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A B S T R A C T

In this dissertation I investigate the temporal development of internal
variability under global warming. Understanding internal variability
is essential to understand the past and possible future trajectories of
our climate, yet it is often assumed to be a property of the climate
system that does not change under global warming. I use a novel large
ensemble, the Max Planck Institute Grand Ensemble, to introduce a
new perspective on internal variability.

Internal variability can be described as the seemingly random fluc-
tuations of the climate system over time. Due to nonlinearity in the
climate system, small perturbations may grow to large anomalies over
time that are associated with anomalous or even extreme events. In
my first chapter, I quantify internal variability and investigate whether
it changes under global warming. The change in the external forcing is
the same for all of these realisations, the initial conditions are different
for each realisation. Thus, each realisation follows its own, unique tra-
jectory. For each time step, the distribution of all realisations provides
an estimate of the possible states of the climate system.

I develop an analysis framework based on a large ensemble to detect,
quantify and attribute changes in internal variability in a transient
climate. Rather than analysing variability over time, I use the ensemble
dimension of a large ensemble to quantify internal variability. This
approach allows a clean separation of the forced signal from internal
variability and ensures stationarity of the statistics even when the
forcing is changing with time. My non-parametric approach provides
an objective quantification of changes in internal variability and their
robustness.

In my second chapter I apply this analysis framework to investigate
rainfall in the tropical Atlantic region in the past and its possible
future trajectories. I can show that simulated internal variability in
the Sahel encompasses all observed values for the 20th century. The
model suggests an externally forced increase in rainfall towards the
end of the 20th century. However, due to large internal variability,
it is not possible to detect this forced change in a single realisation.
In future projections, I find an increase in the mean rainfall over the
Sahel, accompanied by an increase in the variability. This implies
that the average rainfall will increase, but individual years may show
deviations from this mean value that are larger than under present-day
conditions.

In the tropical Atlantic region, most state-of-the-art coupled climate
models show large biases in the simulated sea surface temperature
and rainfall when compared to observations. These model errors
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challenge the reliability of future projections. In my third chapter, I
investigate the tropical Atlantic sea surface temperature bias in the
Max Planck Institute Earth System Model. By using different high-
resolution configurations of a climate model and dedicated sensitivity
experiments, I can show that the coastal warm bias in the southeastern
tropical Atlantic is caused by too low winds along the coast that
result in too little upwelling of cold water masses. This error in the
wind speed is mainly caused by the misrepresentation of the coastal
orography in the low-resolution atmospheric model. By increasing
the horizontal resolution in the atmosphere, large parts of the coastal
warm bias in sea surface temperature can be eliminated. Contrary to
previous hypotheses, eliminating the coastal warm bias does not affect
the large scale biases in the tropical Atlantic.
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Z U S A M M E N FA S S U N G

In dieser Dissertation untersuche ich Veränderungen der internen
Variabilität unter globaler Erwärmung. Ein umfassendes Verständnis
der internen Variabilität ist unerlässlich um die vergangene Entwick-
lung und mögliche zukünftige Trajektorien des Klimas zu verstehen.
Dennoch wird die interne Variabilität häufig als eine Eigenschaft
des Klimasystems gesehen, die sich unter globaler Erwärmung nicht
verändert. In dieser Studie nutze ich ein großes Ensemble von Klima-
modellsimulationen um eine neue Perspektive auf das Verständnis
interner Variabilität zu eröffnen.

Interne Variabilität kann als die scheinbar zufälligen Schwankungen
des Klimasystems im Laufe der Zeit beschrieben werden. Aufgrund
der Nichtlinearitäten im Klimasystem können kleine Störungen mit
der Zeit anwachsen und ungewöhnliche oder gar Extremereignisse
verursachen. In meinem ersten Kapitel quantifiziere ich die interne
Variabilität und untersuche, ob diese sich unter globaler Erwärmung
ändert. Zu diesem Zweck verwende ich ein großes Ensemble von
Klimamodellsimulationen. Alle Simulationen, auch als Realisierungen
bezeichnet, haben den gleichen zeitlichen Verlauf der Randbedinun-
gen, also der extern vorgeschriebenen Parameter wie solarer Einstrah-
lung oder Konzentrationen von Treibhausgasen in der Atmosphäre.
Die unterschiedlichen Realisierungen unterscheiden sich jedoch in
ihren Anfangsbedingungen. So folgt jede Realisierung ihrer eigenen,
einzigartigen Trajektorie. Für jeden Zeitschritt liefert die Verteilung
aller Realisierungen eine Abschätzung der möglichen Zustände und
assoziierten Wahrscheinlichkeiten des Klimasystems.

Ich entwickle eine Analysemethode auf Basis eines großen Ensem-
bles, um Veränderungen der internen Variabilität zu detektieren, zu
quantifizieren und mit einer Änderung in den Randbedingungen zu
assoziieren. Anstatt die Variabilität anhand einer Stichprobe basierend
auf mehreren Jahren zu analysieren, verwende ich die Ensemble-
Dimension eines großen Ensembles, um die interne Variabilität zu
quantifizieren. Dieser Ansatz ermöglicht eine saubere Trennung des
extern angetriebenen Signals von der internen Variabilität und ge-
währleistet Stationarität. Mein nichtparametrischer Ansatz bietet eine
objektive Quantifizierung von Veränderungen der internen Variabilität
und ihrer Robustheit.

In meinem zweiten Kapitel wende ich diese Analysemethode an,
um die Niederschläge im tropischen Atlantik in der Vergangenheit
und ihre möglichen zukünftigen Trajektorien zu untersuchen. Ich
kann zeigen, dass die simulierte interne Variabilität in der Sahelzone
alle beobachteten Werte für das 20. Jahrhundert umfasst. Die Simu-
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lationen zeigen zudem einen Anstieg der Niederschläge gegen Ende
des 20. Jahrhunderts, der durch die Änderung in den Randbedingun-
gen verursacht wird. Aufgrund der großen internen Variabilität ist
es jedoch nicht möglich, diese extern angetriebene Veränderung in
einer einzelnen Realisierung zu identifizieren. Die Zukunftsszenarien
zeigen einen Anstieg des mittleren Niederschlages über der Sahelzone,
verbunden mit einer Zunahme der Variabilität. Dies bedeutet, dass die
durchschnittliche Niederschlagsmenge zunehmen wird, aber einzelne
Jahre Abweichungen von diesem Mittelwert aufweisen können, die
größer sind als unter heutigen Bedingungen.

Im tropischen Atlantik zeigen nahezu alle aktuellen gekoppelten Kli-
mamodelle große Fehler in der simulierten Meeresoberflächentempera-
tur und im simulierten Niederschlag im Vergleich zu Beobachtungen.
Diese Modellfehler stellen die Zuverlässigkeit und den Wahrheitsge-
halt von Zukunftsprojektionen in Frage. In meinem dritten Kapitel
untersuche ich die Ursachen der Modellfehler in der Oberflächentem-
peratur des tropischen Atlantiks in einem gekoppelten Klimamodell.
Durch die Verwendung verschiedener hochauflösender Konfiguratio-
nen eines Klimamodells kann ich zeigen, dass der küstennahe Fehler
im südöstlichen tropischen Atlantik durch zu geringe Windgeschwin-
digkeiten entlang der Küste verursacht wird, die zu einem zu geringen
Auftrieb von kalten Wassermassen führen. Dieser Fehler in der Wind-
geschwindigkeit wird hauptsächlich durch die Fehldarstellung der
küstennhanen Orographie bei niedriger Auflösung im Atmosphären-
modell verursacht. Durch die Erhöhung der horizontalen Auflösung
im Atmosphärenmodell können große Teile des küstennahen Modell-
fehlers in der Meeresoberflächentemperatur eliminiert werden. Im
Gegensatz zu früheren Hypothesen hat der küstennahe Modellfehler
jedoch keinen Einfluss auf die Modellfehler im restlichen tropischen
Atlantik.
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I N T R O D U C T I O N

Understanding the past evolution and the possible future trajectories
of the climate system is at the core of climate science. We use obser-
vations of the recent past and proxy-based reconstructions that go
back in time for several millennia and combine these with climate
model simulations to understand the mechanisms that drive the cli-
mate system in the past, present, and future. In this context, there is a
particular interest in understanding the influence of external forcing,
most prominently the anthropogenic contribution, on the evolution of
the climate system. However, any realisation of the transient climate
system, such as the observational record or a climate model simulation,
is a combination of the forced signal and chaotic internal variability
that arises from the nonlinear nature of the climate system. Therefore,
we need to quantify the forced signal and internal variability sepa-
rately, which is not possible with a single realisation (Frankcombe
et al. 2018). In this study, I use a novel large ensemble of climate model
simulations to overcome this problem.

Internal variability is often treated as an irreducible uncertainty that
conceals the forced signal. However, internal variability itself needs to
be characterised to fully understand the observed realisation, which
is the climate that we experience. Internal variability determines how
large and how frequent deviations from the forced signal are on differ-
ent time scales. On long time scales, internal variability can modulate
decadal trends of the global mean surface temperature (Marotzke and
Forster 2015) and can lead to misunderstandings about our knowledge
of the forced signal, which has happened for example in the global
warming hiatus discussion (Hedemann et al. 2017). On interannual
time scales, modes of variability, such as the El Niño-Southern Os-
cillation, cause anomalous rainfall patterns and surface temperature
anomalies over large regions that have important implications for
the population. On short time scales, extreme events are the most
discernible manifestation of internal variability and can have large
impacts despite being of relatively short duration and regionally con-
fined. All of these manifestations of internal variability are not taken
into account when investigating the forced signal. Therefore quantify-
ing internal variability and differentiating it from the forced signal is
crucial both for understanding the present and the future.

Characterising internal variability is not straightforward and can
be further impeded by a number of challenges that depend on the
context that is investigated. A widely applied assumption is that
internal variability does not change in response to the forcing (e.g.
Hawkins and Sutton 2010, 2012; Lehner et al. 2017; Thompson et

1



2 introduction

al. 2015). In this context, a long control simulation with constant
external forcing can be used to quantify internal variability, which is
then used to study internal variability in a simulation with changing
external forcing. This approach does not allow for a clean separation
of internal variability and the forced signal. To estimate the forced
signal, we have to make assumptions, such as defining the forced
signal as the low-frequency part of the time series (Hawkins and
Sutton 2012). This makes it difficult to determine whether a decadal
trend in the simulation with changing forcing is caused by the forcing
change or internal variability. In addition, the assumption that internal
variability does not change in response to the forcing might not hold.
Even relatively small changes in the internal variability can have
striking consequences for the occurrence of extreme events and should
therefore not be excluded a priori. This confronts us with a challenge
that is more difficult to overcome than the separation of internal
variability and the forced signal.

A common estimator for internal variability is the variance of a time
series. The time series needs to be sufficiently long to allow for an
adequate sampling of the internal variability. Sampling over time is
only possible when the statistics are stationary. Common practice is to
detrend a time series, which requires knowledge of the forced signal,
and sample from the residual. This approach does not take a change
in variability into account.

In this study, I use a large number of realisations to overcome
these challenges. A comprehensive climate model has been ran 100

times. Each of these realisations starts with different initial condi-
tions sampled from different equilibrated ocean-atmosphere states.
The evolution of the external forcing and the model configuration is
identical, yet the trajectories for all realisations are different because
variations due to internal variability unfold differently. At the same
time, the changes in the external forcing cause a similar response in all
realisations. By averaging over the ensemble dimension, the random
variations due to internal variability cancel out and the mean response
to the external forcing change is left (Frankcombe et al. 2018). In the
context of a single model ensemble, this is the forced signal. With
this approach, we can effectively separate internal variability and the
forced signal. For quantifying internal variability in a transient climate,
we can then proceed to use the ensemble dimension to overcome the
challenge of potential changes of the internal variability over time.
When using the ensemble dimension to quantify variability, variance
across different realisation at the same time with identical boundary
conditions is used, rather than variance over time. This approach en-
sures stationarity of the statistics, rather than having to assume that
the samples distribution is stationary. I show that variance across the
ensemble dimension provides a well defined estimate of the internal
variability for every forcing state in a transient climate.
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In the first chapter of the thesis, I develop a new analysis frame-
work to detect and attribute changes of the internal variability of
the climate system. While several large ensembles of comprehensive
climate models are available, they are mostly used to investigate the
forced signal rather than internal variability itself. At the same time,
numerous methods for statistical analysis exist that can be used to
investigate and compare the variability in samples from different pop-
ulations. I combine different approaches from previous work with
a large ensemble of a comprehensive climate model to develop an
analysis framework for investigating internal variability and forced
changes to it in response to a change in the external forcing.

I use an idealised warming scenario to exemplify the challenges we
face when using a single realisation and demonstrate how they can
be solved by using a large ensemble. I analyse vertically integrated
global mean specific humidity, which is also described as precipitable
water. Precipitable water is a quantity where I expect increased vari-
ability under warming. From the Clausius-Clapeyron relationship the
water holding capacity of the air is expected to increase by 7% per ◦C
under global warming (Held and Soden 2006). When assuming that
relative humidity does not change in response to global warming, the
variability of precipitable water is mainly controlled by temperature
variability. Even if the temperature variability does not change in re-
sponse to warming, the variability in precipitable water will increase.
This is because similar variations in temperature will cause larger
variations in precipitable water in a warmer atmosphere. Therefore
I use precipitable water in an idealised warming scenario as an ex-
ample of a quantity with increasing variability to demonstrate how
we can: (i) cleanly separate the forced signal and internal variability,
(ii) adequately sample the phase space of internal variability, (iii) and
detect forced changes in the internal variability in a transient climate.

In the second chapter, the analysis framework is then applied to
analyse changes in rainfall variability in the tropical Atlantic region
under global warming. The framework allows me to perform a robust
attribution of projected changes, both in the mean state and variability,
to changes in the external forcing. I find that changes in rainfall
variability are not spatially homogeneous over the tropical Atlantic.
While there is an increase in variability over the Sahel and close to
the centre of the oceanic Intertropical Convergence Zone (ITZC), there
is a decrease of variability on the outer southern flank of the oceanic
ITCZ.

For this study, I have to rely on a climate model because internal
variability and the forced signal in a transient climate can only be
studied with a large number of realisations. However, the simulated
climate in the tropical Atlantic region suffers from large biases that
might impair the models reliability for future projections. Therefore I
investigate the origin of the mean state biases that are common to most



4 introduction

state-of-the-art coupled climate models. I show that the mean state
coastal SST bias in the southeastern tropical Atlantic can be reduced
by increasing the atmospheric horizontal resolution (Milinski et al.
2016). I then examine the representation of variability in the model
configuration with a reduced mean state bias to quantify the potential
benefits of increasing the atmospheric horizontal resolution.

The aim of this study is to broaden our understanding of internal
variability within the limits of the currently available data and mod-
els. Using a large ensemble of a coupled climate model adds to our
understanding of the single realisation available from observations.
Increasing the horizontal resolution of a climate model can reduce
some of the model biases, but at the same time, the increase in the
computational cost does only allow for a small number of realisations.
At the moment, a large ensemble is not feasible with a high-resolution
climate model. I conclude by discussing the benefits of combining a
coarser-resolution large ensemble with a single realisation of a high-
resolution model for future modelling strategies.



T H E M P I G R A N D E N S E M B L E

The Max Planck Institute Grand Ensemble (MPI-GE) is a novel set of
large ensemble simulations that was produced as a combined effort of
all departments of the Max Planck Institute for Meteorology. It consists
of five forcing scenarios with 100 realisations each. The 100 realisations
only differ by their initial conditions, while the model configuration
and the prescribed external forcing is the same. The idea of these
simulations is to enable the investigation of internal variability in
transient climate simulations to improve our understanding of future
projections and reinterpret the observed record. The advantage of a
single model large ensemble in comparison to a multi-model ensemble
such as the Coupled Model Intercomparison Project 5 (CMIP5) is that
the realisations only differ because of internal variability. This allows
to cleanly separate the forced signal and internal variability for this
model.

The first two chapters of this thesis are based on the MPI-GE. The
purpose of this section is to provide a technical description of the
model and experiments and outline some of the applications of the
MPI-GE.

model and experiments

experiment time period realisations abbreviation

Preindustrial
Control

2000 years 1 PiControl

Historical 1850-2005 100

RCP2.6 2006-2099 100

RCP4.5 2006-2099 100

RCP8.5 2006-2099 100

1% yr-1 CO2

increase
150 years 100 1% CO2

Table 0.1: The MPI-GE experiments.

The MPI-GE is based on the Max Planck Institute Earth system
model (MPI-ESM) as described by Giorgetta et al. (2013). The model
version used for the MPI-GE is MPI-ESM1.1-LR (Bittner et al. 2016;
Stevens 2015). To allow a large number of realisations, the low-resolution
(LR) configuration of the model is used. It consists of the atmo-
spheric component ECHAM (Stevens et al. 2013), the ocean component

5



6 mpi-ge

MPIOM (Jungclaus et al. 2013; Marsland et al. 2003), the land compo-
nent JSBACH (Reick et al. 2013) with the standard fire module, and the
biogeochemistry component HAMOCC (Ilyina et al. 2013). The ocean
component is run on the GR15L40 grid with a horizontal resolution of
1.5◦ and 40 layers, the spectral atmospheric component uses a T63L47

configuration, which translates to ~1.8◦ horizontal resolution and has
47 vertical levels. The output frequency is limited to monthly mean
values in order to limit disk space usage to a manageable amount.

Figure 0.1: GMST change in the MPI-GE experiments. Annual mean global
mean surface temperature change for all experiments, relative
to the 1850–1900 mean GMST in historical experiments. Thin
lines show individual realisations, thick lines show the ensemble
mean. For illustration purposes, the 1% CO2 experiment is plotted
against years 1850–1999. The boundary conditions for 1% CO2 are
idealised and not associated with years in the historical record.

The experiments in MPI-GE follow the CMIP5 protocol (Taylor
et al. 2012). A 2000-year preindustrial control simulations and five
experiments with a changing forcing have been run as listed in table
0.1. The historical and 1% CO2 experiments are initialised by sampling
ocean and atmosphere initial conditions in different years of the 2000-
year preindustrial control simulation. This approach ensures that
the ensemble covers a wide range of possible states of the system
and allows analysis of the experiments from the first year onward.
The alternative approach of ensemble generation is to add small
random perturbations to otherwise identical initial conditions. With
this initialisation technique, all realisation are very similar in the
beginning and slowly disperse, therefore the ensemble does not cover
a wide range of possible states in the beginning and the first few
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years cannot be used for analysis. The rate at which the realisations
disperse can range from a few weeks in the atmosphere to several
decades in the deep ocean. For the MPI-GE, the historical and 1%
CO2 experiments cover a wide range of possible states already in the
first year. The three scenarios starting in year 2006 are initialised using
the end of the 100 historical realisations. Each of the three scenarios is
using the same set of 100 different initial conditions.

Figure 0.1 shows the evolution of global mean surface temperature
(GMST) for all realisations. The ensemble mean shows the forced
response of the model to the change in external forcing by efficiently
removing the influence of internal variability (Frankcombe et al. 2018).
The large spread of individual realisations indicates that internal
variability is a relevant contribution to the uncertainty in future pro-
jections.

applications of the mpi-ge

Several studies have used the MPI-GE to disentangle internal variabil-
ity and the forced response for various quantities. Hedemann et al.
(2017) showed that the observed global warming hiatus can be ex-
plained by internal variability. Suárez-Gutiérrez et al. (2017) used the
MPI-GE to show that internal variability can reconcile the apparent
discrepancies between simulated and observed warming in the upper
tropical troposphere. In a recent study, we investigated the response
of the El-Niño Southern Oscillation to global warming (Maher et al.
2018). We found that internal variability can explain observed changes
and most of the differences between CMIP5 models for the historical
period. Only under strong warming, a robust change in ENSO is sim-
ulated. These studies highlight the potential of this novel ensemble to
rethink and advance our understanding of the climate system, both
for the past and possible future trajectories. To make use of the full
potential of a large ensemble and generate new knowledge, it is crucial
to modify and rethink the commonly used analysis methods. In the
first chapter I present a new analysis framework for detection and
attribution of changes in internal variability in a transient climate
simulation, which can be used to study forced changes of internal
variability for a variety of variables.
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A F R A M E W O R K F O R A N A LY S I N G F O R C E D
C H A N G E S O F I N T E R N A L VA R I A B I L I T Y I N A
T R A N S I E N T C L I M AT E S Y S T E M

1.1 large ensembles as a new tool for climate research

To capture the chaotic nature of the climate system and sample a
large variety of possible states of the climate system, multiple model
simulations with identical boundary conditions but different initial
conditions are performed, referred to as ensemble simulations. In
weather forecasting, using ensemble simulations has become common
practice since several decades (Lewis 2005). In the 1990s, Griffies
and Bryan (1997) used a coupled global climate model with a total
of 40 realisations and 4 different experiments to sample different
states of the North Atlantic and show that under certain conditions,
predictability on time scales longer than a decade can be achieved. In
2005, Zelle et al. 2005 used a 62-member ensemble of a global climate
model to investigate changes in the El Niño-Southern Oscillation
(ENSO) under global warming. The idea of using a large ensemble
of a comprehensive climate model was later taken up by several
modelling groups who performed large ensemble simulations with
state-of-the-art climate models (Deser et al. 2012b; Fyfe et al. 2017; Kay
et al. 2015; Rodgers et al. 2015; Stevens 2015). These ensembles used
ensemble sizes ranging from 30 to 100 members to study the forced
response and internal variability of the climate system for the past
century and possible future scenarios. The objective of most studies
using these large ensembles is to quantify the forced response of the
climate system and investigate when this forced signal emerges from
the noise of internal variability (for example Lehner et al. (2017) and
Rodgers et al. (2015)). In this context, internal variability is treated as
time-independent noise that conceals the forced signal. In this chapter,
I introduce a new analysis framework to quantify internal variability
in a changing climate and detect forced changes of internal variability.

1.2 the challenge of quantifying internal variability

We perceive internal variability of the climate system as seemingly
random fluctuations on a wide range of time scales. It is well estab-
lished that increasing CO2 concentration in the atmosphere lead to a
warming of the Earth. Nevertheless, single years or even a number
of consecutive years can deviate from this expected forced warming
signal because of internal variability. The surface warming hiatus, a

9
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period during which the observed warming was much slower than
the warming projected by climate models, is only one example where
internal variability has been shown to have a noticeable effect on the
climate system (Hedemann et al. 2017). On shorter time scales, internal
variability determines how large and frequent anomalies on seasonal
or even daily time scales can be. But even on decadal time scales,
internal variability has been shown to have a substantial contribution
(Deser et al. 2012a; Marotzke and Forster 2015). To understand anoma-
lous events on short time scales or anomalous trends on longer time
scales, we need to isolate internal variability and the forced signal and
quantify both.

A time-independent quantification of internal variability is not suffi-
cient in a transient climate. To understand possible future trajectories
of the Earth system, it is necessary to investigate potential changes of
the internal variability in response to a change in the forcing because
an increase of the amplitude of internal variability might have large
effects on the amplitude of anomalous or even extreme events.

In a transient climate, where the external forcing is changing with
time, the traditional approach to quantify internal variability from
a single time series can lead to wrong conclusions. In this chapter, I
introduce a new analysis framework that allows for a well-defined
quantification of internal variability under different background condi-
tions. This approach does not only provide a quantification of internal
variability and enables the detection of a change in variability, but also
provides a non-parametric estimate of the uncertainty to objectively
describe the robustness of a detected change.

To demonstrate the limitations of the traditional approach and de-
velop the new analysis framework, I will focus on a single quantity for
which a change in variability is expected under global warming. Here,
I focus on global mean precipitable water (vertically integrated spe-
cific humidity). The global mean precipitable water is only controlled
by thermodynamics. Assuming that relative humidity stays constant,
the amount of precipitable water must increase in a warmer atmo-
sphere, based on the Clausius-Clapeyron relation for saturation vapour
pressure (Held and Soden 2006). When adding the assumption that
temperature variability does not decrease in a warmer atmosphere, the
variability of global mean precipitable water must also increase under
global warming, because the same temperature anomaly would result
in a larger anomaly in precipitable water in a warmer atmosphere.

To test these assumptions with different analysis methods, I use cli-
mate model simulations with an idealised forcing scenario: a 1%-CO2

increase per year. In this scenario, the atmospheric CO2 concentration
starts at preindustrial conditions and increases by 1% per year, relative
to the previous year. The simulation length is 150 years (table 0.1).
We performed 100 realisations with the same external forcing but
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different initial conditions. Equilibrated initial states for the ocean and
atmosphere are sampled from the 2000-year PiControl run.

Figure 1.1: In a transient climate, internal variability is only well defined
in the ensemble dimension, not in the time dimension. (a)
global mean annual mean precipitable water in 100 realisations
in a strong warming scenario, two realisations are highlighted
in green and blue. (b) 30-year running standard deviation for
each of the 100 realisations after detrending with the ensemble
mean. (c) Ensemble standard deviation calculated for each year.
The grey bar indicates the 5-95% range of standard deviations
from 20 samples consisting of 100 randomly selected years from
PiControl.

A common measure to quantify internal variability is to calculate
the temporal standard deviation of a time series after removing the
forced signal. In figure 1.1, the time series of global mean, annual
mean precipitable water are shown for 100 realisation under the 1%
CO2 forcing. The forced signal in this case can be characterised as a
monotonous increase in precipitable water and can be estimated using
the ensemble mean. To investigate a change in internal variability,
all members are detrended by subtracting the ensemble mean. Then,
the temporal standard deviation in a 30-year window is calculated as
a measure of internal variability. This window is then moved along
the time axis in steps of one year to generate the time series of 30-
year temporal standard deviation in figure 1.1b. The two highlighted
realisations show very different results for the temporal evolution of
internal variability: while the green realisation shows a clear increase
in variability as expected from the initially formulated hypothesis, the
blue realisation shows a decrease in variability.

This apparent disagreement occurs because 30 years are not long
enough to sample internal variability sufficiently. A solution to this
would be to increase the temporal sampling period. However, the
temporal standard deviation for a long sampling window of 50 or
even 100 years is even less representative for specific background
conditions and might even sample from different states of internal
variability if the internal variability is indeed changing over time.

The alternative approach I suggest is based on the variability across
the ensemble dimension in a large initial condition ensemble of a
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climate model. The ensemble domain provides a well-defined estimate
of internal variability under clearly defined background conditions.
The different samples are taken from different realisations with the
same atmospheric CO2 concentration and therefore sample from the
same population. In the time series of the ensemble standard deviation
in figure 1.1c, a clear increase in the internal variability in response to
the forcing can be seen.

The examples so far have been based on standard deviation as
a measure of internal variability. The standard deviation is only a
good description of quantities that follow a normal distribution. For
any non-normally distributed quantity, the standard deviation does
not necessarily describe all changes in the distribution, in particular
changes in the tails of the distribution might not be detected. Therefore,
the focus of this chapter is to develop a non-parametric approach to
quantify internal variability based on the ensemble domain of a large
ensemble. This approach includes changes in all statistical moments
of a distribution.

Statistical attribution of a change in the variability to the change
in external forcing needs to be based on robust quantification of the
uncertainty. The year-to-year fluctuations of the ensemble standard
deviation in figure 1.1c indicate that the sample size of the ensemble
is not sufficient to detect a small forced change in the variability. A
robust change must be larger than the sampling uncertainty, which
depends on the sample size and the variance of the underlying dis-
tribution. This sampling uncertainty can be estimated by generating
alternative samples from a long control simulation, or from a much
larger ensemble. In a long control run, the reference period for inves-
tigating changes in variability is fixed to preindustrial conditions. A
much larger ensemble is not a feasible approach due to the large com-
putational cost. I have therefore developed an approach to quantify
the sampling uncertainty based on the available ensemble realisations.
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1.3 quantifying internal variability

Internal variability in an equilibrated climate

Internal variability in the climate system is commonly defined as
deviations from the mean state that arise from the nonlinear nature of
the climate system. The trajectory of internal variability is chaotic and
cannot be predicted for all time scales because small perturbations of
negligible magnitude may grow over time due to nonlinear processes
in one component or in the interaction of different components in the
climate system. There is limited predictability if the initial conditions
are well known, but only as long as chaotic internal variability does
not dominate the signal. While the exact trajectory of the system can
only be predicted theoretically when there is perfect knowledge of
the system, the initial conditions, and the boundary conditions, it is
still possible to arrive at a statistical description of internal variability.
For constant boundary conditions, i.e. when the external forcing does
not change from year to year, the range of possible states that the
climate system can assume over time can be described as a probability
distribution. Most of the states will be close to the mean, while larger
deviations might occur less frequently.

An idealised set-up for quantifying internal variability in this way
is a climate model with preindustrial external forcing with the same
seasonal cycle in insolation (incoming solar radiation) repeating every
year, commonly referred to as a preindustrial control run. In this
set-up, all greenhouse gas concentrations, such as CO2, are held at
a constant level. Thus, the forcing for every year is exactly the same
as that of the previous year. However, the state of the Earth system
is not the same in every year, which is due to internal variability.
In this PiControl simulation (figure 1.2), there is substantial internal
variability on interannual to multi-decadal time scales, despite the
absence of any interannual variability in the forcing.

The basic measures for quantifying the statistics of a distribution are
the mean and the standard deviation. For any variable in the climate
system, the mean provides the expected value and the higher order
statistical moments describe how large deviations from the expected
value might be—i.e. internal variability. Because of the constant forcing,
I do not expect a change of the population over time, thus statistics can
be computed by using the entire time series as a sample. The histogram
of the 2000-year time series in figure 1.3a shows the distribution of
annual mean precipitable water. The discrete value of each sample is
indicated above the histogram.

The histogram also visualises the shape of the distribution. In 1.3a,
the right tail of the distribution seems to be heavier, which is to be
expected for precipitable water because of the nonlinear dependence
of vapour pressure on temperature. However, a histogram includes
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Figure 1.2: Large internal variability on interannual to multi-decadal time
scales for global mean precipitable water. Annual mean time
series of global mean precipitable water from a 2000-year simula-
tion at constant 1850 forcing conditions. The cyan line indicates
the mean.

a subjective choice of the number of bins and the bin size and is
therefore not a purely objective description of the distribution. Dif-
ferent discrete values are aggregated in one bin. An alternative is a
cumulative distribution, where the values are sorted and the fraction
of samples smaller or equal to a value is plotted against the sample
values, as done in figure 1.3b.

Comparing distributions

For most applications, we want to compare properties of the dis-
tribution to some reference. In the most simple case, this can be a
comparison of the mean of two different distributions. However, using
only the mean of a distribution excludes any information about the
variability, and possible differences in the variability. In addition to
the comparison of the mean, the standard deviation or higher-order
statistical moments can be compared to capture the characteristics of
the distributions and the variability. The drawbacks of using higher-
order moments is that they are difficult to interpret, for example how
a change in higher order moments translates into a change in ex-
treme events. In addition, a robust estimate of higher order moments
requires a larger sample size than for lower order moments, which
might not always be available.

To highlight the limitations of using a histogram and introduce
an alternative approach, I compare the distribution from the control
run to a normal distribution that was fitted to the sample mean and
sample standard deviation of the control run. The histogram in figure
1.4a can be used to compare these distributions. From the histogram,
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Figure 1.3: Internal variability of precipitable water in a 2000-year prein-
dustrial control simulation. (a) The histogram shows the distri-
bution of annual mean global mean precipitable water from a
2000-year simulation at constant 1850 forcing conditions. The blue
solid line shows the mean, the region between the two dashed
lines is indicating ±2σ from the mean. There are 17 bins with
a width of 0.1. The black lines above the histogram show the
2000 samples that were used to plot the histogram. (b) The same
distribution plotted as a cumulative distribution function.

one can see that the distribution in the control run has a slightly heav-
ier upper tail than a normal distribution. This agrees well with the
expected response of precipitable water to a temperature anomaly: for
warmer temperatures, the response should be larger than for colder
temperatures. As mentioned before, the histogram depends on the
choice of the bins and some features of the distribution might be rep-
resented in a different way when the configuration of bins is changed.
Therefore a histogram is not well suited for an objective comparison
of distributions, in particular when the sample size is small. Therefore,
I use the cumulative distribution function to quantitatively compare
the two distributions.

Some common methods for comparing distributions are based on cu-
mulative distribution functions. The Kolmogorov–Smirnov test calcu-
lates the maximum distance between cumulative distributions (Storch
and Zwiers 2001). While it seems to be useful to reduce the problem
to a single number, this does not include any information about where
the difference occurs and whether the rest of the distributions shows
good agreement or not. The Cramér-von-Mises test (Stephens 1970) ex-
tends this approach and uses the sum of the squared distances of two
cumulative distributions. While this approach includes information
about how different the distributions are on average, it still discards
information about where differences occur.
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Figure 1.4: Distribution of precipitable water in PiControl compared to a
fitted normal distribution. (a) The black histogram shows the
control run as in figure 1.3, the grey histogram is a normal distri-
bution with 10000 samples, fitted to the sample mean and stan-
dard deviation of the control run, (b) cumulative distributions
for the control run and fitted normal distribution, (c) quantile-
quantile plot of the control run and the normal distribution after
removing the mean from both samples.

A graphical representation that illustrates all of the information that
is neglected by the tests mentioned above is a quantile-quantile plot or
qq plot(figure 1.4c). This plots the quantiles of a sample distribution,
here the control run, against a reference distribution, which is in
this case the fitted normal distribution. Each quantile level from the
sample distribution is plotted against the same quantile level from
the reference distribution. If the two distributions have a different
number of samples, the expected value of the quantile that should
be compared to the other distribution needs to be computed. Here, I
group the samples from the larger distribution into chunks, so that
the number of chunks equals the number of samples in the smaller
distribution. For each chunk, the median is computed and used for
comparing the quantile levels of the two distributions. An alternative
approach for computing corresponding quantile levels is to interpolate
between quantiles. For the applications in this thesis, the sample size
of the reference distribution is in general much larger than that of the
distribution that is compared to the reference. In this case, the median
of each chunk provides a good estimate of the expected value for the
corresponding quantile level.

If the two distributions are very similar, all points will lie close to
the one-to-one line. In this example, most points are on the one-to-
one line, except for the upper right quadrant. Here, the values from
the sample distribution are consistently higher than what would be
expected if the sample was normally distributed. Values in the upper
right quadrant are large positive deviations from the mean and can be
seen as positive extreme events. From the qq plot I can conclude that
the sample is mostly normally distributed, except for a heavier upper
tail.
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The advantage of the qq plot in comparison to the histogram is that
it does not depend on a subjective choice of bin size and it works with
a smaller sample size because it is based on an integrated quantity.
Estimating the statistical moments of a distribution is a feasible ap-
proach for lower-order moments, such as the sample mean or sample
variance, but cannot intuitively be interpreted for distributions that
deviate from normality and for higher-order moments. Furthermore,
if the focus is on events in a certain part of the distribution, such
as extreme events, all statistical moments may contribute to their
magnitude and probability. Here, the qq plot provides an objective
description for all parts of a distribution and how they deviate from a
reference distribution.

1.4 internal variability in a transient climate

In the idealised control simulation discussed so far, samples for all
the techniques can be generated by sampling over the time dimension
because all samples are coming from the same population. However,
the Earth has undergone changes in the external forcing in the past,
which will continue in the future. The insolation changes on long
time scales, volcanic eruptions introduce short-term disturbances, and
anthropogenic emissions change the composition of the atmosphere
and change the radiation budget. All of these external forcing factors
can affect the statistics of the Earth system, introducing a potential
time-dependence of the statistics. This implies that samples from
different time periods in a transient climate do not come from the
same population, because the mean and other statistical moments
might have changed. Thus the sampling needs to be limited to very
short time periods where the statistics can be assumed to be stationary.

Figure 1.5: The internal variability of precipitable water increases under
strong global warming. (a) The black histogram shows the con-
trol run as in figure 1.3, the red histogram samples from 100

ensemble members in year 150 of the 1% CO2 experiment. The
mean has been removed from both samples. (b) cumulative distri-
butions for the control run and year 150 from the 1% CO2 experi-
ment, (c) quantile-quantile plot of the control run and year 150 of
the 1% CO2 experiment.
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A commonly used assumption is that only the mean is changing over
time while higher-order moments are not changing. By detrending
a time series, the change in the mean is removed and sampling over
time is used to generate a large sample. In figure 1.1b, the temporal
standard deviation over 30-year periods is used to estimate sample
internal variability and investigate a change of internal variability.
When using this approach, the different realisations lead to different
conclusions, ranging from a decrease in variability to an increase in
variability. This indicates that the sample size, here 30 years, is too
small to robustly estimate internal variability. In a transient climate,
increasing the sample size by sampling over longer time periods does
not solve the problem: if the statistics are changing over 150 years, a
smaller change in the statistics might already occur over a few decades
and any sample taken over time is not necessarily based on a single
underlying population. The problem of analysing internal variability
in a transient climate can be overcome by using a large ensemble of
climate model simulations.

To understand how a large ensemble can be used to characterise
internal variability in a transient climate, it is useful to revisit the defi-
nition of internal variability. In general, internal variability describes
the distribution of possible states the climate system can assume. For
the observed temperature record, one could for example ask: which
global mean surface temperature values would have been possible for
a certain year in the record, given that the Earth had followed a slightly
different trajectory, but with the same anthropogenic emissions? This
distribution of alternative Earths cannot be generated from the ob-
served record, but it is possible to estimate it with an ensemble of
climate model simulations that use the same evolution of the external
forcing but different initial conditions. The nonlinearity of the climate
system can cause even small differences in the initial conditions to
grow over time. In such an ensemble, internal variability for any point
in time can be estimated by the ensemble spread. This definition of
internal variability in the ensemble domain provides a well-defined
estimate of internal variability at different background conditions.
With the same approach, we can also sample the distributions for spe-
cific future boundary conditions, representing states of the Earth that
are possible under these boundary conditions when taking internal
variability into account.

Combining the sampling over the ensemble dimension with the
non-parametric analysis of internal variability presented in figure 1.4
is a powerful tool to robustly quantify a change in internal variabil-
ity in a transient climate. Here, I use this approach to compare the
internal variability at the end of the 1%-CO2 scenario to preindustrial
conditions (figure 1.5). While a comparison of the histograms already
indicates that internal variability of precipitable water is increasing,
the sample size is still too small to generate a smooth histogram for
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the 1% CO2 experiment. Furthermore, the subjective choice of the bin
size and number of bins changes the appearance of the histogram
and complicates the interpretation. In this example, there seems to
be a large change in the rightmost bin. However, the small number
of samples in this bin, indicated by the red lines near the top, raises
the question whether this change in the percentage is robust. The
cumulative distribution shows a similar picture—an increase of the
variability under strong warming—without the need to structure the
data into bins prior to the analysis. The quantile-quantile plot can be
used to analyse how the variability is changing. All the points in the
upper right quadrant are above the one-to-one line, indicating that
positive anomalies grow stronger while the points in the lower left
quadrant are below the diagonal, indicating that negative anomalies
become more negative. From this I conclude that the distribution is
widening, and by how much anomalies of a certain magnitude will
be changing. However, from this analysis alone it is not possible to
identify which of these changes are robust, i.e. what is caused by
the change in forcing, and what is only occurring by chance and is
therefore an artefact of insufficient sampling.
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1.5 robustness of variability changes

To quantify the robustness of the identified changes, we need inde-
pendent samples of the same size from the same distribution. The
range of results from these independent samples can then be used to
derive confidence intervals. The clean approach in this context would
be to run additional ensembles with 100 members each for the same
scenario and compare the results for year 150. However, this approach
is not feasible under most circumstances due to the high computa-
tional cost. A larger number of samples could also be generated by
splitting the sample from the 100 members into several smaller sub-
samples. While this would allow us to estimate confidence intervals,
it comes at the cost of reduced precision. Given that the ensemble
standard deviation based on 100 samples contains a large amount of
sampling uncertainty (figure 1.1c), reducing the sample size further
would increase the sampling uncertainty, making the detection of a
small signal more difficult. Therefore reducing the ensemble size is
not the preferred approach.

Figure 1.6: The sign of the forced change is robust for all anomalies while
the magnitude of the forced change is only robust for anoma-
lies near the median of the distribution but not for the most
extreme anomalies. Quantile-quantile plot as in figure 1.5, but
for each of the last 5 years of the 1%-CO2 scenario separately. The
vertical dashed lines indicate the deciles of the control distribu-
tion, i.e. there are 10% of the samples between every two dashed
lines.

The alternative approach to generate more samples that I use here
is to sample over time. In a transient simulation, this approach may
potentially violate the assumption that all samples are identically
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distributed. For a small number of consecutive years, I argue that the
difference between the years is not dominated by a true change in the
distribution but by sampling uncertainty, which I want to quantify.
An abrupt change in the external forcing, for example from a volcanic
eruption, may violate my assumption and the approach should only
be used if the change in the external forcing is small. Here, I use the
last five years of the simulation to investigate if the changes in year
150 relative to preindustrial conditions can be attributed to the change
in the external forcing. For this purpose, qq plots for each of the last
five years are computed and combined in figure 1.6. While the qq
plots for all five years follow a similar shape, they diverge near the
upper and lower ends.

The different qq plots agree very well for moderate anomalies near
the centre of the distribution. For moderate anomalies I conclude that
both the sign of the change and the magnitude of the change are robust
and can be clearly attributed to the change in the external forcing. For
the extreme events in the upper and lower tail of the distribution, the
different years do not show the same magnitude of change. However,
the sign of the change is robust across the samples from different
years. This means that a widening of the distribution in the tails can
be attributed to the change in the forcing, but the magnitude of this
widening cannot be robustly estimated.

Figure 1.7: When the sample size of the reference distribution is small, the
associated sampling uncertainty can become large. Quantile-
quantile plot based on 6 different samples of size 100 for the
reference distribution (sampled from the control run). The sample
distribution on the y-axis is based on the last year of the 1%-CO2

scenario for all 6 reference distributions.
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Sampling uncertainty in the reference distribution was not included
in the analysis up to this point, but may add to the uncertainty and
therefore affect the robustness of a detected change. The reference
distribution used in the examples was either a fitted normal distri-
bution as in figure 1.4, or the distribution sampled from a 2000-year
preindustrial control simulation (figure 1.5). In both cases, the sam-
ple size of the reference distribution is very large compared to the
distribution to be investigated, so that sampling uncertainty for the
reference distribution was not taken into account. This changes if the
reference distribution has a sample size similar to the distribution
sampled from a different climate. This may occur when a different
time period is used as a reference. For many applications, present-day
conditions might be used as a reference state. In this case, the sample
for the reference distribution is much smaller because the sampling
over time is limited to a sampling period for which stationarity can be
assumed. Even with a large ensemble, the sample size for the reference
distribution would have a similar size as the sample for a changed
climate.

In the qq plot in figure 1.6, sampling uncertainty is only considered
along the y-axis, that is, for the distribution in a warmer climate. But
there is also a sampling uncertainty associated with the reference
distribution, which is uncertainty along the x-axis. To demonstrate
this sampling uncertainty for the reference distribution, the control
run is randomly subsampled with a sample size of 100. In figure 1.7,
six samples from the control run are plotted against the last year of
the 1% CO2 experiment. Sampling uncertainty for the distribution on
the y-axis is not shown in this figure. The sampling uncertainty for
the reference distribution is comparable to the sampling uncertainty
shown in figure 1.6. While the reference distribution in figure 1.6 is
based on a sample size of 2000 and sampling uncertainty is negligible,
the analysis in figure 1.7 indicates that this may not be true for a
smaller sample size. In all applications in my thesis, the sample size
of the reference distribution is much larger than the sample size
of the distribution that is investigated. Therefore, I will neglect the
sampling uncertainty of the reference distribution and only evaluate
the sampling uncertainty of the distribution that is investigated.

1.6 the trade-off between precision and robustness

An estimate of the sampling uncertainty is essential to decide if a
detected signal can be attributed to the change in the forcing. To
estimate the sampling uncertainty, the available samples need to be
split into subsamples of equal size. For example, the last five years
of the 1%-CO2 ensemble contain 500 values. In figure 1.6, the 500

values have been split into five subsamples of size 100. An alternative
approach could have been to split them into ten subsamples of size 50.



1.6 the trade-off between precision and robustness 23

On one hand, this would constrain the sampling uncertainty better,
which would then be based on ten independent samples rather than
five. On the other hand, the sampling uncertainty for the sample of
size 50 would be larger than the sampling uncertainty for a sample
of size 100, which makes it more difficult to detect a small signal. At
the same time, the precision of the statistics estimated from a smaller
sample is lower than for a larger sample.

In practice, the precision should be maximised, while keeping
enough independent samples to constrain the sampling uncertainty.
However, for applications where internal variability is small or the
signal is large, it might be possible to partition the available samples
into more but smaller subsamples.

Ultimately, the choice for partitioning the available samples will
determine the magnitude of the signal that can be detected, and will
therefore depend on the question at hand. When applying this frame-
work, one needs to decide what magnitude constitutes a relevant
signal. From this information, the necessary sample size can be esti-
mated. In practice, one of the major limitations will be a predetermined
number of samples that is available, for example a certain number of
ensemble members of a climate model have been run. In this case, the
available sample size will determine the detectable magnitude of the
signal and therefore determine the questions that can be answered
with the available samples.
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1.7 the temporal evolution of internal variability

In the previous examples, I focused on the difference between the very
last year of an idealised, strong warming experiment. This maximises
the potential difference in the distributions and was chosen to illustrate
the analysis method. For practical applications, the change of the
distribution over time is of interest to identify when a detectable
change first occurs. In figure 1.9, the analysis is applied to different
5-year periods in the 1% CO2 experiment. This illustrates the temporal
evolution. In the first five years, sampling uncertainty leads to a large
spread in the upper and lower decile, but no robust signal can be
identified. Over time, the widening of the distribution evolves.

An alternative approach is to investigate changes in the statistical
moments of the distribution, as illustrated in figure 1.8. While the
change in the mean and standard deviation is clearly visible, changes
in higher order moments are dominated by sampling uncertainty.
Compared to this approach, the non-parametric analysis in figure 1.9
has several advantages, because it aggregates changes in all statistical
moments into one graphical representation. Interpreting a change
in the magnitude of extreme events from a change in one statistical
moment is challenging, while the qq plot allows to easily identify the
magnitude of the change for an anomaly in a specific decile of the
distribution. At the same time, the qq plot indicates if the change is
robust or an artefact of sampling uncertainty.

Figure 1.8: Sampling uncertainty for higher-order statistical moments is
large. Time series of statistical moments computed over the en-
semble dimension for global mean annual mean precipitable wa-
ter in the 1% CO2 experiment. (a) mean, (b) standard deviation,
(c) skewness, and (d) kurtosis.
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Figure 1.9: Robust changes in the extreme events appear after 30 years, a
broadening of the whole distribution occurs more gradually.
QQ plots similar to figure 1.6 for different 5-year windows over
the whole length of the simulation . The vertical dashed lines
indicate deciles of the control distribution. a: years 1-5, b: 26-30, c:
46-50, d: 76-80, e: 96-100, f:126-130, g: 146-150.
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1.8 regional inhomogeneity

In the previous sections, I used a globally averaged quantity to develop
an analysis framework to detect and attribute changes in internal vari-
ability. The advantage of using globally averaged precipitable water is
that the effect of the circulation is removed and only thermodynamics
contribute to changes in the mean state and variability. While globally
averaged quantities are often used to characterise the state or evolu-
tion of the climate system, they are not necessarily representative for
changes on a regional scale. In the following, I evaluate the spatial
patterns of changes in the mean and standard deviation of precipitable
water under strong global warming.

Figure 1.10a shows that most of the precipitable water is in the
tropics. In response to global warming, precipitable water is increasing
mostly in the tropics and less at higher latitude (figure 1.10b). This
follows the theory by Held and Soden (2006) and can be characterised
as an intensification of existing patterns. Internal variability in annual
mean water vapour is dominated by the tropical Pacific, where the
El-Niño Southern Oscillation causes large variability in the surface
temperature (figure 1.11a).

While the change in the mean state in response to global warming
is increasing everywhere, with larger values in the tropics, the change
in variability shows more spatial inhomogeneity (figure 1.11b). The
tropical Pacific shows increasing internal variability under global
warming, other regions show decreasing variability despite an increase
in the mean state. In particular over the tropical Atlantic, regions north
an south of the equator show a decrease in variability.

The spatial inhomogeneity in the distribution of precipitable water,
its variability and the changes in response to global warming suggest
that the regional characteristics can be very different and are not well
described by a globally averaged analysis. Therefore, in the second
chapter, I investigate regional changes in rainfall and its variability.

Figure 1.10: Distribution of precipitable water is not homogeneous. In re-
sponse to global warming, patterns are intensified. (a) Mean
state of annual mean precipitable water for PiControl conditions,
(b) change from PiControl to the end of the 1% CO2 experi-
ment. Contour lines show the PiControl distribution as in (a),
the distance between contour lines is 5 kg m-2.
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Figure 1.11: Internal variability of precipitable water is largest in the trop-
ics and dominated by the tropical Pacific. Changes in vari-
ability are not homogeneous. (a) Temporal standard deviation
(shading) and mean state (contour lines, spacing 5 kg m-2) for
PiControl, (b) change of variability from PiControl to the end of
the 1% experiment. Contour lines as in (a)

1.9 conclusions

The aim of this chapter was to develop a method to robustly detect and
attribute changes in internal variability in response to a change in the
external forcing. I show that internal variability of globally averaged
precipitable water increases under global warming. This change in
variability can only be robustly detected in a large ensemble of model
simulations, while a single realisation may either indicate increasing
or decreasing variability, even if the change in the external forcing
causes an increase in variability. Furthermore, the non-parametric
approach I use allows me to quantify changes in different parts of the
distribution whereas parametric approaches, which mostly rely on
the standard deviation to describe internal variability, are not able to
clearly discriminate between changes in extreme events or anomalies
closer to the centre of the distribution.

The advantage of using the ensemble domain is that this approach
ensures stationarity of statistics, whereas analyses in the temporal
domain need to assume that stationarity is true for the time period
under investigation. The limitation of the ensemble domain is that all
information about the time scales of variability is lost. If two realisa-
tions show different states of the climate system for a specific year
in an ensemble simulation, this only means that these two states are
possible under the given background conditions and forcing history. It
cannot be deduced if these two states could occur in consecutive years
in a single realisation, or if they are part of a multi-decadal oscillation
and can only occur several decades apart.

Finally, I show that that the spatial distribution of changes in the
internal variability of precipitable water is not homogeneous. For the
purpose of this chapter, a globally averaged quantity with an expected
increase in variability under global warming was chosen to develop
and test the analysis framework. While this simplification is an ideal
test bed for the purpose of this chapter, it should be used with care in
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practical applications, because different, possibly opposing changes,
are aggregated.

The analysis of the spatial distribution of precipitable water indicates
that changes in regional mean precipitation and its variability might
occur under global warming, in particular in the tropics. Interestingly,
the variability is decreasing in some regions, despite an increase in
the mean state. In the second chapter, I will use the framework from
this chapter and apply it to regional rainfall changes under global
warming.



2
T H E I N T E R N A L VA R I A B I L I T Y O F R A I N FA L L I N T H E
T R O P I C A L AT L A N T I C R E G I O N A N D I T S F U T U R E
C H A N G E S

2.1 summary

Rainfall variability on regional scales determines the magnitude and
frequency of anomalous events. Therefore, quantifying rainfall vari-
ability and its response to warming is crucial to understand forced
changes in the past and in the future. Globally, the hydrological cycle
is expected to increase by intensifying existing patterns of precipita-
tion minus evaporation (Held and Soden 2006) and rainfall variability
has been projected to increase (Pendergrass et al. 2017). On smaller
regional scales like the Sahel, future projections are uncertain (Biasutti
et al. 2008; Monerie et al. 2016; Rowell et al. 2015), while the observed
drying in the second half of the 20th century has been hypothesised
to be caused by changes in the external forcing (Biasutti and Giannini
2006). There is some agreement on the causes of past changes in the
Sahel region, but possible future changes remain elusive. I show that
in a large ensemble of model simulations for the 20th century, a forced
increase in Sahel rainfall both for the mean and variability exists after
the 1980s, but individual realisation may not show this change. Inter-
nal variability of Sahel rainfall is projected to increase under warming
along with an increase in the mean rainfall and the larger internal
variability in a warming world adds to the uncertainty of future pro-
jections. However, rainfall variability is not increasing everywhere in
the tropical Atlantic region under global warming. On the southern
flank of the oceanic ITCZ, the internal variability is decreasing, driven
by changes in the circulation. By analysing different regions, I show
that a change in variability does not necessarily scale with a change in
the mean state.

29
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2.2 introduction

Understanding past and future changes in rainfall is a key question in
climate science because regional changes in rainfall have a large effect
on the local population. More rainfall can lead to flooding, less rainfall
to water scarcity and droughts. The African Sahel, the region south
of the Sahara desert and north of tropical rainforest, receives most
of the annual rainfall from July to September while dry conditions
dominate during the rest of the year (Nicholson 2013; Thorncroft et al.
2011). The Sahel experienced a drying in the 1960s to 1980s (Nicholson
1980; Nicholson et al. 2000) (figure 2.1), with a subsequent recovery
of mean rainfall to 1960s values (Martin and Thorncroft 2013). The
question if this drying can be attributed to anthropogenic influence
or internal variability is not only important to understand the past,
but also the future changes that might occur in response to global
warming. Giannini et al. (2003) found that warm SST over the Atlantic
weakens the continental convergence associated with the monsoon and
thus contributed to the observed drying. Biasutti and Giannini (2006)
argue that the late 20th century drying has a forced component of at
least 30%. While most coupled models simulate a long-term drying
over the Sahel in the 20th century, they fail to capture the timing of
the 1960s to 1980s drying. This leads to the question if the drying was
indeed forced and the models fail to reproduce this forced signal, or if
the observed drying can be explained by internal variability.

Figure 2.1: Historical JAS Sahel rainfall shows substantial variability on
multi-decadal time scales with a drying from the 1950s to 1980s
and a subsequent wetting. Seasonal mean July to September
rainfall averaged for 20

◦W-35
◦E and 10

◦N-20
◦N for observations

(black line, CRU TS (Harris et al. 2013)) and all MPI-GE historical
realisations (blue lines).

Future model projections of Sahel rainfall diverge between simula-
tions from different models (Biasutti 2013; Biasutti et al. 2008; Rowell
et al. 2015), raising the question how the hydrological cycle responds
to warming and what contributes to the uncertainty in the model
projections. Held and Soden (2006) have found that the response
of the hydrological cycle to global warming can be described as an
intensification of the existing spatial pattern of evaporation minus
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precipitation and associate this with a decrease in convective mass
flux and an increase in the horizontal moisture transport. Based on
observations, Greve et al. (2014) have shown that aridity changes can-
not be explained by a simple intensification of the existing patterns.
This is supported by the findings of Byrne and O’Gorman (2015) that
a simple thermodynamic scaling of moisture convergence fails over
land and tends to overestimate the precipitation response to warming.
However, over the ocean, changes in precipitation can be described
as an intensification of existing patterns (Byrne and O’Gorman 2015;
Held and Soden 2006). The response of the oceanic ITCZ to global
warming can be described as an intensification and narrowing of the
convergence zone (Byrne and Schneider 2016).

In this chapter, I evaluate forced changes in Sahel rainfall for the
20th century and for future projections in the MPI-GE. Motivated
by the finding from the first chapter that variability in water vapour
increases under global warming, I explore forced changes in rainfall
variability in response to global warming and how they may affect the
past and future trajectory of Sahel and tropical Atlantic rainfall.

While the mean state changes under global warming over the land
and ocean have been investigated extensively, changes of internal
variability of rainfall are often not considered or internal variability is
assumed to not change under global warming (Hawkins and Sutton
2010; Thompson et al. 2015). For example, Monerie et al. (2017) inves-
tigated a forced signal in Sahel rainfall under global warming and
treated internal variability as time-invariant noise that conceals the
forced signal and impedes the detection of forced changes. However,
the characteristics of internal variability determine how large and
how frequent anomalous or even extreme events are. If the internal
variability changes, this can have a large effect on the occurrence of
these events and the effect should not be neglected. The results from
my first chapter suggest that the variability of precipitable water in the
atmosphere changes in response to global warming, which indicates
that the internal variability of precipitation may change as well.

Pendergrass et al. (2017) analysed internal variability of rainfall and
its response to global warming. They found that internal variability of
rainfall increases by 3-4% per Kelvin of global warming on a global
average, with higher values over land. They attribute these changes
to an increase in atmospheric moisture content and find that a weak-
ening circulation can partially mitigate the moisture-driven increase
in variability. However, they aggregate variability over large regions.
The results from my first chapter and Byrne and O’Gorman (2015)
suggest that the response of precipitation to global warming varies
regionally. Therefore, a globally aggregated description of the changes
in rainfall variability may not adequately characterise changes on a
regional scale that can be dominated by different mechanisms.
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I will first focus on the Sahel region and apply the analysis frame-
work from the first chapter to disentangle the forced trend, internal
variability and forced changes in the variability to address the follow-
ing research questions:

• RQ2.1: How does the mean state and internal variability of Sahel
rainfall change in response to global warming?

• RQ2.2: Are observed Sahel rainfall changes forced or can they
be explained by internal variability?

A common assumption is that the variability scales with the change
in the mean state: when the mean state increases, variability increases
as well. In section 2.5, I investigate the response of the oceanic ITCZ
over the tropical Atlantic to global warming, motivated by the research
question:

• RQ2.3: Does the change in variability scale with a change in the
mean state everywhere in the tropical Atlantic region?

2.3 rainfall in the model and observations

Current generation climate models struggle to represent the climato-
logical mean rainfall for the historical period. Especially in the tropics,
the models have large biases (Stevens et al. 2013). In the Pacific, there
are bands of rainfall simulated north and south of the equator, rather
than on the equator, known as the double-ITCZ bias. In the Atlantic,
rainfall over the ocean in CMIP5 models is displaced either to the
west or east, but no model matches the observed rainfall distribution
(Siongco et al. 2015). While Biasutti et al. (2006) attribute the precipita-
tion biases in models mostly to simulated rainfall being too sensitive
to warm SSTs south of the equator, Siongco et al. (2015) find that the
models can be classified by either having too much precipitation near
the coast in the west or east of the tropical Atlantic, which cannot
be explained by the hypothesis of Biasutti et al. (2006) alone. For the
MPI-ESM, Eichhorn and Bader (2016) find that the precipitation bias
is strongly affected by the warm-SST bias in the southeastern tropi-
cal Atlantic, which affects both the mean state and seasonal cycle of
precipitation. In general, Stephens et al. (2010) find that while climate
models tend to provide a reasonable representation of time integrated
and globally composited rainfall, on regional scales models rain twice
as often as observations, but compensate this error by simulating
rainfall that is too light.

Previous analyses of model biases were mostly limited to comparing
a time mean from observations to a time mean from one or several
model realisations and define the difference as the model bias. This
approach does not take into account that observations and a model
simulation represent different realisations of the Earth system and
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Figure 2.2: The simulated oceanic ITCZ is shifted south relative to obser-
vations. Seasonal and annual mean difference of GPCP and MPI-
GE rainfall averaged for 1979-2005.

might even diverge if the model is an accurate representation of the
climate system.

Biases in variability are more challenging to quantify. In a first step,
variability must be isolated from the forced signal. This requires a
precise quantification of the forced signal (Frankcombe et al. 2018).
In a single time series, the forced signal is not known. Approaches
such as fitting a linear trend might overestimate internal variability,
while a high-pass filter might underestimate variability. Therefore,
isolating variability in the single realisation of observations or a single
model simulation is difficult, or even impossible without additional
knowledge of the underlying physical processes. In addition, internal
variability can have a decadal or even multi-decadal component (e.g.
figure 1.2). Therefore, a sample based on a short time series might
sample low or high internal variability for a decade. If the observed
period and a simulated period differ in their internal variability, this
does not necessarily imply a systematic bias in internal variability.
Only when the time period that is compared is long enough to cap-
ture all states of internal variability that can occur, that is when no
significant contribution from variability on time scales longer than the
analysis period exists, the difference can be interpreted as a systematic
bias.

For the observed record, this means we need to extrapolate from
what we have observed in the past and be convinced that no event that
has not been observed could occur. This approach has been used to
scale simulated internal variability to make it resemble the observed
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Figure 2.3: Simulated rainfall variability on the southern flank of the
oceanic ITCZ is too strong and shifted too far south. Seasonal
and annual mean difference of GPCP and MPI-GE rainfall variabil-
ity for 1979-2005. For observations, temporal standard deviation
is used; for the model, temporal standard deviation is computed
for each member and then averaged over the ensemble. No de-
trending is applied because this might artificially reduce internal
variability. The record shows no statistically significant trend for
the analysis period.

variability (McKinnon and Deser 2018; McKinnon et al. 2017). However,
there are several examples where apparent inconsistencies between
observations and model simulations could be explained by internal
variability (Hedemann et al. 2017; Maher et al. 2018; Suárez-Gutiérrez
et al. 2017), emphasizing that internal variability should be considered
when discussing differences between models and observations. It has
to be noted that in some regions, the difference between simulated
and observed quantities can only be explained by systematic differ-
ences between models and observations and the influence of internal
variability can be disregarded until model biases are reduced to values
that have the same order of magnitude as internal variability.

Here, I compare simulated rainfall in the MPI-GE to monthly GPCP
precipitation (Adler et al. 2016), which is based on station data and
satellite observations. I am using the period from 1979-2005, where
both GPCP precipitation and model simulations with historical forcing
are available. Observations are interpolated to the model grid prior to
computing differences. For comparing the mean state, the temporal
mean for observations and the temporal and ensemble mean for the
model are computed and shown for all seasons and the annual mean in
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figure 2.2. Over the ocean, the ITCZ is displaced to the south and east.
This has been partially attributed to the warm SST biases in the south
east Atlantic (Eichhorn and Bader 2016; Siongco et al. 2017). Rainfall
over land is too low over Brazil, but reasonably well represented over
Africa north of the equator.

Figure 2.4: Observed JAS rainfall over the Sahel lies within the ensemble
spread of simulated rainfall. Rainfall averaged for 20

◦W-35
◦E

and 10
◦N-20

◦N. Black dots show GPCP rainfall, blue lines show
all 100 model realisations of MPI-GE for the historical period. The
thick blue line indicates the ensemble mean.

The bias in internal variability follows the mean state bias in general
as seen in figure 2.3. Over the ocean, variability is displaced to the
south, following the displacement of the ITCZ, and larger than in
observations. Over land, the variability is similar in the model and
observations. In the Sahel region, the main rainy season is during
boreal summer when the monsoon is contributing a large fraction of
the annual rainfall. Therefore, I focus on July to September (JAS) for
the evaluation of Sahel rainfall (as used by Giannini et al. (2003) and
others). Simulated rainfall agrees well with observations over the Sahel
region (figure 2.4). However, figure 2.1 indicates that observed Sahel
rainfall in the mid-20th century is near the upper end of simulated
rainfall. The fact that the observations are within the ensemble range
show that the model is able to capture observed rainfall values, but
the consistent high rank of observations among model simulations
indicates that the model may overestimate variability or not represent
a forced component accurately. Figure 2.4 shows the simulated and
observed rainfall for the Sahel region for 1979–2005. In July to Septem-
ber, Sahel rainfall is reasonably well represented. However, observed
values are near the upper end of the range simulated by the ensemble,
indicating that the model is biased towards lower values for rainfall in
this period and might overestimate internal variability.

The spatial correlation of JAS Sahel rainfall with global rainfall as
shown in figure 2.5a is qualitatively similar to the findings of Biasutti
et al. (2008) (their figure 3). The correlation of Sahel rainfall with
surface temperature (figure 2.5b) indicates that there might be an
influence of SST on Sahel rainfall, mostly from the tropical oceans but
also with contributions from the Mediterranean and North Atlantic.
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Figure 2.5: Correlation of JAS Sahel rainfall with global rainfall and tem-
perature indicates teleconnections with surface temperature in
the tropical oceans as well as in the North Atlantic and Mediter-
ranean. Correlation coefficients for Sahel rainfall and (a) precipi-
tation and (b) temperature globally. Correlation coefficients are
computed over the ensemble dimension for the beginning of the
historical experiments.

Previous studies have suggested that the North Atlantic (Knight et
al. 2006) and Mediterranean (Park et al. 2016) affect Sahel rainfall.
Therefore, the basic characteristics of Sahel precipitation seem to be
represented reasonably well in the MPI-ESM, despite large biases in
the oceanic ITCZ.

In my analysis, I extend the analysis season for Sahel rainfall from
JAS to JJASO to account for possible shifts in the seasonality of rainfall
under global warming that have been suggested by Dunning et al.
(2018).
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2.4 rainfall changes in the sahel

Sahel rainfall under strong global warming

Sahel rainfall changes are first investigated under strong global warm-
ing in the 1% CO2 experiment. By using this idealised experiment, I
investigate if the mean rainfall and the internal variability of rainfall
show a robust response to global warming. As shown in figure 2.6, the
mean rainfall in the Sahel is increasing by 50% in response to strong
global warming. The internal variability, defined as the ensemble stan-
dard deviation, is increasing by slightly less than 50% by the end of
the simulation.

Because the standard deviation only captures symmetric changes
of the distribution, I use the non-parametric approach from the first
chapter to quantify changes in the rainfall distribution compared to
the PiControl experiment (figure 2.7). Robust changes in the upper
10% of the distribution occur after about 50 simulation years (figure
2.7c), while changes in more moderate anomalies start to emerge in
the second half of the simulation. By the end of the simulation, the
whole distribution has widened compared to the PiControl experiment
(figure 2.7g). Changes to the distribution are symmetric and changes
in positive and negative anomalies contribute equally. Thus changes
to the distribution are explained by changes in even-order statistical
moments like the standard deviation and kurtosis. Here, these changes
are dominated by the change in the standard deviation.

Figure 2.6: Increase in mean rainfall and rainfall variability over the Sahel
in response to global warming. Time series of (a) ensemble mean
and (b) ensemble standard deviation for JJASO Sahel rainfall in
the 1% CO2 experiment.
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Figure 2.7: The increasing JJASO Sahel rainfall variability in response to
global warming is robust. QQ plots for different 5-year periods
from the beginning to the end of the 1% CO2 experiment for the
Sahel region in JJASO. As in figure 1.6, each of the five years is
plotted individually against the preindustrial control distribution
in panels (a)-(g). Dashed lines indicate deciles of the control
distribution. Panel (h) shows the time series of ensemble standard
deviation as in figure 2.6b.
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In response to the strong warming in the 1% CO2 experiment,
the model simulates a robust forced increase in mean rainfall and
a robust increase in rainfall variability. The trajectory of a single
realisation may still be dominated by internal variability, making it
difficult to identify the contribution of the forcing. In figure 2.8, time
series of JJASO Sahel rainfall are shown for all members and the
ensemble mean. The increase in the mean is clearly visible and the
increase in variability can be seen as a widening of the envelope of all
realisations seen as the light red lines in the background. In figure 2.8
a, two individual realisations are highlighted: the realisation with the
steepest slope of a fitted linear trend (light grey), and the realisation
with the weakest slope of a fitted linear trend (dark grey). Both of
these realisations show a positive slope, indicating an increase of the
time-mean rainfall. However, the slope can be much larger or weaker
than the forced signal, which is indicated by the ensemble mean (red
line). Figure 2.8b highlights two different realisations: the one with
the largest trend in internal variability (light grey), and the realisation
with the lowest trend in internal variability (dark grey). The trend
in internal variability is calculated as the difference of the 30-year
standard deviation from the end of the simulation to the beginning
of the simulation. While one realisation is characterised by small
interannual fluctuations in the beginning and large fluctuations in
the end, the other realisation shows nearly the opposite characteristic.
As shown in figure 2.7, internal variability shows a robust increase
in response to global warming, but a single realisation as shown in
figure 2.8b may not show this clear change.

Figure 2.8: Trajectories of individual realisations may deviate from the
forced change in the mean and variability. Light red lines show
all realisations for Sahel JJASO rainfall in the 1% CO2 experiment,
the thick red line shows the ensemble mean. (a) realisations with
maximum (light grey) and minimum (dark grey) linear trend. The
fitted linear trend is shown in the same colour. (b) realisations
with maximum (light grey) and minimum (dark grey) trend in
30-year standard deviation from the beginning to the end of the
simulation.
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Figure 2.9: Response of the mean and variability vary for different RCP
scenarios. (a) time series of ensemble mean JJASO Sahel rainfall
in RCP2.6, RCP4.5, and RCP8.5 scenario. (b) Time series of the
ensemble standard deviation for the scenarios.

Sahel rainfall in different future scenarios

In the previous section, I established that the model shows increasing
mean rainfall and rainfall variability in the Sahel in response to an
idealised, strong warming experiment. Here, I include the analysis of
three different future scenarios: RCP2.6, RCP4.5, and RCP8.5. While
the mean temperature increase in RCP8.5 is comparable to the 1%
CO2 experiment (figure 0.1), RCP4.5 shows a weaker GMST warming
with 2K by the end of the 21st century compared to preindustrial,
and the RCP2.6 scenario shows a warming of about 1.5K by the end
of the 21st century. While temperature is increasing in all of these
scenarios, only the RCP8.5 scenario shows an increase in the Sahel
rainfall (figure 2.9a). RCP2.6 shows decreasing mean rainfall for the
Sahel, while there is hardly any change in the RCP4.5 scenario.

Changes in the internal variability are symmetric as in the 1%
CO2 experiment (not shown), therefore I describe changes in the
variability only by changes in the ensemble standard deviation (figure
2.9b). RCP8.5 shows an increase in variability similar to the response
in the 1% CO2 experiment, while the internal variability does not
change in the RCP2.6 or RCP4.5 scenario.

Historical Sahel rainfall

The MPI-GE simulations show a robust response of Sahel rainfall
to strong global warming, but a weaker response in more moderate
warming scenarios such as RCP2.6 and RCP4.5. This leads to the ques-
tion if the change in the external forcing over the historical period
influenced Sahel rainfall. To answer this question, I analyse the 100 re-
alisations from the historical experiment. Here, I use July to September
(JAS) for the analysis to allow a direct comparison to previous studies.
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Furthermore, changes in the seasonality have only been suggested for
future climate change (Dunning et al. 2018), whereas JAS captures the
monsoon rainfall well over the historical period.

Figure 2.10: Despite robust changes in Sahel rainfall over the 20th century,
a single realisation might not show any of these changes. JAS
Sahel rainfall in the historical experiment: (a) ensemble mean
time series, (b) ensemble standard deviation, (c) qq plot com-
paring years 2001–2005 to preindustrial conditions, and (d) all
individual realisations, the ensemble mean (thick blue) and ob-
servations (CRU TS).

Figure 2.10a,b show the temporal evolution of the ensemble mean
and ensemble standard deviation for the historical period. The ensem-
ble mean is increasing after the 1950s, suggesting a forced increase
in Sahel rainfall. At the same time, the ensemble mean shows large
spikes, indicating either forced events or sampling uncertainty. In-
ternal variability is dominated by sampling uncertainty and shows
slightly higher values in the last years. An inspection of the qq plot
for the last five years in figure 2.10c shows that hardly any robust
change in the distribution can be identified and all changes are close
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to the one-to-one line. Furthermore the magnitude of the changes is
negligibly small.

This prompts the question if the forced change simulated by the
model can be seen in the observations, and if the observed changes
can be explained by the model. Figure 2.10d shows time series for
all ensemble members, CRU TS observations (as in figure 2.1) and
the ensemble mean. While both the model and observations show
an increase in the precipitation from the 1980s onward, the model
seems to underestimate the rainfall in the first half of the century.
All realisations of the model show large variability on interannual
time scales, but hardly any variability on multi-decadal time scales
comparable to the 1960s to 1980s drying in the observations. This
indicates that the model might not capture a forced drying in this
period, or it might underestimate internal variability on multi-decadal
time scales(e.g. Yan et al. 2018).

2.5 response of the oceanic atlantic itcz to global

warming

The results for the Sahel region indicate that the change in variability
can be understood by a scaling with the mean state: increasing mean
values are accompanied by an increase in the variability. In this section,
I address the third research question and investigate if this holds for
all regions. Here, I focus on the oceanic ITCZ in boreal summer (JJA)
in the 1% CO2 experiment.

In the mean state, the oceanic ITCZ is located slightly north of
the equator, and the largest variability can be found on the southern
flank (figure 2.11a). In response to the strong warming, the rainfall is
increasing in the centre of the ITCZ and reduced on the northern and
southern flank as seen in figure 2.11b, which agrees with previous
work (Byrne and Schneider 2016; Held and Soden 2006; Huang et
al. 2013). The change in the variability shows three regions with a
strong change under global warming: decreasing variability south of
the ITCZ, increasing variability on the southern flank of the ITCZ
and increasing variability over the Sahel region (figure 2.11c). In the
following, I will focus on the two regions on the southern flank of the
oceanic ITCZ (marked in figure 2.11d) that indicate a northward shift
of the variability. The change over the Sahel region was discussed in
the previous section.

For further analysis, rainfall is averaged over the regions indicated
in figure 2.11d and analysed in the time and ensemble dimension.
The change in the ensemble mean and ensemble standard deviation
are shown in figure 2.12. This analysis shows that the variability is
increasing over time in the northern region and decreasing in the
southern region, while the mean state is decreasing in both regions.
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This indicates that the change in variability cannot be assumed to scale
with the mean state change.

A closer analysis of the change in variability in the northern region
shows that the changes in the variability emerge after the first half
of the simulation (figure 2.13d). The analysis also reveals that the
distribution is skewed, with the largest negative anomalies being
nearly twice as large as the most positive anomalies. Despite this
skewness, changes in positive and negative anomalies show an equal
magnitude and contribute to the increase in variability.

Figure 2.11: The oceanic ITCZ is narrowing and intensifying under global
warming. The southern flank of the ITCZ and therefore its
variability is simulated further north. (a) Mean state (contour
lines) and variability (ensemble standard deviation, shading)
averaged for years 1-5 of the 1% CO2 experiment for JJA; (b)
change in the ensemble mean rainfall from the first five years to
the last five years of the 1% CO2 experiment (shading), mean
state as in a (contour lines); (c) change in variability from the
first five years to the last five years (shading), mean state as in a;
(d) same as c, boxes indicate regions with change in variability
on the southern ITCZ flank.

In the region further to the south, which is located south of the more
narrow ITCZ in a warmer climate, changes in the variability are not
symmetric. Changes in the negative anomalies start to emerge after
about 50 simulation years (figure 2.14c,d), while changes in positive
anomalies only emerge much later (figure 2.14f) and contribute less
to the overall narrowing of the distribution. The analysis shows that
while the mean rainfall in this region is steadily decreasing under
global warming, variability is first reduced by fewer large negative
anomalies while positive anomalies remain unchanged. Reduced mag-
nitude of positive anomalies only occurs much later. This asymmetric
change can be explained by the lower threshold of the rainfall distribu-
tion: rainfall cannot be less than zero. Therefore, the largest possible
negative anomaly is given by the magnitude of the mean state. In the
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first years, the mean rainfall is close to 2 mm/day and the largest
negative anomaly is also close to 2 mm/day. When the mean state is
reduced to 1.5 mm/day, the largest possible negative anomaly is 1.5
mm/day. Here the decrease in the mean rainfall sets a lower bound
for the magnitude of negative anomalies and explains the reduction
of negative anomalies in figure 2.14.

Figure 2.12: The change in variability does not follow the change in the
mean state in all regions. Temporal evolution of the ensemble
mean and ensemble standard deviation of JJA rainfall south of
the centre of the ITCZ (a,b) and on the southern flank of the
ITCZ (c,d) in the 1% CO2 experiment.
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Figure 2.13: Increasing JJA variability in response to global warming is
robust in the region on the southern flank of the ITCZ. QQ
plots for different 5-year periods from the beginning to the end
of the 1% CO2 experiment for the region on the southern flank
of the oceanic ITCZ in JJA. As in figure 1.6, each of the five
years is plotted individually against the preindustrial control
distribution in panels (a)-(g). Dashed lines indicate deciles of the
control distribution. Panel (h) shows the temporal evolution of
the ensemble standard deviation.
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Figure 2.14: Decreasing JJA variability in response to global warming
is robust in the region south of the oceanic ITCZ, with
changes in negative anomalies occurring earlier than for pos-
itive anomalies. Same as figure 2.13, but for the region south of
the ITCZ.
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2.6 discussion and conclusions

In this chapter, I applied the analysis framework from the first chapter
to answer three research questions on Sahel rainfall and the oceanic
ITCZ over the tropical Atlantic ocean. I conclude by summarising
the findings and discussing their implications for each of the three
research questions.

RQ2.1: How does the mean state and internal variability of Sahel rainfall
change in response to global warming?

Sahel rainfall is increasing in response to strong global warming in
the 1% CO2 experiment and RCP8.5 scenario according to the model
used in this study. The increase in the mean state is accompanied by
an increase in the internal variability. Park et al. (2016) have found that
the influence of the Mediterranean on the West-African monsoon will
increase under global warming. They show that increased moisture
transport into the Sahel region during the onset of the monsoon leads
to a stronger convection, which in turn causes an increased advection
from the Atlantic into the Sahel. This leads to enhanced rainfall in
the monsoon season. Sheen et al. (2017) find that the warming in the
North Atlantic and the Mediterranean enhance Sahel rainfall through
increasing meridional convergence of externally sourced moisture.
These remote controls of mean Sahel rainfall are likely contributing
to the mean state increase under strong warming seen in the MPI-GE.
However, if the increase in the variability is caused by the same mech-
anism, then the correlation of Sahel rainfall with Mediterranean or
North Atlantic SST as shown in figure 2.5b should increase, which is
not the case (not shown). An alternative explanation for the increase in
variability is that the moisture convergence from the Atlantic during
the monsoon season is more efficient in a warmer atmosphere. Thus,
if a small anomaly during the onset increases the monsoon in its
early stage, the later intensification will be stronger than in a colder
atmosphere. Thus small anomalies during the onset of the monsoon in
some years, for example caused by moisture inflow from the Mediter-
ranean, may develop into a much stronger monsoon season. Sheen
et al. (2017) find that Sahel rainfall variability on interannual time
scales is affected by the tropical Pacific and western Indian ocean SSTs.
By modulating the zonal circulation, these regions affect the ascent
and local recycling of Sahel moisture. This mechanism may contribute
to the increase in Sahel rainfall variability under global warming in the
MPI-GE. Further investigation of the mechanisms driving the increase
in the variability would require additional analysis of the moisture
budget to disentangle thermodynamic and dynamic contributions to
the anomalies.
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While the response of the model to warming was robustly identified
and quantified, the implications for a single realisation are less clear
as shown in figure 2.8. Assuming that the simulated realisations are
adequate representations of possible future realisations, this implies
that identifying a forced change in the observations will be difficult.
While Monerie et al. (2017) focus on identifying a forced signal in the
mean state, I can show that internal variability itself is changing in
response to the change in external forcing. While the increase in vari-
ability makes identifying a forced change in the mean more difficult,
the increasing internal variability itself will influence single trajectories
by making the range of possible annual rainfall values in the Sahel
larger than in present-day conditions. But even when there is a forced
increase in the variability, such as in this model, a single realisation
might show a decrease in variability over time as shown in figure 2.8b.
If this would happen in future observations, it would inevitably raise
doubts about the reliability of the model. This emphasises the need to
evaluate forced changes of the mean and variability in a large number
of realisations and quantify the likelihood that any single realisation
shows this forced change or seemingly contradicts the hypothesised
forced response by not providing evidence for a forced change.

RQ2.2: Are observed Sahel rainfall changes forced or can they be explained
by internal variability?

While the observed past rainfall in the Sahel lies within the spread of
the historical simulations, there are clear indications that the model
does not capture all features of the observed trajectory. The model
shows larger variability on interannual time scales, but does not repro-
duce multi-decadal variability similar to the observed multi-decadal
trends.

Models do in general underestimate variability on multi-decadal
time scales (Martin et al. 2014). Because the model may underestimate
multi-decadal variability, I cannot deduce from the simulations if the
observed drying trend from the 1960s to the 1980s was forced or could
be explained by internal variability.

The apparent lack of simulated multi-decadal variability can also
be caused by an underestimation of a forced response. In particular,
Knight et al. (2006) have suggested that Sahel rainfall is influenced
by the Atlantic Multidecadal Variability (AMV). While Sahel rainfall
in the MPI-GE is correlated with North Atlantic surface temperature
(figure 2.5b), the AMV in the MPI-GE might have a smaller forced
contribution than in observations (Hand et al. 2018). The amplitude of
the AMV in individual historical realisations is similar to observations,
but the phase is not the same in all realisations. If the Sahel drying in
the second half of the 20th century was indeed controlled by a forced
change in North Atlantic surface temperature, this relationship may
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not be captured by the historical simulations in the MPI-GE because
the North Atlantic SST in the model does not appear to have a large
forced contribution itself.

RQ2.3: Does the change in variability scale with a change in the mean state?

Changes of rainfall variability on the southern flank of the oceanic
ITCZ show increasing variability, while the mean state is decreasing.
This emphasises that locally, the scaling of the variance with the
change in the mean does not necessarily hold.

Changes in the rainfall variability could either be caused by changes
in the temperature variability or changes in the circulation-driven
moisture convergence. The temperature variability over the tropical
Atlantic does not change in any of the warming scenarios (not shown).
Previous studies did not find any evidence for a change in temperature
variability under global warming either (Huntingford et al. 2017;
Lehner et al. 2018). Therefore, a change in the circulation is the most
likely explanation for the change in variability. In response to global
warming, the simulated ITCZ is narrowing (figure 2.11b) and the
southern flank is moving further north. This can explain both the
decrease in variability in the south and the increase in variability
further north. Under preindustrial-like conditions, the investigated
region in the south is located on the southern flank of the ITCZ. Thus,
in years when the ITCZ extends further south, this region receives
more rainfall and less in the years when the southern flank is further
north. The narrowing ITCZ under global warming moves the southern
flank further north. The southern region is now outside of the ITCZ
and receives less rain.

The region further north is initially close to the centre of the ITCZ,
where it receives large amounts of rainfall in most years. When the
ITCZ is narrowing, this region is located on the southern flank, leading
to a reduction of mean rainfall. At the same time this region is now
under the influence of the variable position of the southern flank,
which explains the increased variability.

The results for the oceanic ITCZ regions emphasise that investi-
gating the changes in rainfall variability in an aggregated form as in
Pendergrass et al. (2017) may conceal opposing effects in different
regions. Shifts in patterns as identified over the tropical Atlantic are
accompanied by changes of opposite sign and would therefore not
show up when averaging over the whole region. Only an analysis of
the spatial distribution of the variability can help to identify regions
with different characteristics. Furthermore, I show that changes in the
distribution are not necessarily symmetric. In particular for rainfall,
where a reduction in the mean state can move the distribution closer
to its lower bound and thereby reduce the magnitude of negative
anomalies without affecting the upper part of the distribution. Using
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the standard deviation to quantify internal variability does not capture
these details.

While the simulated rainfall over the Sahel region is reasonably close
to observations, simulated rainfall over the ocean has large systematic
biases as shown in section 2.3. This strongly impedes the credibility of
future projections. To improve the reliability of future projections of
tropical Atlantic rainfall, these model biases must be addressed.



3
T O WA R D S R E D U C I N G M O D E L B I A S E S I N T H E
T R O P I C A L AT L A N T I C

The results from this chapter have been published in: Milinski, S., J. Bader,
H. Haak, A. C. Siongco, and J. H Jungclaus (2016), High atmospheric
horizontal resolution eliminates the wind-driven coastal warm bias in the
southeastern tropical Atlantic, Geophys. Res. Lett., 43, 10,455–10,462, doi:
10.1002/2016GL070530.

3.1 summary

I investigate the strong warm bias in sea surface temperatures (SST)
of the southeastern tropical Atlantic that occurs in most of the current
global climate models and has been linked to precipitation biases.
I analyse this bias in the Max Planck Institute Earth System Model
at different horizontal resolutions ranging from 0.1◦ to 0.4◦ in the
ocean and 0.5◦ to 1.8◦ in the atmosphere. High atmospheric horizontal
resolution eliminates the SST bias close to the African coast, due
to an improved representation of surface wind-stress near the coast.
This improvement affects coastal upwelling and horizontal ocean
circulation, as confirmed with dedicated sensitivity experiments. The
wind-stress improvements are partly caused by the better represented
orography at higher horizontal resolution in the spectral atmospheric
model. The reductions of the coastal SST bias obtained through higher
horizontal resolution do not, however, translate to a reduction of the
large-scale bias extending westward from the African coast into the
southeastern tropical Atlantic.

3.2 introduction

The SST biases in the tropical Atlantic are a long-standing problem
common to most climate models (Richter et al. 2014). Ding et al. (2015)
find that the mean state biases affect the representation of interannual
variability in the tropical Atlantic, which might not be true for other
models (Richter et al. 2014). The warm bias is largest along the eastern
boundary of the southeast tropical Atlantic (SETA) and, while covering
large parts of the tropical south Atlantic, decreases towards the west
(figure 3.1c).

In this study, I focus on the coastal SST bias that I define as the
localised, strong rise of simulated SST close to the African coast in
the SETA region. I show that increased horizontal resolution in the
atmosphere eliminates the coastal SST bias due to a better representa-
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tion of the surface wind-stress which can be partly explained by better
resolved orography.

Multiple causes for the development of the warm bias in the SETA
region have been suggested (Richter 2015). A local underrepresen-
tation of low-level clouds was found to create excessive heating of
the ocean by shortwave radiation (Wahl et al. 2011) but also a re-
mote contribution from the surface wind-stress on the equator via
Kelvin waves travelling southward along the coast has been suggested
(Richter et al. 2011). Locally, strong winds close to the coast drive
coastal upwelling, bringing cold water masses to the surface (Nichol-
son 2010). These surface winds are too weak in many models, leading
to an underestimation of the coastal upwelling (Gent et al. 2010; Large
and Danabasoglu 2006; Richter et al. 2011; Vanniere et al. 2014) and
misrepresentation of horizontal ocean circulation (Small et al. 2015).
At higher atmospheric horizontal resolution, these winds were found
to increase, coincident with a reduction of the coastal SST bias (Doi
et al. 2012; Small et al. 2014). These studies indicated that increasing
horizontal resolution in the atmosphere can alleviate the persistent
SST biases in the models. However, the attribution of the too weak
winds close to the coast to a certain atmospheric model component
remains elusive (Griffies et al. 2011; Small et al. 2015).

A possible cause for the wind bias might be the misrepresentation
of the coastal orography (Harlaß et al. 2015; Large and Danabasoglu
2006). Low-resolution spectral atmospheric models fail to represent
the gradients and the height of the orography in the vicinity of strong
orographic gradients, such as on the African coastline in the SETA
region. This misrepresentation is due to the Gibbs phenomenon that
arises from the truncation of higher order terms during the trans-
formation of the observed orography to the spectral domain. Close
to strong gradients in the observed orography, the truncation of the
higher order terms leads to a more gradual slope as well as over-
shooting and undershooting of the observed height (Washington and
Parkinson 2005). These deficiencies can be reduced by including more
higher order terms in the spectral domain, that is, increasing the hori-
zontal resolution of the spectral atmospheric model. In the Pacific, the
coastal low-level jet off the coast of California was found to depend
on an adequate representation of coastal orography, land-sea contrast
and the shape of the coastline (Ranjha et al. 2016). Although it seems
plausible that the orography contributes to the wind bias and thus to
the SST bias, it has not been shown that the misrepresentation of the
orography in spectral models is the cause of the wind bias and how
much it contributes to the SST bias.

Here I systematically investigate the influence of the orographic
resolution on the surface winds by replacing the orography in a high-
resolution simulation with a low-resolution orography. This isolates
the effect of the low-resolution orography on the surface winds and
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subsequently on the SST bias while maintaining the high-resolution
for all other model components. Furthermore, I examine the effect of
the improved surface winds on upwelling and advection in the ocean
model by using dedicated sensitivity experiments.

3.3 model , data and methods

The Max Planck Institute Earth System Model (MPI-ESM, Giorgetta
et al. 2013) is used for this study. It consists of the MPI Ocean Model
(MPIOM, Jungclaus et al. 2013) version 1.5 and the spectral Euro-
pean Center-Hamburg (ECHAM6, Stevens et al. 2013) atmospheric
model version 6.1. Both the ocean and atmosphere model are used
at high and low horizontal resolution in different combinations. The
high-resolution ocean model is running on an eddy-resolving 0.1◦

tripolar grid with 40 vertical levels (Storch et al. 2012), whereas the
low-resolution model version is using a tripolar grid with 0.4◦ hori-
zontal resolution but the same vertical resolution. The high-resolution
atmospheric model is running at T255, denoting a triangular trun-
cation of the spherical harmonics to 255 wave numbers, providing
a horizontal resolution of approximately 40 km. The low-resolution
model has a resolution of T63 (~200 km); both have 95 vertical layers.
I use a set of four experiments that cover all possible combinations
of high and low horizontal resolution in the atmosphere and ocean
(HR: T255 atm. / 0.1◦ oc.; LR: T63 atm. / 0.4◦ oc.; HRatm: T255 atm.
/ 0.4◦ oc.; HRoc: T63 atm. / 0.1◦ oc.; note that LR here is the same
as MR in Giorgetta et al. 2013). All simulations are initialised from a
spun-up state of an LR control run for the ocean and use the same
preindustrial forcing. The ocean and the atmosphere are coupled every
hour. The 26-year-mean from each experiment is used to analyse the
SST differences. The experiments have different integration lengths,
ranging from 38 to 90 years. Analysis of periods from the beginning
and end of each simulation revealed no evidence for SST drift in the
tropical Atlantic.

As a reference SST the period 1980-2005 (26 years) from the HadISST1

dataset (Rayner et al. 2003) on a 1
◦ grid is used. The time mean SST

bias is calculated relative to HadISST by subtracting the spatially
averaged SST for the tropics (30

◦S-30
◦N, all longitudes) from all exper-

iments and the observations to account for the different mean states.
All datasets are interpolated to a regular horizontal 0.25

◦ grid.
A flux adjusted experiment with a modified surface wind-stress

is carried out with the LR model version. The flux correction terms
for the wind-stress are derived from the climatological difference
between LR and HR wind-stress. This correction term is added to
the momentum flux computed by the atmospheric model before it is
applied to the ocean. The experiment is run for 20 years, the analysis is
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using the last 10 years. The model adjusts to the different wind-stress
within the first two years and does not show any drift thereafter.

A sensitivity experiment with modified mean orography, HRatm-
MOD, is constructed based on the HRatm setup. I implement the
mean orography from the T63 model version into the HRatm setup to
quantify the effect of the resolution of the orography on the surface
wind-stress and SST bias. To construct this orographic field, the T255

surface geopotential is truncated to T63 by setting all higher wavenum-
bers to zero. The subgrid-scale fields, which affect parameterisations,
have not been changed. This experiment is integrated for 10 years,
preceded by a 2-year spin-up.

3.4 results

In this study I differentiate between the coastal and the large-scale bias
and focus mostly on the coastal bias. The large-scale bias is defined as
the warm bias covering most of the south-equatorial Atlantic with an
approximately linear increase towards the coastline in the east. The
coastal bias is defined as the localised, strong warm anomaly close to
the coast that is superimposed on the linear eastward increase of the
large-scale bias.

Increased atmospheric horizontal resolution eliminates the coastal
SST bias in the SETA region while it does not significantly affect the
large-scale SST bias in the MPI-ESM. In a suite of experiments with
different combinations of high and low horizontal resolution in the
atmosphere and ocean, the coastal SST bias is eliminated in those
experiments with high horizontal resolution in the atmosphere (HR,
HRatm), whereas the experiments with low atmospheric horizontal
resolution (LR, HRoc) exhibit a strong coastal SST bias (figure 3.1a).
The observed SST is monotonically decreasing towards the eastern
coast of the south Atlantic. A zonal slope similar to the observations
can be seen in those experiments with a high horizontal resolution in
the atmosphere albeit with a positive offset in the global average SST.
The experiments with low resolution in the atmosphere (LR, HRoc)
exhibit a sharp rise in SST close to the African coast. This coastal bias
is even stronger in HRoc where only the ocean horizontal resolution
is increased, whereas the ocean resolution has no substantial effect on
the coastal bias at high atmospheric resolution. The large-scale SST
bias, which is the difference in the zonal slope of the SST between
observations and the model further off the coast in figure 3.1a, is not
significantly affected by changes in atmospheric or oceanic horizontal
resolution. This is also evident from the 2-dimensional distribution
of the bias in figure 3.1b and c: the coastal bias is reduced at high
atmospheric horizontal resolution while the large-scale bias is not
affected.
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Figure 3.1: High atmospheric horizontal resolution eliminates coastal SST
bias in the SETA region. (a) coast-following meridional mean of
SST on model grid, averaged 15

◦S to 25
◦S; (b) time mean SST bias

for HRatm (0.5◦ horizontal resolution); (c) time mean SST bias for
LR (1.8◦ horizontal resolution)

I have established that the origin of the coastal SST bias lies within
the atmospheric model component. Thus the surface fluxes that are
provided by the atmosphere cause the coastal SST bias. Because the
local dynamical forcing of the ocean is mainly determined by the
surface wind-stress, I test the influence of the surface wind stress on
the SST bias in a sensitivity experiment.

In figure 3.2a, the difference in meridional wind-stress between
the reference experiment with low and the experiment with high
atmospheric horizontal resolution is shown. In a region extending 1-2◦

off the coast, the southerly meridional wind-stress is stronger at higher
atmospheric resolution. The difference between the HR and LR wind-
stress is applied to a low-resolution experiment as a flux adjustment.
The SST close to the coast in this flux-adjusted experiment (figure
3.1a, FLX, red curve) closely follows the SST in the high-resolution
simulation (HR, dark blue curve), showing that the coastal SST bias is
indeed caused by the surface wind-stress.
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Figure 3.2: Meridional surface wind-stress difference: (a) meridional wind-
stress difference between high and low horizontal resolution in
the atmosphere; there are stronger southerly winds close to the
coast at high resolution; (b) effect of the low-resolution orography
on the surface wind-stress. The plot shows the difference between
HRatm and HRatmMOD (high-resolution atmosphere, but low-
resolution orography). The contour lines show the height of the
orography at high resolution (a) and low resolution (b)

The coastal orography has in the past been suggested to contribute
to the coastal SST bias and the accompanying too weak southerly
winds. The coincidence of the too weak winds in LR with the positive
elevation of the orography over the ocean close to the coast (figure 3.2b,
orography contours) suggests that the orography at low resolution
might cause the surface wind-stress bias and thus the coastal SST bias.
I test this hypothesis by replacing the orography in the HRatm setup
with the low-resolution orography. Thus, the effect of the orography
on the surface wind-stress and SST can be isolated in a model setup
that has hardly any coastal SST bias in its non-modified form. The
meridional surface wind-stress in the modified orography experiment
is reduced close to the coast (figure 3.2b). Consequently, the SST bias
increases in HRatmMOD compared to HRatm (figure 3.1). However,
the coastal SST bias in HRatmMOD is not as large as in the experi-
ments with low atmospheric horizontal resolution (LR, HRoc). This
means that the low-resolution orography accounts for half of the SST
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bias difference between HRatm and LR. The remaining difference in
the wind-stress and SST is therefore caused by other better-resolved
features at high atmospheric horizontal resolution.

The surface wind-stress, which is responsible for the coastal SST
bias, can affect the SST in two different ways: first, it affects the coastal
upwelling and thus the cooling of the surface from below and second,
it affects the horizontal oceanic circulation and thus advection in the
current system of the southward Angola and northward Benguela
Current.

Figure 3.3: Larger wind-stress at high atmospheric horizontal resolution
causes increased upwelling: Monthly mean meridional wind-
stress and upward ocean mass transport into the uppermost layer.
Spatially averaged from the coastline to 1

◦ off the coast from
15

◦S to 30
◦S (region marked in map). The large dots indicate the

mean values for each experiments, the lines mark one standard
deviation in each direction.

The coastal upwelling is mainly driven by alongshore winds caus-
ing offshore Ekman transport leading to upwelling close to the coast.
The meridional surface wind-stress in the model, which contributes
most to the coast-parallel component of the surface wind-stress, is
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well correlated with the upward ocean mass transport into the sur-
face layer in all experiments (figure 3.3). Those experiments with low
atmospheric horizontal resolution (LR, HRoc) have a weaker surface
wind-stress than those experiments with high resolution in the atmo-
sphere (HR, HRatm). The oceanic upwelling adjusts to the applied
surface wind-stress, irrespective of the ocean resolution. Thus, the 0.4◦

ocean resolution is sufficient to represent the upwelling, provided that
the corrected surface wind-stress is applied. The modified orography
reduces the along-coast surface wind-stress and thus the upwelling,
but not as much as in the low-resolution atmosphere experiments.

The horizontal ocean circulation is also affected by the surface wind-
stress and it contributes to the wind-driven coastal SST bias. In the
region where the coastal bias is most pronounced, the southward,
warm Angola Current and the northward, cold Benguela Current
meet to form a zonally oriented front (Shannon et al. 1987). Any
shift in this current system leads to a bias in the SST due to the
large horizontal temperature gradients at the oceanic front. In the
low-resolution model (figure 3.4a), an unrealistically strong Angola
Current is following the coast southward to 30

◦S. In the subsurface
at 20

◦S, the core of the Angola Current is located close to the coast
and associated with a core of warm water in the upper 30 meters
(figure 3.4 d). There is no evidence for a Benguela Current at 20

◦S
at low resolution. In contrast, at high atmospheric resolution (figure
3.4b), the Angola Current is substantially weaker and deflected to the
ocean interior before reaching 20

◦S. Close to the coast in the south, the
northward Benguela Current is co-located with colder water masses.
In the subsurface near 20

◦S, the upward slope of the isotherms towards
the coast indicates coastal upwelling (figure 3.4e). The Angola Current
reaching too far south in LR is replaced by the Benguela Current in
HRatm and FLX, associated with colder temperatures. In the low-
resolution experiment with the adjusted surface wind-stress (FLX),
both the horizontal structure of the currents (figure 3.4c) as well as the
vertical structure (figure 3.4f) are very similar to the experiment with
high atmospheric resolution (figure 3.4 b,e). The Benguela Current
is slightly stronger in FLX than in HRatm, but still very similar to
HRatm. The flux-adjusted experiment shows that improved surface
wind-stress is sufficient to explain the improvements in the coastal SST
bias via changes in coastal upwelling and horizontal ocean circulation.

In figure 3.5, I investigate the seasonal and annual mean rainfall
bias in the HRatm model. Previous studies suggested, that the warm
SST bias in the southern tropical Atlantic contributes to the misrep-
resentation of precipitation (Biasutti et al. 2006; Eichhorn and Bader
2016). Here, I compare the last 30 years of the HRatm simulation to
observed GPCP precipitation. The HRatm simulation is only available
with preindustrial forcing, therefore it has to be noted that differences
between the model and observation may also arise from different
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Figure 3.4: The representation of horizontal ocean circulation mostly de-
pends on the surface wind-stress: (upper) maps of average ve-
locity and temperature at 17m; (lower) sections (depth/lon) of
meridional velocity and temperature at 20

◦S covering the realistic
location of the northward Benguela Current. Velocity contours
are from -0.1 m/s to 0.1 m/s with 0.02 m/s interval. Southward
velocities are dashed, northward velocities are solid lines.

background conditions. Compared to the lower-resolution simulations
in MPI-GE (figure 2.2), the simulated precipitation in the southeastern
tropical Atlantic is improved. In the west, the bias is not improved in
DJF and MAM and even turns into a wet bias in JJA and SON, which
is in line with the findings of Siongco et al. (2017) that the precipitation
moves towards the west when increasing the horizontal resolution
in the atmospheric model ECHAM6. While the precipitation bias is
improved over the southeastern tropical Atlantic, it is exacerbated over
the Sahel region. The lower-resolution model simulates reasonable
values for the mean precipitation over the Sahel, the high-resolution
model has a strong dry bias in most seasons.

This leads to the question if the improvements in the mean state bias
translate into an improved representation of rainfall variability. Figure
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Figure 3.5: Rainfall biases are only partly reduced for increased horizontal
resolution, while some regions show even larger biases than at
low resolution. Seasonal mean rainfall biases as in figure 2.2, but
for high horizontal resolution in the atmosphere.

3.6 is comparing the temporal standard deviation the the HRatm
model to observations. While some improvements compared to the
lower-resolution MPI-GE (figure 2.3) are visible in the southeastern
tropical Atlantic, the variability bias is exacerbated in other seasons. In
MAM, the positive variability bias north and south of the ITCZ is even
larger than at lower resolution. Only in SON, a general improvement
can be seen. At lower resolution, the variability bias is concentrated in
the southeastern tropical Atlantic. When the representation of the SST
is improved at high resolution, this bias in the precipitation variability
is largely eliminated.

3.5 discussion and conclusions

The coastal SST bias in the southeastern Atlantic in the MPI-ESM can
be explained by the model’s deficiency in simulating surface wind-
stress. At high atmospheric horizontal resolution (0.5◦), the wind bias
is reduced, which in turn eliminates the coastal SST bias. By adjusting
the surface wind-stress along the coast in a low-resolution coupled
ocean-atmosphere model, I show that the coastal SST bias is purely
wind driven. The origin of the wind bias can be partly attributed to the
representation of orography in the low-resolution atmospheric model.
The misrepresentation of the orography at low horizontal resolution
causes half of the coastal SST bias, as shown in a coupled experiment
with modified orography.
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Figure 3.6: Biases in rainfall variability are improved in SON and DJF, but
worsened in MAM and JJA. Seasonal rainfall variability biases as
in figure 2.3, but for high horizontal resolution in the atmosphere.

However, the contributions of the particular deficiencies of the orog-
raphy in the model cannot be quantified, which are the too weak slope
at the coast, the positive elevation over the ocean, and the overshoot-
ing in the vertical in both directions. Spectral filtering can reduce the
overshooting at the cost of creating even weaker slopes that would
cause positive elevation over the ocean further off the coast (Navarra
et al. 1994). Because the largest wind bias can be found at the coast
where the slope of the orography is much weaker than observed and
the elevation is still positive over the ocean, I assume these deficiencies
to be the major problem, rather than the overshooting. Therefore I
conclude that spectral filtering is unlikely to reduce the bias. A steeper
slope can only be included by increasing the atmospheric horizon-
tal resolution, which might not be feasible for all studies due to the
increased computational cost. Furthermore, the orography accounts
for approximately half of the coastal SST bias, thus I infer that the
remaining coastal bias is caused by the misrepresentation of features
other than the orography at low horizontal resolution.

The strength of the coastal wind jet depends not only on the steep
orography but also on the shape of the coastline and the land-sea
contrast close to the coast (Ranjha et al. 2016). The representation
of these features is closely linked to the horizontal resolution of the
atmosphere. This again suggests that the only pertinent way to reduce
the coastal SST bias is to increase the atmospheric horizontal resolution,
which has to be done globally for spectral atmospheric models.
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Grid-point models, on the other hand, do not suffer from the same
constraints on the resolution of the orography. When both types of
models are run at a similar coarse horizontal resolution, grid-point
models can represent a steep slope of the orography between adjacent
grid cells while spectral models suffer from deficiencies such as the
weaker slope and positive elevation extending over the ocean. Further-
more, grid-point models allow for a regionally increased resolution
without the additional computational cost of increasing horizontal
resolution globally, thus allowing a better resolution in the coastal
upwelling regions in the vicinity of prominent orographic features.
Despite their potential to address the typical problems of the spectral
models, grid-point models suffer from similar biases in the SETA re-
gion (Grodsky et al. 2012; Patricola et al. 2012). One possible reason
might be that the surface properties of ocean grid points close to
the shore are affected by adjacent land grid points during the inter-
polation from the atmospheric to the oceanic grid. This impairs the
representation of strong horizontal gradients in surface properties as
pointed out for CCSM4 by Small et al. 2015. There might be further
differences between spectral models like ECHAM6 (used in this study)
and grid-point atmosphere models like CAM4. At 0.5◦ horizontal
resolution, CAM4 still places the coastal wind-jet too far off the coast
and some of the coastal SST bias remains while ECHAM6 places the
jet closer to the coast at a similar horizontal resolution.

The large-scale SST bias is almost identical in all our simulations,
neglecting the uniform offset between the untuned experiments due to
slightly different global mean surface temperatures. Thus I conclude
that the large-scale bias is independent of oceanic and atmospheric
horizontal resolution in the examined range. Moreover, the large-scale
bias does not change when the coastal bias is reduced or eliminated
(HR, HRatm, FLX and HRatmMOD). From this I conclude that the
coastal warm bias cannot be the root cause of the large-scale bias. If
the large-scale bias was caused by the coastal bias either via ocean
advection or by enhanced convection over anomalous warm SST that
suppresses the formation of low level stratocumulus clouds over the
SETA region, I would expect the large-scale bias to change when the
coastal bias is reduced. However, it is still possible that parameter-
isations affecting cloud formation are not sensitive enough to the
underlying SST and thus do not adjust to the colder SST at the coast.
Further work concentrating on the representation of low-level clouds
and their sensitivity to SST might contribute to the understanding
of the large-scale SST bias. In this context, it might be necessary to
increase the vertical resolution of the atmosphere as suggested by
Harlaß et al. 2015.

Here, I presented evidence for local mechanisms causing the coastal
SST bias. The coastal SST bias can be eliminated by adjusting the
surface wind-stress applied to the ocean model. However, changes in
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either the coastal upwelling or the horizontal circulation cannot be un-
ambiguously attributed to a certain feature in the surface wind-stress
based on the available experiments. This is evident from the upwelling
in HRatmMOD in figure 3.3. While the meridional wind-stress is
smaller than in HR and HRatm, the upwelling is stronger than one
might expect from the relationship between meridional wind-stress
and upwelling in the other experiments. This deviation is most likely
caused by a wind-stress curl driven contribution to the upwelling.
Considering the warmer SST close to the coast in HRatmMOD com-
pared to HRatm/HR (figure 3.1a) despite the similar upwelling, I can
conclude that the difference in SST between HRatmMOD and HRat-
m/HR is mainly caused by differences in the horizontal circulation.
This highlights two limitations of my study: (1) I cannot attribute
changes in upwelling and horizontal circulation to a certain feature
in the wind-stress distribution and (2) the relative contributions of
upwelling and horizontal circulation to the heat budget of the coastal
region cannot be derived from the experiments. The bias in the coastal
region is sensitive to small changes in the frontal position of the
Angola-Benguela front (ABF) that is characterised by a strong merid-
ional SST gradient. The location of the frontal position has been found
to be related to the wind-stress curl (Xu et al. 2014). Furthermore,
Toniazzo and Woolnough 2014 noted that small-scale features near the
ABF can have a significant contribution to the heat advection, further
complicating an exact quantification of the changes in heat advection
due to changes in wind-stress. In addition, the heat advection is not
only determined by the strength and position of the currents in the
SETA region, but can also change due to differences in the properties
of the advected water masses.

Previous studies suggested that remote effects from the equatorial
Atlantic also contribute to the SST biases in the SETA region. Zonal
wind anomalies on the equator excite downwelling Kelvin waves
that suppress the coastal upwelling in the SETA region (Richter 2015;
Richter et al. 2011; Toniazzo and Woolnough 2014). This mechanism
might contribute to the remaining large-scale SST bias in the model
used in this study because the MPI-ESM suffers from similar zonal
wind and SST biases on the equator as other coupled models.

Although model biases in the precipitation already exist in uncou-
pled atmospheric model simulations (Biasutti et al. 2006), Eichhorn and
Bader (2016) showed that part of the precipitation biases in coupled
simulations can be attributed to the SST biases. I show that simulations
with a reduced coastal SST bias in the southeastern tropical Atlantic
show some local improvements in the representation of precipitation.
However, the large scale precipitation biases over the tropical Atlantic
cannot be reduced by increasing the atmospheric horizontal resolution.
This implies that increasing the horizontal resolution is not sufficient
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to reduce the misrepresentation of simulated precipitation, neither to
improve mean state biases, nor to improve the simulated variability.

Here I show that increased horizontal atmospheric resolution can
eliminate the coastal SST bias, which is purely wind-driven. The
large-scale warm bias remains although the coastal bias is reduced,
which implies that the patterns of the coastal and large-scale bias
are superimposed and caused by different mechanisms. Because the
large-scale bias is insensitive to the horizontal resolution, its cause is
most likely to be found in an erroneous parameterisation. Half of the
coastal SST bias can be attributed to the representation of the coastal
orography at low horizontal resolution. The possibilities to modify the
spectral orography are limited and not likely to reduce the problem.
Half of the coastal SST bias is not caused by the orography but by
other better resolved features at high horizontal resolution. Therefore,
the only pertinent way to eliminate the coastal SST bias in a coupled
model with a spectral atmospheric model component at this time is to
increase the horizontal resolution.



4
I M P L I C AT I O N S

In my dissertation, I argue that a large ensemble is needed to robustly
detect and attribute forced changes in the mean state and internal
variability in a transient climate. In recent years, several single model
large ensembles of comprehensive climate models have been generated
at different modelling centres. To make full use of the advantages
of a single-model large ensemble, we need to rethink the analysis
methods and move beyond the established procedures for analysing
multi-model ensembles. In this section, I discuss how large ensembles
have improved our understanding of the observed past and projected
future. Large ensembles for studying climate change in comprehensive
models have only become available in the last few years and have
not been fully exploited at this point. Here, I want to outline open
questions that can be addressed by using these large ensembles.

While large ensembles are promising to improve our understanding
of specific aspects of the climate system, they are of limited use for
other types of questions. I will discuss for which aspects a multi-
model large ensemble should be preferred over a single model large
ensemble.

In my third chapter, I demonstrate that a high-resolution model
shows significant improvements compared to a low-resolution model
for simulating tropical SST. While both high resolution and a large
number of realisations have clear advantages, limited computing re-
sources require to compromise between high resolution and a large
ensemble size. The future modelling strategy must take both high reso-
lution and large ensembles into account and optimise the distribution
of resources to make use of the unique advantages of both.

While there is a clear need for large ensembles, there is no consensus
on the minimum number of realisations or how to determine this
number. The ensemble size of current large ensembles ranges from
30–100 realisations. I argue that the requirements for ensembles size
can be separated into three types of application.

I will conclude this chapter by discussing how single model large
ensembles, high-resolution models, and multi-model ensembles can
be incorporated in a future modelling strategy that can improve our
understanding of the observed climate system and its possible futures.

the meaning of a single realisation

A single realisation of the trajectory of the climate system is the com-
bination of the forced response to a change in the external forcing and
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random internal variability. This is true for both climate models and
observations. To understand why Earth’s climate or a model simula-
tion evolved the way it did, we need to disentangle the response to
a change in the external forcing from the seemingly random fluctu-
ations of internal variability. As I demonstrated, internal variability
itself may change under global warming, which further complicates
the separation of the forced signal from internal variability. Without
any additional knowledge, this separation is not possible based on a
single realisation.

The observed past trajectory is a single realisation and it is not
possible to generate an additional realisation of Earth’s past. Further-
more, future projections of climate models diverge and there is a
need to understand if this is because the models’ forced responses are
different or because each model simulation is one realisation with a
unique trajectory of internal variability. A commonly used approach
to isolate internal variability is to apply a high-pass filter to a time
series (Hawkins and Sutton 2009; Kirtman and Power 2014). How-
ever, several studies have shown that internal variability contributes
substantially to variations on multi-decadal time scales (Deser et al.
2012a; Marotzke and Forster 2015). When applying a high-pass filter
with a decadal cut-off, internal variability on decadal time-scales will
be interpreted as part of the forced signal. A different approach to
isolate internal variability is to remove a trend from the time series
and interpret the residual anomaly time series as internal variability,
as applied by Pendergrass et al. (2017) and others. While high-pass
filtering underestimates internal variability, this approach may overes-
timate internal variability on multi-decadal time scales by including
parts of the forced signal that deviate from the fitted trend into the
estimate of internal variability.

A clean separation of internal variability from the forced signal is
crucial for attribution studies that aim to explain an observed signal
and attribute it to internal variability or a change in the external forc-
ing. For Sahel rainfall, Biasutti (2013) argues that a forced response to
global warming exists because idealised experiments show a response
to the direct CO2 effect on rainfall and a response of the rainfall to
warming SST. To understand a signal in the observed record and
attribute it to a change in forcing, it must be ensured that the signal
cannot be explained by internal variability alone. If the reasoning is
based on changing SST causing the signal, then the change in SST
must be attributed to the change in external forcing to formulate a
closed argument. While it is generally assumed that warming trends
in SST can be understood as the forced response to the increasing CO2

concentration in the atmosphere, recent studies suggest that tempera-
ture variations on decadal time scales have a substantial contribution
from internal variability (Hand et al. 2018; Marotzke and Forster 2015).
Several recent studies have also shown that other observed changes
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that have previously been associated with a response to the external
forcing can be explained by internal variability, for example for ENSO
(Maher et al. 2018) or the GMST hiatus (Hedemann et al. 2017).

The findings in my thesis and the aforementioned studies emphasize
that a robust quantification of internal variability is necessary to
interpret a signal in the observed record or a single climate model
realisation.

how the use of large ensembles changes our understand-
ing of single realisations

Large ensembles of single climate models complement our under-
standing of the climate system by providing alternative realisations
for the same forcing history. Every realisation can be seen as an al-
ternative reality—a trajectory of the climate system that could have
occurred instead of the observed trajectory. The assumption that a
climate model realisation can be seen as a possible realisation of the
Earth cannot be true unconditionally because climate models have
systematic biases and fail to represent some features of the observed
climate, including climate variability. Nevertheless, large ensemble are
an important source of information because they allow to estimate
and quantify the forced signal and internal variability.

Because all realisations in a single model large ensemble use the
same model formulation and identical boundary conditions, they only
differ due to internal variability. Therefore, averaging over a large
number of realisations provides a robust estimate of the forced re-
sponse while the residual after subtracting this forced signal only
contains internal variability. Frankcombe et al. (2018) argue that the
ensemble mean of a single model large ensemble is superior to alter-
native approaches of estimating the forced signal. It is important to
note that this approach only provides a robust estimate of the forced
signal in the context of a single model, not the true forced signal.

As I showed in the first and second chapter of this thesis, a large
ensemble allows a robust detection of forced changes in the mean state
and even forced changes in variability. While it may be possible to
clearly identify a forced change in a large ensemble, the implications of
such a finding for a single realisation are still challenging to formulate.
Here, I summarise the implications for interpreting either a single
realisation or a large ensemble.

1. If a forced change exists in a large ensemble, this change is
not guaranteed to show up in a single realisation. This implies
that projected changes may not clearly show up in the real world
, even if the simulated forced change is a correct representation
of the forced change in the real climate system. For example,
a projected warming for a specific emission pathway may be
stronger or weaker than the projected forced change because
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of internal variability as illustrated in figure 2.8. This poses
a communication challenge on climate science that must be
faced now, rather than in a few decades when the observed
record shows a different trajectory than what a current projection
indicates.

2. A forced change that was hypothesised based on observations
should be verified with a large ensemble. This can be separated
into two types of questions: does any forced change exist vs.
can the forced change be quantified. For proving the existence
of a forced change, a significant difference from a reference
must be shown. Quantifying the signal of the forced change is
more difficult because a single realisation contains insufficient
information to quantify the forced signal and internal variability.
Therefore, a large ensemble is required to provide an additional
estimate of the forced signal and verify the hypothesis based on
a single realisation. However, the failure of a model to precisely
reproduce the observed trajectory does not imply that the model
is wrong as long as the observations lie within the range of
realisations produced by the model.

internal variability in the past and future

To better understand the observed trajectory, it would be desirable to
produce additional realisations of the the real climate system or a very
close approximation. McKinnon et al. (2017) have randomly resampled
the observational record and combined it with the forced signal of a
large ensemble to generate alternative realisations of the past winter
temperatures over North America. They argue that the variability in
the model is too large and therefore use observed variability. The
assumptions in their study are that (1) the model accurately represents
the forced signal and (2) the observed record represents the full phase
space of internal variability. In other words, they assume that all
possible states of the system have already been observed and no
extreme state outside of the distribution of sampled events can occur.
For a sufficiently long record or sufficiently small variability, this
assumption may hold. In their study, they use North American winter
temperatures and argue that the variability for this quantity is low
and therefore well represented by sampling the observed record.

In a second study, McKinnon and Deser (2018) extended this ap-
proach to temperature, precipitation and sea level pressure globally. In
particular for precipitation, the observed record in some regions may
not be long enough to represent the full distribution of possible events.
In this case, a larger range of variability in the model does not neces-
sarily indicate an overestimation of variability in the model, but could
point to an undersampling of internal variability in the observations. If
internal variability changes over time, sampling from the observations
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alone is insufficient to estimate the full range of alternative realisation
of the Earth system that could have occurred. For instance, my results
from the second chapter indicate a change in the variability of Sahel
rainfall in the MPI-GE historical simulations that potentially continues
under global warming.

The central issue, both for the past and future, is to estimate the
characteristics of unobserved events. This mainly applies to extreme
events that are so rare that they did not occur in the observed record,
but could have occurred in an alternative realisation. The approach
by McKinnon et al. (2017) does not take this into account. However,
it is precisely when a previously unobserved event occurs that an
explanation for the origin of this event is asked for. When assuming
that the past represents all possible states of internal variability, then
a previously unobserved event can only be attributed to the change in
external forcing. Examples like the global warming hiatus discussion
emphasise that it is necessary to take unobserved events into account
when trying to understand new observations that do not fall within
the range of previous expectations. While large ensembles can be used
to provide information about unobserved events, validating these
simulated events is difficult. It may well be that a model generates
events that could never occur in reality, or that a model is not able to
resolve extreme events that could occur.

For future projections, communicating internal variability as an
irreducible uncertainty is crucial (Lehmann and Rillig 2014). Even
with perfect knowledge of the forced signal and the characteristics of
internal variability, a range of future trajectories is possible. Therefore,
the change of a quantity like GMST for a specific year in the future
compared to present day can never be given without uncertainty, even
if the the external forcing and all processes in the climate system are
known and included in a model.

how large does an ensemble need to be?

My thesis and several other studies emphasise the need for large
ensembles to understand the characteristics of a model and the dif-
ference to observations or other models. While many studies agree
that there is a need for large ensembles, there is no general agreement
for the required size of an ensemble. Current large ensembles have
widely different ensemble sizes: the GFDL ESM2M has 30 realisations
(Rodgers et al. 2015), the CESM-LE produced 40 realisations (Kay et al.
2015), the CanESM2 large ensemble 50 realisations (Fyfe et al. 2017),
and the MPI-GE 100 realisations (Bittner et al. 2016). Even earlier, Zelle
et al. (2005) used a 62-member ensemble to investigate ENSO under
global warming. Although their model uses a lower resolution than
other large ensembles, it can be considered a state-of-the-art climate
model for 2005. For most of these large ensembles, the availability of
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computational and storage resources may have determined the ensem-
ble size. However, the wide range of ensemble sizes clearly shows that
there is no consensus on the required number of realisations for a large
ensemble to study the recent past and future scenarios. For future
modelling efforts, it is necessary to determine how many realisations
are required in order to use available computing resources efficiently.

Previous studies have estimated how many ensemble members are
necessary to detect a certain signal. Deser et al. (2012b) and Li and
Ilyina (2018) are using a signal-to-noise approach to determine how
many realisations are necessary to robustly detect a specific signal.
This approach first requires a signal to be present, and additionally
more ensemble members than actually needed to be able to artificially
reduce the ensemble size until the signal is no longer detectable. While
their results provide a retrospective minimum number of realisations
for a specific application, the minimum ensemble size is determined
after the simulations have been carried out and it only works if a
signal exists. In Maher et al. (2018), we tried to estimate the number of
ensemble members required to adequately sample ENSO variability.
We used the variability based on all 100 realisations to determine how
many realisations are necessary to estimate this value within a certain
error range. While this approach does not require a signal in the sense
of a forced change, it still requires the availability of a large number of
realisations to confirm that a smaller ensemble size would have been
sufficient.

Before being able to determine an adequate ensemble size, the
requirements need to be clearly specified. I propose three requirements,
each tailored to a specific type of problem, and each calling for a
different minimum ensemble size. The requirements are sorted from
the lowest requirements on ensemble size to the highest.

1. identify the forced signal

2. adequate sampling of the phase space of internal variability

3. robust detection of a forced change in internal variability

In a large ensemble, the ensemble mean represent the forced signal.
This is true when internal variability cancels out when averaging
the ensemble members. This first requirement asks for the smallest
ensemble size, because the only condition is that different realisations
are randomly distributed. Even for an ensemble size of less that ten
members, this requirement seems to be fulfilled for several quantities
(Olonscheck and Notz 2017).

The second requirement calls for a larger number of realisations. To
sample internal variability, the ensemble members need to represent
the entire phase space of possible states of internal variability. If
internal variability is changing over time, internal variability must be
adequately represented when sampling the ensemble dimension for
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any given state of the system, for example a single year or pentade. If
internal variability is not changing over time and stationarity can be
assumed, sampling over the ensemble dimension can be supplemented
by sampling over time. This allows to generate a large sample even
with a small number of realisations. While Bengtsson and Hodges
(2018) show that stationarity can be assumed for many variables over
the historical period, the results from my thesis indicate that this may
not be true for some regional quantities in the historical period, and
that stationarity may break for a large change in the external forcing.

The third requirement asks for the largest ensemble size. To detect
a change in internal variability, condition (2) must be fulfilled and
the ensemble must sample internal variability adequately for two
different states of the system that should be compared. Additionally,
the required ensemble size for (3) depends on the magnitude of the
change to be detected. For a large change in variability, a reasonably
good estimate of variability for the two states is needed. However, for
a small change, the accuracy for the estimate of internal variability
must be sufficient to detect the small change.

The first two requirements can be estimated by evaluating the satu-
ration, i.e. when adding more realisations does not change the estimate
of the forced signal (1) or internal variability (2) any more, the en-
semble size is sufficient. This means that it is technically possible to
generate a large ensemble for a specific question and stop adding
realisations when saturation has been reached.

The third requirement must fulfil requirements (1) and (2), but in
addition, the magnitude of the signal to be detected must be defined a
priori. This decision should be based on the relevance of the magnitude
of the signal. A small change in variability may be detectable in a
large ensemble, but the implications of this change for the occurrence
of anomalous or extreme events might be negligible. Limiting the
ensemble size to detect changes only above a certain threshold might
not reveal smaller forced changes, but will ensure an efficient use of
resources.

ensemble size , resolution, or model variety?

For the applications presented in the second chapter of this thesis, a
large ensemble size is necessary to cleanly separate internal variabil-
ity from the forced signal and investigate internal variability itself.
Running up to 100 realisations with a single model is only feasible at
low resolution. On the other hand, the results from my third chapter
indicate that only high atmospheric resolution can reduce the SST
biases in the eastern boundary upwelling regions and provide a more
realistic simulation of SST in these regions. With the currently avail-
able computing resources, only a small number of realisations can
be performed at this high resolution. This leads to two competing
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interests: on one hand, we want to increase the resolution to resolve
more processes and improve the realism of simulations, on the other
hand we want to have a large number of realisations to differentiate
between forcing and internal variability. While there are arguments for
either using high resolution or a large ensemble, the solution cannot
be a choice between two options. Each one is providing context for
the other, which is not available when only one option is chosen.

While higher resolutions may improve the representation of impor-
tant processes, a large ensemble can provide the context to decide
which improvements seen in a single realisation of a high-resolution
model can be attributed to difference in resolution rather than to
internal variability.

There is a strong public interest in understanding localised extreme
events and their change under global warming. While the features
of these small-scale, short lived events may only be well-represented
in a high-resolution model, rare events can only be captured in a
large sample. This is related to the problem of simulating unobserved
events. The challenge is to find a way to link extreme events, that are
represented in a high-resolution model, to large-scale features that are
captured by a lower-resolution large ensemble.

The third aspect to this, which I have not discussed up to this point,
is model variety. In the context of a single model, a large ensemble
provides a robust estimate of the forced signal and internal variability.
But all realisations in a single model large ensemble share the same
systematic biases and might deviate from the truth, while a different
model may be much closer to the truth.

Hawkins and Sutton (2009) mentioned three types of uncertainty:
internal variability, model uncertainty and scenario uncertainty. In
multi-model large ensembles, such as CMIP5, model uncertainty and
internal variability cannot be separated because the difference between
any two realisations from different models may either arise from model
differences, or internal variability. A single-model large ensemble
does not provide information about the model uncertainty by itself.
By comparing single-model large ensembles from different models,
internal variability and model differences can be cleanly separated. A
comparison of the existing large ensembles will help to estimate how
large internal variability and model differences are.
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C O N C L U S I O N S

The aim of my thesis was to robustly quantify internal variability
and detect forced changes to it. For this purpose, I developed a new
analysis framework that makes use of a large ensemble of a compre-
hensive climate model to robustly detect changes in internal variability
and attribute them to a change in the external forcing. I apply this
framework to forced changes of rainfall variability in the Sahel and
the Atlantic oceanic ITCZ. Finally, I address the model biases in the
tropical Atlantic region and show how increasing the atmospheric hor-
izontal resolution can reduce the coastal SST bias. I want to conclude
by summarising the main findings of each chapter and discuss my
results in the context of the challenges discussed in chapter 4.

Chapter 1

• In a transient climate, internal variability is only well-defined in
the ensemble dimension.

• Changes in internal variability can only be robustly detected and
attributed to a change in the external forcing in a large ensemble.

• With the non-parametric approach I applied, changes in variabil-
ity can be quantified and tested for robustness.

Internal variability is often considered as noise concealing a forced
signal, but being time-independent itself. I move beyond this perspec-
tive and show that internal variability itself can change in response
to a change in the external forcing. The analysis framework I present
exploits the potential of large ensemble simulations to formulate a
new interpretation of the forced response both in the variability and
mean state of the climate system to a change in the external forcing.

Chapter 2

• Internal variability of Sahel rainfall in the monsoon season in-
creases in response to strong global warming.

• The observed drying trend in Sahel rainfall in the past century
cannot be attributed to a change in the external forcing in the
MPI-GE.

• Regional changes in the variability do not scale with the mean
state change and may even have the opposite sign of change.

73
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• Changes in variability are not necessarily symmetric about the
centre of the distribution. If the distribution or its changes are
not symmetric, the variance or standard deviation is not a good
descriptor of internal variability.

My results show that quantifying internal variability is essential to
understand if an observed trend can be attributed to a change in the
external forcing. While the observed drying in the Sahel has been
partly attributed to changes in the Atlantic Multidecadal Variability,
this does not constitute an externally forced trend in Sahel rainfall
unless the AMV can be attributed to a change in the external forcing.
This emphasises the need for a careful separation of remote forcing
and external forcing when attributing observed changes.

The common assumption that variability scales with a change in
the mean state holds for projected Sahel rainfall. However, I show
that this relationship does not hold in general: rainfall variability
on the southern flank of the ITCZ increases while the mean state is
decreasing, which can be explained by a shift in the circulation.

Chapter 3

• The coastal warm bias in the south-eastern tropical Atlantic can
be reduced by 50% by increasing the horizontal resolution in
the atmosphere. Due to a better resolved orography the simu-
lation of the along-coast wind stress is improved. This in turn
improves the representation of upwelling and the horizontal
current structure, reducing the coastal SST bias.

• In contrast to previous belief, the coastal SST bias in the south-
eastern tropical Atlantic is not directly causing the large scale
warm bias further off the coast. Reducing the coastal bias does
not resolve the large scale bias.

• Reducing the coastal SST bias only slightly improves the repre-
sentation of rainfall over the tropical Atlantic.

Large scale warm biases in the tropical Atlantic are present in most
state-of-the-art coupled climate models. I can show that increasing the
atmospheric horizontal resolution reduces the coastal warm bias, while
the resolution of the ocean model does not improve the simulated SST.
In contrast to previous hypotheses, my work shows that the coastal
bias is not directly causing the large-scale warm bias. Even though
increasing the model resolution reduces some of the model biases, it
is not sufficient to resolve all issues.
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