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Given any modular category C over an algebraically closed field k, we extract a sequence (Mg)g≥0 of
C-bimodules. We show that the Hochschild chain complex CH(C;Mg) of C with coefficients in Mg

carries a canonical homotopy coherent projective action of the mapping class group of the surface
of genus g + 1. The ordinary Hochschild complex of C corresponds to CH(C;M0).
This result is obtained as part of the following more comprehensive topological structure: We

construct a symmetric monoidal functor FC : C-Surfc −→ Chk with values in chain complexes over k
defined on a symmetric monoidal category of surfaces whose boundary components are labeled with
projective objects in C. The functor FC satisfies an excision property which is formulated in terms
of homotopy coends. In this sense, any modular category gives naturally rise to a modular functor
with values in chain complexes. In zeroth homology, it recovers Lyubashenko’s mapping class group
representations.
The chain complexes in our construction are explicitly computable by choosing a marking on the

surface, i.e. a cut system and a certain embedded graph. For our proof, we replace the connected
and simply connected groupoid of cut systems that appears in the Lego-Teichmüller game by a
contractible Kan complex.
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1 Introduction and summary

It is an important insight of the last decades that the deep connections between low-dimensional topology and
representation theory can be profitably used in both directions.
Given a certain type of representation category (typically a monoidal category with plenty of additional

structure and often subject to finiteness conditions), one can construct topological invariants: Via a surgery
construction, a semisimple modular category gives rise to the Reshetikhin-Turaev invariants [RT90, RT91,
Tur10]. These include the Turaev-Viro invariants [TV92] that can be obtained from a spherical fusion category
via a state sum construction. These constructions actually extend to three-dimensional topological field theories
in the sense of [At88].
By a change of perspective, such constructions can be read backwards in the sense that low-dimensional

topology can be used to construct meaningful algebraic quantities from a representation category (or a related
algebraic object). As a second and often even more important step, one will then use topology to establish
properties of these algebraic quantities. In a lot of cases, such topological manipulations are not only more
conceptual, but also turn out to be easier than purely algebraic manipulations.

In this article, we present such a topological perspective on modular categories — with a special emphasis on
the non-semisimple case. On the one hand, it has been known for more than 25 years that one can construct
from a not necessarily semisimple modular category a system of projective mapping class group representations
[Lyu95a, Lyu95b, Lyu96] that can be used to build a modular functor with values in vector spaces. On the
other hand, it is clear that non-semisimplicity will result in a non-trivial homological algebra, an important
aspect that from a Hopf algebraic perspective appears e.g. in [GK93, MPSW09, Bic13]. In this paper, we un-
ravel within a homotopy coherent framework the interplay of the homological algebra of a modular category and
low-dimensional topology. This leads to homotopy coherent projective mapping class group actions and excision
results for certain Hochschild complexes of a modular category. Our methods will allow us to systematically
trace back this structure to a clear topological origin.

Let us first recall the notion of a modular category: A finite category is a linear category (over a fixed field k
that we will assume to be algebraically closed throughout this article) with finite-dimensional morphism spaces,
enough projectives, finitely many isomorphism classes of simple objects such that every object has finite length.
A finite tensor category [EO04] is a tensor category (linear Abelian rigid monoidal category with simple unit)
whose underlying linear category is a finite category. A finite tensor category that is also equipped with a
braiding and a ribbon structure, is called a finite ribbon category. For a braided finite tensor category C with
braiding c, one defines the Müger center as the full subcategory of C spanned by all transparent objects, i.e. all
objects X ∈ C satisfying cY,XcX,Y = idX⊗Y for every Y ∈ C. The braiding (and then also the braided finite
tensor category) is called non-degenerate if its Müger center is trivial, i.e. spanned by the monoidal unit under
finite direct sums. A modular category is a non-degenerate finite ribbon category. Modular categories appear
as categories of modules over certain Hopf algebras [Tur10, EGNO17], vertex operator algebras [Hua08] or nets
of observable algebras [KLM01], see in particular [LO17, GLO18, CGR20] for the non-semisimple case. Recall
that a modular category (more generally a finite tensor category) is semisimple if and only if all of its objects
are projective.
For a treatment of modular categories in topological terms, non-semisimplicity is a major challenge: From a

semisimple modular category, a once-extended three-dimensional oriented topological field theory can be built
via the Reshetikhin-Turaev construction [RT90, RT91, Tur10]. In the non-semisimple case, such a construction
is not available. In fact, once-extended three-dimensional oriented topological field theories are equivalent to
semisimple modular categories [BDSPV15] by evaluation on the circle (interestingly enough, if one changes the
bordism category to the extent that it loses rigidity, some constructions are still possible [DRGGPMR19]).
For this reason, we will work throughout this article with a different kind of topological structure that

comprises slightly less than the notion of a once-extended oriented three-dimensional topological field theory:
the notion of modular functor [Til98, BK01], or rather a suitable version thereof. Roughly, a modular functor
is a consistent system of (projective) mapping class group actions. These are classically valued in vector spaces,
but in order to capture the homological algebra of a modular category, we will consider a differential graded
version.
Let us discuss the definition of a modular functor in more detail: An extended surface Σ is a compact

oriented two-dimensional smooth manifold (possibly with boundary) with the choice of a point on each boundary
component and an orientation on each boundary component (which may either agree or disagree with the
orientation induced by the surface making this boundary component either outgoing or incoming). For a set
X (to be thought of as label set), we define the category X-Surfc whose objects are extended surfaces with
an element in X for each boundary component and whose morphisms are generated by mapping classes and
sewings; the superscript c indicates that some relations between mapping classes will just be satisfied up to an
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additional central generator (this is to allow for (a certain type of) projective actions). Disjoint union endows
X-Surfc with a symmetric monoidal structure. We refer to Section 3.1 for the detailed definition of this surface
category.
A modular functor (with values in chain complexes over k) is defined as a symmetric monoidal functor

X-Surfc −→ Chk from X-Surfc to the category of chain complexes over k satisfying an excision property formu-
lated in terms of homotopy coends (Definition 3.2). We refer to the values of a modular functor as conformal
blocks. The notion of symmetric monoidal functor may of course be relaxed from a strict version to a homotopy
coherent version by considering instead of X-Surfc a suitable resolution.
While considering modular functors with values in chain complexes as a generalization of the classical notion

is certainly natural, it is not clear that a non-trivial class of examples exists. The goal of this article is to
prove that modular categories produce such a non-trivial class of examples of modular functors. This class of
examples will lead to concrete applications to Hochschild complexes of modular categories.

Let us state the main topological result: To this end, we fix a modular category C and consider the surface
category (as defined above) for the label set (Proj C)0, the set of projective objects of C. We denote this surface
category by C-Surfc. The projectivity assumption for boundary labels is not essential and is used here to simplify
the presentation, see Remark 3.9.

Theorem 3.6 (Main Theorem, Part I). Any modular category C gives rise in a canonical way to a modular
functor

FC : C-Surfc −→ Chk (1.1)

with values in chain complexes.

The specific model for FC that we provide will actually be strictly functorial in C-Surfc; in particular, the
resulting projective mapping class group actions are strict. However, below we will transfer these actions along
equivalences to certain Hochschild complexes leading to non-strict actions.
The category C (or rather its subcategory Proj C) enters the definition of C-Surfc just through its object set,

but it is actually recovered as a linear category by evaluation of (1.1) on the cylinder, for more details we refer
to Section 3.2.
As an example, we explicitly describe the modular functor for modules over the Drinfeld double of a finite

group G in finite characteristic as chains on groupoids of G-bundles over surfaces (Example 3.13).

The second part of the main result is concerned with the concrete computation of the modular functor FC

on a given extended surface Σ with projective boundary label X (of course, Σ can be closed and hence X
the empty collection): We choose an auxiliary datum, namely a marking Γ on Σ (roughly: a cut system and
an embedded graph). By a prescription using the combinatorial data provided by the marking, the morphism

spaces of C and homotopy coends we define a chain complex B
Σ,Γ
C (X), the so-called marked block for (Σ,Γ,X);

see Section 2.2 for details. For the example of the closed torus and a sufficiently simple marking, this complex
is given by the (normalized) chains on the simplicial vector space

. . .
⊕

X0,X1,X2
∈Proj C

C(X1, X0)⊗ C(X2,X1)⊗ C(X0,X2)
⊕

X0,X1∈ProjC

C(X1,X0)⊗ C(X0,X1)
⊕

X0∈ProjC

C(X0,X0) ,

(1.2)

where C(X,Y ) is the space of morphisms from X to Y , and the face and degeneracy maps are given by
composition in C and insertion of identities, respectively, see Example 2.2. Hence, it is given by the Hochschild
complex [MCar94, Kel99] for the category of projective objects in C.

Theorem 3.6 (Main Theorem, Part II). After any choice of marking Γ for an extended surfaceΣ with projective
boundary label X, there is a canonical equivalence

B
Σ,Γ
C (X)

≃
−−→ FC(Σ,X) . (1.3)

Note that this equivalence is canonical after the choice of the marking; the marking itself is not canonical.

The modular functor FC : C-Surfc −→ Chk relates to classical constructions of modular functors with values
in vector spaces:
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• Reshetikhin-Turaev construction. As mentioned above, from a semisimple modular category, one can
build a once-extended three-dimensional oriented topological field theory via the Reshetikhin-Turaev con-
struction [RT90, RT91, Tur10]. Building the modular functor FC : C-Surfc −→ Chk for a semisimple
modular category does not add anything to the picture: It has non-trivial homology only in degree zero
and recovers in zeroth homology the modular functor obtained by restriction of the Reshetikhin-Turaev
topological field theory to surfaces.

• Lyubashenko construction. The classification result from [BDSPV15] tells us that from a non-semisimple
modular category, we cannot obtain a once-extended oriented three-dimensional topological field theory.
However, by a remarkable result of Lyubashenko [Lyu95a, Lyu95b, Lyu96] any modular category (not
necessarily semisimple) still gives rise to a mapping class group representations (in the semisimple case,
they agree with the ones obtained from the Reshetikhin-Turaev construction). A key ingredient for the

construction of these representations is the canonical coend F =
∫X∈C

X ⊗X∨ ∈ C that is also referred
to as Lyubashenko coend. The modular functor FC : C-Surfc −→ Chk will recover in zeroth homology the
linear dual of Lyubashenko’s mapping class group representations. However, the modular functor FC will
generally have non-trivial higher homologies.

We can now provide a topological perspective on Hochschild complexes of a modular category C with
coefficients in specific bimodules: For a modular category C and g ≥ 0, the evaluation of the modular
functor FC on a surface of genus g and with two oppositely oriented boundary components yields a bi-
module, i.e. a functor Mg : Cop ⊗ C −→ Chk. Up to equivalence, Mg is concentrated in degree zero and
given by Mg(X,Y ) = C(X,Y ⊗ F⊗g) for X,Y ∈ C, where C(−,−) denotes the morphism spaces of C and

F =
∫ X∈C

X ⊗ X∨ ∈ C the canonical coend. We recall in Section 3.4 the definition of the Hochschild chains
CH(C;Mg) of C with coefficients in Mg and prove:

Theorem 3.10. For any modular category C and g ≥ 0, the Hochschild chains CH(C;Mg) with coefficients in
the bimodule Mg carry a canonical homotopy coherent projective action of the mapping class group Map(Σg+1)
of the closed surface of genus g + 1.

The complex CH(C;M0) is the ‘ordinary’ Hochschild complex (1.2), and the homotopy coherent projective
action of Map(Σ1) = SL(2,Z) was already established in [SW19], see [LMSS18] for a Hopf algebraic analogue
of this result on (co)homology level. The projective mapping class group actions induced on the homologies
H∗(CH(C;Mg)) can be related to the projective mapping class group actions on certain Ext groups in [LMSS20]
(Remark 3.12).
Our main result provides the following topological proof for Theorem 3.10: Using the excision property for

marked blocks, we observe that CH(C;Mg) can be seen as the marked block for Σg+1 and a specific mark-
ing. This makes the Hochschild complexes CH(C;Mg) canonically equivalent to the conformal block FC(Σg+1)
thanks to (1.3). The conformal block FC(Σg+1) carries even a strict projective action of Map(Σg+1). As a
consequence, CH(C;Mg) carries also a projective Map(Σg+1)-action through transfer which, in general, will
just be homotopy coherent. Note that constructing directly a homotopy coherent action on the Hochschild
complex CH(C;Mg), i.e. without using the relation to FC(Σg+1), would be rather involved (as the treatment of
CH(C;M0) in [SW19] shows). The reason for this difficulty is clear: From a topological perspective, the complex
CH(C;Mg) corresponds to a specific marking, and the action of the mapping class group will not preserve this
marking! Therefore, it is easier to obtain the mapping class group action through the complex FC(Σg+1), which
is a genuinely topological quantity.

Theorem 3.10 implies a Hopf algebraic statement: Let A be a ribbon factorizable Hopf algebra and denote by

A∗
coadj the dual of A equipped with the coadjoint action. Consider now for g ≥ 0 the A-module A⊗

(
A∗

coadj

)⊗g

(tensor product in the monoidal category of A-modules). By multiplication from the right on the A-factor, this
becomes an A-bimodule.

Corollary 3.11. Let A be a ribbon factorizable Hopf algebra and g ≥ 0. Then the Hochschild chains of A

with coefficients in the A-bimodule A ⊗
(
A∗

coadj

)⊗g

carry a canonical homotopy coherent projective action of

the mapping class group Map(Σg+1) of the closed surface of genus g + 1.

While the proof of our Main Theorem 3.6 uses Lyubashenko’s work on the canonical coend F =
∫ X∈C

X⊗X∨

of a modular category C and the S-transformation, it does not directly build on Lyubashenko’s construction of the
projective mapping class group representations in [Lyu95a]. These are based on a presentation of mapping class
groups in terms of generators and relations and seem hard to adapt to a differential graded framework. Instead,
we adapt the Lego Teichmüller game developed by Bakalov and Kirillov in [BK00] based on [HT80, Har83, Gro84]
to our purposes by replacing their connected and simply connected groupoid of markings on an extended surface
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by a contractible ∞-groupoid: First we define a category M̂(Σ) of colored markings on an extended surface Σ
formed by markings on Σ with the additional datum of a subset of distinguished cuts which we call colored cuts.
We require that there is at least one such colored cut per closed connected component. We also add uncolorings,
new non-invertible morphisms that reduce the number of colored cuts. We then prove the crucial result that
the category of colored markings M̂(Σ) (Theorem 4.11) is contractible. The reason for the significance of the
category of colored markings is Theorem 5.4 which states that marked blocks can actually be naturally extended
to functors M̂(Σ) −→ Chk out of the category M̂(Σ) of colored markings on Σ. The idea is to send a colored
marking to a version of marked blocks which uses homotopy coends for gluing at all colored cuts and ordinary
coends at uncolored cuts. This is motivated by the key observation that the marked blocks do not change up
to equivalence if we replace the homotopy coends used for the gluing by ordinary coends at all but one cut per
closed connected component (Corollary 5.2). As a consequence, the functor M̂(Σ) −→ Chk sends all uncolorings

to equivalences and hence descends to the ∞-groupoid obtained by localizing M̂(Σ) at all uncolorings. This
construction allows us to reduce some statements about our differential graded marked blocks to statements
about marked blocks with values in vector spaces.
The functors M̂(Σ) −→ Chk descend to the category obtained by gluing colored markings for different surfaces

together (the gluing is accomplished via the Grothendieck construction). By a homotopy left Kan extension,
we obtain a symmetric monoidal functor defined on labeled surfaces — this will be our modular functor. The

proof of the equivalence B
Σ,Γ
C (X)

≃
−−→ FC(Σ,X) from (1.3) relies on the contractibility result Theorem 4.11.

Finally, we use (1.3) to conclude excision from a marked version of excision (Proposition 2.3) which is easier to
prove.

It should be mentioned that the methods developed in this article could also be helpful to study modular
functors with values in vector spaces. We consistently use the Lego Teichmüller game from [BK00] and con-
struct the modular functor by gluing together (in a categorical sense) markings for different surfaces via the
Grothendieck construction and a left Kan extension (note that this is different from the strategy in [FS17], see
Remark 5.7). The important, but subtle concept of coends in categories of left exact functors between finite
categories from [Lyu96] is avoided and replaced by techniques which are easier to adapt to a differential graded
framework. One key simplification in comparison to [Lyu95a, LMSS18, SW19, LMSS20] (regardless of whether
these works cover the vector space valued case or work at chain level or in (co)homology) is that our construction
does not rely on a concrete presentation of mapping class groups in terms of generators and relations, but is
genuinely topological.

Conventions. Throughout this text, we will work over an algebraically closed field k which is not assumed to
have characteristic zero. By Chk we denote the symmetric monoidal category of chain complexes over k equipped
with its projective model structure in which weak equivalences (for short: equivalences) are quasi-isomorphisms
and fibrations are degree-wise surjections. A (small) category enriched over Vectk or Chk will be called a linear
or differential graded category, respectively. Unless otherwise stated, functors between linear and differential
graded categories will automatically be assumed to be enriched. By a (canonical) equivalence between chain
complexes we do not necessarily mean a map in either direction, but also allow a (canonical) zigzag.

Acknowledgments. We would like to thank Adrien Brochier, Damien Calaque, Jürgen Fuchs, David Jordan,
André Henriques, Simon Lentner, Svea Nora Mierach, Lukas Müller, Claudia Scheimbauer, Yorck Sommerhäuser
and Nathalie Wahl for helpful discussions.
CS and LW are supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)

within the framework of the RTG 1670 “Mathematics Inspired by String Theory and QFT” and under Germany’s
Excellence Strategy – EXC 2121 “Quantum Universe” – 390833306.

2 Marked blocks

We start by giving the definition of marked blocks which should be seen as auxiliary objects needed for the
construction of modular functors. They will later enable us to perform concrete computations. Moreover, we
will already establish a version of excision for marked surfaces that may be seen as a preparation for the excision
property that will be a part of the modular functor.

2.1 Conventions on surfaces, cut systems and markings

Before defining marked blocks, we recall some terminology and conventions on surfaces, cut systems and mark-
ings from [BK00, BK01, FS17]: In the sequel, a surface will be an abbreviation for compact oriented two-
dimensional smooth manifold with boundary. A surface with oriented boundary is a surface such that every
boundary component is endowed with an orientation. If this orientation of a specific boundary component
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coincides with the orientation inherited from the surface, we refer to this component as outgoing, otherwise as
incoming. An extended surface is a surface with oriented boundary and the choice of a marked point on every
boundary component.

Cut systems. Every surface can be non-uniquely cut into spheres with several open disks removed. This
is formalized as follows: We define a cut on an extended surface Σ as an oriented simple closed curve in the
interior of Σ with the choice of a point on this curve. An isotopy class of a finite family C of disjoint cuts on Σ is
called a cut system if every component of Σ \C has genus zero (here the isotopy has to preserve the disjointness
of the cuts). The number of cuts in a cut system C will be denoted by |C|. The manifold with boundary
obtained by cutting Σ along C will be denoted by cutC Σ (we must keep in mind that, strictly speaking, cutC Σ
is only well-defined up to diffeomorphism because cut systems are defined as isotopy classes). If C consists of
|C| cuts, then cutC Σ has 2|C| boundary components more than Σ. The orientation and the marked point on
these additional boundary components are inherited from the cutting curve. The relations between different
cut systems will be covered in Section 4.1.

Standard spheres. For n ≥ 1 and a family ε = (ε1, . . . , εn) ∈ {±1}
n of signs, we define a particular extended

surface, namely the standard sphere S
◦
n,ε. The underlying surface is the Riemann sphere C ∪ {∞} with n open

disks D1, . . . , Dn with radius 1/3 and centers 1, . . . , n removed. The orientation of this surface is the standard
one, and the boundary circle with center j, where 1 ≤ j ≤ n, is endowed with the inherited orientation if
εj = +1 (making this component outgoing), and endowed with the opposite orientation if εj = −1 (making
this component incoming). The marked points lie at j − i /3 for 1 ≤ j ≤ n. This extended surface is decorated
with a graph Γ ◦

n called the standard marking whose vertices are the marked points and the so-called internal
vertex at −2 i. The edges are the n straight lines between the internal vertex and each marked point. The
point 1− i /3 is called the distinguished vertex, and the edge connecting the internal vertex to the distinguished
vertex is called the distinguished edge. The standard marking for a spheres with three holes and some boundary
orientation is depicted in Figure 1.

Figure 1: Standard marking on a sphere with three holes and sign tuple ε = (−1,+1,+1). The long straight arrows are
the coordinate axes of the complex plane. On the three boundary components, the marked points are drawn
as white dots and the orientation is indicated by an arrow. The distinguished vertex of the marking is a blue
dot, and the edges of the marking are drawn in blue. The distinguished edge is drawn as a double line.

Markings. Let Σ be a connected extended surface of genus zero. A chart for Σ is a diffeomorphism Φ :
Σ −→ S

◦
n,ε for some n ≥ 1 and ε ∈ {±1}n which preserves the orientation, the orientation of the boundary

and sends marked points to marked points. We call a graph Γ embedded in Σ a Φ-compatible graph for a
chart Φ : Σ −→ S◦n,ε if Φ sends Γ to the standard graph Γ ◦

n on S◦n,ε. Consider two pairs (Φj , Γj) for j = 0, 1,
where Φj : Σ −→ S◦n,ε is a chart (both for the same n and ε) and Γj a Φj-compatible graph on Σ. An isotopy
(Φ0, Γ0) −→ (Φ1, Γ1) is an isotopy Φt from Φ0 to Φ1 through charts. An isotopy class of a pair formed by a
chart for Σ and a compatible graph is called a marking without cuts on Σ. A marking on an arbitrary extended
surface Σ is a cut system C together with a marking without cuts on every connected component of cutC Σ.
Note that this equips Σ in particular with an isotopy class of graphs Γ , see Figure 2 for an example. Often,
we will use the symbol Γ for this graph to denote the entire marking, thereby suppressing the underlying cut
system and the charts in the notation.
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Figure 2: A marking on a torus T
2 with two boundary components. The cut system has one cut such that cutC T

2 is a
sphere with four holes. We use the same drawing convention for the marked points, the orientation and the
marking as in Figure 1.

2.2 Definition of marked blocks

After these preparations, we may define the marked blocks for a pivotal k-linear monoidal category C. The
monoidal product and the monoidal unit for the underlying k-linear monoidal category will be denoted by ⊗
and I, respectively. Pivotality means that C is rigid (we denote by −∨ the duality functor; our conventions
for the duality are the ones from [EGNO17]) and equipped with a monoidal natural isomorphism idC ∼= −

∨∨

from the identity functor on C to the double dual functor. Thanks to the pivotal structure, left and right duals
coincide. We introduce the notation Xε for ε ∈ {±1} by X1 := X and X−1 := X∨.
In order to establish later the crucial results for these marked blocks, we will need C to be modular (a notion

recalled in Section 3.3), but the mere definition of marked blocks makes sense in greater generality.

Denote by Σ
p|n−p
0 a surface of genus zero with n ≥ 1 holes, p of which are incoming. Let Σ

p|n−p
0 be endowed

with a marking without cuts, i.e. an isotopy class of a chart Φ : Σ
p|n−p
0 −→ S◦n,ε and a graph Γ that is mapped

by Φ to the standard marking Γ ◦
n on the standard sphere S◦n,ε. Now let X be a labeling of the boundary

components of Σ
p|n−p
0 with projective objects in C, i.e. a function from π0(∂Σ

p|n−p
0 ) to the projective objects

of C. The map π0(∂S
◦
n,ε) −→ π0(∂Σ

p|n−p
0 ) induced by Φ provides a numbering (X1, . . . , Xn) of the objects that

are part of the labeling. We define the vector space

B
Σ

p|n−p

0 ,Γ

C (X) := C (I,Xε1
1 ⊗ · · · ⊗Xεn

n ) , (2.1)

where C(−,−) is our notation for the morphism spaces of C, and observe that this is well-defined, i.e. it does
not depend on the representative of our marking (recall that in our language a marking is always an isotopy
class of certain data as precisely defined above).
In the next step, let (Σ,Γ ) be a connected marked surface. The surface cutC Σ obtained by cutting Σ along

the cut system underlying the marking yields components (Σ1, Γ1), . . . , (Σℓ, Γℓ) with each Σj being a sphere
with mj ≥ 1 holes. We are choosing here a numbering for the surfaces Σj and we will do the same for the
cuts in a moment; this is done mainly for the readability of this rather technical definition — we will explain
afterwards how the dependence on this order is dealt with. If nj is the number of boundary components of Σj

that do not arise from the cutting, then we can label these boundary components by a family Xj of length nj of
projective objects in C. These boundary labels form a boundary label X for Σ (and of course, every boundary
label for Σ arises this way). Additionally, we label the two oppositely oriented boundaries arising from a cut ci
by a projective object Yi, where 1 ≤ i ≤ |C|. Denote by Y j the boundary labels of Σj arising from cuts. Now
it makes sense to consider the vector spaces

B
Σj ,Γj

C (Xj , Y j) for 1 ≤ j ≤ ℓ .

As these vector spaces run over j, each Yi appears precisely twice, for the two boundary components resulting
from the cut — once as covariant and once as contravariant argument. Therefore, we may define the chain
complex

B
Σ,Γ
C (X) :=

∫ Y1,...,Y|C|∈Proj C

L

ℓ⊗

j=1

B
Σj ,Γj

C (Xj , Y j) (2.2)
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via an iterated homotopy coend [SW19, Section 2]; we spell this definition out for the torus in Example 2.2.
In (2.2) we have used a numbering for the iterated homotopy coends and the multiple tensor products, which,

strictly speaking, is problematic because those numberings are not part of the data of a marking (for instance,
the set of cuts was not assumed to be ordered). Let us discuss the remedy in detail for the iterated homotopy
coends (we comment on the multiple tensor products afterwards): Denote by OC the action groupoid of the
free and transitive action of the permutation group on |C| letters on the bijections from the set of cuts of C to
{1, . . . , |C|}. Then the right hand side of (2.2), when evaluated for all possible orderings of cuts, will actually
give us a functor OC −→ Chk. To this end, a permutation of such an ordering must be sent to an isomorphism
compatibly with the composition of permutations. The latter can be done using the Fubini Theorem from
[SW19, Proposition 2.7]. The marked block B

Σ,Γ
C (X) can then be defined as the colimit of that functor (which

is also the homotopy colimit). This gives us the notion of an unordered iterated homotopy coend. Of course, if
we pick an ordering for the set of cuts, the complex computed for that ordering will be canonically isomorphic
to colimit over all orderings. In the same way, we can use an unordered tensor product (defined using the
symmetric braiding of Chk) to get rid of the numbering of the surfaces that Σ is cut into. In the sequel,
however, we will suppress such subtleties in the notation and will understand an expression like the right hand
side of (2.2) always as an unordered homotopy coend and/or tensor product.
As for (2.1), we can observe that (2.2) does not depend on any representatives chosen for the marking (in

particular, it is not a problem that cutC Σ is only well-defined up to diffeomorphism). The reason for this is that
the definitions (2.1) and (2.2) just depend on the combinatorics coming from the incidences of cuts and graphs,
i.e. their relative location to each other. This important point is already implicit in related constructions in
[BK01, FS17].
The definition (2.2) is extended to non-connected surfaces by sending the disjoint union of connected marked

surfaces with boundary components labeled by projective objects to the tensor product of the chain complexes
defined for the connected case.

Definition 2.1. We refer to B
Σ,Γ
C (X) as the marked block for the marked surface (Σ,Γ ), the pivotal linear

monoidal category C and the projective boundary label X .

Of course, the marked blocks are functorial in the boundary label. This will play a role later, see Section 3.2
and in particular Remark 3.1.

Example 2.2 (Relation to Hochschild chains). For the closed torus T2 with the marking Γ with one cut shown

in Figure 3, the marked block B
T
2,Γ

C is given by the homotopy coend

B
T
2,Γ

C =

∫ X∈Proj C

L

C(X,X) ,

which by the definition is given by the normalized chains on the simplicial vector space

. . .
⊕

X0,X1,X2
∈Proj C

C(X1, X0)⊗ C(X2,X1)⊗ C(X0,X2)
⊕

X0,X1∈ProjC

C(X1,X0)⊗ C(X0,X1)
⊕

X0∈ProjC

C(X0,X0) ,

where the face maps are defined using the composition in C and the degeneracies insert identities. This is the
Hochschild complex of the linear category Proj C. It is called the Hochschild complex of C (instead of Proj C)
in [SW19] because it is implicitly assumed that only the projective objects are used to construct the complex.
The latter is motivated by the Agreement Principle [MCar94, Kel99] that says that the Hochschild complex
built from the projective objects of a linear category C is equivalent to the usual Hochschild complex of a
finite-dimensional algebra A if C is the category of finite-dimensional modules over A (see also Section 3.4).

Figure 3: Marking for the closed torus (same drawing conventions as in Figure 1).
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2.3 Excision properties of marked blocks

The locality properties of modular functors are usually phrased in terms of factorization and self-sewing, see
[BK01, FS17]. For the marked blocks, we will already formulate here a marked version of such a locality
property that will follow in a straightforward way from the definitions. Factorization and self-sewing can even
be packaged into one property that we call excision.
In order to formalize the excision property, let (Σ,Γ ) be a marked surface and denote byΣ′ the result of sewing

a specific incoming boundary component to a specific outgoing boundary component (more complicated sewing
operations can be considered as well, but they can the decomposed into sewings of the form just described).
We write this sewing operation symbolically as an arrow s : Σ −→ Σ′ (in Section 3.1 we will discuss a category
of surfaces in which these sewings are promoted to actual morphisms, but this is not needed for the moment).
The marking Γ on Σ induces a marking Γ ′ on Σ′.
Consider the marked block B

Σ,Γ
C (X,P,Q) for (Σ,Γ ) and boundary label (X,P,Q), where P and Q are

the labels for the incoming and outgoing boundary component along which we glue, and X is a label for the
remaining boundary components. Since C(−,−) : Cop⊗C −→ Vect is a functor, it follows from the definition of

marked blocks in (2.2) that the assignment P⊗Q 7−→ B
Σ,Γ
C (X,P,Q) yields a functor (Proj C)op⊗ProjC −→ Chk,

i.e. a differential graded bimodule over Proj C. We now obtain a canonical isomorphism

B
Σ′,Γ ′

C (X) ∼=

∫ P∈Proj C

L

B
Σ,Γ
C (X,P, P ) (2.3)

because both complexes describe the colimit by which the unordered homotopy coend is defined. In particular,
we obtain a sewing map

sP : BΣ,Γ
C (X,P, P ) −→

∫ P∈Proj C

L

B
Σ,Γ
C (X,P, P ) ∼= B

Σ′,Γ ′

C (X) , (2.4)

which is just the structure map B
Σ,Γ
C (X,P, P ) −→

∫ P∈Proj C

L
B
Σ,Γ
C (X,P, P ) composed with the isomorphism

(2.3). By definition of the homotopy coend we now obtain the following statement:

Proposition 2.3 (Excision with marking). For every pivotal linear monoidal category C, any marked surface
(Σ,Γ ) and a sewing s : (Σ,Γ ) −→ (Σ′, Γ ′) that glues one incoming boundary component to an outgoing one,
the sewing maps (2.4) induces an equivalence

∫ P∈Proj C

L

B
Σ,Γ
C (X,P, P )

≃
−−→ B

Σ′,Γ ′

C (X)

of chain complexes from the homotopy coend over the Proj C-bimodule B
Σ,Γ
C (X,−,−) to B

Σ′,Γ ′

C (X).

In fact, this map is actually an isomorphism with the concrete models for the homotopy coend that we use.
Of course, the proof of the marked version of excision is immediate. The more non-trivial task of formulating

such statements independently of the marking will be addressed later.

2.4 Homotopy coends over projectives and Lyubashenko’s coend

In [SW19, Section 3.2], we have proven a relation between homotopy coends over projective objects and the
Lyubashenko coend whose definition we recall in a moment (we have also argued there that this is an instance of
the general principle to express traces via class functions, but this background is not needed to understand the
statement). After recalling some terminology, we will prove a generalization of the statements made in [SW19,
Section 3.2] that we will need in the sequel.

Finite tensor categories. A finite category is a linear category with finite-dimensional morphism spaces,
enough projectives, finitely many isomorphism classes of simple objects such that every object has finite length.
A linear category is finite if and only if it is linearly equivalent to the category of finite-dimensional modules over
a finite-dimensional algebra (which does not mean that choosing such an equivalence will be necessarily helpful).
A tensor category is a linear Abelian rigid monoidal category with simple unit. A finite tensor category [EO04]
is a tensor category whose underlying linear category is a finite category. From these definitions, one concludes
the following: In a finite tensor category C, any tensor product X ⊗ Y is projective if X or Y is projective.
Moreover, the tensor product is exact in both arguments. Finally, any finite tensor category is self-injective,
i.e. the projective objects are precisely the injective ones.

9



The Lyubashenko coend. For any finite tensor category C, one may define the coend

F :=

∫ X∈C

X ⊗X∨ (2.5)

which is called the canonical coend of C or also the Lyubashenko coend due to its appearance in [Lyu95a,
Lyu95b, Lyu96]. This object is the key to the construction of the mapping class group actions in [Lyu95a].
In [SW19, Section 3.2], the coend (2.5) is replaced by a (finite version of a) homotopy coend leading to a

differential graded object
∫ P∈Proj C

fL P⊗P∨ in C which is proven to be a projective resolution of F. This projective
resolution appears in the following important homological algebra result that is the key to understanding marked
blocks because it gives us the possibility to express iterated homotopy coends over morphism spaces in a different
way:

Proposition 2.4. For any pivotal finite tensor category C, there is a canonical equivalence of chain complexes

∫ P1,...,Pg∈Proj C

L

C(X,P1 ⊗ P∨
1 ⊗ · · · ⊗ Pg ⊗ P∨

g ) ≃ C


X,

(∫ P∈Proj C

fL

P ⊗ P∨

)⊗g



for any X ∈ C and g ≥ 0.

Recall from our conventions that by (canonical) equivalence we do not mean necessarily a map in either
direction, but also allow a (canonical) zigzag.

Proof. For g = 0, the statement is true by the convention that a tensor product over an empty index set is the
monoidal unit. We now prove the statement by induction on g ≥ 1. For g = 1, we find by duality in C and
[SW19, Theorem 3.5]

∫ P∈Proj C

L

C(X,P ⊗ P∨) ∼=

∫ P∈Proj C

L

C(X ⊗ P, P ) (by duality)

≃ C

(
I,

∫ P∈Proj C

fL

P ⊗ (X ⊗ P )∨

)
(by [SW19, Theorem 3.5])

∼= C

(
I,

∫ P∈Proj C

fL

P ⊗ P∨ ⊗X∨

)
(since (X ⊗ P )∨ ∼= P∨ ⊗X∨)

∼= C

(
X,

∫ P∈Proj C

fL

P ⊗ P∨

)
(by duality) .

This proves the statement for g = 1.
In order to complete the induction step g −→ g + 1, we observe

∫ P1,...,Pg+1∈Proj C

L

C(X,P1 ⊗ P∨
1 ⊗ · · · ⊗ Pg+1 ⊗ P∨

g+1)

∼=

∫ P1,...,Pg+1∈Proj C

L

C(X ⊗ Pg+1 ⊗ P∨
g+1, P1 ⊗ P∨

1 ⊗ · · · ⊗ Pg ⊗ P∨
g ) (by duality)

≃

∫ Pg+1∈Proj C

L

C


X ⊗ Pg+1 ⊗ P∨

g+1,

(∫ P∈Proj C

fL

P ⊗ P∨

)⊗g

 (by the induction hypothesis)

≃

∫ Pg+1∈Proj C

L

C
(
X ⊗ Pg+1 ⊗ P∨

g+1,F
⊗g
) (by [SW19, Corollary 3.7]

and since X ⊗ Pg+1 ⊗ P∨
g+1 is projective)

∼=

∫ Pg+1∈Proj C

L

C
((

F
⊗g
)∨
⊗X,Pg+1 ⊗ P∨

g+1

)
(by duality)

≃ C

(
(
F
⊗g
)∨
⊗X,

∫ P∈Proj C

fL

P ⊗ P∨

)
(by the induction start)

∼= C

(
X,F⊗g ⊗

∫ P∈Proj C

fL

P ⊗ P∨

)
(by duality)

≃ C


X,

(∫ P∈Proj C

fL

P ⊗ P∨

)⊗(g+1)

 (by [SW19, Lemma 3.8]).
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Unimodularity. Let C be a pivotal finite tensor category. Since C is assumed to be over an algebraically
closed field, we have by [GKP18, Section 5.3] a so-called modified trace on the tensor ideal of projective objects
that is unique up to invertible scalar. It gives us canonical and natural isomorphisms C(X,P ) ∼= C(α⊗ P,X)∗

for any X ∈ C as long as P is projective, where α is the socle of the projective cover of the monoidal unit. If C
is unimodular, α is isomorphic to the monoidal unit. In this case, we even find

C(X,P )∗ ∼= C(P,X) , X ∈ C , P ∈ Proj C . (2.6)

Therefore, we may conclude from Proposition 2.4:

Corollary 2.5. For any unimodular pivotal finite tensor category C andX ∈ C, there is a canonical equivalence
of chain complexes

∫ P1,...,Pg∈Proj C

L

C(X,P1 ⊗ P∨
1 ⊗ · · · ⊗ Pg ⊗ P∨

g ) ≃ C



(∫ P∈Proj C

fL

P ⊗ P∨

)⊗g

, X




∗

.

Example 2.6. For p, q ≥ 0 and g ≥ 1, consider the standard marked sphere S◦p+q+2g,ε such that the first
p holes are incoming, the next q holes are outgoing, and the last 2g holes are pairs of an outgoing followed

by an incoming hole. By gluing together these g pairs, we obtain a marking Γ ◦
g,p,q on the surface Σ

p|q
g of

genus g with p incoming and q outgoing boundary components. If C is a pivotal finite tensor category and

X = (X ′
1, . . . , X

′
p, X

′′
1 , . . . , X

′′
q ) a projective boundary label for Σ

p|q
g (the first p labels are for the incoming

boundary components, the last q labels for the outgoing ones), then by the definition of marked blocks and
duality (recall that left and right duals coincide thanks to pivotality), we have

B
Σp|q

g ,Γ◦
g,p,q

C (X) ∼=

∫ P1,...,Pg∈Proj C

L

C(X ′
p ⊗ · · · ⊗X ′

1, X
′′
1 ⊗ · · · ⊗X ′′

q ⊗ P1 ⊗ P∨
1 ⊗ · · · ⊗ Pg ⊗ P∨

g ) .

From Proposition 2.4, we conclude

B
Σp|q

g ,Γ◦
g,p,q

C (X) ≃ C


X ′

p ⊗ · · · ⊗X ′
1, X

′′
1 ⊗ · · · ⊗X ′′

q ⊗

(∫ P∈Proj C

fL

P ⊗ P∨

)⊗g

 . (2.7)

If C is unimodular, we arrive at

B
Σp|q

g ,Γ◦
g,p,q

C (X) ≃ C


X ′′

1 ⊗ · · · ⊗X ′′
q ⊗

(∫ P∈Proj C

fL

P ⊗ P∨

)⊗g

, X ′
p ⊗ · · · ⊗X ′

1




∗

(2.8)

thanks to Corollary 2.5.

2.5 The augmentation fibration

We will now relate marked blocks to the ‘classical’ marked blocks with values in vector spaces from [FS17]

which are based on [Lyu95a]. First we observe that the marked block B
Σ,Γ
C (X) for a marked surface (Σ,Γ )

with projective boundary label X comes with a canonical surjection

B
Σ,Γ
C (X) −→ H0B

Σ,Γ
C (X) (2.9)

to its zeroth homology that we refer to as the augmentation fibration. The zeroth homology of the marked
block B

Σ,Γ
C (X) is given the same expression as in (2.2), but with the homotopy coend replaced by an ordinary

coend. It is important that both types of coends run over the subcategory of projective objects.

Marked blocks with values in vector spaces. In [FS17, Section 2.4] marked block functors are defined based
on [Lyu95a, Lyu96] as coends in categories of left-exact functors. This definition can be made for any pivotal
finite tensor category C (for the construction of mapping class group actions, more structure is needed). The

value of the these block functors on a given boundary label is a vector space and will denoted by b
Σ,Γ
C (X); in

[FS17] the notation B̃lΣ,Γ is used for the block functors.

Proposition 2.7 (Augmentation fibration in the case of non-empty boundary). Let C be a pivotal finite tensor
category. If (Σ,Γ ) is a marked surface with at least one boundary component on each connected component,
then the augmentation fibration (2.9) is a trivial fibration for every projective boundary label X , i.e. in this case,
the marked block has non-trivial homology only in degree zero. Moreover, this zeroth homology is canonically
isomorphic to the vector spaces valued marked block b

Σ,Γ
C (X) such that the augmentation fibration takes the

form of a trivial fibration

B
Σ,Γ
C (X)

≃
−−→ b

Σ,Γ
C (X) . (2.10)
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Proof. Without loss of generality, we may assume that Σ is a connected surface of genus g with n ≥ 1 boundary
components that are all incoming. Consider now the diagram (whose ingredients we will explain step by step):

B
Σ,Γ
C

(X) C

(

X⊗,

(

∫ P∈ProjC

fL
P ⊗ P∨

)⊗g
)

b
Σ,Γ
C

(X) C(X⊗,F⊗g)

induced by∫P∈Proj C
fL

P ⊗ P∨ ≃
−−−→ F

[FS17, (2.12)]

H0
−−−→

H0B
Σ,Γ
C

(X) H0C

(

X⊗,

(

∫ P∈ProjC

fL
P ⊗ P∨

)⊗g
)

b
Σ,Γ
C

(X) C(X⊗, F⊗g)

∼=

∼=

∼=

We first describe the left diagram: The lower horizontal map is the canonical isomorphism [FS17, (2.12)] from
the vector spaces valued marked block to the morphism space C(X⊗,F⊗g), where X⊗ = Xσ(1) ⊗ · · · ⊗ Xσ(n)

for some permutation σ on n letters (that is fixed by our definition of marked blocks, but not relevant for the
argument because it is the same regardless of whether we consider blocks with values in vector spaces or chain
complexes). This isomorphism is a specific sequence coming from the application of the Yoneda Lemma in the
form [FS17, (2.2)] and the relation [FS17, (2.4)] between the coend in left-exact functors and the Lyubashenko
coend. The upper horizontal double-headed arrow in the left diagram is a zigzag that is obtained by performing
the same sequence of operations on marked blocks, but with the following replacements for [FS17, (2.2)] and
[FS17, (2.4)]:

• Instead of [FS17, (2.2)], we use the canonical equivalence

∫ P∈Proj C

L

C(X,P )⊗ C(P, Y ) ≃ C(X,Y )

from [SW19, Lemma 4.11] that holds for objects X and Y in C if either X or Y is projective (in order to
apply this, it is crucial that X⊗ is projective, which uses n ≥ 1; for n = 0, the object X⊗ = I would not
be necessarily projective — in fact, it is projective if and only if C is semisimple).

• Instead of [FS17, (2.4)], we use Proposition 2.4.

Therefore, the upper horizontal arrow in the left diagram is a zigzag of equivalences. Moreover, since X⊗ is
projective, C(X⊗,−) is exact, which means that the right vertical map in the left diagram is an equivalence

(again, this only holds because of n ≥ 1). This implies that the augmentation fibration B
Σ,Γ
C (X) −→ H0B

Σ,Γ
C (X)

is an equivalence.
It remains to exhibit a canonical isomorphism H0B

Σ,Γ
C (X) ∼= b

Σ,Γ
C (X). To this end, we take the zeroth

homology of the left diagram which gives us the right diagram. Note that we invert the lower horizontal map.
Now we define the dashed isomorphism such that the right square commutes.

Remark 2.8. The triviality of higher homologies for marked blocks for surfaces with non-empty boundary
comes here from the fact that we only allow projective boundary labels (which we do to give a technically
more uniform treatment). Non-projective boundary labels can be considered in a straightforward way once the
modular functor is constructed as we will explain in Remark 3.9.

3 The main result

In this section we state our main result that a (not necessarily semisimple) modular category gives rise to a
modular functor with values in chain complexes (we will give the precise notion in Definition 3.2 and 3.4 below)
and that we can compute this modular functor in terms of marked blocks. The proof of this result will occupy
the rest of the article.

3.1 The category of surfaces and its central extension

The notion of a modular functor uses the category of extended surfaces Surf defined in [FS17, Section 3.1]
based on [BK00, HLS00, BK01]. Objects are extended surfaces as defined in Section 2.1. Morphisms are
generated by mapping classes (isotopy classes of orientation-preserving diffeomorphisms mapping marked points
to marked points) and sewings of surfaces that glue one or several pairs of incoming and outgoing boundary
components together. These generators are subject to the obvious relations for the composition of mapping
classes and sewings separately and the following mixed relation involving both mapping classes and sewings: If
φ : Σ0 −→ Σ1 is a mapping class and s : Σ0 −→ Σ′

0 a sewing, then φ induces a sewing s′ : Σ1 −→ Σ′
1 of Σ1,

and s induces a mapping class φ′ : Σ′
0 −→ Σ′

1. The morphisms are subject to

s′φ = φ′s .

Disjoint union makes Surf into a symmetric monoidal category.
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Central extensions. The group Map(Σ) := AutSurf(Σ) is the mapping class group of the extended surface Σ.
Hence, functors out of the category Surf of surfaces describe in particular mapping class group representations.
In order to describe certain projective mapping class group actions relevant in the theory of modular functors,
one may use the central extension Surfc of Surf discussed in [FS17, Section 3.2] based on [Seg04]. Here Surfc is
a certain category with the same objects as Surfc which comes with a functor P : Surfc −→ Surf inducing for
every extended surface Σ a short exact sequence

0 −→ Z −→ AutSurfc(Σ) −→ AutSurf(Σ) −→ 0

of groups. Roughly, one obtains Surfc from Surf by introducing for each extended surface Σ an additional
generator CΣ which commutes with all mapping classes and which behaves multiplicatively under sewing, i.e.
for any sewing s : Σ ⊔Σ′ −→ Σ′′, the relation

s(Cp
Σ ⊔ C

q
Σ′) = C

p+q
Σ′′ s for p, q ∈ Z

holds. For details, we refer to [FS17, Section 3.2] and also Remark 3.8 and 5.12, where we discuss the origin of
the projectiveness and give a concrete model for the central extension in (5.15) (that one could also take as a
definition of Surfc). The functor P : Surfc −→ Surf sends the central generators of Surfc to identities.

Labeled surfaces. For any set X (to be thought of as label set), we can define the category X-Surf whose
objects are extended surfaces with boundary components labeled by elements of X. Morphisms are again given
by mapping classes (acting in the obvious way on the labels) and sewings with the restriction that a sewing of an
incoming to an outgoing boundary component is only allowed if the labeling objects coincide. The label for the
sewn surface is obtained by omitting the labels of the boundary components that are sewn together. Disjoint
union provides again a symmetric monoidal structure. Of course, we also obtain a labeled version X-Surfc of
the central extension Surfc.

3.2 The notion of a modular functor

All definitions for the notion of a modular functor that abound in the literature have in common that a modular
functor should provide a consistent system of (projective) mapping class group representations in vector spaces
compatible with the gluing of surfaces.
We will now lift this structure to a differential graded framework: Vector spaces will be replaced with chain

complexes, the projective mapping class group actions will not necessarily be strict, but possibly up to coherent
homotopy, also the gluing properties have to be formulated homotopy coherently.
Let X be a label set and M : X-Surfc −→ Chk a symmetric monoidal functor whose value on an extended

surface Σ with label X = (X1, . . . , Xn) for the n boundary components we denote by M(Σ,X). For the
moment, this functor is assumed to be strict, but see Remark 3.3.

Remark 3.1 (Cylinder category and functorial dependence on boundary label). To the cylinder with incoming
boundary label X ∈ X and outgoing boundary label Y ∈ X, a symmetric monoidal functor M : X-Surfc −→ Chk
assigns a chain complex M(S1 × [0, 1], (X,Y )). Since the sewing of cylinders is associative, X becomes the set
of objects for a (not necessarily unital) differential graded category that we denote by ZM and refer to as the
cylinder category of M . We can now deduce a functorial dependence of the values of M on cylinder category:
Let Σ be an extended surface with one outgoing boundary component (more boundary components can be
treated in the same way). Then M(Σ,−) : ZM −→ Chk is a functor on the cylinder category. In fact, for
X,Y ∈ X, sewing a cylinder to Σ yields a map

ZM (X,Y )⊗M(Σ,X) = M(S1 × [0, 1], (X,Y ))⊗M(Σ,X) −→M(Σ ∪S1 (S
1 × [0, 1]), Y ) ∼= M(Σ, Y ) .

Let s : Σ −→ Σ′ be a sewing that glues an incoming to an outgoing boundary component. Then for any
label X of the remaining boundary components, M(Σ, (X,−,−)) provides a functor Zop

M ⊗ ZM −→ Chk (by
the explanations in Remark 3.1), i.e. an ZM -bimodule. Evaluation of M on s induces a map

∫ P∈ZM

L

M(Σ, (X,P, P )) −→M(Σ′, X) . (3.1)

(Note that in [SW19] homotopy coends over differential graded categories are defined, but the above homotopy
coend runs over a not necessarily unital differential graded category. In that case, the homotopy coend can still
be defined as the realization of a semisimplicial object instead of a simplicial one.)
We say that the symmetric monoidal functor M : X-Surfc −→ Chk satisfies excision if (3.1) is an equivalence.
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Definition 3.2. For a set X, we call a symmetric monoidal functor M : X-Surfc −→ Chk a modular functor
(with values in chain complexes) if M satisfies excision.

Remark 3.3. As mentioned above, one can relax the definition in the sense that one requires this functor not
to be strict, but just homotopy coherent. Technically, one would accomplish this by passing from C-Surfc to
a resolution, see [Rie18] for the necessary techniques. For the concrete constructions in this article, however,
this will not be necessary because the modular functor that we will build will be strict. Nonetheless, it will
lead to non-strict actions on certain Hochschild complexes because these will be obtained by transfer along an
equivalence.

In practice, a modular functor is constructed from a certain linear category (with a lot more structure and
properties) that is recovered by evaluation of the modular functor on the cylinder leading to a notion of a
modular functor for a given linear category. We will take this into account in our definitions as follows: For
a linear category A, we set A-Surfc := (ProjA)0-Surf

c, where (ProjA)0 is the set of objects of the subcategory
ProjA ⊂ A of projective objects.

Definition 3.4. Let A be a linear category. We call a modular functor M : A-Surfc −→ Chk a modular functor
for A if the cylinder category ZM of M is equivalent to ProjA.

Remark 3.5 (Modular functors with values in vector spaces). Replacing in the above Definitions 3.2 and 3.4
the category of chain complexes with the category of vector spaces, we obtain the definition of an modular
functor with values in vector spaces (we should say ‘a’ definition because other definitions might be used in
different contexts; our definition is close to [Til98]). It is then clear that the zeroth homology of a modular
functor with values in chain complexes is an modular functor with values in vector spaces.

3.3 The modular functor of a non-semisimple modular category

Before stating our main result that a (not necessarily semisimple) modular category gives rise to a modular
functor with values in chain complexes, we recall some terminology.

Ribbon categories, non-degeneracy and modularity. A ribbon structure (also called ribbon twist) on a finite
tensor category C with braiding c is a natural automorphism of the identity whose components θX : X −→ X
satisfy the conditions

θX⊗Y = cY,XcX,Y (θX ⊗ θY ) ,

θI = idI ,

θX∨ = θ∨X

for all X,Y ∈ C. The first two conditions say precisely that the braided monoidal structure and the natural
automorphism θ form an algebra over the framed little disk operad [SW03]; the last condition requires an ad-
ditional compatibility with duality. A finite ribbon category is a braided finite tensor category with the choice
of a ribbon structure. Recall that any ribbon structure induces a pivotal structure. If we are given a braided
finite tensor category C, we can define the Müger center as the full subcategory of C spanned by the transparent
objects, i.e. those objects X ∈ C such that cY,XcX,Y = idX⊗Y for all Y ∈ C. We call the braiding (and then also
the braided finite tensor category C) non-degenerate if the Müger center is trivial, i.e. generated by the monoidal
unit under finite direct sums. A modular category is a finite ribbon category with non-degenerate braiding.
Note that, in our terminology, modularity does not include semisimplicity (but still finiteness assumptions).
Semisimple modular categories are a standard object in quantum topology and known as the input datum for
the Reshetikhin-Turaev construction [RT90, RT91, Tur10]. For non-semisimple modular categories, there were
for a long time different definitions of the non-degeneracy of the braiding which were proven to be equivalent by
Shimizu [Shi19] only recently — the one given above in terms of the Müger center is one of possible definitions
of non-degeneracy.

We may now state our main result:

Theorem 3.6 (Main Theorem). Any modular category C gives rise in a canonical way to a modular functor

FC : C-Surfc −→ Chk

with values in chain complexes. This modular functor can be computed by the marked blocks from Section 2.2
as follows: After the choice of a marking Γ on Σ, there is a canonical equivalence

B
Σ,Γ
C (X)

≃
−−→ FC(Σ,X) (3.2)

of chain complexes.
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This covers both parts of the main result as formulated in the introduction. The relation of the zeroth
homology H0FC of FC to classical constructions will be explained in Remark 5.13. The remaining Sections 4
and 5 of this article are devoted to the proof of Theorem 3.6. In the remainder of this section, we will discuss
implications and additions to Theorem 3.6 and also examples.

Since homotopy coherent actions transfer along equivalences, we obtain the following immediate consequence
of (3.2):

Corollary 3.7. Let C be a modular category and Σ an extended surface with marking Γ and projective
boundary label X . Then the marked block B

Σ,Γ
C (X) comes canonically with a homotopy coherent projective

action of the mapping class group of Σ.

Remark 3.8 (Framing anomaly). For every modular category C, one can define an invertible scalar ζ ∈ k×,
the framing anomaly (or central charge), see e.g. [FS17, Section 3.2]. A modular category whose central charge
is 1 ∈ k will be called anomaly-free. The framing anomaly controls the projectivity of the mapping class group
actions that are part of the vector space valued modular functor for C in the sense that the central generator
of a surface with genus g is sent to multiplication with ζg. Hence, in the anomaly-free case, these mapping
class group actions will be linear and not only projective. The projectivity of the mapping class group actions
obtained from the modular functor with values in chain complexes from Theorem 3.6 is precisely the same. This
will explained in detail in Remark 5.12.

Remark 3.9 (Non-projective boundary labels). In the definition of C-Surfc, we only allow projective boundary
labels. The choice leads to simplifications in the presentation (it matches better with excision arguments
because our homotopy coends always run over subcategories of projectives), but we can define conformal blocks
for non-projective labels although this does not amount to a substantial addition (because our modular functor
with its present definition already contains all the necessary information): Let Σ be an extended surface. For
any boundary label X , we denote by QX the boundary label for Σ with differential graded objects in C that
resolves every outgoing label projectively and every ingoing label injectively (this replacement can be chosen
functorially). Since C is self-injective (i.e. the projective objects are precisely the injective ones), QX is degree-
wise projective. Therefore, we can apply FC(Σ,−) degreewise and obtain the |X |+ 1-fold complex FC(Σ,QX)
whose totalization we define to be FC(Σ,X). In order to see that this does not depend on the choice of functorial

resolution, let Σ
0|1
g be a surface of genus g ≥ 1 (the case g = 0 follows directly from [SW19, Lemma 3.8]) and

with one boundary component that is outgoing (more boundary components, some of them possibly incoming,

can be treated analogously). Denote by Γ ◦
g,0,1 the marking on Σ

0|1
g discussed in Example 2.6. There we found

in (2.8) a canonical equivalence

B
Σ0|1

g ,Γ◦
g,0,1

C (Y ) ≃ C


I, Y ⊗

(∫ P∈Proj C

fL

P ⊗ P∨

)⊗g

 , Y ∈ Proj C . (3.3)

In order to prove independence of FC(Σ
0|1
g ,QX) of the chosen resolution, it suffices by naturality of the maps

(3.2) to observe that the chain complex valued functor C

(
I,−⊗

(∫ P∈Proj C

fL
P ⊗ P∨

)⊗g
)

preserves equivalences

between non-negatively graded complexes of projective objects in C. But this follows from the exactness of the
monoidal product and [SW19, Lemma 3.8]. By functoriality of FC in boundary labels (Remark 3.1) the complexes
will again carry action of the mapping class group of Σ. It should also be noted that from (3.3), (3.2) and
[SW19, Lemma 3.8] it follows that

FC(Σ
0|1
g , I) ≃ FC(Σg) ,

where Σg = Σ
0|0
g is the closed surface of genus g.

3.4 A canonical family of bimodules

The marked block for the closed torus and a specific marking is given by the Hochschild complex (Example 2.2),
and it was shown already in [SW19] that the Hochschild complex of a modular category carries a homotopy
coherent SL(2,Z)-action, see [LMSS18] for a related Hopf algebraic result on (co)homology level. The fully
fledged modular functor of a modular category provides now for us complexes that we may interpret as higher
genus analoga of the Hochschild complex together with (homotopy coherent) projective mapping class group
actions on them.
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Bimodules and the Agreement Principle. For a linear category C, a C-bimodule is a functor M : Cop⊗C −→
Vectk. We define the Hochschild complex of C with coefficients in this bimodule as the homotopy coend

CH(C;M) :=
∫X∈Proj C

L
M(X,X). This definition is made in a way such that the following holds: If C = ModkA

is given as the category of finite-dimensional modules over a finite-dimensional algebra A, then by the Agreement
Principle, that goes back to McCarthy and Keller [MCar94, Kel99] and is stated in a modified form in [SW19,
Theorem 2.9], the canonical embedding ιA : ⋆//Aop −→ Projk A = ProjC induces an equivalence

CH(A;M(A,A))
≃
−−→ CH(C;M) (3.4)

of chain complexes, where CH(A;M(A,A)) are the ‘ordinary’ Hochschild chains of A with coefficients in the
bimodule M(A,A).

For any finite tensor category C, there is a canonical family (Mg)g≥0 of C-bimodules defined by

Mg(X,Y ) = C(X,Y ⊗ F
⊗g) , X, Y ∈ C

where F =
∫X∈C

X ⊗X∨ is the canonical coend.

Theorem 3.10. For any modular category C and g ≥ 0, the Hochschild chains CH(C;Mg) with coefficients in
the bimodule Mg carry a canonical homotopy coherent projective action of the mapping class group Map(Σg+1)
of the closed surface of genus g + 1.

The proof strategy was already outlined in the introduction: We realize that CH(C;Mg) is the marked block
for a Σg+1 and a specific marking and then apply our main result.

Proof. Denote by Γ ◦
g,1,1 the marking from Example 2.6 on the surface Σ

1|1
g with genus g and one incoming

boundary component labeled by X ∈ Proj C and one outgoing boundary component labeled by Y ∈ Proj C. By
(2.7) we have a canonical equivalence

B
Σ1|1

g ,Γ◦
g,1,1

C (X,Y ) ≃ C


X,Y ⊗

(∫ P∈Proj C

fL

P ⊗ P∨

)⊗g

 .

SinceX is projective, we arrive at B
Σ1|1

g ,Γ◦
g,1,1

C (X,Y ) ≃ C(X,Y⊗F⊗g) = Mg(X,Y ). It is now a direct consequence

of excision for marked surfaces (Proposition 2.3) that B
Σ

0|0
g+1

,Γ◦
g+1,0,0

C ≃ CH(C;Mg). Now the statement follows
from Corollary 3.7.

Theorem 3.10 can be used to obtain homotopy coherent projective mapping class group actions on the
Hochschild complexes of ribbon factorizable Hopf algebras with coefficients in specific bimodules: For a rib-
bon factorizable Hopf algebra A, the category ModkA is modular, see e.g. [LMSS20, Section 2.3], and the

Lyubashenko coend F =
∫X∈ModkA X ⊗X∨ in ModkA is isomorphic to the A-module A∗

coadj given by the dual
A∗ of A and the so-called coadjoint action

A⊗A∗ −→ A∗ , a⊗ α 7−→
(
b 7−→ α

(
S(a(1))ba(2)

))
,

see [KL01, Theorem 7.4.13], where S is the antipode of A, and we have used the Sweedler notation ∆a =

a(1) ⊗ a(2) for the coproduct ∆ of A. Now for g ≥ 0, we can consider the A-module A ⊗
(
A∗

coadj

)⊗g

that

is defined using the monoidal structure on ModkA. By right multiplication on the A-factor this becomes an
A-bimodule. We obtain

Mg (A,A) = HomA

(
A,A⊗

(
A∗

coadj

)⊗g
)
= A⊗

(
A∗

coadj

)⊗g
,

where A⊗
(
A∗

coadj

)⊗g

has to be seen as A-module in the middle of the equation and as A-bimodule on the right

hand side. The Agreement Principle (3.4) provides us with a canonical equivalence

CH
(
A;A⊗

(
A∗

coadj

)⊗g
)

≃
−−→ CH(ModkA;Mg).

This leads to the following Hopf algebraic version of Theorem 3.10:

Corollary 3.11. For any ribbon factorizable Hopf algebra A and g ≥ 0, the Hochschild chains of A with

coefficients in the A-bimodule A ⊗
(
A∗

coadj

)⊗g

come with a canonical homotopy coherent projective action of

the mapping class group of the closed surface of genus g + 1.
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Remark 3.12. For a specific marking, the homology of the marked block of a modular category C can be
computed rather explicitly. We will focus on a closed surface Σg of genus g ≥ 0. In the presence of boundaries,
we may use Proposition 2.7. First assume g ≥ 1 (we will comment on the case g = 0 in a moment). Since any
modular category is unimodular [ENO04, Proposition 4.5], the equivalence (2.8) gives us a canonical isomorphism

H∗B
Σg ,Γ

◦
g

C
∼= Ext

(
F
⊗g, I

)∗ ∼= Ext
(
I,F⊗g

)∗
. (3.5)

The second isomorphism uses the self-duality F∨ ∼= F of the canonical coend of a modular category coming
from the non-degenerate Hopf pairing, see [Shi19]. With the convention F⊗0 = I, the statement remains true
for g = 0 for an appropriate marking (we need to cut the sphere into two disks along its equator).
Of course, there is now also an isomorphism H∗FC(Σg) ∼= Ext (I,F⊗g)

∗
, but this is not canonical. Under

(3.5), the projective action of the mapping class group of Σg on H∗B
Σg ,Γ

◦
g

C corresponds to the one constructed
in [LMSS20] on Ext(I,F⊗g). We will, however, not spell out the details of this comparison here.

Example 3.13 (Drinfeld doubles in finite characteristic and the Dijkgraaf-Witten modular functor). For a
finite group G, the Drinfeld double D(G) is a ribbon factorizable Hopf algebra with underlying vector space
k(G)⊗k[G], where k(G) is the space of k-valued functions and k[G] is the group algebra of G. The multiplication
in D(G) is given by

(δa ⊗ b)(δc ⊗ d) = δaδbcb−1 ⊗ bd for all a, b, c, d ∈ G ,

where δa is the k-valued function on G supported in a ∈ G with value 1 ∈ k; we refer to [Kas95, Chapter IX]
for details. The category ModkD(G) of finite-dimensional D(G)-modules is modular, and it is non-semisimple
if and only if |G| divides the characteristic of k.
Whenever ModkD(G) is semisimple, it gives rise to a topological field theory [FQ93, Mor15] that is partly

based on [DW90] and therefore often called Dijkgraaf-Witten theory. Therefore, we call the modular functor
FModkD(G) with values in chain complexes the Dijkgraaf-Witten modular functor.
In this example, we prove that the evaluation of FModkD(G) on a closed surface Σ is explicitly given by

FModkD(G)(Σ) ≃ N∗(PBunG(Σ); k) , (3.6)

where N∗(PBunG(Σ); k) are the (normalized) k-chains on the groupoid PBunG(Σ) of G-bundles over Σ (for the
closed torus, this is [SW19, Proposition 3.3]). Under the equivalence, the mapping class group action on the
left hand side corresponds to the obvious action on the right hand side. Similar statements hold for surfaces
with boundary.
An in-depth discussion of FModkD(G) is beyond the scope of this article, and we will only sketch the proof

of (3.6): First recall the equivalence ModkD(G) ≃ ModkG//G as linear categories, where ModkG//G is the
category of finite-dimensional modules over the loop groupoid G//G of G, i.e. the action groupoid of G acting
on itself by conjugation (there is naturally a ribbon structure on ModkG//G such that this equivalence is an
equivalence of ribbon categories). Also recall G//G ≃ PBunG(S

1). If Σ is an extended surface with projective
boundary label X in ModkD(G), then we may see Σ : S0 −→ S1 as a bordism from the incoming boundary S0

to the outgoing boundary S1. Thanks to ModkD(G) ≃ ModkPBunG(S
1), the label X gives rise to projective

objects Xj ∈ ModkPBunG(Sj) for j = 0, 1.
Restriction of bundle groupoids to the boundary yields a span of groupoids

PBunG(S0) PBunG(Σ) PBunG(S1)
r0 r1

that induces the pullback functors

Ch
PBunG(S0)
k Ch

PBunG(Σ)
k Ch

PBunG(S1)
k ,

r∗0 r∗1

where Ch
PBunG(M)
k denotes the category of functors from the groupoid PBunG(M) of G-bundles over a manifold

M to Chk. We can now define the derived pull push functor

ZL

G(Σ) := Lr1!r
∗
0 : Ch

PBunG(S0)
k −→ Ch

PBunG(S1)
k , (3.7)

where Lr1! is the homotopy left Kan extension along r1. We also define the auxiliary complexes

G(Σ,X) := 〈X∨
1 ,Z

L

G(Σ)X∨
0 〉 ,

where 〈−,−〉 denotes the morphism spaces in ModkPBunG(S1) understood degreewise. Whenever Σ is closed,
we find G(Σ) = N∗(PBunG(Σ); k) by definition. Hence, in order to prove (3.6), it remains to prove that G is
actually equivalent to the modular functor FModkD(G). To this end, we need the following statements:
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• For composable bordisms Σ : S0 −→ S1 and Σ′ : S1 −→ S2, the pull push maps (3.7) satisfy ZL

G(Σ
′ ◦Σ) ≃

ZL

G(Σ
′)ZL

G(Σ) as follows from a straightforward analogue of the Beck-Chevalley property for pull push
maps [Mor15, SW20] to the derived setting. This implies that G satisfies excision for the gluing of disjoint
surfaces (we do not make a statement about self-sewing).

• On a connected surface of genus zero, G agrees with the modular functor, i.e. it is given by the morphism
spaces of ModkD(G) ≃ ModkG//G and the monoidal product as in (2.1). This fact is proven by an
explicit computation of the corresponding pull push map (3.7): We write the homotopy left Kan extension
as a homotopy colimit over the homotopy fiber of r1. Since the homotopy fiber of any restriction functor
PBunG(Σ) −→ PBunG(S) from a connected surfaceΣ to a non-empty collection S of boundary components
has discrete homotopy fibers (this follows from the holonomy classification of bundles and the long exact
sequence for homotopy groups), the homotopy fibers of r1 are also discrete, and all homotopy colimits
needed for the homotopy left Kan extension are just coproducts of vector spaces. This allows us to verify
the claim directly.

From these two statements, we can already conclude G(Σ) ≃ FModkD(G)(Σ) for every closed surface and thereby
deduce (3.6). The proof that, under the equivalence, the Map(Σ)-action on FModkD(G)(Σ) corresponds to the
topological one on N∗(PBunG(Σ); k) is very similar to the vector space valued case. We will not discuss the
details here.

4 The homotopy coherent Lego-Teichmüller game

In Section 2 we have defined chain complexes of vector spaces for a surface and the auxiliary datum of a
marking. In order to prove the main result, we will have to understand how these quantities depend on the
marking. Before investigating this point in the next section, we need to understand how different markings on
a surface are related. To this end, we will use and extend work of Bakalov and Kirillov [BK00] who, based on
[HT80, Har83], define a groupoid of markings on a surface and prove that this groupoid is connected and simply
connected. Some key ideas in [BK00] and also the name Lego-Teichmüller game go back to Grothendieck’s
research proposal Esquisse d’un Programme [Gro84]. For our purposes, we will need to replace the contractible
groupoid of markings on a given extended surface by a contractible∞-groupoid. This replacement was motivated
in the introduction. Its significance will become clear in the next section.

4.1 Groupoids of markings

For an extended surface Σ, we denote by M(Σ) the groupoid of markings on Σ [BK00]. Its objects are markings
on Σ (see Section 2.1). The morphisms of M(Σ) are given in terms of four generators (called moves):

• Z (cyclic rotation of the marking),

• F (cut deletion),

• B (braiding),

• S (passing to transversal cut on a torus with one hole).

These four moves are subject to a list of relations and generateM(Σ) under sewing. We refer to [BK00, Section 4]
for the detailed definition of the moves and their relations.

Remark 4.1. Instead of arbitrary markings, one can restrict to fine markings (for a fine marking, the underlying
cut system contains spheres with at least one and at most three holes). This case is also treated in [BK00] and
turns out to be not substantially different. A full list of the generators and relations for the groupoid of fine
markings is given in [FS17, Section 2.2].

Building on the results of [HT80, Har83], Bakalov and Kirillov prove the following fundamental result about
the groupoids of markings:

Theorem 4.2 ([BK00, Theorem 4.24]). For any extended surface Σ, the groupoid M(Σ) of markings on Σ is
connected and simply-connected.

We call a category A contractible if the topological space |NA| obtained by geometric realization of its nerve
NA is contractible, i.e. equivalent to a point. Put differently, in this case, the ∞-groupoid obtained by local-
izing (in the sense of ∞-categories) A at all morphisms is a contractible Kan complex. Hence, a groupoid is
contractible if and and only if it is connected and simply connected. Therefore, Theorem 4.2 can be rephrased
by saying that the groupoids of markings are contractible.
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For an extended surface Σ, Bakalov and Kirillov also define a groupoid C(Σ) of cut systems on Σ [BK00,
Section 7.1–7.3]. Its objects are cut systems on Σ (as defined in Section 2.1), and its morphisms are generated
by the moves F̄ and S̄ (corresponding to the moves F and S listed above) which are explained in Figure 4. These
two moves are subject to five relations.

. . . . . .

. . . . . .

. . . . . .F̄

S̄

Figure 4: The F̄-move can be applied to a cylindrical region with a cut and deletes this cut — provided, of course, that
this still leaves us with a cut system. The dots are supposed to symbolize that the surface may continue to the
left and the right of the displayed region. The S̄-move can be applied to a region of the shape of torus with one
hole and one cut. It replaces the one cut with a transversal one. The marked points on the boundary and the
orientation of cuts and boundaries are suppressed in the picture. For the F̄-move, the cut that is being deleted
can have any orientation and any position of the marked point. For the S̄-move, the cut that is being replaced
by a transversal one as well as its replacement can have arbitrary orientation and position of the marked point.
The other cut (or boundary component if the surface ends there) has some arbitrary orientation and position
of the marked point that is not changed by the S̄-move.

In addition to Theorem 4.2, we will also need the following contractibility result (that the proof of Theorem 4.2
cited above actually relies on):

Theorem 4.3 ([BK00, Theorem 7.9]). For any extended surface Σ, the groupoid C(Σ) of cut systems on Σ is
connected and simply-connected.

Let φ : Σ −→ Σ′ be a mapping class, then φ sends cut systems on Σ to cut systems on Σ′ and also
moves between cut systems on Σ to moves between cut systems on Σ′ (because moves are only defined based on
incidences). This way, φ yields a functor C(φ) : C(Σ) −→ C(Σ′) between groupoids which by Theorem 4.3 is even
determined by its object function. Similarly, any sewing s : Σ −→ Σ′ yields a functor C(s) : C(Σ) −→ C(Σ′)
which just regards any pair oppositely oriented gluing boundaries of Σ as a cut in Σ′. The functors assigned to
mapping classes and sewings respect the relations holding in Surf. These considerations carry over from cuts to
markings (for the action of mapping classes on the charts underlying the marking, one precomposes the chart
with the inverse of the mapping class).

Proposition 4.4. Cut systems and markings on extended surfaces naturally form symmetric monoidal functors

C : Surf −→ Grpd ,

M : Surf −→ Grpd ,

where the monoidal product on Surf is disjoint union and the monoidal product on Grpd is the Cartesian product.

4.2 Describing cut systems and markings via the Grothendieck construction

As explained in [BK00, Section 7.4], there is a projection functor

πΣ : M(Σ) −→ C(Σ) (4.1)

sending a marking to its underlying cut system. The moves B and Z are sent to identities while F and S are
sent to F̄ and S̄, respectively.
By means of this functor, we can see that the markings over a fixed extended surface form a category fibered

in groupoids over the cut systems on that surface. To this end, let us first recall the relevant notions from
[Hol08, Definition 3.1] (this definition is based on [DM69]): A functor E : A −→ B is called a category fibered
in groupoids (or said to exhibit A as a category fibered in groupoids over B)
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(1) if all lifting problems of the form

0 NA

∆1 NB

NE

can be solved

(2) and if for any diagram a
f
←−− b

g
−−→ c in A and any morphism h : E(a) −→ E(c) in B making the diagram

E(c)

E(a) E(b)

h

E(f)

E(g)

commute, there is a unique h′ : a −→ c with E(h′) = h.

(Note that point (2) uses conventions dual to those in [Hol08, Definition 3.1] because the categories fibered in
groupoids needed in this article correspond to category-valued cosheaves instead of sheaves as in [Hol08].)

Lemma 4.5. For any extended surface Σ, the canonical functor πΣ : M(Σ) −→ C(Σ) exhibits M(Σ) as a
category fibered in groupoids over C(Σ).

Proof. It follows from the definition of M(Σ) that the lifting problem

0 NM(Σ)

∆1 NC(Σ) .

Γ

NπΣ

µ

µ̃

can be solved if µ is one of the moves F̄ or S̄ (because by definition these lift to F and S, respectively, for
any given start value). From this, we deduce that the lifting problem can be solved when µ is an arbitrary
morphism in C(Σ), which amounts to property (1) above. Contractibility of the groupoids M(Σ) and C(Σ)
gives us property (2).

For a cut system C on Σ, denote by

mΣ(C) := π−1
Σ (C) (4.2)

the fiber of the projection functor πΣ from (4.1) over C. From Theorem 4.2 and 4.3 we can deduce the
equivalence

mΣ(C) ≃ ⋆ (4.3)

of categories.
In the sequel, it will be important to reconstruct M(Σ) from the fibers (4.2). To this end, we will use the

Grothendieck construction, a classical construction in category theory, see e.g. [MM92, Section I.5], that we will
also use for various other constructions later: For a functor F : A −→ Cat from a category A to the category
of categories, its Grothendieck construction

∫
F is defined as the category of pairs (a, x), where a ∈ A and

x ∈ F (a). A morphism (a, x) −→ (a′, x′) is a pair (f, α) of a morphism f : a −→ a′ in A and a morphism
α : F (f)x −→ x′ in F (a′). The category

∫
F comes with a natural functor

∫
F −→ A sending an object

(a, x) ∈
∫
F to a and a morphism (f, α) : (a, x) −→ (a′, x′) in

∫
F to f . For later purposes, we record the useful

fact that the Grothendieck construction
∫
F of a functor F : A −→ Cat can be described as the lax colimit of

the functor F , i.e.
∫

F = laxcolim
a∈A

F (a) ; (4.4)

this statement can be found e.g. in [JY20, Theorem 10.2.3] or in [HGN17] within a more general framework.
One should think of

∫
F as the result of gluing together in a categorical way the categories F (a) for a ∈ A

according to a prescription determined by A.
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Now from Lemma 4.5 and [Hol08, Theorem 1.2] (or rather the dual version) it follows that the fibers (4.2)
form a (pseudo-)functor

mΣ : C(Σ) −→ Grpd (4.5)

whose Grothendieck construction
∫
mΣ comes with a canonical equivalence

∫
mΣ

≃
−−→ M(Σ) (4.6)

induced by the inclusions mΣ(C) −→ M(Σ). This leads to a key observation that we will need later: We can
write the groupoid of markings on a fixed surface as the result of categorically gluing together the markings
over varying cut systems, where the groupoid of cuts systems gives us the gluing prescription.

4.3 The categories of colored cuts and colored markings

We will now introduce a new category of cut systems and markings on a fixed extended surface whose objects
are cut systems and markings, respectively, equipped with additional data, namely a coloring. The usefulness
of this definition will become apparent in the next section, where it will allow us to relate marked blocks for
different markings.
For a connected extended surface Σ with n boundary components, a colored cut system U on Σ is a pair C

of a cut system on Σ and a subset S of the set of cuts of C such that

|S|+ n ≥ 1 . (4.7)

A cut that lies in the distinguished subset S of all the cuts will be referred to as a colored cut. A cut which is
not colored will be referred to as uncolored cut. A colored cut system on a non-connected extended surface is
defined as a colored cut system on every connected component.
The colored cut systems on an extended surface Σ form a category Ĉ(Σ) in the following way: Objects are

colored cut systems on Σ. The morphisms are generated by two types of moves:

(U) For any colored cut systems U = (C, S) and any proper subset S′ ⊂ S such that (C, S′) is still a colored
cut system (meaning that (4.7) must be satisfied), there is a non-invertible morphism

U = (C, S)
S′⊂S
−−−−−→ (C, S′) ,

called uncoloring. In other words, there is a morphism that implements forgetting a coloring of subfamily
of cuts if enough colored cuts are left to ensure that requirement (4.7) is met.

(AM) Between colored cut systems, we have admissible moves, i.e. a move between the underlying cut systems,
as defined for C(Σ), such that this move does not affect the colored cuts. A more formal definition of an
admissible move may be given as follows: For a colored cut system U on Σ with underlying cut system C,
denote by ΣU the surface obtained from Σ by cutting at all colored cuts. Then C induces a cut system
CU on ΣU . By Proposition 4.4 the re-sewing sU : ΣU −→ Σ gives rise to a functor

C(sU ) : C(ΣU ) −→ C(Σ) (4.8)

sending CU to C. With this notation, we define an admissible move U −→ V between colored cut systems
U and V on Σ as follows: Such an admissible move only exists when ΣU = ΣV , and in that case, it is
defined as a move µ : C −→ C′ between the underlying cut systems that is the image of a move CU −→ CV

of cut systems on ΣU = ΣV under (4.8).

We impose the following relations:

(RU) Suppose U = (C, S) is a colored cut system and S′′ ⊂ S′ ⊂ S proper inclusions of subsets such that (Γ, S′)
and (Γ, S′′) are still colored cut systems, then the composition

U = (Γ, S)
S′⊂S
−−−−−→ (Γ, S′)

S′′⊂S′

−−−−−→ (Γ, S′′)

of uncolorings corresponding to S′′ ⊂ S′ and S′ ⊂ S, respectively, is equal to the uncoloring

U = (Γ, S)
S′′⊂S
−−−−−→ (Γ, S′′)

corresponding to S′′ ⊂ S.
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(RM) For the composition of admissible moves, the relations for the underlying moves that hold in the groupoid
C(Σ) of cut systems are inherited.

(C) Uncolorings and admissible moves commute in the obvious way.

Definition 4.6. For an extended surface Σ, we call the category Ĉ(Σ) the category of colored cut systems Σ.

The category Ĉ(Σ) comes with a canonical functor

QΣ : Ĉ(Σ) −→ C(Σ) (4.9)

which forgets the coloring, sends uncolorings to identities and admissible moves to the underlying moves. Note
that (RM) ensures that this defines really a functor.
We can generalize Proposition 4.4, in which we stated that cut systems can be functorially assigned to

surfaces, to colored cuts: Indeed, a morphism f : Σ −→ Σ′ induces a functor Ĉ(f) : Ĉ(Σ) −→ Ĉ(Σ′) which

satisfies QΣ′Ĉ(f) = C(f)QΣ and sends colored cuts to colored cuts and uncolored cuts to uncolored cuts. For

the definition of Ĉ(s) : Ĉ(Σ) −→ Ĉ(Σ′) for a sewing s : Σ −→ Σ′, we additionally have to prescribe that
boundary components which are glued to together through the sewing s give rise to a colored cut (assigning an
uncolored cut instead would generally violate (4.7)).

Proposition 4.7. Colored cut systems on extended surfaces naturally form a symmetric monoidal functor

Ĉ : Surf −→ Cat .

The important fact about the categories of colored cut systems is that they are still contractible despite the
newly introduced uncoloring morphisms:

Theorem 4.8. For any extended surface Σ, the category Ĉ(Σ) of colored cut systems on Σ is contractible.

Proof. (i) We consider the subcategory U(Σ) ⊂ Ĉ(Σ) with the same objects, but whose morphisms are

generated only by uncolorings and define L(Σ) as the∞-categorical localization of the∞-category N Ĉ(Σ)

at U(Σ). Now the canonical map N Ĉ(Σ) −→ L(Σ) induces an equivalence

|N Ĉ(Σ)|
≃
−−→ |L(Σ)| .

Moreover, L(Σ) is a Kan complex, i.e. an∞-groupoid since U(Σ) contains all the non-invertible morphisms

in Ĉ(Σ). For concreteness, we choose in this proof the Dwyer-Kan model [DK80] for localization.

(ii) Since the functor QΣ from (4.9) sends all morphisms in U(Σ) to identities, it induces a simplicial map
ωΣ : L(Σ) −→ NC(Σ). In this step, we prove that ωΣ is a Kan fibration, i.e. ωΣ allows for solutions to
the lifting problems

Λn
k L(Σ)

∆n NC(Σ) ,

ι

ξ

ωΣ

σ

σ̃ (4.10)

where ι : Λn
k −→ ∆n for n ≥ 0 and 0 ≤ k ≤ n are the horn the inclusions.

• For n = 0, this just means that ωΣ is surjective on 0-simplices, which we can easily observe to be
true.

• For n = 1, we need to solve the lifting problem

0 L(Σ)

∆1 NC(Σ)

ι

U

ωΣ

µ

µ̃ (4.11)

(the lifting problem for the inclusion 1 −→ ∆1 can be solved by passing to inverse morphisms). As
one easily sees, it suffices to prove this lifting property if µ is a move, i.e. F̄ or S̄, or an inverse of these
moves. We will now prove that such a lift indeed exists (we illustrate the strategy by means of an
example in Figure 5): Let µ : C −→ C′ be a move in C(Σ). On each connected component of Σ, the
cut system C has a boundary component or a cut that will not be affected by µ in the sense of (AM)
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on page 21 (this can be observed for both F̄ and S̄). This implies that for any U with QΣ(U) = C,
we find a colored cut system V connected to U by a zigzag of uncolorings (generally, the uncolorings
themselves will not be enough; zigzags of them are needed) such that µ does not affect the colored
cuts of V . As a consequence, µ induces an admissible move µ̂ : V −→W . In particular, QΣ(µ̂) = µ.
Then the zigzag

U ←→ V
µ̂
−−→W

in Ĉ(Σ) is mapped to µ under QΣ because QΣ sends uncolorings to identities, and it gives us a
1-morphism µ̃ : U −→W in L(Σ) with ωΣ(µ̃) = µ. This shows that the µ̃ solves the lifting problem.
The same argument applies to the inverses of moves.

u′ u′′ S̄

Figure 5: Example for the construction of the lifts needed in (4.11) in the case of the S̄-move. The S̄-move can be applied
to a subsurface of the shape of a torus with one boundary component and one cut. We will assume that the
surface actually continues at this boundary component, so it will play the role of a cut (if the surface ends
there, the situation would be easier as we will explain after covering the present situation). Suppose now we
want to lift S̄ to L(Σ) with the start value given by the first picture (colored cuts are drawn in red; orientation
of cuts and marked points are suppressed as in Figure 4). If we start with this colored cut system, then S̄
will not induce an admissible move because the cut that is replaced with the transversal cut by the S̄-move is
colored. But by a zigzag of uncolorings (denoted by u′ and u′′) we arrive at the third colored cut system from
the left. Now S̄ will induce an admissible move. This way, we obtain the desired lift of S̄. As just mentioned,
if the hole of the torus belongs to a boundary component, the situation simplifies: We forget all colors (which
is allowed thanks to the presence of a boundary component) and lift S̄ directly.

• In order to solve the lifting problem (4.10) for n ≥ 2, we first observe that the horn ξ : Λn
k −→ L(Σ)

admits a filler σ̃ : ∆n −→ L(Σ), i.e. σ̃ι = ξ, because L(Σ) is a Kan complex by (i). Moreover,

ωΣσ̃ι = ωΣξ = σι .

In other words, both ωΣσ̃ and σ fill the horn ωΣξ : Λn
k −→ NC(Σ) in the nerve of the 1-groupoid

C(Σ). Hence, they are equal, and we can conclude that the lifting problem (4.10) can be solved for
n ≥ 2.

This finishes the proof that ωΣ is a Kan fibration.

(iii) The fiber of ωΣ : L(Σ) −→ NC(Σ) over C ∈ C(Σ) is given by the ∞-localization of the nerve NQ−1
Σ (C)

of the fiber Q−1
Σ (C) of QΣ : Ĉ(Σ) −→ C(Σ) over C at all uncolorings in that fiber (this follows from the

fact that the localization that led from Ĉ(Σ) to L(Σ) just happens in the fibers of QΣ). Therefore, we
conclude |ω−1

Σ (C)| ≃ |NQ−1
Σ (Σ)|. But Q−1

Σ (C) has an initial object, namely the one obtained by coloring
all cuts of C. As a result, Q−1

Σ (C) is a contractible category. This implies |ω−1
Σ (C)| ≃ ⋆. Combining this

with (ii) and the long exact sequence for homotopy groups, we conclude that

|ωΣ | : |L(Σ)|
≃
−−→ |NC(Σ)|

is an equivalence.
From (i) and (iii) we obtain

|N Ĉ(Σ)| ≃ |NC(Σ)| .

Now the Theorem follows from Theorem 4.3 that asserted that C(Σ) is contractible.

In this subsection we have, so far, replaced the groupoid of cut systems of an extended surface with a category
of colored cut systems and proven that the latter category is still contractible. It remains to replace the groupoid
of markings with a colored analogue. To this end, we will use the presentation (4.6) of M(Σ) as Grothendieck
construction:

Definition 4.9. For an extended surface Σ, we define the category M̂(Σ) of colored markings on Σ as the
Grothendieck construction

M̂(Σ) :=

∫ (
Ĉ(Σ)

QΣ
−−−→ C(Σ)

mΣ−−−→ Grpd
)

,

where QΣ and mΣ appeared in (4.9) and (4.5), respectively.
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Proposition 4.7 carries over to colored markings:

Proposition 4.10. Colored markings on extended surfaces naturally form a symmetric monoidal functor

M̂ : Surf −→ Cat .

The contractibility of M̂(Σ) will follow directly from Theorem 4.8 and Thomason’s Theorem [Tho79, Theo-
rem 1.2] that states that for a functor F : A −→ Cat, the natural map

hocolim
a∈A

NF (a)
≃
−−→ N

∫
F (4.12)

is an equivalence.

Theorem 4.11. For an extended surface Σ, the category M̂(Σ) of colored markings on Σ is contractible.

Proof. By Thomason’s Theorem (4.12) we obtain

NM̂(Σ) = N

∫ (
Ĉ(Σ)

QΣ
−−−→ C(Σ)

mΣ−−−→ Grpd
)
≃ hocolim

U∈Ĉ(Σ)
NmΣQΣ(U) . (4.13)

It follows from (4.3) that NmΣQΣ(U) is equivalent to a point. As a consequence, the right hand side of (4.13)

is equivalent to the homotopy colimit of the constant diagram with value ⋆ over Ĉ(Σ), but the latter is given

by N Ĉ(Σ) which have already proven to be contractible in Theorem 4.8.

The ∞-groupoid of colored markings. The contractibility result from Theorem 4.11 is a substantial part of
the effort needed for the construction of the modular functor in the next section. Phrased differently, it tells
us that the ∞-groupoid K(Σ) obtained by localizing the category M̂(Σ) of colored markings on an extended
surface at all uncolorings is contractible.

5 Construction of the modular functor

Having defined a category of colored markings on an extended surface, we may now finally construct the modular
functor with values in chain complexes. To this end, recall that we have defined in Section 2.2 marked blocks
that do not only depend on the surface and the boundary label, but also on the auxiliary datum of a marking. In
the vector space valued situation, the standard procedure is to extend the definition to morphisms of markings,
i.e. to construct a functor out of M(Σ) for each surface Σ. This amounts to relating the structure that is
present on a modular category with the moves between different markings. Unfortunately, for our differential
graded marked blocks, this does not seem to be possible directly. The key problem is that Lyubashenko’s
S-transformation that is used for the definition of vector space valued marked blocks on the S-move does not
seem to generalize directly to differential graded marked blocks. Similar, albeit less severe problems exist for
the F-move.
Our categories M̂(Σ) of colored markings precisely solve this problem: We show that the marked blocks

extend to functors M̂(Σ) −→ Chk on categories of colored markings (Theorem 5.4) such that all uncolorings are

sent to equivalences, i.e. the functors descend to the ∞-localization K(Σ) of M̂(Σ) at all uncolorings. The idea

for the definition of the functor M̂(Σ) −→ Chk is to work with a version of marked blocks which are glued via
homotopy coends at colored cuts and via ordinary coends at uncolored ones. We prove in Proposition 5.1 that
this is equivalent to the marked blocks we had originally defined in Section 2.2. Having established this ‘mixed’
definition of a marked block for any colored marking, we will, roughly, apply the moves F and S only to those
parts of the marked block which coincide with the classical marked block with values in vector spaces using the
‘classical definitions’ there. All the rest of the information is contained in the uncoloring maps. The details of
this construction will be discussed in the proof of Theorem 5.4.
The functors M̂(Σ) −→ Chk descend to the category obtained by gluing all categories of colored markings for

different surfaces together via the Grothendieck construction (Proposition 5.5). The final remaining step in the
construction of the modular functor will then be a homotopy left Kan extension (Section 5.2).
For presentation purposes, we will first treat anomaly-free modular categories and then comment on the

anomalous case in Remark 5.12. This makes sense because the projectivity of the mapping class group actions
in the anomalous case will be of the same type for the linear and differential graded setting.
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5.1 Extension of the definition marked blocks to colored markings

For a given pivotal finite tensor category C, let X be a family of projective boundary labels for an extended
surface Σ; of course, we also allow the case that Σ is closed. If Γ is a marking on Σ, then we have defined in
Section 2.2 a marked block B

Σ,Γ
C (X) depending on Γ . This chain complex was defined via an iterated homotopy

coend over Proj C with one homotopy coend for each cut in Γ .
Let now Λ be a colored marking on Σ. By Definition 4.9 a colored marking Λ is a pair (U, Γ ) of a colored

cut system U and a marking Γ which both have the same underlying cut system. In other words, Λ arises
from Γ by declaring some cuts to be colored cuts in a way prescribed by U . Recall that on each connected
component of Σ, the number of colored cuts plus the number of boundary components has to be at least one;
this is required by (4.7).

We now define Fm
C (Σ,X,Λ) to be the chain complex that we obtain from B

Σ,Γ
C (X) by replacing all homotopy

coends corresponding to uncolored cuts by ordinary coends while the homotopy coends corresponding to the
colored cuts remain unaffected.
In formulae, this is expressed as follows: Let ΣΛ be the extended surface obtained by cutting Σ along all

colored cuts of Λ. Then the marking Γ underlying Λ gives rise to a marking ΓΛ on ΣΛ (we are recalling here
notation already established on page 21). If Λ has q colored cuts, we arrive at

Fm
C (Σ,X,Λ) ∼=

∫ P1,...,Pq∈Proj C

L

b
ΣΛ,ΓΛ

C (X,P1, P1, . . . , Pq, Pq) . (5.1)

This equality just expresses in formulae the definition of Fm
C (Σ,X,Λ) that was just given in words. The only

non-trivial fact used here is that replacing homotopy coends by ordinary coends leads to vector space valued
marked blocks bC (a fact that was explained in Section 2.5). In (5.1) we see the ‘mixed’ definition of marked
blocks mentioned in the introduction of this section made precise: Homotopy coends are used for gluing at
colored cuts, ordinary coends at uncolored cuts. This allows us to express parts of this chain complex by means
of the vector spaces bC thanks to the results of Section 2.5.

Proposition 5.1. Let C be a pivotal finite tensor category and X a projective boundary label for an extended
surface Σ with colored marking Λ with underlying marking Γ . Then the canonical map from homotopy coends
to ordinary coends, applied to all uncolored cuts of Γ , induces a trivial fibration

εΛ : BΣ,Γ
C (X)

≃
−−→ Fm

C (Σ,X,Λ) . (5.2)

Proof. Using (5.1) and the symbols introduced there, the map in question is the map

∫ P1,...,Pq∈Proj C

L

B
ΣΛ,ΓΛ

C (X,P1, P1, . . . , Pq, Pq) −→

∫ P1,...,Pq∈Proj C

L

b
ΣΛ,ΓΛ

C (X,P1, P1, . . . , Pq, Pq)

induced by the augmentation fibration B
ΣΛ,ΓΛ

C (X,P1, P1, . . . , Pq, Pq) −→ b
ΣΛ,ΓΛ

C (X,P1, P1, . . . , Pq, Pq) from
Proposition 2.7 which is a trivial fibration because the definition of colored markings ensures that ΣΛ has at
least one boundary component in every connected component. This proves the assertion.

The proof showed that the map (5.2) is actually induced by the augmentation fibration from Section 2.5, but
only applied to a selected subfamily of the cuts prescribed by the coloring. Therefore, we will refer to the trivial
fibration (5.2) as a partial augmentation fibration.

Corollary 5.2 (Uncoloring maps). Let C be a pivotal finite tensor category and X a projective boundary
label for an extended surface Σ with colored marking Λ. Any uncoloring Λ −→ Ω induces a trivial fibration

Fm
C (Σ,X,Λ)

≃
−−→ Fm

C (Σ,X,Ω) .

induced by the canonical map from homotopy coends to ordinary coends applied to all cuts that become
uncolored through the uncoloring. We refer to this map as uncoloring map.

Proof. The uncoloring maps fits into the commutative triangle

B
Σ,Γ
C (X)

Fm
C (Σ,X,Λ) Fm

C (Σ,X,Ω)

εΛ εΩ

featuring the partial augmentation fibrations from Proposition 5.1. Therefore, the uncoloring map needs to be
an epimorphism. By the 2-out-3 property it is also an equivalence.
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Step by step, we will now define the marked blocks (5.1) on themorphisms of the category of colored markings.
We begin with those morphisms of colored markings that do not change the underlying cut system. This is the
easy part because it can be played back entirely to statements about the marked blocks bC with values in vector
spaces:

Lemma 5.3. Let C be a finite ribbon category and Σ an extended surface with projective boundary label X in
C. For a colored cut system U on Σ, the assignment mΣQΣ(U) ∋ Γ 7−→ Fm

C (Σ,X, (U, Γ )) extends to a functor
LU : mΣQΣ(U) −→ Chk.

Proof. The functor QΣ : Ĉ(Σ) −→ C(Σ) from (4.9) just forgets the coloring and sends U to a cut system
C := QΣ(U). The groupoid mΣQΣ(U) = mΣ(C) is by its definition in (4.2) the groupoid of markings on the
cut system C. Morphisms are just the morphisms of markings on C that leave the cut system C unaffected.
Explicitly, the objects of this groupoid are markings on the genus zero surfaces that we obtain from cutting
Σ at all cuts of C. The morphisms are, separately for each of these genus zero surfaces, generated by the
Z-move and the B-move [BK00, Section 4.1] subject to their relations given in [BK00, Section 4.7]. From (5.1)
it follows that we can define the desired functor LU : mΣQΣ(U) = mΣ(C) −→ Chk on these moves just as
for vector space valued marked blocks (because under the homotopy coend only vector space valued marked
blocks bC appear, see (5.1)). More precisely, the Z-move is sent to the Z-isomorphism induced by the pivotal
structure [FS17, Definition 3.5 (i)], and the B-move is sent to the B-isomorphism induced by the braiding [FS17,
Definition 3.5 (ii)]. In [FS17], these definitions were made for fine markings, but they carry over to markings
which are not necessarily fine. The statement that the Z-isomorphism and the B-isomorphism satisfy the needed
relations in contained in [FS17, Lemma 3.8].

In order to define marked blocks on the entire category of colored markings on a given extended surface, we
will use modularity:

Theorem 5.4. Let C be an anomaly-free modular category and Σ an extended surface with projective boundary
label X in C. Then the functors mΣQΣ(U) −→ Chk for U ∈ Ĉ(Σ) from Lemma 5.3 induce a functor

Fm
C (Σ,X,−) : M̂(Σ) −→ Chk (5.3)

that sends all morphisms to equivalences, i.e. it descends to the∞-localization K(Σ) of M̂(Σ) at all uncolorings.

Proof. The category M̂(Σ) was defined as a Grothendieck construction (Definition 4.9) that can be described as

a lax colimit (4.4). By the universal property of the lax colimit, a functor M̂(Σ) −→ Chk amounts to functors

mΣQΣ(U) −→ Chk for U ∈ Ĉ(Σ) plus a consistent set of natural transformations (that we will elaborate on in a
moment). As the needed functors mΣQΣ(U) −→ Chk, we take the functors LU from Lemma 5.3. Additionally,

for any morphism f : U −→ V in Ĉ(Σ), we need a natural transformation αf filling the triangle

mΣQΣ(U)

Chk .

mΣQΣ(V )

LU

mΣQΣ(f)
αf

LV

These transformations need to be compatible with the composition of morphisms in Ĉ(Σ). Instead of defining
αf for arbitrary morphisms, we can of course also define it on generating morphisms, namely uncolorings (U)
and admissible moves (AM), see page 21, and verify that the relations (RU), (RM) and (C) are satisfied.
On generators, we make the following definitions:

(U) The uncolorings are sent to the uncoloring maps from Corollary 5.2.

(AM) The definition on the admissible moves induced by the F̄-move and the S̄-move in C(Σ) is accomplished
as follows:

(F̄) An F̄-move of cut systems give rise to an admissible move F̄ : U −→ V of colored cut systems if and
only if the deleted cut is not colored. In order to obtain for Γ ∈ mΣQΣ(U) the needed isomorphism

αF̄ : Fm
C (Σ,X, (U, Γ )) −→ Fm

C (Σ,X, (V,mΣ(F̄)Γ )) , (5.4)

we can now use the F-isomorphism from [FS17, Definition 3.5 (iii)] which uses the (ordinary) Yoneda
Lemma for the morphism spaces in C.
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(S̄) The S̄-move of a cut system can be applied to a subsurface of Σ of the shape of a torus with one
boundary component and one cut. The move replaces this cut by a transversal one (as depicted in
Figure 4). It give rise to an admissible move S̄ : U −→ V of colored cut systems if and only if the cut
that is being replaced is not colored. In order to obtain for Γ ∈ mΣQΣ(U) the needed isomorphism

αS̄ : Fm
C (Σ,X, (U, Γ )) −→ Fm

C (Σ,X, (V,mΣ(S̄)Γ )) (5.5)

we can now use the S-isomorphism from [FS17, Definition 3.5 (v)] which makes use of the S-
transformation for the canonical coend [Lyu95b]. Note that modularity enters in this step because
it ensures that one can define the S-transformation.

It is seen as follows that the relations are satisfied: It can be easily observed that (RU) and (C) are satisfied.
The relations (RM) being satisfied is a statement about vector space valued marked blocks for the anomaly-free
case (similarly to Lemma 5.3), which we will demonstrate for one the five relations in [BK00, Section 7.3] for the
definition of C(Σ), namely the compatibility of F̄ and S̄. The induced relations for F̄ and S̄, seen as admissible

moves in Ĉ(Σ), arise by coloring the cut systems involved this relation while respecting of course the definition

of Ĉ(Σ). An example of such a coloring is shown in Figure 6, and we list all other possible colorings in the
caption, but they can all be treated as the one which is shown in the picture.

S̄F̄

F̄
S̄

Figure 6: Pictorial presentation of a colored version of the compatibility of F̄ and S̄. We would obtain another relation
by coloring also the leftmost cut or only the leftmost cut. In any case, the cuts in the middle cannot be colored.

Verifying that αF̄ and αS̄ as defined above in (5.4) and (5.5) satisfy the relation from Figure 6 now amounts
to a statement about the F-isomorphism and the S-isomorphism for a vector space valued marked block for a
torus with two holes. The latter can be extracted from [FS17, Section 3.2], where it is shown that vector space
valued marked blocks yields a vector space valued functor defined on the groupoid of (fine) markings.
This concludes the proof that we obtain a functor (5.3). The statement that the functor sends all morphisms

to equivalences is only non-trivial for the uncolorings. In this case, it follows from Corollary 5.2.

In the next step, we prove that the constructions from Theorem 5.4 are natural (in the appropriate sense) in
the labeled extended surface. In order to make this precise, we define for any modular category C the category
C-
∫
M̂ as the Grothendieck construction

C-

∫
M̂ :=

∫ (
C-Surf −→ Surf

M̂
−−→ Cat

)
(5.6)

(this definition could be made for any label set, of course). The category C-
∫
M̂ should be interpreted as the

result of categorically gluing together the categories of colored markings over varying C-labeled surfaces. We
denote by

Π : C-

∫
M̂ −→ C-Surf (5.7)

the projection. Both categories inherit a symmetric monoidal structure from disjoint union such that Π is a
symmetric monoidal functor.

Proposition 5.5. For any anomaly-free modular category C, the functors from Theorem 5.4 induce a symmetric
monoidal functor

Fm
C : C-

∫
M̂ −→ Chk .
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Proof. If we write the Grothendieck construction (5.6) as a lax colimit (recall (4.4)), we see that a functor

Fm
C : C-

∫
M̂ −→ Chk amounts to functors

M̂(Σ) −→ Chk (5.8)

for each extended surfaceΣ with projective boundary labelX and a consistent system of natural transformations
(that we will elaborate on in a moment; afterwards, we also comment on compatibility with the monoidal

structure). For the functors (5.8), we take the functors Fm
C (Σ,X,−) : M̂(Σ) −→ Chk provided by Theorem 5.4.

Additionally, we need to specify for any morphism f : (Σ,X) −→ (Σ′, X ′) in C-Surf a natural transformation

M̂(Σ)

Chk

M̂(Σ′)

F
m
C(Σ,X,−)

M̂(f)
ξf

F
m
C(Σ

′,X′,−)

(5.9)

such that the transformations ξf respect the composition in C-Surf. We specify these transformations separately
for sewings and mapping classes:

• Let s : (Σ, (X,P, P )) −→ (Σ′, X) be a sewing morphism in C-Surf that glues an ingoing to an outgoing
boundary component which are both labeled with P (without loss of generality, it suffices to consider
sewings of this form). From (5.1), we can now read off that there is a canonical map

Fm
C (Σ, (X,P, P ), Λ) −→ Fm

C (Σ
′, X, M̂(s)(Λ))

for any colored marking Λ in Σ (coming just from the definition of the homotopy coend; compare also to
the sewing maps (2.4)). This map can be easily seen to be natural in Λ, i.e. we get a natural transformation

M̂(Σ)

Chk

M̂(Σ′)

F
m
C(Σ,(X,P,P ),−)

M̂(s)
ξs

F
m
C(Σ,X,−)

These transformations preserve the composition of sewings strictly.

• It is an important observation that the definition of marked blocks for a marked surface (or their general-
izations to colored markings) just depends on the incidences of (colored) cuts and markings (the relative
location of these objects to each other, see also the explanations on page 8) — and these incidences do
not change when we act with a mapping class. As a consequence of this observation, for any mapping
class φ : Σ −→ Σ′ seen as morphism (Σ,X) −→ (Σ′, X ′) in C-Surf the triangle

M̂(Σ)

Chk

M̂(Σ′)

F
m
C(Σ,X,−)

M̂(φ)

F
m
C(Σ,X′,−)

commutes, so we can actually use the identity transformation to fill this triangle.

Since the transformations corresponding to sewings respect composition and since the transformations corre-
sponding to mapping classes are identities, we conclude that the functors Fm

C (Σ,X,−) : M̂(Σ) −→ Chk induce

a functor C-
∫
M̂ −→ Chk.

Moreover, the functor C-Surf −→ Surf
M̂
−−→ Cat is symmetric monoidal (Proposition 4.10), and the functors

(5.8) as well as the transformations (5.9) are compatible with this monoidal structure. Therefore, the functor

C-
∫
M̂ −→ Chk just constructed is also symmetric monoidal.
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5.2 Homotopy left Kan extension

The functor Fm
C : C-

∫
M̂ −→ Chk from Proposition 5.5 is defined on a category of labeled extended surfaces

equipped with a colored marking. In order to obtain a functor defined directly on the category of C-labeled
surfaces, we use a homotopy left Kan extension along the functor Π : C-

∫
M̂ −→ C-Surf from (5.7).

Recall that for any category S, the category ChSk of functors S −→ Chk can be equipped with the projective
model structure. For any functor Φ : S −→ T , we obtain a Quillen pair

Φ! : ChSk
// ChTk : Φ∗

oo

by left Kan extension. We denote the homotopy left Kan extension, i.e. the left derivative of Φ!, by LΦ!.

Definition 5.6. For any anomaly-free modular category C, we define the functor

FC := LΠ!F
m
C : C-Surf −→ Chk (5.10)

as the homotopy left Kan extension of the functor Fm
C : C-

∫
M̂ −→ Chk from Proposition 5.5 along the functor

Π : C-
∫
M̂ −→ C-Surf from (5.7).

Remark 5.7. In [FS17, Section 3.3] a Kan extension along an unmarking functor U : mSurf −→ Surf from a
category mSurf of marked surfaces to the category of surfaces is used for the construction of a so-called pinned
block functor. The use of the Kan extension in Definition 5.6 seems similar, but we should emphasize that
it is really different. The category mSurf in [FS17] is not equivalent to C-

∫
M̂ (because mSurf actually has no

non-trivial automorphisms), and the unmarking functor U in [FS17] is not a projection functor like Π , but
rather a translation of moves to mapping classes.

The notation FC(Σ,X) suggests a relation to the complexes Fm
C (Σ,X,Λ) from Theorem 5.4 that additionally

depended on a colored marking on Σ. This notation is justified by the next result:

Proposition 5.8. For any anomaly-free modular category C and any extended surface Σ with projective
boundary label X, there is a canonical equivalence

hocolim
Λ∈M̂(Σ)

Fm
C (Σ,X,Λ)

≃
−−→ FC(Σ,X) . (5.11)

After the choice of a colored marking Λ on Σ, there is a canonical equivalence

Fm
C (Σ,X,Λ)

≃
−−→ FC(Σ,X) . (5.12)

The proof of Proposition 5.8 will need a standard Lemma. First we establish some notation and terminology:
For a functor L : A −→ B and b ∈ B, we denote by L/b the slice category of pairs (a, f) of a ∈ A and a morphism
f : L(a) −→ b. A morphism (a, f) −→ (a′, f ′) in L/b is a morphism g : a −→ a′ such that f ′L(g) = f . Dually,
we can define the slice category b/L. A functor L : A −→ B is called homotopy final if for each b ∈ B the slice
category b/L is contractible in the sense that |N(b/L)| is equivalent to a point.

Lemma 5.9. For any functor F : B −→ Cat, the forgetful functor π :
∫
F −→ B has the property that the

natural functor Kb : F (b) −→ π/b for any b ∈ B is homotopy final.

A proof can be deduced from the more general statement [L-HTT, Proposition 4.3.3.10] in the context of
∞-categories.

Proof of Proposition 5.8. By (5.10) and the homotopy colimit formula for the homotopy left Kan extension we
arrive at

FC(Σ,X) = hocolim

(
Π/(Σ,X) −→ C-

∫
M̂

F
m
C−−−→ Chk

)
,

where Π/(Σ,X) −→ C-
∫
M̂ is the forgetful functor. The natural functor KΣ,X : M̂(Σ) −→ Π/(Σ,X) (that

appears for an arbitrary Grothendieck construction in Lemma 5.9) induces a map

hocolim
Λ∈M̂(Σ)

Fm
C (Σ,X,Λ) =hocolim

(
M̂(Σ)

KΣ,X

−−−−−→ Π/(Σ,X) −→ C-

∫
M̂

F
m
C−−−→ Chk

)

−→ hocolim

(
Π/(Σ,X) −→ C-

∫
M̂

F
m
C−−−→ Chk

)
= FC(Σ,X)
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(the equality in the first line holds by definition of Fm
C in Proposition 5.5). For the proof of (5.11), it remains

to prove that this map is an equivalence, but this follows from Lemma 5.9 which states KΣ,X is homotopy
final, which implies that the map induced between the homotopy colimits is an equivalence (see e.g. [Rie14,
Theorem II.8.5.6] for this standard result).
For the proof of (5.12), it suffices to prove that the canonical map

Fm
C (Σ,X,Λ) −→ hocolim

Λ∈M̂(Σ)
Fm
C (Σ,X,Λ) (5.13)

is an equivalence (because then we can compose with (5.11)). This can be concluded from the contractibility of

the ∞-groupoid K(Σ) obtained by ∞-localization of M̂(Σ) at all uncolorings: The right hand side of (5.13) is

the homotopy colimit of the functor M̂(Σ) −→ Chk from Theorem 5.4 which, additionally, has the property that
it sends all uncolorings to equivalences and hence descends to K(Σ) without changing the homotopy colimit
(because ∞-localizations are homotopy final [Cis19, Proposition 7.1.10]). It suffices now to prove that the map
⋆ −→ K(Σ) selecting Λ is homotopy final, but this follows from [L-HTT, Corollary 4.1.2.6] because K(Σ) is a
contractible Kan complex by Theorem 4.8.

Corollary 5.10. Let C an anomaly-free modular category. Then for any extended surface Σ with projective
boundary label X and any marking Γ on Σ, there is a canonical equivalence

B
Σ,Γ
C (X)

≃
−−→ FC(Σ,X) .

Proof. We observe that by coloring all cuts of Γ we obtain a colored marking Γ c such that Fm
C (Σ,X, Γ c) =

B
Σ,Γ
C (X) holds by definition. Now we use (5.12) from Proposition 5.8.

Theorem 5.11. Let C be an anomaly-free modular category. Then the functor

FC : C-Surf −→ Chk (5.14)

from Definition 5.6 is a modular functor with values in chain complexes for the category C in the sense of
Definition 3.4.

Proof. Through the construction leading to Definition 5.6, we have established that FC is a functor C-Surf −→
Chk. Moreover, for labeled extended surfaces (Σ,X) and (Σ′, X ′), we have Π/(Σ ⊔Σ′, X ⊔X ′) ∼= Π/(Σ,X)×

Π/(Σ′, X ′). Since Fm
C : C-

∫
M̂ −→ Chk is symmetric monoidal, we can now conclude that FC is symmetric

monoidal (depending on how we model the homotopy colimits, the structure maps will just be weak equiva-
lences).
From Corollary 5.10 we may conclude directly that the cylinder category of FC is equivalent to Proj C because

marked blocks on decorated cylinders are given by the morphism spaces of C by (2.1).
It remains to prove that (5.14) satisfies excision: Let s : (Σ, (X,P, P )) −→ (Σ′, X) be a sewing morphism

in C-Surf that glues an ingoing to an outgoing boundary component which are both labeled with P . Any fixed
marking Γ on Σ induces a marking Γ ′ on Σ′. Now the naturality of the maps from Corollary 5.10 gives us the
commuting square (where they induce the vertical equivalences)

∫ P∈Proj C

L
B
Σ,Γ
C (X,P, P ) B

Σ′,Γ ′

C (X)

∫ P∈Proj C

L
FC(Σ, (X,P, P )) FC(Σ,X) .

≃

equivalence from Proposition 2.3
for excision with marking

≃

induced by evaluation of FC on s

The square commutes because the sewing transformations ξs from the proof of Proposition 5.5 generalize the
sewing maps from Proposition 2.3. It follows that the lower horizontal map is an equivalence which proves
excision.

Remark 5.12 (The anomalous case). Theorem 5.11 provides — at least in the anomaly-free case — the modular
functor needed for the Main Theorem 3.6, and Corollary 5.10 gives us the concrete prescription how to compute
it in terms of a marking. The restriction to anomaly-free modular categories throughout Section 5 was made
for presentation purposes because the modifications needed to deal with anomalous case are analogous to the
ones needed for vector space valued modular functors: Let us recall e.g. from [FS17] that for marked blocks
with values in vector spaces, the construction in the anomalous case proceeds precisely as in the anomaly-free
case, but with the groupoid M(Σ) of markings on an extended surface Σ replaced with a groupoid MC(Σ) which
contains additional central generators [FS17, Section 3.2] and is no longer contractible. In fact, for a connected
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surface Σ, we have MC(Σ) ≃ ⋆//Z by a non-canonical equivalence. The groupoid MC(Σ) comes with a functor
MC(Σ) −→ M(Σ) sending the central generators to identities. We may see MC(Σ) as a central extension of
M(Σ). Now the vector space valued marked blocks will be defined on MC(Σ) instead of M(Σ). The central
generators will be sent to a scalar multiple of this identity. This scalar is given by ζg, where ζ ∈ k× is the
framing anomaly (Remark 3.8) and g is the genus of Σ. This allows us to interpret a functor out of MC(Σ) as
a (certain type of) projective functor out of M(Σ).
In the differential graded setting, it is straightforward to take these central extensions into account as well:

The central extension MC(Σ) −→ M(Σ) induces a central extension M̂C(Σ) −→ M̂(Σ) of the category M̂(Σ) of
colored markings. As in Theorem 5.4, we will obtain for any projective boundary label X of Σ a functor

Fm
C (Σ,X,−) : M̂C(Σ) −→ Chk

that sends all morphisms to equivalences. By the same arguments as for Proposition 5.5, it induces a symmetric
monoidal functor C-

∫
M̂C −→ Chk on the Grothendieck construction. Via homotopy left Kan extension along

C-
∫
M̂C −→ C-

∫
MC induced by the functors M̂C(Σ) −→ MC(Σ), we obtain a symmetric monoidal functor

C-
∫
MC −→ Chk. But since M(Σ) ≃ ⋆ for every extended surface, we have C-

∫
M ≃ C-Surf. Similarly,

C-

∫
MC ≃ C-Surfc (5.15)

(this can be interpreted in the sense that C-
∫
MC provides a model for the central extension C-Surfc; in fact,

we could just define C-Surfc as C-
∫
MC). This allows us to see the functor C-

∫
MC −→ Chk as a functor

C-Surfc −→ Chk — and this will give us the modular functor in the anomalous case. It is however not clear that
its values are actually equivalent to the marked blocks. This, however, can be seen with arguments analogous
to those in the proof of Proposition 5.12. This completes the proof of the Main Theorem 3.6 in the general
case.

Remark 5.13 (Relation to Lyubashenko’s mapping class group representations and to the Reshetikhin-Turaev
construction). Let C be a modular category. By construction, the zeroth homology H0FC of the modular functor
FC : C-Surfc −→ Chk is a modular functor with values in vector spaces. This modular functor is (up to some
technical subtleties that we will explain now) built from Lyubashenko’s mapping class group representations
[Lyu95a, Lyu95b, Lyu96]: For an extended surface Σ with projective boundary label X , we have a canonical
isomorphism

H0B
Σ,Γ
C (X) ∼=

(
b
Σ,Γ
C (X∨)

)∗
, (5.16)

where B
Σ,Γ
C denotes marked blocks (Section 2.2) and b

Σ,Γ
C vector space valued marked blocks (Section 2.5).

For the specific marking in Example 2.6, this follows from (2.8) and the self-duality F∨ ∼= F (that we also
used in Remark 3.12), and the general case can be played back to this special case with arguments similar to
those in the proof of Proposition 2.7. If Σ has at least one boundary component per connected component, the
isomorphism (5.16) is compatible with the isomorphism H0B

Σ,Γ
C (X) ∼= b

Σ,Γ
C (X) induced by the augmentation

fibration (2.10) in the sense that the triangle of isomorphisms

H0B
Σ,Γ
C (X)

(
b
Σ,Γ
C (X∨)

)∗

b
Σ,Γ
C (X)

(5.16)

induced by
augmentation fibration

(2.6) and F
∨ ∼= F

commutes. The left hand side of (5.16) is functorial in M̂C(Σ), but will descend to MC(Σ) such that (5.16)
is a natural isomorphism of functors defined on MC(Σ). Therefore, (5.16) will induce an isomorphism of
mapping class group representations. Since the mapping class group representations in [FS17] are equivalent
to Lyubashenko’s mapping class group representations, we conclude that in zeroth homology, H0FC recovers
Lyubashenko’s mapping class group representations.
The comparison just discussed automatically also implies the comparison to the Reshetikhin-Turaev modular

functor stated in the introduction for the case the C is semisimple: In the semisimple case, H0FC agrees with the
dual of the Reshetikhin-Turaev modular functor (because the Lyubashenko construction generalizes the latter),
and, in fact, the homology of FC is concentrated in degree zero because in the semisimple case the statement
from Proposition 2.7 will hold also for closed surfaces. This follows since in the semisimple case all objects in
C are projective.
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