it is above 0◦ C. Thus, we not only capture the warming signal, but also
the prolongation of the growing season.

Dimension reduction using Principal Component Analysis. The drivers GDD0 and
atmospheric CO2 concentration vary co-linearly due to the radiative effect of increasing
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CO2 concentration in the NHL. Thus, it is problematic to conduct an accurate factor
separation in terms of their respective contribution to increase in LAImax. However, the
co-linearity suggests that a large amount of the signal is shared. Therefore, we conduct a
principal component analysis (PCA) to apply dimension reduction (Hannachi et al., 2007).

The aim of the PCA is to find a linear combination of the driver variables that represents
the one-dimensional projection with the largest possible variance. First, each driver time
series xi is normalized by centering on its mean (subtracting xi) and scaling to unit variance
(divide by one standard deviation σi). Thus,

X = x′i =
xi − xi

σi
(1)

The matrix X contains the scaled time series x′i as columns. Next, we compute the
covariance matrix CX,

CX =
1
n

XTX (2)

where n is the length of each time series. The eigenvector uk is obtained by solving the
eigenvalue problem,

CXuk = λkuk (3)

The eigenvectors uk are sorted according to the ordering of their associated eigenvalues
λk. Projecting the initial driver matrix X onto the eigenvector u1 with the highest associated
eigenvalue we arrive at the one-dimensional vector, the first principal component (PC),

ω = (Xu1)
T . (4)

Transposed to a row vector, ω denotes the time-series of the first PC, which explains
the maximum variance of the two driver time series, atmospheric CO2 concentration and
GDD0.

Estimation of historical LAImax sensitivity. We derive the historical LAImax sensitivity
applying a standard linear regression model ( fn)

fn = a + bxn (5)

where xn denotes the driver time series, a the intercept and b the gradient. We obtain
the best-fit line by minimizing the squared error

(
s2)

s2 =
1

N − 2

N

∑
n=1

(yn − fn)
2 (6)
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where yn is the predictand time series and N is the number of data points of each time
series. The resulting best-fit gradient b′ represents the sought sensitivity. The standard
error of b and a are given by

σb =
s

σx
√

N
(7)

and

σa = s

√
1
N

+
x2

σ2
x N

(8)

respectively, for σx being the standard deviation and x being the mean value of xn.

Derivation of changes in NHL CO2 drawdown slope. Graven et al. (2013) showed
that NHL CO2 drawdown mostly happens in June and July. ESMs, however, disagree
on the phase, mainly due to a premature start of the growing season (Figure 3a, b). As
a consequence, the CO2 drawdown in models peaks earlier in the season. To obtain
comparability for changes in CO2 drawdown strength, we calculate the first derivative of
the CO2 concentration time series for the observational sites and each model individually.
The annual minimum of the derivative in each time series reflects the months where the
increase in photosynthetic CO2 fixation is strongest (CO2 drawdown slope). This procedure
does not require a detrending of the atmospheric CO2 signal.

For the BRW record, the 30 years of continuous overlap with the CMIP5 historical
simulations were used to calculate the drawdown slopes (1974 - 2005). Due to the shorter
overlap in the ALT record, 30 years of data from 1985 (start of measuring campaign) to 2015
were used for comparison with models. This is legitimate, because the CO2 concentration
rate of increment for both periods are just about the same. Model time series are obtained
from the near-surface CO2 concentration using the grid box in close proximity to each site.
All yearly time series are slightly smoothed with a two-year moving window. Changes are
calculated from five year averages at the beginning and end of the record. Here, we only
present a low-end, high-end and the closest-to-observation model from the greening EC
analysis, because Wenzel et al. (2016) already reported the behavior of the entire CMIP5
ensemble in terms of simulating the NHL CO2 seasonal cycle.

Scaling of NPP estimates. We scale and convert the Emergent Constraint (EC) estimate
for changes in the GPP flux ∆FGPP,EC for a doubling of the preindustrial CO2 level ([CO2]pi)
to a NPP flux (∆FNPP,EC) to obtain a comparable estimate to the atmospheric CO2 inversion
datasets using

∆FNPP,EC = b
∆ [CO2]1980−2015

[CO2]pi
× ∆FGPP,EC (9)

where ∆ [CO2]1980−2015 denotes the change in atmospheric CO2 concentration over the
observational period from 1980 to 2015 and b the standard GPP to NPP conversion factor
of 0.5 (assuming uncertainty of 10%; Prentice et al., 2001; Zhang et al., 2009).
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Comparison of atmospheric carbon fluxes between Arctic Ocean and NHL land. We
require the use of a fully coupled Earth system model to separate between land and ocean
in terms of the sign, magnitude and seasonal cycle of the respective net carbon exchange
fluxes with the atmosphere. We have access to a spatially-high resolved historical run (10
realizations) of the MPI-ESM which has the ability to reproduce seasonality in the Arctic
Ocean (Methods). The terrestrial carbon pools have not been brought into equilibrium due
to computational limitations in these high resolution simulations. Thus, we use simulations
from the same model but at low spatial resolution (3 realizations), the CMIP5 esmHistorical
simulation, to address land carbon exchange fluxes (Methods).

The NHL land sink is approximately 2.5 times larger than the Arctic Ocean sink, on an
annual basis. However, in terms of the change in carbon sink between the mid-1970s and
early-2000s, the increase in CO2 uptake by the land is about 15 times larger than the ocean.
Accordingly, the Arctic Ocean can be ignored when trying to explain changes during the
recent past, i.e. BRW period of CO2 concentration measurements.

During the months from May to September (may-to-sep) when photosynthetic CO2
drawdown is happening, the change in land sink is about 0.4 Pg C on an annual basis.
Especially between May and July, the CO2 concentration is rapidly declining, i.e. photosyn-
thesis prevails CO2 release processes. Thus, nearly the entire increase of 0.4 Pg C can be
attributed to increasing NPP. The Emergent Constraint analysis shows that the MPI-ESM
model is rather close to observations but generally underestimating greening sensitivity
and thus also the GPP enhancement. These results are not provided as further proof of
the EC estimate, although they are not contradictory, they are provided to compare the
strength of NHL land and Arctic Ocean carbon sinks and why the ocean component can
be neglected.

Bootstrapping for probability estimation. We apply bootstrapping to estimate the 68%
confidence of the emergent linear relationship due to the small sample size of the CMIP5
ensemble. First, we randomly resample the data with replacement, where the size of
the resample is equal to the size of the original sample N. Second, we compute the
least-squares linear best fit for the resampled data. Third, we repeat this procedure times
(minimum m = 100) until the difference between the median best fit line m− 1 of and m
computed regressions approaches zero (the actual threshold was set to a difference less
than 1%). We derive the 68% confidence contours of equal probability based on the set of
m random regression lines.

Calculation of probability density functions . We derive a probability density function
(PDF) for the observed sensitivity b′ (associated standard error σb, Methods)

P(b) =
1√

2πσ2
b

exp

{
− (b− b′)2

2σ2
b

}
(10)

assuming Gaussian distribution. The probability density function of for given

P(y|x) = 1√
2πσ2

f

exp

{
− (y− f (x))2

2σ2
f

}
, (11)
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represent the contours of equal probability density around the best-fit linear regression,
where denotes the 68% confidence contours estimated by bootstrapping (Methods). As
shown in Cox et al. (2013), for a given observation-based PDF P(b) and a model-based PDF
P(y|x), the PDF of the Emergent Constraint on y is

P(y) =
∫ ∞

−∞
P{x|y}P(x)dx. (12)

The PDF of the CMIP5 unweighted multi model mean is configured assuming Gaussian
distribution.

Code availability The code used in this study is available from the corresponding author
upon request.

Data availability All data used in this study are available from public databases or
literature, which can be found with the references provided in respective Methods section.
Processed data is available from the corresponding author upon request.
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Figure A1 | Schematic of the Emergent Constraint concept. The radiative and physiological effects
of increasing atmospheric CO2 concentration, in the range 280 to 560 ppm, are thought
to increase GPP (Ciais et al., 2013; Zhao and Zeng, 2014; Nemani et al., 2003; Leakey
et al., 2009; Thomas et al., 2016). This is indirectly observed as changes in LAI (Myneni
et al., 1997; Zhu et al., 2016) or the amplitude of the seasonal cycle of atmospheric CO2
(Keeling et al., 1996; Graven et al., 2013; Wenzel et al., 2016). The sensitivity of changes
in observables to historical increase in CO2 concentration (e.g., 280 to 400 ppm) can
be thought of as an Emergent Constraint on model-projected changes in carbon cycle
quantities (e.g., ∆GPP for CO2 change from 280 to 560 ppm), if the inter-model variation
of projections is linear, or nearly so, with respect to modeled historical sensitivities
(Wenzel et al., 2016). GPP enhancement due to the radiative effect (red arrows) was
not included in Wenzel et al. (2016) because their focus was on obtaining a constrained
estimate for the physiological effect only. GPP enhancement from the positive feedback
effect (blue arrow) is thought to be small (Keenan et al., 2016) relative to the physiological
and radiative effects, and included in our study.
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Figure A2 | Linear relationship between concurrent changes in LAImax and annual mean GPP.
Comparison of changes in LAImax and annual mean GPP for the historical period
(1860 to 2005) for the NHL (60◦ N – 90◦ N) in the CMIP5 ensemble. The colored dots
show values for 30 year chunks of the total time series (error bars denote one standard
deviation). The colored lines represent the best linear fit for each model, while the black
line indicates the best linear fit for all models. The 68% confidence interval estimated by
bootstrapping is shown by the grey shading.
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Figure A3 | Relationship between ∆LAImax and ∆GPP with increasing CO2 forcing, starting from
a pre-industrial concentration of 280 ppm (1×CO2) to 4×CO2. Blue colored dots
represent the relation for concentration below 2×CO2. Green colored dots between
2×CO2 and 3×CO2. Red colored dots between 3×CO2 and 4×CO2 (Table A3). The
respective colored lines are the regressions through those dots and the shading represents
the 95% confidence interval.

Table A1 | Summary data for Principal Component Analysis, LAImax sensitivity estimation and GPP
increase.

Model Explained vari-
ance by ω

Offset to initial
LAImax, (m2

m−2)

LAImax sensitiv-
ity to ω, (m2 m−2

unit ω)

Correlation coef-
ficient

∆GPP for 2×CO2
(Pg C / yr−1)

MIROC-ESM 0.89 2.7 ± 0.7e-3 0.049 ± 3.3e-3 0.93 3.2 ± 0.29

CESM1-BGC 0.83 0.44 ± 0.3e-3 0.014 ± 1.4e-3 0.86 0.24 ± 0.025

GFDL-ESM2M 0.64 2.9 ± 0.6e-3 0.022 ± 3.2e-3 0.76 1.8 ± 0.19

CanESM2 0.91 0.68 ± 0.2e-3 0.013 ± 1.0e-3 0.91 0.72 ± 0.12

HadGEM2-ES 0.94 1.5 ± 0.8e-3 0.075 ± 3.5e-3 0.97 6 ± 0.53

MPI-ESM-LR 0.77 1.4 ± 0.4e-3 0.028 ± 1.8e-3 0.94 2.5 ± 0.36

NorESM1-ME 0.84 0.21 ± 0.2e-3 0.0088 ± 0.8e-3 0.88 0.28 ± 0.022

Observations 0.9 1.8 ± 1.5e-3 0.045 ± 6.4e-3 0.78 -
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Figure A4 | Radiative and fertilization effects on NHL photosynthesis. Changes in annual mean
GPP for doubling of pre-industrial CO2 concentration from 1%CO2 (CO2 concentration
increased by 1% yr−1 from preindustrial level) fully coupled (radiative plus fertilization)
CMIP5 model runs (x-axis) plotted against idealized simulations (y-axis) with only the
radiative (CMIP5’s esmFdbk; Arora et al., 2013) or the fertilization (CMIP5’s esmFixClim;
Arora et al., 2013) effect included runs. The markers show the corresponding model
values from these runs. The colored lines are best fits to the respective markers (red
for fertilization effect only, blue for radiative effect only). The green line represents
the best fit to the sum of quantities from the idealized runs and the fully coupled run.
Wenzel et al. (2016) provided a constrained estimate for GPP projection considering
the fertilization effect only. Including the radiative effect would at least double their
estimate.

24



supplementary information

Feb Apr Jun Aug Oct Dec

800

600

400

200

0

200

A
tm

os
ph

er
e-

La
nd

 C
O

2 
flu

x,
 T

g 
C

 m
on

th
1

Jena CarboScope

1980-1985
2010-2015

CAMS ECMWF

1980-1985
2010-2015

Figure A5 | Atmospheric CO2 inversions suggest strong increase of NHL land carbon sink. Sea-
sonal cycle of land-atmospheric CO2 exchange estimated by two inversion procedures,
Jena CarboScope (red) and CAMS ECMWF (blue), for two time periods 1980-1985
(dashed) and 2010-2015 (solid). Shading indicates one standard deviation.
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Figure A6 | Strong linear relationship between global and NHL GPP increase in the CMIP5 en-
semble. Comparison of NHL (x-axis) and global (y-axis) estimates of changes in annual
mean GPP for doubling of pre-industrial CO2 concentration. The markers show the
individual model including error bars for one standard deviation. The black vertical line
shows the observation-based Emergent Constraint estimate of NHL GPP increase with
the gray shading indicating uncertainty (Methods). The blue line represents the best
linear fit across the entire CMIP5 ensemble (blue shading denotes the 68% confidence
interval), whereas the red line shows the best fit excluding the outlier MPI-ESM-LR
(purple, the MPI-ESM-LR CMIP5 version is overly productive in the tropics due to
almost absent water limitation). The dashed horizontal lines indicate the respective
constraints on global GPP increase. Based on this result, also on global scale a substantial
underestimation of photosynthetic carbon fixation is present – constrained estimate is
44% higher than multi-model mean indicated by green cross (56% excluding outlier).
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Table A2 | Overview of CMIP5 models included in this study.

Models No. of PFTs Land model Land resolution

MPI-ESM-LR 12 JSBACH 1.9◦ × 1.9◦

CanESM2 9 CTEM 2.8◦ × 2.8◦

MIROC-ESM 13 SEIB-DGVM 2.8◦ × 2.8◦

NorESM1-ME 16 CLM4 2.5◦ × 1.9◦

CESM1-BGC 16 CLM4 0.9◦ × 1.2◦

GFDL-ESM2M 5 LM3 2.5◦ × 2.5◦

HadGEM2-ES 5 TRIFFID 1.9◦ × 1.2◦

Table A2 | Overview of CMIP5 models included in this study (continued).

Models Dynamic vegetation Explicit nitrogen cy-
cle

Reference

MPI-ESM-LR Yes No Raddatz et al. (2007)
and Reick et al. (2013)

CanESM2 No No Arora et al. (2011)

MIROC-ESM Yes No Watanabe et al. (2011)

NorESM1-ME No Yes Bentsen et al. (2013)

CESM1-BGC No Yes Lindsay et al. (2014)

GFDL-ESM2M Yes No Dunne et al. (2012a)
and Dunne et al.
(2012b)

HadGEM2-ES Yes No Collins et al. (2011)

Table A3 | Correlation coefficients for the relations shown in Figure A3.

Models MPI-ESM-
LR

CanESM2 MIROC-
ESM

NorESM1-
ME

CESM1-
BGC

GFDL-
ESM2M

HadGEM2-
ES

< 2×CO2 0.94 0.95 0.97 0.94 0.93 0.89 0.99

> 2×CO2 & <3×CO2 0.78 0.83 0.89 0.77 0.82 0.067 0.96

> 3×CO2 0.51 0.67 0.63 0.27 0.62 0.12 0.78
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investigating the applicability of emergent constraints

Abstract

Recent research on Emergent Constraints (EC) has delivered promising results
in narrowing down uncertainty in climate predictions. The method utilizes
a measurable variable (predictor) from the recent historical past to obtain a
constrained estimate of change in an entity of interest (predictand) at a po-
tential future CO2 concentration (forcing) from multi-model projections. This
procedure critically depends on, first, accurate estimation of the predictor
from observations and models, and second, on a robust relationship between
inter-model variations in the predictor-predictand space. Here, we investigate
issues related to these two themes in a carbon cycle case study using observed
vegetation greening sensitivity to CO2 forcing as a predictor of change in pho-
tosynthesis (Gross Primary Productivity, GPP) for a doubling of pre-industrial
CO2 concentration. Greening sensitivity is defined as changes in annual maxi-
mum of green leaf area index (LAImax) per unit CO2 forcing realized through
its radiative and fertilization effects. We first address the question of how to
realistically characterize the predictor of a large area (e.g. greening sensitivity
in the northern high latitudes region) from pixel-level data. This requires an
investigation into uncertainties in the observational data source and an evalua-
tion of the spatial and temporal variability in the predictor in both the data and
model simulations. Second, the predictor-predictand relationship across the
model ensemble depends on a strong coupling between the two variables, i.e.
simultaneous changes in GPP and LAImax. This coupling depends in a complex
manner on the magnitude (level), time-rate of application (scenarios) and effects
(radiative and/or fertilization) of CO2 forcing. We investigate how each one
of these three aspects of forcing can affect the EC estimate of the predictand
(∆GPP). Our results show that uncertainties in the EC method primarily origi-
nate from a lack of predictor comparability between observations and models,
the observational data source, and temporal variability of the predictor. The
disagreement between models on the mechanistic behavior of the system under
intensifying forcing limits the EC applicability. The discussed limitations and
sources of uncertainty in the EC method go beyond carbon cycle research and
are generally applicable in Earth system sciences.

Author Contributions A.J.W. performed the research. All authors contributed ideas and
to the interpretation of the results. A.J.W. and R.B.M. drafted the manuscript with inputs
from V.B.
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introduction

1 introduction

Earth system models (ESMs) are powerful tools to predict responses to a variety of forcings
such as increasing atmospheric concentration of greenhouse gases and other agents of
radiative forcing (Klein and Hall, 2015). Still, longterm ESM projections of climate change
have substantial uncertainties. This can be due to poorly understood processes in some
cases, and in others, to missing or simplified representations called parameterizations
(Flato et al., 2013; Klein and Hall, 2015; Knutti et al., 2017). Certain important processes,
especially in the atmosphere, happen at spatial scales finer than can be possibly represented
in current ESMs. Consequently, various phenomena in the system ranging from local
extreme precipitation events to large-scale climate modes, can be poorly simulated (Flato
et al., 2013). Errors propagate and can be amplified through feedbacks among interacting
components in the Earth system, resulting in biases whose origins can be difficult to
identify (Flato et al., 2013). Furthermore, an inherent component of the Earth climatic
system, its internal natural variability, is complicated to represent and simulate in models
(Flato et al., 2013; Klein and Hall, 2015).

Model Intercomparison Projects explore these uncertainties by coordinating a wide range
of simulation setups focusing on internal variability, boundary conditions, parameteriza-
tions, etc. (Taylor et al., 2012; Flato et al., 2013; Eyring et al., 2016; Knutti et al., 2017).
Models developed at various institutions are driven with the same forcing information
(e.g. historical forcing) or with identical idealized boundary conditions. However, each
modeling group decides which of the processes to consider and implement in their ESM.
The conventional approach of handling these multi-model ensembles is to use unweighted
ensemble averages (Knutti, 2010; Knutti et al., 2017). This assumes that the models are
independent of one another and equally good at simulating the climate system (Flato et al.,
2013; Knutti et al., 2017). The large spread between model projections suggests that this
assumption is not valid. Therefore, alternate methods have been developed to extract
results more accurate than multi-model averages (e.g. model weighting scheme based on
preformance and interdependence, Knutti et al., 2017). The concept of Emergent Constraints
arises in this context, namely, as a method to reduce uncertainty in ESM projections relying
on historical simulations and observations (Hall and Qu, 2006; Boé et al., 2009; Cox et al.,
2013; Klein and Hall, 2015; Cox et al., 2018).

The two key parts of an Emergent Constraint (EC) based method are a linear relationship
arising from the collective behavior of a multi-model ensemble and an observational
estimate for imposing the said constraint (Fig. 1). The linear relationship is a physically (or
physiologically) based correlation between inter-model variations in an observable entity
of the contemporary climate system (predictor) and a projected variable (predictand) that is
difficult to observe or not observable at all. Combining the emergent linear relationship
with observations of the predictor sets a constraint on the predictand (Cox et al., 2013; Flato
et al., 2013; Klein and Hall, 2015; Knutti et al., 2017). Many such ECs have been identified
and reported, as briefly summarized below.

Hall and Qu (2006) proposed a constraint on projections of snow-albedo feedback based
on the correlation between large inter-model variations in feedback strength of the current
seasonal cycle. The EC was first established for the CMIP3 ensemble and confirmed
for phase five of the Coupled Model Intercomparison Project (CMIP5; Flato et al., 2013;
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Qu and Hall, 2014). Several EC studies followed with the goal of reducing uncertainty
in projections of the cloud feedback under global warming, as reviewed by Klein and
Hall (2015). It is thought that erroneous representation of low-cloud feedback in ESMs
contributes essentially to the large uncertainty in equilibrium climate sensitivity (ECS,
1.5 to 5 K), i.e. warming for a doubling of pre-industrial atmospheric CO2 concentration
(2×CO2; Sherwood et al., 2014; Klein and Hall, 2015). Recently, Cox et al. (2018) presented
a different approach to constrain ECS based on its relationship to variability of global
temperatures during the recent historical warming period. They reported a constrained
ECS estimate of 2.8 K for 2×CO2 (66% confidence limits of 2.2 – 3.4 K).

The concept of EC also found its way into the field of carbon cycle projections. A series
of studies analyzed the extent to which inter-annual atmospheric CO2 variability can serve
as a predictor of longterm temperature sensitivity of terrestrial tropical carbon storage. Cox
et al. (2013) and Wenzel et al. (2014) reported an emergent linear relationship, although
with different slopes for CMIP3 and CMIP5 ensembles, resulting in slightly divergent
constrained estimates (CMIP3: -53 ± 17 Pg C K−1, CMIP5: -44 ± 14 Pg C K−1). Wang et al.
(2014) however were unable to detect a similar relationship between the proposed predictor
and predictand. Recently, Lian et al. (2018) presented an EC estimate of the global ratio of
transpiration to total terrestrial evapotranspiration (T/ET), which is substantially higher
(0.62 ± 0.06) than the unconstrained value (0.41 ± 0.11). For the marine tropical carbon
cycle, Kwiatkowski et al. (2017) identified an emergent relationship between the longterm
sensitivity of tropical ocean net primary production (NPP) to rising sea surface temperature
(SST) in the equatorial zone and the interannual sensitivity of NPP to El Niño/Southern
Oscillation driven SST anomalies. Tropical NPP is projected to decrease by 3 ± 1% for 1 K
increase in equatorial SST according to the observational constraint.

Similar results were reported for modeled extra-tropical terrestrial carbon fixation in
a 2×CO2 world. Plant productivity is expected to increase due to the fertilizing and
radiative effects of rising atmospheric CO2 concentration. Wenzel et al. (2016) focused on
constraining the CO2 fertilization effect on plant productivity in the northern high latitudes
(60◦ N – 90◦ N, NHL) and the entire extra-tropical area in the northern hemisphere (30◦ N
– 90◦ N) using the seasonal amplitude of longterm CO2 measurements at different latitudes.
They presented a linear relationship between the sensitivity of CO2 amplitude to rising
atmospheric CO2 concentration and the relative increase in zonally averaged gross primary
production (GPP) for 2×CO2. The observed CO2 amplitude sensitivities at respective
stations provide a constraint on the increase of GPP due to the CO2 fertilization effect,
namely 37% ± 9% and 32% ± 9% for 2×CO2 in the NHL and the extra-tropical region,
respectively.

Focusing on the NHL, Winkler et al. (2019) investigated how both effects of CO2 enhance
plant productivity while assessing the feasibility of vegetation greenness changes as a
constraint. Enhanced GPP due to the physiological effect and ensuing climate warming
is indirectly evident in large-scale increase in summer time green leaf area (Myneni et al.,
1997b; Zhu et al., 2016). Historical CMIP5 simulations show that the maximum annual
leaf area index (LAImax, leaf area per ground area) increases linearly with both CO2
concentration and temperature in NHL. In all ESMs, these changes in LAImax strongly
correlate to changes in GPP arising from the combined radiative and physiological effects
of CO2 enrichment. Thus, the large variation in modeled historical LAImax responses to the
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effects of CO2 linearly maps to variation in ∆GPP at 2×CO2 in the CMIP5 ensemble. This
linear relationship in inter-model variations enables the usage of the observed longterm
change in LAImax as an EC on ∆GPP at 2×CO2 in NHL (3.4 ± 0.2 Pg C yr−1 for 2×CO2;
Winkler et al., 2019).

The robustness of these EC estimates is debated, mainly because the EC approach is
susceptible to methodological inconsistencies. For example, Cox et al. (2013), Wang et al.
(2014) and Wenzel et al. (2015) investigated on constraining future terrestrial tropical carbon
storage using the same set of models and data. However, they arrived at different EC
estimates and divergent conclusions. Some reasons for failure and essential criteria of the
EC approach were described previously (Bracegirdle and Stephenson, 2012b; Klein and
Hall, 2015), but this list is far from complete. To account for this gap in the literature, a
detailed investigation and description of the EC method in terms of its potential sources of
uncertainty and the range of applicability are needed.

Here, we revisit the study of Winkler et al. (2019) and elaborate on key issues concerning
the robustness of the EC method. Uncertainty of the constrained estimate depends on (a)
observed predictor and (b) modeled relationship, aside from the goodness-of-fit of the
latter (green shading in Fig. 1). As for (a), the source of observations is an obvious first
line of inquiry (Sect. 3.1). Spatial aggregation of data and model simulations introduces
uncertainties, as the EC method is applied on large areal values of predictor and predictand.
This is the subject of Sect. 3.2. The observed and modeled predictors are from the historical
period. The representativeness, duration and match between data and models all introduce
an uncertainty related to variations in the temporal domain – these are explored in Sect.
3.3. The yellow shading in Fig. 1 represents the total uncertainty on observed predictor
from these three fronts. Regarding (b), the modeled linear relation varies (grey shading
in Fig. 1) depending on three attributes of the forcing, i.e. CO2 concentration change, its
magnitude, rate and effect (Sect. 3.4 and 3.5). Lessons learned from analyses along these
lines are presented in the conclusion section at the end.
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Figure 1 | Schematic depiction of the Emergent Constraint (EC) method and factors affecting the
uncertainty of the constrained estimate. The predictor (x axis) is change in annual
maximum of green leaf area index (LAImax) due to unit forcing (CO2 increase and
associated climatic changes) during a representative historical period. It is termed greening
sensitivity in this study. The predictand (y axis) is projected changes in Gross Primary
Productivity (GPP) in response to rising CO2 concentration (e.g. for a doubling of the pre-
industrial level). Both the predictor and predictand refer to large area values, in this case,
the entire Northern High Latitudes (NHL). Inter-model variations (each symbol represents
a model) in matching pairs of predictor and predictand result in a linear relationship
between the two (green band), i.e. the ratio (predictand/predictor) is approximately
constant across the model ensemble. The slope depends on forcing attributes (gray
shading), such as its level (CO2 concentration, Sect. 3.4), time rate of application (scenarios
such as various RCPs, Sect. 3.4) and different effects (i.e. fertilization, radiative, etc., Sect.
3.5). The observed sensitivity (yellow vertical bar) is used to find the constrained estimate
of the predictand (i.e. change in GPP). The ability to accurately estimate the predictor
depends on the source of observational data (Sect. 3.1), and its spatial (Sect. 3.2) and
temporal variability (Sect. 3.3). Observed (yellow bar) and modeled predictor values (x
coordinate of symbols) must be obtained from matching time periods, i.e. at the same level
of historical forcing, to ensure comparability (Sect. 3.3 and 3.4). All these factors, together
with the goodness-of-fit of inter-model variations (width of green shading), finally define
the uncertainty of the derived constrained estimate (blue horizontal bar with black solid
lines depicting the upper and lower bound of uncertainty).
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2 data and methods

2.1 Remotely sensed leaf area index

We used the recently updated version (V1) of the leaf area index dataset (LAI3g) developed
by (Zhu et al., 2013). It was generated using an artificial neural network (ANN) and
the latest version (third generation) of the Global Inventory Modeling and Mapping
Studies group (GIMMS) Advanced Very High Resolution Radiometer (AVHRR) normalized
difference vegetation index (NDVI) data (NDVI3g). The latter have been corrected for
sensor degradation, inter-sensor differences, cloud cover, observational geometry effects
due to satellite drift, Rayleigh scattering and stratospheric volcanic aerosols (Pinzon and
Tucker, 2014). This dataset provides global and year-round LAI observations at 15-day
(bi-monthly) temporal resolution and 1/12 degree spatial resolution from July 1981 to
December 2016. Currently, this is the only available record of such length.

The quality of previous version (V0) of LAI3g dataset was evaluated through direct
comparisons with ground measurements of LAI and indirectly with other satellite-data
based LAI products, and also through statistical analysis with climatic variables, such as
temperature and precipitation variability (Zhu et al., 2013). The LAI3gV0 dataset (and
related fraction vegetation-absorbed photosynthetically active radiation dataset) has been
widely used in various studies (Anav et al., 2013; Piao et al., 2014; Poulter et al., 2014;
Forkel et al., 2016; Zhu et al., 2016; Mao et al., 2016; Mahowald et al., 2016; Keenan et al.,
2016). The new version, LAI3gV1, used in our study is an update of that earlier version.

We also utilized a more reliable but shorter dataset from the Moderate Resolution Imaging
Spectroradiometer (MODIS) aboard the NASA’s Terra satellite (Yan et al., 2016a; Yan et al.,
2016b). These data are well calibrated, cloud-screened and corrected for atmospheric effects,
especially tropospheric aerosols. The sensor-platform is regularly adjusted to maintain a
precise orbit. All algorithms, including the LAI algorithm, are physics-based, well-tested
and currently producing sixth generation datasets. The dataset provides global and year-
round LAI observations at 16-day (bi-monthly) temporal resolution and 1/20 degree spatial
resolution from 2000 to 2016.

Leaf area index is defined as the one-sided green leaf area per unit ground area in
broadleaf canopies and as one-half the green needle surface area in needleleaf canopies in
both observational and CMIP5 simulation datasets. It is expressed in units of m2 green
leaf area per m2 ground area. Leaf area changes can be represented either by changes in
annual maximum LAI (LAImax; Cook and Pau, 2013), or growing season average LAI. In
this study, we use the former because of its ease and unambiguity, as the latter requires
quantifying the start- and end-dates of the growing season, something that is difficult to do
accurately in NHL (Park et al., 2016) with the low resolution model data. Further, LAImax,
is less influenced by cloudiness and noise; accordingly, it is most useful in investigations
of long-term greening and browning trends. The drawback of LAImax, is the saturation
effect at high LAI values (Myneni et al., 2002). However, this is less of a problem in high
latitudinal ecosystems which are less-densely vegetated compared to tropical regions, with
LAImax, values typically in the range of 2 to 3.
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The bi-monthly satellite datasets were merged to a monthly temporal resolution by
averaging the two composites in the same month and bi-linearly remapped to the resolution
of the applied reanalysis product (0.5◦×0.5◦, CRU TS4.01).

2.2 Environmental driver variables

We use time series of temperature and CO2 to derive the observed historical forcing (Sect.
2.4) and climatologies of precipitation and temperature to calculate climatic regimes (Fig.
2). Monthly averages of near-surface air temperature and precipitation are from the lat-
est version of the Climatic Research Unit Timeseries dataset (CRU TS4.01). The global
data are gridded to 0.5◦×0.5◦ resolution (Harris et al., 2014). Global monthly means of
atmospheric CO2 concentration are from the GLOBALVIEW-CO2 product (obspack_co2_1_
GLOBALVIEWplus_v2.1_2016_09_02; for details see https://doi.org/10.25925/20190520)
provided by the National Oceanic and Atmospheric Administration / Earth System Re-
search Laboratory (NOAA / ESRL).

2.3 Earth system model simulations

We analyzed recent climate-carbon simulations of seven ESMs participating in the fifth
phase of the Coupled Model Intercomparison Project, CMIP (Taylor et al., 2012). The
model simulated data were obtained from the Earth System Grid Federation, ESGF
(https://esgf-data.dkrz.de/projects/esgf-dkrz/). Seven ESMs provide output for the
variables of interest (GPP, CO2, LAI, and near-surface air temperature) for simulations
titled esmHistorical, RCP4.5, RCP8.5, 1pctCO2, esmFixClim1, and esmFdbk1. It is the same
set of models analyzed in Wenzel et al. (2016) and Winkler et al. (2019). The individual
model setups and components are illustrated in more detail in various studies, such as
Arora et al., 2013; Wenzel et al., 2014; Mahowald et al., 2016; Winkler et al., 2019.

The esmHistorical simulation spanned the period 1850 to 2005 and was driven by
observed conditions such as solar forcing, emissions or concentrations of short-lived species
and natural and anthropogenic aerosols or their precursors, land use, anthropogenic as well
as volcanic influences on atmospheric composition. The models are forced by prescribed
anthropogenic CO2 emissions, rather than atmospheric CO2 concentrations.

Several Representative Concentration Pathways (RCPs) have been formulated describing
different trajectories of greenhouse gas emissions, air pollutant production and land use
changes for the 21st century. These scenarios have been designed based on projections of
human population growth, technological advancement and societal responses (Vuuren et
al., 2011; Taylor et al., 2012). We analyzed simulations forced with specified concentrations
of a high emissions scenario (RCP8.5) and a medium mitigation scenario (RCP4.5) reaching
a radiative forcing level of 8.5 and 4.5 W m−2 at the end of the century, respectively. These
simulations were initialized with the final state at the end of the historical runs and spanned
the period 2006 to 2100.

1pctCO2 is an idealized fully coupled carbon-climate simulation initialized from a steady
state of the pre-industrial control run and atmospheric CO2 concentration prescribed to
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2 .4 estimation of greening sensitivities

increase 1% yr−1 until quadrupling of the pre-industrial level. The simulations esmFixClim
and esmFdbk aim to disentangle the two carbon cycle feedbacks in response to rising CO2
analogous to the 1pctCO2 setup: In esmFixClim CO2-induced climate change is suppressed
(i.e. radiation transfer model sees constant pre-industrial CO2 level), while the carbon cycle
responds to increasing CO2 concentration (vice versa for esmFdbk; Taylor et al., 2009; Taylor
et al., 2012; Arora et al., 2013).

2.4 Estimation of greening sensitivities

We largely follow the methodology detailed in Winkler et al. (2019). For both model and
observational data, the two-dimensional global fields of LAI and the driver variables are
cropped according to different classification schemes (namely, climatic regimes, latitudinal
bands and vegetation classes; Olson et al., 2001; Fritz et al., 2015). The aggregated values are
area-weighted, averaged in space, and temporally reduced to annual estimates dependent
on the variable: annual maximum LAI, annual average atmospheric CO2 concentration, and
growing degree days (GDD0, yearly accumulated temperature of days where near-surface
air temperature > 0◦ C).

We use a standard linear regression model to derive the historical greening sensitivities
in models and observations alike (for details see the Methods section Estimation of historical
LAImax sensitivity in Winkler et al., 2019). On the global scale, LAImax is assumed to be
a linear function of atmospheric CO2 concentration. For the temperature-limited high
northern latitudes, we also have to account for warming and include temperature as an
additional driver. We do this using GDD0. Through a principal component analysis
(PCA) of CO2 and GDD0 we avoid redundancy from co-linearity between the two driver
variables, but retain their underlying time-trend and interannual variability (for details
see the Methods section Dimension reduction using principal component analysis in Winkler
et al., 2019). In particular, the PCA is performed on large-scale aggregated values as well
as on pixel level to investigate on spatial variations. We only retain the first principal
component (denoted ω), which explains a large fraction of the variance in models and
observations (for more details see Supplementary Table 1 in Winkler et al., 2019). Figure A1
depicts the temporal development of CO2 and GDD0 as well as their principal component
ω for observations. For the NHL, LAImax is then formulated as a linear function of the
proxy driver time series ω (Winkler et al., 2019). The best-fit gradients and associated
standard errors of the linear regression model represent the LAImax sensitivities, or greening
sensitivities, and their uncertainty estimates, respectively.
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3 results and discussion

There are two parts to the EC methodology (Fig. 1) – a statistically robust relationship
between modeled matching pairs of predictor-predictand values and an observed value of
the predictor. The predictors are from a representative historical period. The predictands
are modeled changes in a variable of interest at another forcing state of the system
(e.g. potential future). The projection of the observed predictor on the modeled relation
yields a constrained value of the predictand. A causal basis has to buttress the predictor-
predictand relationship, else the EC method may be spurious. For example, meaningful
coupling between concurrent changes in GPP and LAImax with increasing atmospheric
CO2 concentration underpins our specific case study in the NHL, i.e. some of the enhanced
GPP due to rising CO2 concentration is invested in additional green leaves by plants
(Myneni et al., 1997b; Forkel et al., 2016; Zhu et al., 2016; Mao et al., 2016; Winkler et al.,
2019). Supplementary Figure 1 in Winkler et al. (2019) illustrates the specifics of the
causal link underlying this predictor-predictand relationship. This tight coupling assures
an approximately constant ratio of predictand to predictor across the models within the
ensemble, thus setting up the potential for deriving an EC estimate. Uncertainty in the
constrained estimate depends on the observed predictor and modeled relationship, aside
from the goodness-of-fit of the latter (Fig. 1). These are detailed below.

3.1 Uncertainty in Observed Predictor Due to Data Source

We investigate observational uncertainty using LAI data from two different sources, AVHRR
(1/12 degree) and MODIS (1/20 degree), and spatially aggregating these over broad
vegetation classes, latitudinal bands and climatic regimes. The observed large-scale LAImax
sensitivities to CO2 forcing are always positive (greening), irrespective of the source data
and the method of aggregation (Fig. 2, Tab. 1). Overall, MODIS based estimates have
higher uncertainty because of the shorter length of the data record (17 years). The failure
to reliably estimate sensitivities in tropical forests (also in the latitudinal band 30◦ S – 30◦

N, and in hot, wet and humid climatic regimes, see Tab. 1 and Fig. 2) is due to saturation
of optical remote sensing data over dense vegetation (LAImax > 5) and problems associated
with high aerosol content and ubiquitous cloudiness. In other regions, the estimated
sensitivities are comparable across sensors and aggregation schemes, in particular in the
high latitudinal band (> 60◦ N/S; AVHRR: [3.4 ± 0.5] × 10−3, MODIS: [3.6 ± 0.9] × 10−3

m2 m−2 ppm−1 CO2). This aligns with previous studies reporting a net increase in green
leaf area across the high latitudes during the observational period (Myneni et al., 1997a;
Zhu et al., 2016; Forkel et al., 2016).

This analysis illustrates the applicability and limitations of using observed greening
sensitivities to CO2 forcing as a constraint on photosynthetic production. For example,
data from both AVHRR and MODIS sensors provide a comparable estimate of greening
sensitivity in the colder high latitudes (boreal forests and tundra vegetation classes; Winkler
et al., 2019). In the lower latitudes, however, the discrepancies among the two sensors
indicate a considerable observational uncertainty and thus no robust estimation of the
observed predictor is possible.
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Figure 2 | Bar charts showing regression slopes of LAImax against atmospheric CO2 concentration
for broad vegetation classes (a; Olson et al., 2001; Fritz et al., 2015), latitudinal bands (b)
and climate regimes (c). The class "Other" includes deserts, mangroves, barren and urban
land, snow and ice, and permanent wetlands. The climatic boundaries are defined as
follows - cold: < 10◦C; warm: > 10◦C & < 25◦C; hot: > 25◦C; dry: < 500 mm a−1; wet:
> 500 mm a−1 & < 1000 mm a−1; humid: > 1000 mm a−1. Sensitivities evaluated from
data from two satellite-borne sensors are shown, AVHRR (1982 – 2016; Pinzon and Tucker,
2014) and MODIS (2000 – 2016; Yan et al., 2016a; Yan et al., 2016b). Grey bars indicate the
standard error of the best linear fit.

3.2 Uncertainty Due to Spatial Aggregation

We focus further analyses on the NHL region (> 60◦ N; Fig. 2b), because of two reasons.
First, the direct human impact (i.e. land management) can be neglected in the high latitudes,
thus, we can assume that the observed changes reflect the response of natural ecosystems.
Second, the observational evidence of an increased plant productivity in the recent decades
is well established (e.g. Keeling et al., 1996; Myneni et al., 1997b; Graven et al., 2013; Forkel
et al., 2016; Wenzel et al., 2016, and Sect. 3.1) – an important requisite in defining a robust
predictor.

In addition to the physiological effect of CO2, warming also plays a key role in controlling
plant productivity of the NHL temperature-limited ecosystems, and thus, vegetation
greenness. To avoid redundancy from co-linearity between CO2 and GDD0, we reduce
dimensionality by performing a principal component analysis of the two driver variables
(Sect. 2.4). The resulting first principal component explains most of the variance and
retains the trend and year-to-year fluctuations in both CO2 and GDD0. Therefore, we
obtain a proxy driver (hereafter denoted ω) that represents the overall forcing signal
causing observed vegetation greenness changes in NHL (Fig. A1). Accordingly, greening
sensitivity for the entire NHL area is derived as response to ω, the combined forcing signal
of rising CO2 and warming. This procedure also enables a better comparability between
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observations and models because varying strengths of physiological and radiative effects
of CO2 among models are taken into account (Sect. 3.3 – 3.5).

The vegetated landscape in the NHL region is heterogeneous, with boreal forests in the
south, vast tundra grasslands to the north and shrublands in-between. The species within
each of these broad vegetation classes respond differently to changes in key environmental
factors. Even within a species, such responses might vary due to different boundary
conditions, such as topography, soil fertility, micrometeorological conditions, etc. How this
fine scale variation in greening sensitivity impacts the aggregated value is assessed below.

The distribution of greening sensitivities from all NHL pixels is slightly skewed towards
the positive (blue histogram). The mean value of this distribution (blue dashed line) is
comparable to the sensitivity estimate derived from the spatially-averaged NHL time series
(yellow dashed line; Fig. 3). Based on the Mann-Kendall test (p > 0.1), nearly over half
the pixels (54%) show positive statistically significant trends (greening), while about 10%
show browning trends (possibly due to disturbances; Goetz et al., 2005). The distribution
of these statistically significant sensitivities (red histogram) therefore has two modes, a
weak browning and a dominant greening mode, resulting in a substantially higher mean
value (red dashed line) in comparison to the spatially-averaged estimate (yellow dashed
line; Fig. 3). Thus, by taking into account the remaining 36% of non-significantly changing
pixels (as in the NHL spatially-averaged estimate), an additional source of uncertainty is
possibly introduced. The mean sensitivity value is, of course, higher when only pixels
showing a greening trend are considered in the analysis (green dashed line; Fig. 3). These
are the only areas in NHL that actually show a large increase in plant productivity and
consequently significant changes in leaf area.

Model output of several ESMs (CMIP5) reveal similar pixel-level variation in both the
predictor (LAImax to ω, historical simulation; Sect. 2.3) and associated changes in the
predictand (GPP, 1pctCO2; Sect. 2.3), although ESMs operate on much coarser resolution
(Fig. A2; see also Anav et al., 2013; Anav et al., 2015). Due to the coupling of the predictor
and predictand, the distribution of pixels with significant changes is approximately the
same for the two variables (Fig. A2). Accordingly, averaging the equally distributed
estimates likely does not affect the predictor-predictand relationship in the model ensemble
(Fig. 1). Consequently, if all spatial gridded data arrays are consistently processed to
spatially-aggregated estimates, each predictand and predictor (observed and modeled)
estimate contain a coherent component of spatial variations. In other words, considering
browning and non-significant pixels results in a lower overall LAImax sensitivity in NHL,
which in turn leads to a lower constrained estimate of ∆GPP in NHL. This is consistent
with the underlying relationship between predictor and predictand. On a related note,
Bracegirdle and Stephenson (2012a) suggest that this source of error is not significantly
dependent on the spatial resolution when comparing model subsets from high to low
resolution.

The above analysis informs that spatially-averaged estimates are approximations contain-
ing a random error component due to inclusion of data from insignificantly changing pixels
and a systematic bias component from pixels of reversed sign. This uncertainty is relevant
to the EC method, where the observed sensitivity decisively determines the constrained
estimate from the ensemble of ESM projections (Kwiatkowski et al., 2017; Winkler et al.,
2019). However, if spatial variations are treated consistently as an inherent component
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3 .2 uncertainty due to spatial aggregation

Table 1 | Coefficients of determination (R2) of LAImax sensitivity to CO2 for different large-scale
aggregated regions. Data are from two optical remote sensors of different time length,
AVHRR (1982 – 2016) and MODIS (2000 – 2016). Asterisks denote non-significant values: **
p > 0.1; * p > 0.05.

Correlation coefficient R2 AVHRR MODIS

Biomes

Boreal forests 0.49 0.58

Temperate forests 0.47 0.81

Tropical forests 0.41 0.06**

Graslands 0.75 0.83

Croplands 0.75 0.8

Other 0.35 0.2*

Latitudinal Bands

> 60◦ N/S 0.51 0.61

30◦ N/S – 60◦ N/S 0.67 0.83

30◦ S – 30◦ N 0.65 0.26

Climate Space

cold dry 0.29 0.27

cold wet 0.49 0.4

cold humid 0.33 0.21*

warm dry 0.33 0.36

warm wet 0.37 0.18*

warm humid 0.25 0.12**

hot dry 0.08* 0.08**

hot wet 0.15 0.00**

hot humid 0.13 0.01**
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of observations and models, the EC method is only slightly susceptible to this source of
uncertainty.
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Figure 3 | Histograms and associated probability density functions (Gaussian kernel density estima-
tion) of observed LAImax sensitivity to ω at pixel scale for the northern high latitudinal
band (> 60◦ N, data from AVHRR sensor). Blue color depicts the distribution of LAImax
sensitivities of all pixels and the red color for pixels with statistically significant (Mann-
Kendall test, p < 0.1) greening or browning trends (the dashed lines denote the respective
mean value). The green dashed line shows the mean value of ’greening’ pixels only,
whereas the yellow dashed line shows the LAImax sensitivity to ω for the entire northern
high latitudinal belt.

3.3 Uncertainty Due to Temporal Variations

We seek recourse to longterm CMIP5 ESM simulations covering the historical period 1850
to 2005 (Sect. 2.3) to assess temporal variation in the predictor variable, because of the
shortness of observational record. Three representative models (CESM1-BGC, MIROC-ESM,
and HadGEM2-ES) spanning the full range of NHL greening sensitivities in the CMIP5
ensemble (Winkler et al., 2019) are selected for this analysis. For each model, LAImax
sensitivity to ω in moving windows of different lengths are evaluated (15, 30, and 45
years; Fig. 4 and A3). The analysis reveals two crucial aspects that highlight how temporal
variations impair comparability of the predictor variable between models and observations
– an essential component of the EC approach.
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First, window locations of modeled and observed predictor variable have to match. If
the forcing in the simulations is low, for example, as in the second half of the 19th century
when CO2 concentration was increasing slowly, inter-annual variability dominates and
LAImax sensitivity cannot be accurately estimated irrespective of the window length (Fig.
4 and A3). With increasing forcing over time (rising yearly rate of CO2 emissions, and
consequently, the concentration), the signal-to-noise ratio increases and LAImax sensitivity
to ω estimation stabilizes, for example, as in the second half of the 20th century. Therefore,
LAImax sensitivities estimated at different temporal locations result in non-comparable
values and eventually a false constrained estimate (details in Sect. 3.4). As an example,
modeled sensitivities based on a 30-year window centered on year 1900, when CO2 level
increased by 10 ppm, and observed sensitivity estimated from a 30-year window centered
on year 2000, when CO2 level increased by 55 ppm, describe different states of the system
and therefore should not be contrasted in the EC method.

Second, in addition to temporal location, also window lengths have to match between
observations and models. For all three models, sensitivities estimated from 15-year chunks
show high variability and thus, a 15-year record is perhaps too short to obtain robust
estimates. The LAImax sensitivity estimation becomes more stable with strengthening
forcing and increasing window length (Fig. 4 and A3). As a consequence, using short-term
observed sensitivity as a constraint on long-term model projections results in an incorrect
EC estimate. Hence, the MODIS sensor record is, on the one hand, too short and does not,
on the other hand, overlap temporally with the historical CMIP5 forcing. Therefore, it does
not provide a robust predictor in this EC study.

3.4 Level and Time Rate of CO2 Forcing

The EC method raises an obvious question – does it not implicitly assume that the key
operative mechanisms underpinning the EC relation remain unchanged because a future
system state is being predicted based on its past behavior? To be specific, we are attempting
to predict GPP at a future point in time based on greening sensitivity inferred from the past.
Does this not require the assumption that the key underlying relationship which makes this
prediction possible, namely, a robust coupling between contemporaneous changes in GPP
and LAImax remains unchanged from the past to the future? To address this question, we
resort to the CMIP5 idealized simulation (1pctCO2), where atmospheric CO2 concentration
increases 1% annually, starting from a pre-industrial level of 284 ppm until a quadruple of
this value is reached (Sect. 2.3). We limit the analysis to the three models (CESM1-BGC,
MIROC-ESM, and HadGEM2-ES) which bracket the full range of GPP enhancement and
LAImax sensitivity in the original seven ESM ensemble (Winkler et al., 2019).

The relationship between simultaneous changes in GPP and LAImax remains linear
for all CMIP5 models in the range 1×CO2 to 2×CO2 (Fig. 5 and A4, Tab. 2). With
concentration increasing beyond 2×CO2, all models show weakening correlation (R2, Tab.
2) and decreasing slope (b, Tab. 2) of this relationship (Fig. 5 and A4), suggesting a
saturating rate of allocation of additional GPP to new leaves at higher levels of CO2.
Consequently, LAImax sensitivity to increasing CO2 and associated warming decreases. At
and over 4×CO2 (1140 ppm), a level unlikely to be seen in the near future, there appears to
be no relationship between ∆GPP and ∆LAImax in some models. This raises the question as
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Figure 4 | Temporal variation of LAImax sensitivity to ω in three selected CMIP5 models spanning
the full range from low (CESM1-BGC, a), to closest-to-observations (MIROC-ESM, b),
to high-end (HadGEM2-ES, c). The colored lines show LAImax sensitivity variations for
moving windows of varying length of 15 (blue), 30 (green), and 45 (red) years over the
historical period from 1860 to 2005.
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to what extent does the weakening of the relationship between the predictor and predictand
in each model at higher CO2 concentrations affect the EC analysis (Fig. 1). To shed light on
this matter, we perform the following thought experiment.

Understanding the relationship and interplay between forcing (increasing CO2 concen-
tration), predictor (LAImax sensitivity), and the predictand (∆GPP) is key to evaluating the
EC method. We conceive four possible scenarios of how the system might behave with
increasing forcing. For simplicity, we assume linearly increasing CO2 concentration, LAI
represents LAImax, and GPP refers to its annual value below (Fig. 6). The four scenarios
are: All linear, all non-linear (saturation), and two mixed linear / non-linear cases (Tab. A1).
We emulate a multi-model ensemble by applying different random parameterizations for
the linear and saturation (the hyperbolic tangent function) responses of GPP to CO2 and of
LAI to GPP. One of these realizations is assumed to represent pseudo-observations (dashed
lines, Fig. 6). We discuss one case in detail for illustrative purposes (No. 3, Tab. A1).

In scenario 3, ∆GPP increases linearly with increasing CO2 (Fig. 6a), while ∆LAI/∆GPP
saturates (Fig. 6b). The LAI sensitivity to CO2 weakens with increasing forcing (Fig. 6c)
as a response to saturation of GPP allocation to leaf area. We derive LAI sensitivities to
CO2 for three different periods (’past periods’ in Fig. 6c) to constrain ∆GPP at a much
higher CO2 level (’projected period’ in Fig. 6a). Next, we apply the EC method on these
pseudo-projections of ∆GPP relying on LAI sensitivities derived from the three past periods
(Fig. 6d). The EC method is applicable even at a low forcing level (past period 1) in this
simplified scenario because we neglect stochastic internal variability of the system. The
slope of emergent linear relationship increases (Fig. 6d) as modeled LAI sensitivities
decrease with rising CO2 concentration (Fig. 6c). The observational constraint on future
∆GPP, however, remains nearly the same, because pseudo-observed LAI sensitivity also
weakens at higher CO2 levels (dashed lines, Fig. 6c, d). Thus, the three EC estimates of
∆GPP are approximately identical (Fig. 6d) and independent of the forcing level during
past periods. With intensified forcing, the relationship between predictor and predictand
remains linear within the model ensemble, although their relationship becomes non-linear
within each model and, crucially, in reality as well. In other words, as long as the models
agree on the occurrence and strength of saturation for given forcing, i.e. the dynamics of
the system, the inter-model variations of predictor and predictand relate linearly within
the ensemble (Fig. 6). The same behavior is also seen in the other three scenarios (Tab. A1;
Fig. A5, A6).

Nevertheless, with ever increasing forcing and associated steepening of the emergent
linear relationship, the LAI sensitivity loses its explanatory power at some point because the
linear relationship eventually lies within the observational uncertainty and no meaningful
constraint can be derived. This and disagreement between models on system dynamics are
ultimate limits of the EC method. Interestingly, we find that all CMIP5 models agree on
the occurrence of saturation, but slightly disagree on the strength of saturation for given
CO2 forcing (Fig. 5, A4, and Tab. 2). Further, we find that the ’all non-linear’ scenario
best describes the dynamics of the system in the forcing range from 1×CO2 to 4×CO2.
However, the saturation of LAI to GPP happens at a lower CO2 level than saturation of
GPP to CO2. Still, inferences from interpretation of Case 3 (Fig. 6) are equally applicable.

Results from the above thought experiment also highlight the importance of matching
window locations and lengths between models and observations, as discussed earlier (Sect.
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Figure 5 | Correlation of ∆LAImax and ∆GPP with increasing CO2 forcing, starting from a pre-
industrial concentration of 280 ppm (1xCO2) to 4xCO2 (CMIP5 1pctCO2 simulations).
Results are shown for three selected CMIP5 models spanning the full range of LAImax
sensitivity to ω, low-end: CESM1-BGC (a), closest-to-observations: MIROC-ESM (b), and
high-end: HadGEM2-ES (c). Blue colored dots show the relation between 1xCO2 and
2xCO2, green colored dots between 2xCO2 and 3xCO2, and red colored dots between
3xCO2 and 4xCO2. The respective colored lines represent the best linear fit through those
dots and the shading represents the 95% confidence interval.
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3.3). For instance, taking LAI sensitivity from past period 2 (green dashed line, Fig. 6d) as
an observational constraint on the multi-model linear relationship based on past period
3 (red solid line, Fig. 6d), results in a significant overestimation of constrained ∆GPP
(intersection of the two lines, Fig. 6d).

The above analysis informs that the constrained GPP estimate at one future period (e.g.
2×CO2) is nearly independent of the past periods from when the observational sensitivities
are derived. Now, we evaluate the EC method where sensitivity from one past period
is used to obtain constrained GPP estimates at different periods in a potential future, i.e.
progressively farther down the time-line of a CO2-enriched world. We utilize the greening
sensitivity derived from 35 years of observed LAImax data (AVHRR, Sect. 2.1) and apply
the EC method to CMIP5 1pctCO2 simulations. The sensitivities in this case are due to
forcing from both CO2 increase and associated warming during the observational period
(Sect. 2.4). We seek constrained GPP estimates for the NHL at different CO2 levels (2×CO2,
3×CO2, and 4×CO2).

Table 2 | Slopes (b) and coefficients of determination (R2) for regression between changes of LAImax
against changes in annual mean GPP for the NHL at different atmospheric CO2 levels in
all available CMIP5 models (1pctCO2 simulation). Asterisks denote non-significant values:
** p > 0.1; * p > 0.05.

Correlation details < 2xCO2 > 2xCO2 & < 3xCO2 > 3xCO2

b R2 b R2 b R2

MIROC-ESM 0.23 0.97 0.16 0.89 0.08 0.63

CESM1-BGC 0.45 0.93 0.36 0.82 0.27 0.62

GFDL-ESM2M 0.37 0.89 0.04 0.07** 0.01 0.12**

CanESM2 0.22 0.95 0.19 0.83 0.17 0.67

HadGEM2-ES 0.13 0.99 0.08 0.96 0.06 0.78

MPI-ESM-LR 0.13 0.94 0.09 0.78 0.04 0.51

NorESM1-ME 0.26 0.94 0.2 0.77 0.09 0.27

Winkler et al. (2019) previously reported a strong linear relationship between modeled
contemporaneous changes in LAImax and GPP arising from the combined radiative and
physiological effects of CO2 enrichment until 2×CO2 in the CMIP5 ensemble. As a result,
models with low LAImax sensitivity to ω project lower ∆GPP for a given increment of
CO2 concentration, and vice versa. Thus, the large variation in modeled historical LAImax
sensitivities linearly maps to variation in ∆GPP at 2×CO2 (Winkler et al., 2019, blue line,
Fig. 7a). At higher levels, such as 3×CO2 (green line, R2 = 0.93) and 4×CO2 (red line, R2

= 0.88), this linear relationship within the model ensemble, while still present, weakens
(Fig. 7a; Tab. 3). This is because the CMIP5 models do not agree on the strength of the
saturation effect at higher CO2 levels (Fig. 5 and A4). The increment in constrained GPP
estimates for successive equal increments of CO2 decreases due to the saturation effect
in all CMIP5 models (dashed horizontal lines, Fig. 7a). For example, the change in GPP
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Figure 6 | Thought experiment to examine the applicability of EC analysis under the assumption
of an idealized linear / non-linear behavior of the system (Case 3, Table A1). a, Changes
in GPP relate linearly to changes in CO2 concentration. The yellow band marks the
projection period of interest, i.e. the period of CO2 concentration from x + 4∆ to x + 5∆.
b, The increment in LAI with increasing GPP is assumed to decrease with rising CO2
concentration (described by a hyperbolic tangent function). The parameterization in the
linear and non-linear functions for pseudo observations (dashed black line) as well as
models (solid grey lines) are determined randomly for each model. c, The diagnostic
variable, LAI sensitivity to CO2, is decreasing with increasing CO2 as a consequence of
the non-linear relation between ∆GPP and ∆LAI. The colored bands indicate three ’past’
periods from x to x + ∆ (blue), x + ∆ to x + 2∆ (green), and x + 2∆ to x + 3∆ (red).
d, Linear relationships among the pseudo model ensembles (Ensemble LR, colored lines)
between LAI sensitivities to CO2 of the three past periods and ∆GPP from the projected
period. Colored dots mark different models and the dashed lines represent associated
pseudo observations for the respective historical period. Yellow solid line depicts the
constant EC on projected ∆GPP irrespective of the past period.
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3 .5 effects of co2 forcing

between 3×CO2 and 4×CO2 (∆GPP ∼1.06 Pg C yr−1, Tab. 3) is much lower than between
2×CO2 and 3×CO2 (∆GPP ∼2.34 Pg C yr−1, Tab. 3).

We have thus far focused on the magnitude of CO2 concentration change and not on the
time rate of this change. For example, a given amount of change in CO2 concentration,
say 200 ppm, can be realized over different time periods, say over a 100 or 150 years. The
problem of varying rates of CO2 concentration change is implicitly encountered when
ESMs are executed under different forcing scenarios, such as RCPs (Sect. 2.3). A question
then arises whether the constrained predictand estimate is independent of the time rate of
CO2 concentration change and dependent only on the magnitude of CO2 concentration
change. To investigate this aspect of forcing, we extract GPP estimates at the same CO2
concentration (535 ppm; final concentration in RCP4.5) from three simulations of different
forcing rates and calculate the difference relative to a common initial CO2 concentration
(380 ppm; initial concentration of RCP scenarios). Hence, the magnitude of the forcing
is the same but applied over different durations (RCP4.5: ∼90yr, RCP8.5: ∼45yr, and
1pctCO2: ∼30yr). A clear majority of the CMIP5 models show substantial differences
in ∆GPP between the different pathways of CO2 forcing. In general, GPP changes are
higher for lower time rates of CO2 forcing, i.e. forcing over longer time periods. As a
consequence, the EC estimates of ∆GPP for the same increase in CO2 concentration are
scenario-dependent (Fig. 7b; Tab. 3) – a counter-intuitive result. For instance, in the RCP4.5
scenario (which is characterized by a lower rate of CO2 increase) an increment of 155 ppm
CO2 yields a GPP enhancement of ∼2.84 Pg C yr−1 (see Tab. 3). This GPP enhancement
is ∼39% and ∼20% larger than in the 1pctCO2 run (∼2.05 Pg C yr−1, Tab. 3) and the
RCP8.5 (∼2.38 Pg C yr−1, Tab. 3) scenario, respectively, for the same total increase in
CO2 concentration. Both these scenarios are characterized by a faster rate of CO2 increase
than RCP4.5. This analysis suggests that the vegetation response to rising CO2 is pathway
dependent, at least in the NHL. One of the reasons for this could be species compositional
changes in scenarios of low forcing rates, i.e. over longer time frames. This novel result,
however, requires a separate in-depth study.

3.5 Effects of CO2 Forcing

Higher concentration of CO2 in the atmosphere stimulates plant productivity through the
fertilization and radiative effects (Nemani et al., 2003; Leakey et al., 2009; Arora et al., 2011;
Goll et al., 2017). The two effects can be disentangled in the model world by conducting
simulations in a ’CO2 fertilization effect only’ (esmFixClim1) and a ’radiative effect only’
(esmFdbk1) setup (Sect. 2.3). These are termed below as idealized model simulations. We
investigate here whether historical runs and observations, which include both effects, can
be used to constrain GPP changes in idealized CMIP5 simulations (e.g. as in Wenzel et al.,
2016).

We find strong linear relationships between historical LAImax sensitivity and ∆GPP for
2×CO2 in both idealized setups (esmFixClim1: R2 = 0.92, esmFdbk1: R2 = 0.98, Tab. 3,
Fig. 7c). Consequently, this linear relationship is also pronounced for calculated sums of
both effects for each model (esmFixClim1 + esmFdbk1: R2 = 0.95, Tab. 3, Fig. 7c). This
suggests that the two effects act additively on plant productivity and, thus, each effect can
be simply expressed in terms of a scaling factor of the total GPP enhancement. Hence, the
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application of the EC method on idealized simulations using real world observations is
conceptually feasible.

Interestingly, the two effects contribute about the same to the general increase in GPP at
2×CO2 (esmFixClim1: ∆GPP ∼1.35 Pg C yr−1, esmFdbk1: ∆GPP ∼1.38 Pg C yr−1, Tab.
3, Fig. 7c). At higher concentrations, such as 3×CO2 and 4×CO2, the enhancement in
GPP saturates in both idealized setups. However, the radiative effect becomes dominant
relative to the CO2 fertilization effect when CO2 concentration exceeds 2×CO2 (e.g. at
4×CO2 esmFixClim1: ∆GPP ∼2.42 Pg C yr−1, esmFdbk1: ∆GPP ∼3.06 Pg C yr−1, Tab.
3). Therefore, we can expect that at some point in the future, NHL photosynthetic carbon
fixation will benefit more from climate change (e.g. warming) than from the fertilizing
effect of CO2.

3.6 Uncertainties in the Multi-Model Ensemble

Besides methodological sources of uncertainty discussed above, the estimate of an EC may
also be deficient due to inaccurate assumptions about the model ensemble. First, possible
common systematic errors in a multi-model ensemble (i.e. the entire ensemble misses an
unknown process, which plays a key role in a high CO2 world) are implicitly omitted in the
EC approach, however, could cause a general over- or underestimation of the constrained
value (Bracegirdle and Stephenson, 2012b; Stephenson et al., 2012). Second, the set of
forcing variables for historical simulations may be incomplete (i.e. not yet identified drivers
of observed changes) and thus the comparability of observations and model simulations
is limited (Flato et al., 2013). Third, the EC method can be overly sensitive to individual
models of the ensemble, which has a bearing on the robustness of the constrained value
(Bracegirdle and Stephenson, 2012b). Bracegirdle and Stephenson (2012b) proposed a
diagnostic metric (Cook’s distance) to test an ensemble for influential models. Fourth, the
predictand-predictor relationship not only has to rely on a physical, but also on a logical
connection within the model ensemble. For instance, Wenzel et al. (2016) established a
linear relationship between relative changes in the predictand taking the initial state into
account (changes in GPP for doubling of CO2 relative to the initial pre-industrial state),
and a predictor neglecting the initial state (historical sensitivity of CO2 amplitude to rising
CO2). This statistical relationship can be spurious, because the model skill of simulating an
accurate initial state and a plausible sensitivity to a forcing are not connected. These issues
are to be contemplated when establishing an EC estimate and evaluating its robustness.

4 conclusions

An in-depth analysis of the EC method is illustrated in this article through its application
to projections of change in NHL photosynthesis under conditions of rising atmospheric
CO2 concentration. Key conclusions highlighting the functionality of the EC method are
presented below.

The importance of how the observational predictor is obtained cannot be emphasized
enough because the EC method is particularly sensitive to observational uncertainty. The
single observational estimate essentially determines the EC, whereas the emergent linear
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relationship is established based on a collection of multi-model estimates (each model gets
’one vote’, however, some models might be more influential than others; Bracegirdle and
Stephenson, 2012b). Hence, the observational uncertainty has a much larger bearing on the
EC than the uncertainty of each individual model. To overcome this source of uncertainty,
various meaningful observations should be taken into consideration when establishing the
observed predictor.

Spatially aggregating observations and model output of different resolutions in the EC
method constitutes another source of uncertainty. Predictors and predictands expressed as
regional estimates (e.g. area-weighted mean of the NHL) are approximations of complex
fine-scale processes. Aggregation will inevitably introduce a random error component due
to inclusion of estimates from areas where the predictor is not changing or a systematic
bias from areas where the predictor has a reversed sign. Thus, the spatially-aggregated
variables are meaningful only if most of the region is in agreement about the response to
CO2 forcing (e.g. more than half of the NHL is greening with rising CO2). However, we
find that the source of uncertainty related to spatial aggregation is of minor importance as
long as spatial variations in observations and models simulations are treated consistently.

A large source of uncertainty is associated with temporal variability of the predictor
variable when comparing models and observations. Establishing a robust predictor requires
evaluating temporal window lengths of sufficient duration (approximately 30 years) and
their locations along the forcing time line. Both window length and location should match
between models and observations in the EC method. For example, the analysis in Wenzel
et al. (2016) might have yielded different results and conclusions if model and observational
predictor sensitivities were temporally matched. We find that the relevance of window
length decreases with increasing and accelerating forcing, depending on the magnitude of
natural/internal variability (signal-to-noise ratio) of the predictor variable.

The level, effect and time-rate of applied CO2 forcing can have a bearing on the linear
relationship between the predictand and predictor variables (Fig. 1). In our case study,
the relationship underpinning the EC method, namely, that between concurrent ∆GPP
and ∆LAImax changes non-linearly with increasing forcing level (i.e. saturation with rising
CO2 concentration). The EC method can still be applied, because the CMIP5 models agree
on the non-linear behavior of the system. However, at very high CO2 concentrations the
models diverge and this relation breaks down, at which point the EC method fails. The
two dominant effects of rising CO2 concentration on vegetation, namely, the fertilization
and radiative effects, appear to be approximately additive in terms of GPP enhancement to
CO2 forcing in the NHL. Therefore, the EC method can be applied to constrain estimates of
GPP due to one or the other, or both the effects. The models, however, document a higher
radiative effect than fertilization at concentrations exceeding 2×CO2. Another intriguing
conclusion from our analysis is that the time-rate of forcing has an effect on GPP changes,
that is, the projected GPP enhancement to CO2 forcing seems to be dependent on how the
forcing is applied over time, as in different scenarios or RCPs. This aspect is presently not
well understood and requires further study.

The EC framework is widely promoted as observation-based evaluation tool for climate
projections, especially in the context of the nascent CMIP6 ensemble (Eyring et al., 2019;
Hall et al., 2019). Previous EC studies, however, exclusively focused on predictor-predictand
combinations which exhibit so-called existent ECs (Hall et al., 2019), i.e. predictor and
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predictand are found to relate linearly across the ensemble. In the context of ESM evaluation,
non-existent ECs, i.e. predictor and predictand are found to be unrelated in the ensemble,
are equally important. Since predictor and predictand variables are premised on our
mechanistic process understanding, non-existent ECs reveal a fundamental disagreement
on the system dynamics among the models. This study encourages to scrutinize these
system dynamics in the predictor-predictand space and also report such non-existent, yet
expected, ECs in order to advance model development and evaluation.

Across different disciplines each EC and its set of predictor and predictand are unique to
some extent and require an individual detailed examination. In this article, we addressed
general potential sources of uncertainty and limitations in the EC method by the means
of a case study in carbon cycle research. Thus, the illustrated results are qualitatively
transmissive to other sets of predictors and predictands and are generally relevant in Earth
system sciences.

Code availability The code used in this study is available from the corresponding author
upon request.

Data availability All data used in this study are available from public databases or
literature, which can be found with the references provided in respective Methods section.
Processed data is available from the corresponding author upon request.
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Table A1 | Overview of four possible cases of interaction between forcing, non-observable (pre-
dictand) and observable (predictor) identified in the thought experiment: All linear, all
non-linear, and two mixed cases.

Different assumptions d[non−observable]
d[forcing] , e.g. d[GPP]

d[CO2]
d[observable]

d[non−observable] , e.g. d[LAI]
d[GPP]

1 linear linear

2 non-linear linear

3 linear non-linear

4 non-linear non-linear
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Figure A1 | Standardized temporal anomalies of annual averaged atmospheric CO2 concentration
(blue solid line), area-weighted averaged GDD0 for NHL (green solid line), and their
leading principal component ω (red dashed line) in observations.
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Figure A2 | Similar pixel distribution of predictor and predictand in each model, except HadGEM2-
ES. Histograms and associated probability density functions (Gaussian kernel density
estimation) of LAI sensitivity to ω (red, left y-axis, historical simulations) and temporal
trends in GPP (blue, right y-axis, 1pctCO2, until 2×CO2) for NHL are shown for all
CMIP5 models. Only significant pixels are included (Mann-Kendall test, p < 0.1). To
obtain comparability between the distributions, the x-axis was normalized and has only
qualitative meaning.
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Figure A3 | Temporal variation of LAImax sensitivity to ω in four CMIP5 models analogous to Fig. 4.
The colored lines show LAImax sensitivity variations for moving windows of varying
length of 15 (blue), 30 (green), and 45 (red) years over the historical period from 1860 to
2005.
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Figure A4 | Correlation of ∆LAImax and ∆GPP with increasing CO2 forcing, starting from a pre-
industrial concentration of 280 ppm (1xCO2) to 4xCO2 (CMIP5 1pctCO2 simulations).
Results are shown for four CMIP5 models analogous to Fig. 5. Blue colored dots show
the relation between 1xCO2 and 2xCO2, green colored dots between 2xCO2 and 3xCO2,
and red colored dots between 3xCO2 and 4xCO2. The respective colored lines represent
the best linear fit through those dots and the shading represents the 95% confidence
interval.
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Figure A5 | Thought experiment to examine the applicability of the EC analysis assuming an
idealized linear / linear behavior of the system (Case 1, Table A1). a, Changes in GPP
relate linearly to changes in CO2 concentration. The yellow band marks the projection
period of interest, i.e. the period of CO2 concentration from x + 4∆ to x + 5∆. b,
Changes in LAI relate linearly to changes in GPP. The parameterization in the linear
functions for pseudo observations (dashed black line) as well as models (solid grey lines)
are determined randomly for each model. c, The diagnostic variable, LAI sensitivity
to CO2, remains constant with increasing CO2 as a consequence of the overall linear
characteristics of the system. The colored bands indicate three ’past’ periods from x
to x + ∆ (blue), x + ∆ to x + 2∆ (green), and x + 2∆ to x + 3∆ (red). d, Linear
relationships among the pseudo model ensembles (Ensemble LR 1-3 on top of each
other, red) between LAI sensitivity to CO2 of the three past periods and ∆GPP from
the projected period. Red dots mark different models and the dashed line represents
associated pseudo observations for all three historical periods. Yellow solid line depicts
the constant EC on projected ∆GPP irrespective of the past period.
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Figure A6 | Thought experiment to examine the applicability of the EC analysis assuming an ide-
alized non-linear / non-linear behavior of the system (Case 4, Table A1). a, ∆GPP
decreases with increasing CO2 concentration (described by a hyperbolic tangent func-
tion). The yellow band marks the projected period of interest, i.e. the period of CO2
concentration from x + 4∆ to x + 5∆. b, Also ∆LAI decreases with increasing GPP
(described by a hyperbolic tangent function). The parameterization in the hyperbolic
tangent functions for pseudo observations (dashed black line) as well as models (solid
grey lines) are determined randomly for each model. c, The diagnostic variable, LAI
sensitivity to CO2, is decreasing with increasing CO2 as a consequence of the overall
saturating characteristics of the system. The colored bands indicate three ’past’ periods
from x to x + ∆ (blue), x + ∆ to x + 2∆ (green), and x + 2∆ to x + 3∆ (red).
d, Linear relationships among the pseudo model ensembles (Ensemble LR, colored
lines) between LAI sensitivity to CO2 of the three past periods and ∆GPP from the
projected period. Colored dots mark different models and the dashed lines represent
associated pseudo observations for respective historical period. Yellow solid line depicts
the constant EC on projected ∆GPP irrespective of the past period.
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