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APPROXIMATING INFINITE GRAPHS BY NORMAL TREES

JAN KURKOFKA, RUBEN MELCHER, AND MAX PITZ

Abstract. We show that every connected graph can be approximated by a normal tree, up to some

arbitrarily small error phrased in terms of neighbourhoods around its ends. The existence of such

approximate normal trees has consequences of both combinatorial and topological nature.

On the combinatorial side, we show that a graph has a normal spanning tree as soon as it has

normal spanning trees locally at each end; i.e., the only obstruction for a graph to having a normal

spanning tree is an end for which none of its neighbourhoods has a normal spanning tree.

On the topological side, we show that the end space Ω(G), as well as the spaces |G| = G ∪ Ω(G)

naturally associated with a graph G, are always paracompact. This gives unified and short proofs for

a number of results by Diestel, Sprüssel and Polat, and answers an open question about metrizability

of end spaces by Polat.

1. Introduction

A rooted tree T contained in a graph G is normal in G if the endvertices of every T -path in G

are comparable in the tree-order of T . (In finite graphs, normal spanning trees are their depth-

first search trees; see [4] for precise definitions.) Normal spanning trees are perhaps the most useful

structural tool in infinite graph theory. Their importance arises from the fact that they capture the

separation properties of the graph they span, and so in many situations it suffices to deal with the

much simpler tree structure instead of the whole graph. For example, the end space of G coincides,

even topologically, with the end space of any normal spanning tree of G. However, not every connected

graph has a normal spanning tree, and the structure of graphs without normal spanning trees is still

not completely understood [1, 6].

In order to harness and transfer the power of normal spanning trees to arbitrary connected graphsG,

one might try to find an ‘approximate normal spanning tree’: a normal tree in G which spans the

graph up to some arbitrarily small given error term. To formalize this idea, recall that, as usual, a

neighbourhood of an end is the component of G−X which contains a tail of every ray of that end, for

some (arbitrarily large) finite set of vertices X ⊆ V (G). We say that a graph G can be approximated by

normal trees if for every selection of arbitrarily small neighbourhoods around its ends there is a normal

tree T ⊆ G such that every component of G−T is included in one of the selected neighbourhoods and

every end of G has some neighbourhood in G that avoids T .

Our approximation result for normal trees in infinite graphs then reads as follows:

Theorem 1. Every connected graph can be approximated by normal trees.

Note that the normal trees provided by our theorem will always be rayless.

We indicate the potential of Theorem 1 by a number of applications. Our first two applications are

of combinatorial nature: we exhibit in Section 4 two new existence results for normal spanning trees

that Theorem 1 implies. One of these, Theorem 4.3, says that if every end of a connected graph G has

a neighbourhood which has a normal spanning tree then G itself has a normal spanning tree.
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Interestingly, Theorem 1 may not only be read as a structural result for connected graphs: it

also implies and extends a number of previously hard results about topological properties of end

spaces [2, 3, 5, 11, 12, 13]. Denote by Ω(G) the end space of a graph G, and by |G| the space

on G ∪ Ω(G) naturally associated with the graph G and its ends; see the next section for precise

definitions. When G is locally finite and connected, then Ω(G) is compact, and |G| is the well-known

Freudenthal compactification of G. For arbitrary G, the spaces Ω(G) and |G| are usually non-compact

and far from being completely understood.

Polat has shown that Ω(G) is ultrametrizable if and only if G contains a topologically end-faithful

normal tree [11, Theorem 5.13], and has proved as a crucial auxiliary step that end spaces are always

collectionwise normal [11, Lemma 4.14]. Changing focus from Ω(G) to |G|, Sprüssel has shown that

|G| is normal [13], and Diestel has characterised when |G| is metrizable or compact [3] in terms of

certain normal spanning trees in G. Our combinatorial Theorem 1 provides, in just a few lines, new

and unified proofs for all these results. Additionally, Theorem 1 shows that metrizable end spaces are

always ultrametrizable (Theorem 4.1), answering an open question by Polat.

Finally, Theorem 1 brings new progress to an old problem of Diestel, which asks for a topological

charactersation of all end spaces [2, Problem 5.1]. Indeed, note that Theorem 1 translates to the

topological assertion that every open cover of an end space can be refined to an open partition cover,

Corollary 3.2. This last property is known in the literature as ultra-paracompactness. It implies that

all spaces |G| are paracompact (Corollary 3.3), and that all end spaces Ω(G) are even hereditarily

ultra-paracompact (Corollary 5.2).

This paper is organised as follows: The next section contains a recap on end spaces and other

technical terms. Section 3 contains the proof of our main result, and Section 4 derives the consequences

outlined above. Section 5 indicates a simple argument showing that subspaces of end spaces inherit

their property of being ultra-paracompact.

2. End spaces of graphs: a reminder

For graph theoretic terms we follow the terminology in [4], and in particular [4, Chapter 8] for ends

in graphs and the spaces Ω(G) and |G|. A 1-way infinite path is called a ray and the subrays of a

ray are its tails. Two rays in a graph G = (V,E) are equivalent if no finite set of vertices separates

them; the corresponding equivalence classes of rays are the ends of G. The set of ends of a graph G

is denoted by Ω = Ω(G). If X ⊆ V is finite and ω ∈ Ω, there is a unique component of G −X that

contains a tail of every ray in ω, which we denote by C(X,ω). If C is any component of G −X , we

write Ω(X,C) for the set of ends ω of G with C(X,ω) = C, and abbreviate Ω(X,ω) := Ω(X,C(X,ω)).

Finally, if C is any collection of components of G−X , we write Ω(X,C ) :=
⋃
{Ω(X,C) : C ∈ C }.

The collection of sets Ω(X,C) with X ⊆ V finite and C a component of G −X form a basis for a

topology on Ω. This topology is Hausdorff, and it is zero-dimensional in that it has a basis consisting

of closed-and-open sets. Note that when considering end spaces Ω(G), we may always assume that G

is connected; adding one new vertex and choosing a neighbour for it in each component does not affect

the end space.

We now describe two common ways to extend this topology on Ω(G) to a topology on |G| = G∪Ω(G),

the graph G together with its ends. The first topology, called Top, has a basis formed by all open sets

of G considered as a 1-complex, together with basic open neighbourhoods for ends of the form

Ĉ∗(X,ω) := C(X,ω) ∪Ω(X,ω) ∪ E̊∗(X,C(X,ω)),
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where E̊∗(X,C(X,ω)) denotes any union of half-open edges from the edge cut E(X,C(X,ω)) with

endpoint in C(X,ω).

As the 1-complex topology on G is not first-countable at vertices of infinite degree, it is sometimes

useful to consider a metric topology on G instead: The second topology commonly considered, called

MTop, has a basis formed by all open sets of G considered as a metric length-space (i.e. every edge

together with its endvertices forms a unit interval of length 1, and the distance between two points of

the graph is the length of a shortest arc in G between them), together with basic open neighbourhoods

for ends of the form

Ĉε(X,ω) := C(X,ω) ∪Ω(X,ω) ∪ E̊ε(X,C(X,ω)),

where E̊ε(X,C(X,ω)) denotes the open ball around C(X,ω) in G of radius ε. Note that both topolo-

gies Top and MTop induce the same subspace topology on V̂ (G) := V (G)∪Ω(G) and Ω(G), the last

of which coincides with the topology on Ω(G) described above. Polat observed that V̂ (G) is homeo-

morphic with Ω(G+), where G+ denotes the graph obtained from G by gluing a new ray Rv onto each

vertex v of G so that Rv meets G precisely in its first vertex v and Rv is distinct from all other Rv′ ,

cf. [11, §4.16].

A direction on G is a function d that assigns to every finite X ⊆ V one of the components of G−X

so that d(X) ⊇ d(X ′) whenever X ⊆ X ′. For every end ω, the map X 7→ C(X,ω) is easily seen to be

a direction. Conversely, every direction is defined by an end in this way:

Theorem 2.1 (Diestel & Kühn [5]). For every direction d on a graph G there is an end ω such that

d(X) = C(X,ω) for every finite X ⊆ V (G).

The tree-order of a rooted tree (T, r) is defined by setting u ≤ v if u lies on the unique path rT v

from r to v in T . Given n ∈ N, the nth level of T is the set of vertices at distance n from r in T . The

down-closure of a vertex v is the set ⌈v⌉ := { u : u ≤ v }; its up-closure is the set ⌊v⌋ := {w : v ≤ w }.

The down-closure of v is always a finite chain, the vertex set of the path rT v. A ray R ⊆ T starting

at the root is called a normal ray of T .

A rooted tree T contained in a graph G is normal in G if the endvertices of every T -path in G are

comparable in the tree-order of T . Here, for a given a graph H , a path P is said to be an H-path

if P is non-trivial and meets H exactly in its endvertices. We remark that for a normal tree T ⊆ G

the neighbourhood N(D) of every component D of G − T forms a chain in T . A set U of vertices is

dispersed in G if for every end ω there is a finite X ⊆ V with C(X,ω)∩U = ∅, or equivalently, if U is

a closed subset of |G| (in either Top or MTop).

Theorem 2.2 (Jung [10]). A vertex set in a connected graph is dispersed if and only if there is a

rayless normal tree including it. Moreover, a connected graph has a normal spanning tree if and only

if its vertex set is a countable union of dispersed sets.

If H is a subgraph of G, then rays equivalent in H remain equivalent in G; in other words, every

end of H can be interpreted as a subset of an end of G, so the natural inclusion map ι : Ω(H) → Ω(G)

is well-defined. A subgraph H ⊆ G is end-faithful if this inclusion map ι is a bijection. The terms

end-injective and end-surjective are defined accordingly. Normal trees are always end-injective; hence,

normal trees are end-faithful as soon as they are end-surjective. Given a subgraph H ⊆ G, write

∂ΩH ⊆ Ω(G) for the set of ends ω of G which satisfy C(X,ω) ∩H 6= ∅ for all finite X ⊆ V (G).

For topological notions we follow the terminology in [8]. All spaces considered in this paper are

Hausdorff, i.e. every two distinct points have disjoint open neighbourhoods. An ultrametric space (X, d)

is a metric space in which the triangle inequality is strengthened to d(x, z) ≤ max {d(x, y), d(y, z)}.
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A topological space X is ultrametrizable if there is an ultrametric d on X which induces the topology

of X . A topological space is normal if for any two disjoint closed sets A1, A2 there are disjoint open

sets U1, U2 with Ai ⊆ Ui. A space is collectionwise normal if for every discrete family {As : s ∈ S } of

disjoint closed sets, i.e. a family such that
⋃
{As : s ∈ S′ } is closed for any S′ ⊆ S, there is a collection

{Us : s ∈ S } of disjoint open sets with As ⊆ Us.

A collection of sets A is said to refine another collection of sets B if for every A ∈ A there is

B ∈ B with A ⊆ B. A cover V of a topological space X is locally finite if every point of X has

an open neighbourhood which meets only finitely many elements of V . A topological space X is

paracompact if for every open cover U of X there is a locally finite open cover V refining U . All compact

Hausdorff spaces and also all metric spaces are paracompact, which in turn are always normal and

even collectionwise normal [8, Chapter 5.1]. A space is ultra-paracompact if every open cover has a

refinement by an open partition.

Lastly, ordinal numbers are identified with the set of all smaller ordinals, i.e. α = { β : β < α } for

all ordinals α.

3. Proof of the main result

This section is devoted to the proof of our main theorem, which we restate more formally:

Theorem 1. For every collection C = {C(Xω, ω) : ω ∈ Ω(G) } in a connected graph G, there is a

rayless normal tree T in G such that every component of G− T is included in an element of C .

As every rayless normal tree T ⊆ G is dispersed in G by Jung’s Theorem 2.2, this technical variant

of our main result is clearly equivalent to the formulation presented in the introduction.

Let us briefly discuss two other possible notions of ‘approximating graphs by normal trees’: First,

Theorem 1 is significantly stronger than just requiring that (every component of) G − T is included

in the union
⋃

C of the selected neighbourhoods; the latter assertion is easily seen to be equivalent

to Jung’s Theorem 2.2. In the other direction, could one strengthen our notion of ‘approximating by

normal trees’ and demand a normal rayless tree T such that for every end ω of G, the component

of G − T in which every ray of ω has a tail is included in C(Xω, ω)? This notion, however, is too

strong and such a T may not exist: Consider the graph G = K+ (see Section 2) for an uncountable

clique K, and let C be the collection of all the ray-components of G−K (together with an arbitrary

neighbourhood of the end of the clique K). Any normal tree for G satisfying our stronger requirements

would restrict to a normal spanning tree of K, an impossibility.

We now turn towards the proof of Theorem 1. As a first but crucial step, we prove a result similar

to our main theorem, but which is only concerned with the end space of a graph.

Theorem 3.1. For every connected graph G and every open cover U of its end space Ω(G) there is a

rayless normal tree T in G such that the collection of components of G− T induces an open partition

of Ω(G) refining U .

Proof. It suffices to prove the statement for open covers of basic type, i.e. open covers U where each

element U ∈ U is of the form U = Ω(XU ,CU ). The proof proceeds by induction on | U | = κ. As

the statement clearly holds for finite such covers of basic type, we may assume that κ is infinite and

that the assertion holds for any end space Ω(G′) and any open cover of basic type U ′ of Ω(G′) with

| U ′ | < κ.
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Choose an enumeration U = {Uα : α < κ } of U in order type κ, and define a rank function ̺ on

Ω(G) by

̺ : Ω(G) → κ, ω 7→ min {α : ω ∈ Uα } < κ.

Call a subset A ⊆ Ω(G) bounded or unbounded depending on whether its image ̺[A] ⊆ κ is bounded

or unbounded in κ. Similarly, a subgraph H ⊆ G is called bounded or unbounded if the set of ends in

G with a ray in H is bounded or unbounded.

We construct a sequence of rayless normal trees T1 ⊆ T2 ⊆ . . . extending each other all with the

same root r as follows: Let T1 be the tree on a single vertex r (for some arbitrarily chosen vertex

r ∈ G) and suppose that Tn has already been constructed. For every unbounded component D of

G − Tn there exists a finite separator SD ⊆ V (D) such that D − SD has either zero or at least

two unbounded components: Otherwise, the map d sending each finite vertex set in D to its unique

unbounded component is a direction on D and hence defines an end ω of D by Theorem 2.1. However,

ω has a rank, say ̺(ω) = α, and since U consists of open sets, there is a basic open neighbourhood

Ω(S, ω) ⊆ Uα, implying that d(S ∩ D) ⊆ C(S, ω) is bounded, a contradiction. Now for every such

unbounded D let SD be a finite separator of the first kind in D if possible, and otherwise of the second

kind. Since G is connected, we may extend Tn simultaneously into every unbounded component D of

G− Tn so as to include SD in an inclusion minimal way preserving normality (using the technique as

in [4, Proposition 1.5.6]). Then the extension Tn+1 ⊇ Tn is a rayless normal tree with root r. This

completes the construction.

Now consider the normal tree T ′ =
⋃

n∈N
Tn. We claim that T ′ is rayless. Indeed, suppose otherwise,

that there is a normal ray R in T ′ belonging to the end ω ∈ Ω(G) say.

Then, for every n ∈ N, the ray R has a tail in an unbounded component Dn of G−Tn, and all finite

separators SDn
chosen for these components were of the second kind, since we never extended Tn into

a component that was already bounded. In particular R meets each SDn
in at least one vertex, sn

say. Now, fix for every SDn
an unbounded component Cn+1 of Dn − SDn

different from Dn+1. Every

Cn+1 has a neighbour, say un, in SDn
. Moreover, the paths Pn = snTun connecting sn to un in T are

pairwise disjoint, as each of them was constructed in the nth step.

From this, we obtain a contradiction as follows. Our end ω has rank ̺(ω) = α say. Since κ is infinite

and hence a limit ordinal, and since the Cn are all unbounded, we may select for each n ≥ 1 a ray Rn

in Cn belonging to an end ωn with ̺(ωn) > α. We may choose Rn so that its starting vertex sends an

edge to un−1.

However, the union of the ray R with the rays Rn and the paths Pn witnesses that ωn → ω in

Ω(G) as n → ∞. As Uα is an open neighbourhood of ω, we have ωn ∈ Uα eventually, implying in turn

that ̺(ωn) ≤ α, contradicting the choice of ωn. This shows that ω cannot exist, and hence that T ′ is

rayless.

Next, we claim that every component D of G−T ′ = G−
⋃

n∈N
Tn is bounded. Since T ′ is a normal

tree, N(D) is a chain in T ′, and since T ′ is rayless, N(D) is finite. Hence, there is m ∈ N such that

N(D) ⊆ Tm, i.e. D is already a component of G − Tm. The fact that we have not extended Tm into

D means that D is bounded.

In particular, for each component D of G− T ′, the subcollection

UD := {Uα : α ∈ ̺[Ω(N(D), D)] } ⊆ U

has size <κ. Every UD restricts to an open cover U ′
D of basic type in Ω(D) of size | U ′

D| < κ as follows.

Each Ω(X,C ) ∈ UD induces an open subset Ω(Y,D) of Ω(D) of basic type by letting Y = X ∩D and

letting D be the set of components of D ∩
⋃

C . Indeed, every end of D contained in Ω(X,C ) is also
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contained in Ω(Y,D): pick a ray from that end avoiding the finite X ; then the ray lies in D ∩
⋃

C

and, as it is connected, it lies in a component of D ∩
⋃

C .

Hence, by the induction hypothesis, for every component D of G − T ′ there exists a dispersed set

XD in D for which the components of D−XD refine the cover U ′
D, which in turn refines UD. As T ′ is

normal and rayless, the union of the dispersed sets XD is dispersed as well. We extend T ′ to a rayless

normal tree T which also includes all these XD, by Jung’s Theorem 2.2. Then the collection of the

components of G− T induces an open partition of Ω(G) refining U as desired. �

From the observation that V̂ (G) ∼= Ω(G+) (see Section 2) we can deduce our main result as a

consequence of Theorem 3.1.

Proof of Theorem 1. Let G be a connected graph. Given a collection C = {C(Xω, ω) : ω ∈ Ω(G) } in

G, we need to find a rayless normal tree T in G such that every component of G− T is included in an

element of C .

Consider the graph G+. For v ∈ V (G) write ωv ∈ Ω+ := Ω(G+) for the end containing the new

ray Rv. The assertion follows by applying Theorem 3.1 to the open cover

U = {Ω+(Xω , ω) : ω ∈ Ω(G) } ∪ {Ω+({v}, ωv) : v ∈ V (G) }

of the end space Ω+ of G+, and restricting the resulting rayless normal tree T+ of G+ to the rayless

normal tree T = T+ ∩G of G. �

Corollary 3.2. All end spaces Ω(G) are ultra-paracompact.

Proof. Since we may assume without loss of generality that G is connected, this follows directly from

Theorem 3.1. �

Corollary 3.3. All spaces |G| are paracompact in both Top and MTop.

Proof. First, we consider |G| with MTop. To show that |G| is paracompact, suppose that any open

cover U of |G| consisting of basic open sets is given. The cover elements come in two types: basic

open sets of G, and basic open neighbourhoods of ends. We write UΩ = { Ĉεi(Xi, ωi) : i ∈ I } for

the collection consisting of the latter. As UΩ covers the end space of G, applying Theorem 1 to the

collection C := {C(Xi, ωi) : i ∈ I } yields a rayless normal tree T in G such that {C(Yj , ωj) : j ∈ J },

the collection of components of G−T containing a ray, refines C . For every j ∈ J we choose εj := εi for

some i ∈ I with C(Yj , ωj) ⊆ C(Xi, ωi), ensuring that the disjoint collection VΩ := { Ĉεj (Yj , ωj) : j ∈ J }

refines UΩ.

Next, consider the quotient space H that is obtained from |G| by collapsing every closed subset

C(Yj , ωj) ∪ Ω(Yj , ωj) with j ∈ J to a single point. As the open sets in VΩ are disjoint, the quotient

is well-defined and we may view H as a rayless multi-graph endowed with MTop. Now consider the

open cover UH of H that consists of the quotients of the elements of VΩ on the one hand, and on

the other hand, for every non-contraction point of H a choice of one basic open neighbourhood in

G that is contained in some element of U . Since metric spaces are paracompact, H admits a locally

finite refinement VH of UH consisting of basic open sets of (H,MTop). Then the open cover V of |G|

induced by VH gives the desired locally finite refinement of U .

A similar argument shows that |G| with Top is paracompact. Here, (H,Top) is paracompact

because all CW-complexes are. �

Note in particular that paracompactness implies normality and collectionwise normality, and hence

we reobtain the previously mentioned results by Polat [11, Lemma 4.14] and Sprüssel [13, Theorems 4.1

& 4.2] as a straightforward consequence of our Corollary 3.3.
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4. Consequences of the approximation result

In [11, Theorem 5.13] Polat characterised the graphs that admit an end-faithful normal tree as the

graphs with ultrametrizable end space, and raised the question [12, §10] whether metrizability of the

end space is enough to ensure the existence of an end-faithful normal tree. As our first application we

show how using Theorem 3.1 provides a much simplified proof for Polat’s result that simultaneously

answers his question about the metrizable case in the affirmative:

Theorem 4.1. For every connected graph G, the following are equivalent:

(i) The end space of G is metrizable,

(ii) the end space of G is ultrametrizable,

(iii) G contains an end-faithful normal tree.

Proof. The implication (iii) ⇒ (ii) is routine, as the end space of any tree is ultrametrizable (see e.g.

[9] for a detailed account), and Ω(T ) and Ω(G) are homeomorphic for every end-faithful normal tree

T of G (see e.g. [2, Proposition 5.5]). The implication (ii) ⇒ (i) is trivial.

Hence, it remains to prove (i) ⇒ (iii). For this, consider the covers Un for n ∈ N of Ω(G) given by

the open balls with radius 1/n around every end; with respect to some fixed metric d inducing the

topology of Ω(G). By applying Theorem 3.1 iteratively to the covers U1,U2, . . ., it is straightforward

to construct a sequence of rayless normal trees T1 ⊆ T2 ⊆ . . . all rooted at the same vertex such that

the partition of Ω(G) given by the components of G−Tn refines Un. Observe that any two ends ω 6= η

of G are separated by any Tn with 2/n < d(ω, η). Consider the normal tree T ′ =
⋃

n∈N
Tn. We claim

that each end ω ∈ Ω(G)\∂ΩT
′ belongs to a component C of G−T ′ such that N(C) is finite. Otherwise

N(C) lies on a unique normal ray R of T belonging to some end η ∈ ∂ΩT
′, but then clearly, none of

the Tn would separate ω from η, a contradiction. Hence, N(C) is finite, and since C contains at most

one end, T ′ extends to an end-faithful normal tree of G. �

From the new implication (i) ⇒ (iii) in Theorem 4.1 one also obtains a simple proof of Diestel’s

characterisation from [3] when |G| is metrizable.

Corollary 4.2. For every connected graph G, the following are equivalent:

(i) |G| with MTop is metrizable,

(ii) the space V̂ (G) is metrizable,

(iii) G has a normal spanning tree.

Proof. The first implication (iii) ⇒ (i) is routine, see e.g. [3]. The implication (i) ⇒ (ii) is trivial. For

(ii) ⇒ (iii) apply Theorem 4.1 to the space Ω(G+) ∼= V̂ (G), noting that every end-faithful normal tree

of G+ is automatically spanning. �

To motivate our next applications, suppose that a given graph G admits a normal spanning tree.

Let us call such graphs normally spanned. If G is normally spanned, then every component of G−X

is normally spanned, too, for any finite X ⊆ V (G). Conversely, the question arises whether a graph

admits a normal spanning tree as soon as every end ω has some basic neighbourhood C(X,ω) that is

normally spanned. It turns out that the answer is yes:

Theorem 4.3. If every end of a connected graph G has a normally spanned neighbourhood, then G

itself is normally spanned.

Proof. Let C = {C(Xω, ω) : ω ∈ Ω(G) } be a selection of normally spanned neighbourhoods for all

ends of G, and apply Theorem 1 to C to find a rayless normal tree T such that the collection of
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components of G−T refines C . By Jung’s Theorem 2.2, each such component C of G−T is the union

of countably many dispersed sets, say V (C) =
⋃

n≥1 V
C
n . But then V0 = V (T ) together with all the

sets Vn :=
⋃
{V C

n : C a component of G− T }, for n ≥ 1, witnesses that V (G) is a countable union of

dispersed sets. Hence, G has a normal spanning tree by Jung’s theorem. �

There is also a more topological viewpoint of the above result: The assumptions of Theorem 4.3

are by Corollary 4.2 equivalent to the assertion that V̂ (G) is locally metrizable. But locally metrizable

paracompact spaces are metrizable, [8, Exercise 5.4.A]. Hence, applying Corollary 4.2 once again to

V̂ (G) yields the desired normal spanning tree of G.

Continuing along these lines, we now address the question whether the existence of some local end-

faithful normal tree for every end of a graph already ensures the existence of an end-faithful normal

tree of the entire graph. For a graph G and an end ω, we say that ω has a local end-faithful normal

tree if there is a normal tree T in G such that ∂ΩT is a neighbourhood of ω in Ω(G).

Theorem 4.4. If every end of a connected graph G has a has a local end-faithful normal tree, then G

has an end-faithful normal tree.

Proof. By Theorem 4.1 every end in Ω(G) has a metrizable neighborhood. But (ultra-)paracompact

spaces which are locally metrizable are metrizable, [8, Exercise 5.4.A]. Consequently, we have by

Corollary 3.2 that Ω(G) is metrizable. Applying again Theorem 4.1 yields the desired end-faithful

normal tree of G. �

5. Paracompactness in subspaces of end spaces

We conclude this paper with an observation concerning the following fundamental problem on the

structure of end spaces raised by Diestel in 1992 [2, Problem 5.1]:

Problem 1. Which topological spaces can be represented as an end space Ω(G) for some graph G?

In Corollary 3.2 we established that end spaces are always ultra-paracompact. In this section we

show that also all subspaces of end spaces inherit the property of being ultra-paracompact, i.e. that

end spaces are hereditarily ultra-paracompact. This significantly reduces the number of topological

candidates for a solution of Problem 1, and for example shows that certain compact spaces cannot

occur as end space, which Corollary 3.2 wouldn’t do on its own.

It is known that paracompactness and ultra-paracompactness, along with a number of other proper-

ties which are not per se hereditary such as normality and collectionwise normality, have the property

that they are inherited by all subspaces as soon as they are inherited by all open subspaces. For the

easy proof in case of paracompactness see e.g. Didonné’s original paper [7, p. 68]. Hence, our assertion

follows at once from Corollary 3.2 given the following observation:

Lemma 5.1. Open subsets of end spaces are again end spaces.

Proof. Let G be any graph, and consider some open, non-empty set Γ ⊆ Ω(G). Write Γ∁ for its

complement in Ω(G). Using Zorn’s lemma, pick a maximal collection R of disjoint rays all belonging

to ends in Γ∁, and let W be the union
⋃
{V (R) : R ∈ R} of their vertex sets. We claim that Γ is

homeomorphic to the end space of the graph G′ := G−W .

In order to find a homeomorphism ϕ : Ω(G′) → Γ, note first that, due to the maximality of R, every

ray in G′ is (as a ray of G) contained in an end of Γ. Consequently, every end ω′ of G′ is contained in

a unique end ω of Γ and we define ϕ via this correspondence.

To see that ϕ is surjective, consider an open neighbourhood Ω(X,ω) ⊆ Γ, for a given ω ∈ Γ. Then

W has only finite intersection with C(X,ω), as only finitely many rays from R can intersect C(X,ω),
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but do not have a tail in C(X,ω). So we may assume that C(X,ω) is contained in G′, by extending

X . Now, every ray of ω contained in C(X,ω) gives an end in G′ that is mapped to ω.

To see that ϕ is injective, suppose there are two rays R1, R2 in G′ that are not equivalent in G′

but equivalent in G. Then, there are infinitely many pairwise disjoint R1-R2 paths in G and all but

finitely many of these paths hit W . Then the end ω of G containing R1 and R2 is an end in Γ which

lies in the closure of Γ∁, contradicting that Γ∁ is closed.

Finally, let us show that ϕ is continuous and open. For the continuity of ϕ remember that for any

open set Ω(X,ω) ⊆ Γ we may assume that C(X,ω) is contained in G′. In particular the preimage of

Ω(X,ω) is open in G′.

For ϕ being open, consider an open set Ω(X,ω′) ⊆ Ω(G′) . Now, C(X,ω′) ⊆ G′ −X might not be

a component of G−X . However, the set of vertices in C(X,ω′) having a neighbour in W is dispersed.

Again by extending X , we may assume that C(X,ω′) is a component of G − X . Consequently, its

image is open in Ω(G). �

Corollary 5.2. All end spaces are hereditarily ultra-paracompact. �

Interestingly, a careful reading of Sprüssel’s proof that spaces |G| are normal from [13] establishes

that every end space Ω(G) is in fact completely normal, i.e. that subsets with A ∩ B = ∅ = A ∩ B

can be separated by disjoint open sets – a property which is equivalent to hereditary normality, see

[8, Theorem 2.1.7]. In any case, also this stronger result of hereditary normality is implied by our

paracompactness result in Corollary 5.2.
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