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Abstract. Given nonnegative integers n ě s, we let expn, sq denote the maximum
number of edges in a triangle-free graph G on n vertices with αpGq ď s. In the early
sixties Andrásfai conjectured that for n{3 ă s ă n{2 the function expn, sq is piecewise
quadratic with critical values at s{n “ k{p3k ´ 1q for k P N. We confirm that this is
indeed the case whenever s{n is slightly larger than a critical value, thus determining
expn, sq for all n and s such that s{n P rk{p3k ´ 1q, k{p3k ´ 1q ` γks, where γk “ Θpk´6q.

§1. Introduction

The structure of dense triangle-free graphs has been the subject of extensive studies
for a long time. The first result in this direction is Mantel’s celebrated theorem [21]
from 1907, which states that balanced bipartite graphs are the densest triangle-free graphs.
It is natural to ask for the densest triangle-free graphs when we impose some additional
restrictions on them; for instance, we may bound their chromatic or independence number.

Let us first discuss the case when we require the chromatic number of a dense triangle-free
graph to be large. It is easy to see that in this case the appropriate measure of the density
of a graph is not the number of its edges (as one can always add a small graph of large
chromatic number to a complete bipartite graph), but rather its minimum degree. This
avenue of research was started by Andrásfai, Erdős, and Sós [3] who showed that among
triangle-free graphs with chromatic number three those with the largest minimum degree are
‘balanced blow-ups’ of the pentagon. Erdős and Simonovits [11] noticed that a construction
due to Hajnal shows that for every k ě 2, ε ą 0, and sufficiently large n, there exists a
triangle-free graph on n vertices whose minimum degree is larger than p1{3´εqn, and whose
chromatic number is k. On the other hand, they conjectured that every triangle-free graph
on n vertices whose minimum degree is larger than n{3 is 3-colourable. This was refuted by
Häggkvist [14], who found a 10-regular triangle-free graph on 29 vertices whose chromatic
number is four. Jin [15] showed that this example is insofar optimal that every triangle-free
graph whose minimum degree is strictly larger than 10n{29 has chromatic number three.
Moreover, Thomassen [24] proved that for every ε ą 0 there exists a constant cε such that
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every triangle-free n-vertex graph with minimum degree at least p1{3` εqn has chromatic
number at most cε, and Łuczak [16] supplemented this result by proving, roughly speaking,
that for some constant Cε there are at most Cε ‘types’ of such graphs. Finally, Brandt and
Thomassé [8] characterised all triangle-free graphs on n vertices whose minimum degree is
larger than n{3; their theorem, stated in Section 5 below, plays a decisive rôle in the proof
of our main result.

In this article, however, we mainly study triangle-free graphs G with bounded inde-
pendence number αpGq. More specifically, we are interested in the behaviour of the
function expn, sq, which for n ě s ě 0 gives the largest number of edges in a triangle-free
graph on n vertices whose independent sets have at most the size s, i.e.,

expn, sq “ maxtepGq : vpGq “ n, G Ğ K3, and αpGq ď su .

Notice that Mantel’s theorem yields

expn, sq “ tn2
{4u for every s ą tn{2u .

Next we observe that in a triangle-free graph the neighbourhood of every vertex forms an
independent set, which implies the so-called trivial bound

expn, sq ď ns{2

for all n and s. Brandt [6] provided several explicit constructions showing that this upper
bound is asymptotically optimal for s ď n{3, i.e., that we have

expn, sq “ ns{2` opn2
q

in this range. Thus, it remains to study the behaviour of expn, sq for s{n P p1{3, 1{2q.
This line of research was started over 50 years ago by Andrásfai [2], who proved

expn, sq “ n2
´ 4ns` 5s2 for s{n P r2{5, 1{2s .

He also speculated that expn, sq might be a piecewise quadratic function with cusps at
points of the form s “ kn{p3k ´ 1q. We slightly revised his conjecture in [17] and resolved
the next case by showing

expn, sq “ 3n2
´ 15ns` 20s2 for s{n P r3{8, 2{5s .

The new version of the conjecture reads as follows.

Conjecture 1.1. If n{3 ă s ď n{2, then

expn, sq “ min
k
gkpn, sq , (1.1)

where
gkpn, sq “ kpk ´ 1qn2

{2´ kp3k ´ 4qns` p3k ´ 4qp3k ´ 1qs2
{2 (1.2)

for every k ě 1.
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Let us remark that we also have a conjecture on the extremal graphs for which equality
holds in (1.1). Since the definition of these graphs requires some preparation, we state this
stronger conjecture only at the end the article.

As for the function gpn, sq “ mink gkpn, sq, which stands on the right side of (1.1), an
elementary calculation (see [17, Cor. 2.7]) shows that for k ě 2 and k

3k´1n ď s ă k´1
3k´4n

we have gpn, sq “ gkpn, sq. Thus, for fixed n the function gpn, sq is piecewise quadratic in
s P pn{3, n{2q with cusps at the points s “ kn{p3k ´ 1q for k ě 2.

The main goal of this work is to add further plausibility to Conjecture 1.1 by proving it
whenever s{n is slightly larger than one of the ‘critical points’ k{p3k ´ 1q.

Theorem 1.2. For every k ě 2 there exists γ “ γpkq ą 0 such that

expn, sq “ gkpn, sq “ min
`
g`pn, sq

whenever
k

3k ´ 1n ď s ď

ˆ

k

3k ´ 1 ` γ
˙

n .

For instance, this holds for γpkq “ p600k6q´1.

Along the way, we establish the following minimum degree version of Conjecture 1.1.

Theorem 1.3. Let k ě 2 and n ě s ě 0. If H denotes a triangle-free graph on n vertices
with αpHq ď s and

δpHq ą
k ` 1
3k ` 2n ,

then epHq ď gkpn, sq.

Let us mention that similar problems could be and, in many cases, have been, considered
for Kr-free graphs and, more generally, for H-free graphs for any given graph H. It hardly
seems necessary to recall that Turán’s problem to determine the maximum number of edges
in an H-free graph on n vertices is fairly well understood thanks to the work of Turán
himself [25], Erdős, Stone, and Simonovits [10, 13]. The studies of the chromatic threshold
(equal to 1/3 for triangle-free graphs by the aforementioned result of Thomassen [24]) were
begun by Łuczak and Thomassé [19] and culminated in the work of Allen et al. [1] who
determined this parameter for H-free graphs when an arbitrary graph H is given (for the
precise definition of the ‘chromatic threshold’ we refer to either of those two articles).

The question on the behaviour of expn, sq considered in this work belongs to an area called
Ramsey-Turán theory, which has been initiated by Vera T. Sós and extensively investigated
during the last fifty years. There is a comprehensive survey on this subject by Sós and
Simonovits [22]. Important milestones in the Ramsey-Turán theory of general Kr-free
graphs were obtained by Bollobás, Erdős, Hajnal, Sós, Szemerédi [5, 9, 12,23], and, more
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recently, by Lüders and Reiher [20]. Due to their work, we asymptotically know the value
of

exrpn, sq “ maxtepGq : vpGq “ n, G Ğ Kr, and αpGq ď su

for all r ě 3 provided that s{n ! r´1 is sufficiently small. It would, of course, be
interesting to study this function for larger values of s{n as well, but, as the present article
demonstrates, even the case r “ 3 of triangles seems to be fairly difficult.

The structure of the article is the following. In Section 2 we start with the definition
and some basic properties of the blow-up operation. The two subsequent sections define
and study Andrásfai and Vega graphs, which are the main protagonists in the story of
dense triangle-free graphs (see Theorem 5.1 below). In particular, in this part of the article
we prove some special cases of Theorem 1.2 addressing blow-ups of these two types of
graphs (see Lemma 3.3 and Lemma 4.1). In Section 5 these results will be employed in the
proofs of the Theorems 1.2 and 1.3. Moreover, we shall state there a precise version of our
conjecture on extremal cases in Conjecture 1.1. These are the same as the extremal graphs
for the two aforementioned lemmata, which we characterise in Lemma 3.5 and Lemma 4.4,
respectively.

§2. Blow-ups of graphs

Given a graph F with vertex set V pF q “ tv1, . . . , vru, a blow-up of F is a graph H

obtained from F upon replacing its vertices by independent sets V1, V2, . . . , Vr, and each of
its edges vivj P EpF q, 1 ď i ă j ď r, by the complete bipartite graph KpVi, Vjq between Vi
and Vj. The sets V1, . . . , Vr are called the vertex classes of H. As above, we shall always
denote the vertices of the original graph F by lower case letters and the vertex classes of H
by capitalised versions of the same letters. A blow-up is proper if all vertex classes are
non-empty and balanced if all of them are of the same size. As the isomorphism type of H
depends only on the sizes of its vertex classes it will be convenient to write H “ F phq,
where the function h : V pF q ÝÑ Zě0 is defined by hpviq “ |Vi| for every vi P V pF q. In
the special case where h is the constant function attaining always the value t it will be
convenient to write H “ F ptq. For later use we remark that a blow-up of a blow-up of F
is again a blow-up of F .

Resuming the discussion of the blow-up H of F with vertex classes V1, . . . , Vr we set

NpViq “
ď

vjPNpviq

Vj

for each of these vertex classes, where Npviq denotes the neighbourhood of vi in F . Clearly,
all vertices in Vi have the neighbourhood NpViq in H and, consequently, every non-empty
vertex class Vi satisfies

δpHq ď |NpViq| ď ∆pHq . (2.1)
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Now simple averaging leads to the following observation.

Fact 2.1. Let H be an n-vertex blow-up of a k-regular graph F on the r-element vertex
set V pF q “ tv1, . . . , vru.

(a ) We have
r
ÿ

i“1
|NpViq| “ kn . (2.2)

(b ) If the blow-up H is proper, then

δpHq ď
kn

r
ď ∆pHq .

Proof. The double counting argument
r
ÿ

i“1
|NpViq| “

r
ÿ

i“1

ÿ

vjPNpviq

|Vj| “
r
ÿ

j“1
|Npvjq| |Vj| “ k

r
ÿ

j“1
|Vj| “ kn

establishes part (a ). If H is a proper blow-up, then (2.1) yields

rδpHq ď
r
ÿ

i“1
|NpViq| ď r∆pHq

and part (b ) follows. �

The second part of the foregoing fact has the following useful consequence.

Lemma 2.2. Let d, k ě 2 be two integers and let J be a graph. Suppose that J has a
k-regular proper blow-up F on 3k ´ 1 vertices and that H denotes a further proper blow-up
of J having n vertices. If

d` 1
3d` 2n ă δpHq and ∆pHq ă d´ 1

3d´ 4n , (2.3)

then k “ d.

Proof. Notice that every balanced blow-up Hptq of H satisfies the assumption on H as well.
By applying this observation to a sufficiently large integer t we learn that we may assume,
without loss of generality, that H is a proper blow-up of F . Now Fact 2.1(b ) reveals

δpHq ď
kn

3k ´ 1 ď ∆pHq ,

which together with (2.3) implies
d` 1
3d` 2 ă

k

3k ´ 1 ă
d´ 1
3d´ 4 .

Taking reciprocals we obtain

3´ 1
d´ 1 ă 3´ 1

k
ă 3´ 1

d` 1 ,

i.e., d´ 1 ă k ă d` 1. �
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The main result of this section is the following upper bound on the number of edges of a
blow-up.

Lemma 2.3. Suppose that F is a k-regular graph on r vertices and that H is an n-vertex
blow-up of F all of whose vertex classes have at least the size x. If we have |NpZq| ď s for
every vertex class Z of H, then

epHq ď
ns

2 ´
xprs´ knq

2 . (2.4)

Moreover, if rs ‰ kn and (2.4) holds with equality, then

‚ at least one vertex class of H has size x;
‚ every vertex class Vi of H with |Vi| ą x satisfies |NpViq| “ s.

Proof. As usual, we write the vertex set of F in the form V pF q “ tv1, . . . , vru. Setting
xi “ |Vi| for i P rrs we have

2epHq “
ÿ

vPV pHq

degHpvq “
r
ÿ

i“1
|Vi| ¨ |NpViq|

“

r
ÿ

i“1
x ¨ |NpViq| `

r
ÿ

i“1
pxi ´ xq ¨ |NpViq|

ď x
r
ÿ

i“1
|NpViq| `

r
ÿ

i“1
pxi ´ xqs

(2.2)
“ xkn` spn´ xrq “ ns´ xprs´ knq ,

which proves the desired upper bound on epHq.
Suppose from now on that this estimate holds with equality and that rs ‰ kn. This

means that pxi´xq|NpViq| “ pxi´xqs holds for every i P rrs, or in other words that xi ą x

implies |NpViq| “ s. This proves the second bullet. Now, if the first bullet fails, we have
|NpViq| “ s for every i P rrs and (2.2) yields the contradiction rs “ kn. �

Let us notice the following consequence of the above result.

Corollary 2.4. Suppose that k ě 2 is a natural number, F is a k-regular graph on 3k ´ 1
vertices and H is an n-vertex blow-up of F . If |NpZq| ď s and |Z| ě pk ´ 1qn´ p3k ´ 4qs
hold for every vertex class Z of H, then

epHq ď gkpn, sq .

Moreover, if epHq “ gkpn, sq, then

(i ) kn{p3k ´ 1q ď s ď pk ´ 1qn{p3k ´ 4q;
(ii ) H contains a vertex class of size pk ´ 1qn´ p3k ´ 4qs;
(iii ) the neighbourhood of each vertex class of H containing more than pk´1qn´p3k´4qs

vertices has size s.
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Proof. In order to prove the desired upper bound on epHq we remark that Lemma 2.3
applied to r “ 3k ´ 1 and x “ pk ´ 1qn´ p3k ´ 4qs yields

epHq ď 1
2

“

ns´
`

pk ´ 1qn´ p3k ´ 4qs
˘`

p3k ´ 1qs´ kn
˘‰

“ gkpn, sq .

Let us now study the case that equality holds in this estimate. If clause (i ) failed, then
the trivial upper bound epHq ď ns{2 would contradict epHq “ gkpn, sq.

The remaining two clauses follow from the moreover-part in Lemma 2.3 provided that
its assumption p3k ´ 1qs ‰ kn holds. So it remains to deal with the case s “ kn{p3k ´ 1q.
Now pk ´ 1qn´ p3k ´ 4qs “ n{p3k ´ 1q is at the same time the average size of the vertex
classes of H and a lower bound on the sizes of these vertex classes. In other words, H is
the balanced blow-up F

`

n{p3k ´ 1q
˘

and (ii ), (iii ) hold trivially. �

§3. Andrásfai graphs and their blow-ups

The characterisation of triangle-free graphs on n vertices whose minimum degree is larger
than n{3 due to Brandt and Thomassé [8] involves two explicit families of such graphs,
called Andrásfai graphs and Vega graphs (see Theorem 5.1 below). In this section we study
the first of these graph sequences, which has been introduced by Andrásfai in [2] and has
been rediscovered several times throughout the years.

One way to construct a k-regular triangle-free graph is to take an Abelian group G, a
symmetric sum-free subset S of size k, and to form the Cayley graph CayleypG;Sq. A
natural (and, as we shall soon argue, generic) example occurs when we take the cyclic
group Z3k´1 and its sum-free subset Sk “ tk, k ` 1, . . . , 2k ´ 1u. The Andrásfai graph Γk
is defined to be the corresponding Cayley graph CayleypZ3k´1;Skq. Describing the same
graph in more concrete terms, we set

V pΓkq “ tv0, v1, . . . , v3k´2u

and declare the adjacencies in Γk by

vivj P EpΓkq ðñ k ď |i´ j| ď 2k ´ 1 (3.1)

for all vertices vi, vj P V pΓkq. For instance, Γ1 “ K2, Γ2 “ C5, and Figure 3.1 shows some
further Andrásfai graphs.

Let us remark that given an Abelian group G containing a sum-free set S with |S| ą |G|{3
one can show by means of Kneser’s theorem (see [18]) that for some positive integer k
there exists a homomorphism ϕ : G ÝÑ Z3k´1 satisfying ϕrSs Ď Sk. Such a group
homomorphism ϕ induces a graph homomorphism ϕ‹ : CayleypG;Sq ÝÑ Γk, or, in other
words, it indicates that CayleypG;Sq is contained in a sufficiently large blow-up of Γk.
These considerations reveal that balanced blow-ups of Andrásfai graphs are universal in the
class of triangle-free Cayley graphs whose density is larger than 1{3. Somewhat relatedly, a
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Figure 3.1. Andrásfai graphs Γ3, Γ4, Γ5, and Γ6.

finite graph is a subgraph of a blow-up of an Andrásfai graph if and only if it is isomorphic
to a subgraph of the infinite triangle-free Cayley graph Cayley

`

R{Z; p1{3, 2{3q ` Z
˘

,
see [4, Lemma 2.1]. We proceed with three well known, useful properties of Andrásfai
graphs.

Fact 3.1. Let k ě 2 be an integer.
(i ) We have Γk´1 Ď Γk. Conversely, if we remove a vertex from Γk, then the resulting

graph is a subgraph of a proper blow-up of Γk´1. Consequently, every subgraph of Γk
is a subgraph of a proper blow-up of Γ` for some ` ď k.

(ii ) The chromatic number of Γk is 3.
(iii ) Every independent set in Γk is contained in the neighbourhood of some vertex of Γk.

In particular, αpΓkq “ k.

Proof. The first part of (i ) follows from Γk´1 – Γk ´ tv0, vk, v2ku. Furthermore, the graph
Γ´k “ Γk ´ tvku satisfies Npv0,Γ´k q Ď Npv1,Γ´k q and Npv2k,Γ´k q Ď Npv2k´1,Γ´k q, which
proves Γ´k to be a subgraph of the blow-up of Γk ´ tv0, vk, v2ku obtained by doubling the
vertices v1 and v2k´1. This establishes the second part of (i ) and the last part follows
inductively.

Proceeding with (ii ) we observe that, due to (i ), Γk contains a pentagon Γ2 as a subgraph,
whence χpΓkq ě χpΓ2q “ 3. To verify the reverse inequality, we partition V pΓkq into the
three independent sets tv0, v1, . . . , vk´1u, tvk, vk`1, . . . , v2k´1u, and tv2k, v2k`1, . . . , v3k´2u.

Finally, let S Ď V pΓkq be a nonempty independent set we want to cover by the neigh-
bourhood of an appropriate vertex. By symmetry we may suppose that vk P S, which due
to (3.1) entails S Ď tv1, v2, . . . , v2k´1u. Let i, j P r2k ´ 1s be the smallest and largest index
with vi, vj P S. Now S Ď tvi, . . . , vju, a further application of (3.1) shows j ´ i ď k ´ 1,
and altogether we have S Ď Npvj`kq. �

Let us consider for k ě 2 and n ě s ě 0 an n-vertex blow-up H of the Andrásfai graph Γk
with αpHq ď s. According to the notation of Section 2, this blow-up comes together with
a fixed partition

V pHq “ V0 Ÿ V1 Ÿ . . . Ÿ V3k´2
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of its vertex set. Clearly, since Γk is triangle-free, so is H. Therefore the neighbourhood of
each vertex class of H is an independent set, which proves

|NpViq| “ |Vi`k| ` . . .` |Vi`2k´1| ď s (3.2)

for every i P Z3k´1. We use this inequality to bound the sizes of the vertex classes of H.

Fact 3.2. For every i P Z3k´1 we have

pk ´ 1qn´ p3k ´ 4qs ď |Vi| ď 3s´ n .

Proof. The upper bound holds because of

|Vi| “ |V0 Y V1 Y ¨ ¨ ¨ Y V3k´2| ` |Vi| ´ n

“ |NpViq| ` |NpVi`kq| ` |NpVi´kq| ´ n
(3.2)
ď 3s´ n .

By applying this estimate to Vi`k`1, . . . , Vi`2k´2 instead of Vi we infer

|Vi| “ n´
`

|NpVi`pk´1qq| ` |NpVi´pk´1qq| ` |Vi`k`1| ` ¨ ¨ ¨ ` |Vi`2k´2|
˘

(3.2)
ě n´

`

2s` pk ´ 2qp3s´ nq
˘

“ pk ´ 1qn´ p3k ´ 4qs . �

By combining Corollary 2.4 and Fact 3.2 we arrive at the main result of this section.

Lemma 3.3. Let k be a natural number. If for n ě s ě 0 the graph H is an n-vertex
blow-up of the Andrásfai graph Γk satisfying αpHq ď s, then

epHq ď gkpn, sq . �

As remarked in [17, Fact 1.5], this estimate can hold with equality. We would now like
to complement this observation by an explicit description of all extremal cases. As it turns
out, every n-vertex blow-up H of Γk with αpHq ď s and epHq “ gkpn, sq belongs to the
following family of graphs.

Definition 3.4. Given natural numbers k ě 2, n, and s P rkn{p3k´ 1q, pk´ 1qn{p3k´ 4qs
the family G n

k psq consists of all graphs obtained from Γk by blowing up its vertices
‚ v0 and vk by pk ´ 1qn´ p3k ´ 4qs,
‚ v2k´1 by a, v2k by b, where a, b P rpk ´ 1qn ´ p3k ´ 4qs, 3s ´ ns are two integers

summing up to pk ´ 2qn´ p3k ´ 7qs,
‚ and all remaining vertices by 3s´ n.

Observe that if s “ kn{p3k ´ 1q, then pk ´ 1qn´ p3k ´ 4qs “ 3s´ n and the only graph
in G n

k psq is the balanced blow-up Γkp3s´ nq. At the other end of the spectrum we have
the case s “ pk ´ 1qn{p3k ´ 4q, where pk ´ 1qn´ p3k ´ 4qs “ 0 and the graphs in G n

k psq

are actually blow-ups of Γk r tv0, vku. In this graph, v2k is a twin sister of v2k´1 and again
the class G n

k psq consists of a single graph. In view of Γk´1 – Γk ´ tv0, vk, v2ku this graph is
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the balanced blow-up Γk´1p3s ´ nq. However, if s lies strictly between kn{p3k ´ 1q and
pk´ 1qn{p3k´ 4q, then G n

k psq consists of
X`

p3k´ 1qs´kn
˘

{2
\

` 1 mutually non-isomorphic
graphs.

Lemma 3.5. If H denotes an n-vertex blow-up of Γk satisfying

αpHq ď s and epHq “ gkpn, sq

for some k ě 2, then kn{p3k ´ 1q ď s ď pk ´ 1qn{p3k ´ 4q and H is isomorphic to some
graph in G n

k psq.

Proof. As usual we denote the vertex classes of H corresponding to the vertices of Γk by
V0, . . . , V3k´2. Recall that by Fact 3.2 we have

pk ´ 1qn´ p3k ´ 4qs ď |Vi| ď 3s´ n for every i P Z3k´1 . (3.3)

In particular, H has the properties enumerated in the moreover-part of Corollary 2.4 and
clause (i ) corresponds to the estimates on s stated in the lemma. Next, (ii ) allows us to
assume, without loss of generality, that

|V0| “ pk ´ 1qn´ p3k ´ 4qs . (3.4)

In the special case
|Vk| “ |V2k´1| “ pk ´ 1qn´ p3k ´ 4qs

we have

n “ |V0| ` . . .` |V3k´2|
(3.3)
ď 3

`

pk ´ 1qn´ p3k ´ 4qs
˘

` p3k ´ 4qp3s´ nq “ n ,

which yields |Vi| “ 3s´ n for every i ‰ 0, k, 2k´ 1, meaning that a “ pk ´ 1qn´ p3k ´ 4qs
exemplifiesH P G n

k psq. By symmetry we may therefore suppose |V2k´1| ą pk´1qn´p3k´4qs
from now on, which in view of Corollary 2.4(iii ) entails

s “ |NpV2k´1q| “ |V0| ` . . .` |Vk´1|
(3.3)
ď

`

pk ´ 1qn´ p3k ´ 4qs
˘

` pk ´ 1qp3s´ nq “ s ,

i.e.,
|V1| “ . . . “ |Vk´1| “ 3s´ n . (3.5)

Because of |V1| ` . . .` |Vk| “ |NpV2kq| ď s and (3.3) this yields

|Vk| “ pk ´ 1qn´ p3k ´ 4qs , (3.6)

which together with (3.4) establishes the first bullet in Definition 3.4.
Next we observe that, since by (3.4) the lower bound on |V0| provided by Fact 3.2 holds

with equality, an easy inspection of the proof of Fact 3.2 discloses

|Vk`1| “ . . . “ |V2k´2| “ 3s´ n
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and for the same reason (3.6) leads to |V2k`1| “ . . . “ |V3k´2| “ 3s´n. Combined with (3.5)
these equations confirm the third bullet in Definition 3.4 and, finally, the second bullet
follows easily in the light of vpHq “ n and (3.3). �

§4. Vega graphs and their blow-ups

In this section we investigate another important class of dense triangle-free graphs
which, unlike Andrásfai graphs, have chromatic number four. Let us recall that the first
4-chromatic triangle-free graph on n vertices whose minimum degree is larger than n{3 was
a blow-up of the Grötzsch graph discovered in 1981 by Häggkvist [14]. In 1998, Brandt and
Pisanski [7] worked with a computer program named Vega and found an infinite sequence
of 4-chromatic triangle-free graphs admitting such blow-ups (see Fact 4.2). Due to their
origin, these graphs are called Vega graphs.

a

b c

vw

u

x

y

v0

vi´1

viv2i´1

v2i

v3i´2

Figure 4.1. The Vega graph Υ00
i . The vertices of the external 6-cycle C6

are connected with the vertices of the same colour of the Andrásfai graph Γi
in the middle.

4.1. Definitions and main results. We commence by presenting a construction of Vega
graphs following the work of Brandt and Thomassé [8]. Let an integer i ě 2 be given. Start
with an Andrásfai graph Γi on the vertex set tv0, . . . , v3i´2u and add an edge xy together
with an induced 6-cycle avcubw such that x is joined to a, b, c and y is joined to u, v, w.
Moreover, connect
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‚ a, u to tv0, . . . , vi´1u,
‚ b, v to tvi, . . . , v2i´1u,
‚ and c, w to tv2i, . . . , v3i´2u.

This completes the definition of the sole Vega graph on 3i` 7 vertices, which we denote
by Υ00

i and sometimes just by Υi (see Figure 4.1).
There are two Vega graphs on 3i ` 6 vertices obtainable from Υ00

i by simple vertex
deletions, namely Υ10

i “ Υ00
i ´ tyu and Υ01

i “ Υ00
i ´ tv2i´1u. Finally, the last Vega graph,

Υ11
i “ Υ00

i ´ ty, v2i´1u, has 3i` 5 vertices. Observe that the vertex y is present in Υµν
i if

and only if µ “ 0. Similarly, ν “ 1 in Υµν
i indicates the absence of the vertex v2i´1. For

instance, Υ11
2 is the well known Grötzsch graph. For later use we would like to remark

that Υ11
2 Ď Υµν

i gives a quick proof of the aforementioned estimate χpΥµν
i q ě 4. The main

result of this section reads as follows.

Lemma 4.1. Let integers i ě 2 and µ, ν P t0, 1u be given and set k “ 9i ´ p6 ` µ ` νq.
If for n ě s ě 0 the graph H is an n-vertex blow-up of the Vega graph Υµν

i satisfying
αpHq ď s, then

epHq ď gkpn, sq .

The proof of the above lemma is based on Corollary 2.4, which will become applicable
once we have exhibited a k-regular blow-up of Υµν

i on 3k ´ 1 vertices. To this end we shall
use an appropriate weight function

ωµν : V pΥiq ÝÑ Zě0

from [8]. In the special case µ “ ν “ 0 this function is defined by the following table.

vertex z x, y a, b, u, v c, w v0, v2i´1 vj (where j ‰ 0, 2i´ 1)
weight ω00pzq 1 3i´ 2 3i´ 3 1 3

In general, one uses the function

ωµν “ ω00 ´ µf ´ νg , (4.1)

where f, g : V pΥiq ÝÑ Z are defined by

fpzq “

$

’

’

’

&

’

’

’

%

1 if z “ u, v, w, y

´1 if z “ x

0 otherwise

and

gpzq “

$

’

’

’

&

’

’

’

%

1 if z “ b, v, vi´1, v2i´1

´1 if z “ v0

0 otherwise.
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The weight function ωµν is visualised in Figure 4.2.

3i´ 2

3i´ 2´ ν 3i´ 3

3i´ 2´ µ´ ν3i´ 3´ µ

3i´ 2´ µ

1` µ

1´ µ

1` ν

3´ ν

3

31´ ν

3

3

3

a

b c

vw

u

x

y

v0

vi´1

viv2i´1

v2i

v3i´2

Figure 4.2. Positive integers assigned to the vertices of the original graph Υµν
i .

One checks easily that the support of ωµν always contains V pΥ11
i q, that y is in this support

if and only if µ “ 0, and that v2i´1 is in this support if and only if ν “ 0. Consequently,

the support of ωµν is V pΥµν
i q . (4.2)

Given a signed weight function h : V pΥiq ÝÑ Z and a subset A Ď V pΥiq of the vertex
set we define

hpAq “
ÿ

zPA

hpzq .

For instance, some quick calculations disclose the formulae

ω00
`

V pΥiq
˘

“ 27i´ 19

and f
`

V pΥiq
˘

“ g
`

V pΥiq
˘

“ 3 ,

which by linearity, (4.1), and (4.2) imply

ωµν
`

V pΥµν
i q

˘

“ 3
`

9i´ p6` µ` νq
˘

´ 1 . (4.3)
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Similarly, for every vertex z we have

ω00
`

Npzq
˘

“ 9i´ 6 ,

f
`

Npzq
˘

“

$

&

%

1 if z ‰ y

2 if z “ y,

and g
`

Npzq
˘

“

$

&

%

1 if z ‰ v2i´1

2 if z “ v2i´1,

whence
ωµν

`

Npzq
˘

“ 9i´ p6` µ` νq for all z P V pΥµν
i q . (4.4)

Let Gµν
i “ Υµν

i pωµνq be the blow-up of Υµν
i obtained by replacing every vertex z by an

independent set Z of size ωµνpzq, and let

k “ 9i´ p6` µ` νq (4.5)

be the number occurring in Lemma 4.1. We summarise (4.3) and (4.4) in the following
observation due to [7].

Fact 4.2. If i ě 2 and µ, ν P t0, 1u, then Gµν
i is a k-regular blow-up of Υµν

i on 3k ´ 1
vertices. �

Finally, as in the case of Andrásfai graphs, we characterize all extremal Vega graphs.

Definition 4.3. Given natural numbers k ě 10 and n ě s ě 0 the family H n
k psq is the

smallest collection of blow-ups of Vega graphs with the following properties.
(a ) If s “ kn{p3k ´ 1q, then Gµν

i p3s´ nq P H n
k psq whenever k “ 9i´ p6` µ` νq.

(b ) If kn{p3k ´ 1q ă s ď pk ´ 1qn{p3k ´ 4q, then Υ0ν
i

`

p3s ´ nqωµν ´ λf
˘

P H n
k psq

whenever k “ 9i´ p6` νq.
(c ) If kn{p3k ´ 1q ă s ď pk ´ 1qn{p3k ´ 4q, then Υµ0

i

`

p3s ´ nqωµν ´ λg
˘

P H n
k psq

whenever k “ 9i´ p6` µq.

Observe that for
‚ s R rkn{p3k ´ 1q, pk ´ 1qn{p3k ´ 4qs the family H n

k psq is empty;
‚ k ı 1, 2, 3 pmod 9q the family H n

k psq is empty;
‚ k ” 1 pmod 9q we have µ` ν “ 2 and the family H n

k psq is nonempty if and only if
s “ nk{p3k ´ 1q, in which case it only consists of the graph G11

pk`8q{9p3s´ nq;
‚ k ” 2, 3 pmod 9q and s “ nk{p3k ´ 1q there are one or two graphs in H n

k psq as
described in (a ).

‚ k ” 2, 3 pmod 9q and kn{p3k ´ 1q ă s ď pk ´ 1qn{p3k ´ 4q the family H n
k psq

consists of two graphs, one of which is as described in (b ) while the other one is as
described in (c ).
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Lemma 4.4. Given integers i ě 2, µ, ν P t0, 1u, and n ě s ě 0, let H be a blow-up of Υµν
i

on n vertices. If
αpHq ď s and epHq “ gkpn, sq

hold for k “ 9i´ p6` µ` νq, then H is isomorphic to a graph in the family H n
k psq.

4.2. Proof of Lemma 4.1. Throughout this subsection, we fix some integers i ě 2,
µ, ν P t0, 1u, and n ě s ě 0. We keep using the weight function ωµν : V pΥiq ÝÑ Zě0

and the natural number k defined in (4.1) and (4.5), respectively. Let H be an n-vertex
blow-up of Υµν

i such that αpHq ď s. It will be convenient to view H as a blow-up of Υi as
well by adding an empty vertex class Y in case µ “ 1 and an empty V2i´1 in case ν “ 1.
The independence of the neighbourhoods of the vertices in Υi entails

|NpZq| ď s (4.6)

for every vertex class Z Ď V pHq corresponding to a vertex z P Υi (even if this vertex z
fails to belong to Υµν

i .)
We first bound the size of the vertex classes of H from above and below. The ideas in

the proofs of the two following facts are similar to those in the proof of Fact 3.2.

Fact 4.5. Every vertex z P V pΥiq with ωµνpzq ě 2 satisfies

|Z| ď ωµνpzqp3s´ nq .

Moreover, we have

|X| ` |Y | ď 2p3s´ nq “ ωµνptx, yuqp3s´ nq

and |V0| ` |V2i´1| ď 2p3s´ nq “ ωµνptv0, v2i´1uqp3s´ nq .

Proof. The upper bound on |X| ` |Y | follows from

|X| ` |Y | ` 2n “ |NpAq| ` |NpV q| ` |NpCq| ` |NpUq| ` |NpBq| ` |NpW q|
(4.6)
ď 6s .

Similarly,

|V0| ` |V2i´1| ` 2n “ |NpAq| ` |NpBq| ` |NpUq| ` |NpV q| ` |NpVi´1q| ` |NpViq|
(4.6)
ď 6s

yields the desired upper bound on |V0|`|V2i´1|. It remains to prove |Z| ď ωµνpzqp3s´nq for
every z P V pΥiqr tv0, v2i´1, x, yu. Following the same strategy we have just used, this task
reduces to exhibiting a list of 3ωµνpzq vertices of Υi whose neighbourhoods cover the entire
vertex set ωµνpzq many times and the set Z itself even once more. As there are several
cases and plenty of vertices to consider, it seems useful to devise the following notation.
For a set Q Ď V pΥiq we denote its characteristic function by 1pQq. If Q “ tq1, . . . , qru

comes with an explicit enumeration of its members, it will be convenient to omit a pair
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of curly braces, thus writing 1pq1, . . . , qrq for this function. For instance, the functions f
and g considered earlier can now be represented as

f “ 1pu, v, w, yq ´ 1pxq and g “ 1pb, v, vi´1, v2i´1q ´ 1pv0q .

Instead of 1
`

V pΥiq
˘

we shall just write 1. Next, given a function h : V pΥiq ÝÑ Z

we let Σphq “ hpV pΥiqq “
ř

tPV pΥiq hptq be the sum of the values it attains and by
N phq : V pΥiq ÝÑ Z we mean the function

ř

tPV pΥiq hptq1
`

Nptq
˘

. In other words, this
function satisfies

N phqptq “
ÿ

t1PNptq

hpt1q “ h
`

Nptq
˘

for every t P V pΥiq . (4.7)

So we used earlier that

N pfq “ 1` 1pyq , Σpfq “ 3 ,

and N pgq “ 1` 1pv2i´1q , Σpgq “ 3 , (4.8)

the upper bound on |X| ` |Y | relies on the fact that the hexagon C6 “ ta, v, c, u, b, wu has
the properties

N
`

1pC6q
˘

“ 2 ¨ 1` 1px, yq , Σ
`

1pC6q
˘

“ |C6| “ 6 (4.9)

and soon we are going to need that the inner Andrásfai graph Γ “ tv0, v1, . . . , v3i´2u

satisfies

N
`

1pΓq
˘

“ i ¨ 1pΓq ` pi´ 1q ¨ 1pC6q ` 1pa, b, u, vq , Σ
`

1pΓq
˘

“ |Γ| “ 3i´ 1 . (4.10)

Now it suffices to exhibit for every vertex z P V pΥiqr tv0, v2i´1, x, yu a function

hz : V pΥiq ÝÑ Zě0

such that
(a ) N phzq agrees on V pΥµν

i q with ωµνpzq ¨ 1` 1pzq
(b ) and Σphzq “ 3ωµνpzq.

Indeed, once we have such a function hz at our disposal, we can imitate the above reasoning
and argue that

ωµνpzqn` |Z|
(a )
“

ÿ

tPV pΥiq
N phzqptq|T |

(4.7)
“

ÿ

tPV pΥiq

ÿ

t1PNptq

hzpt1q |T |

“
ÿ

t1PV pΥiq
hzpt1q |NpT 1q|

(4.6)
ď Σphzqs (b )

“ 3ωµνpzqs ,

which proves the desired inequality |Z| ď ωµνpzqp3s´ nq.
Starting with the vertices in Γ we observe that for every k P Z3i´1 r t0, 2i´ 1u we have

N
`

1pvk´i, vk, vk`iq
˘

“ 1pC6q ` 1pΓq ` 1pvkq .
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By adding (4.9) we infer

N
`

1pC6q ` 1pvk´i, vk, vk`iq
˘

“ 3 ¨ 1` 1pvkq , (4.11)

which shows that for k ‰ 0, i´ 1, 2i´ 1 the function hvk “ 1pC6q`1pvk´i, vk, vk`iq has the
required properties. Moreover, for k “ i´ 1 we deduce from (4.11) with the help of (4.8)
that

N
`

1pC6q ` 1pvi´1, v2i´1, v3i´2q ´ νg
˘

“ p3´ νq1` 1pvi´1q ´ ν1pv2i´1q ,

meaning that we can take hvi´1 “ 1pC6q`1pvi´1, v2i´1, v3i´2q´ νg. It remains to deal with
the vertices on the hexagon. Starting with a, we observe

N
`

1pa, xq ´ 1pv2i´1q
˘

“ 1pa, c, w, x, yq , (4.12)

which in view of (4.9) and (4.10) entails that the function

ha “ pi´ 1q1pC6q ` 1pΓq ` 1pa, xq ´ 1pv2i´1q

satisfies

N phaq “ rp2i´ 2q ¨ 1` pi´ 1q ¨ 1px, yqs ` ri ¨ 1pΓq ` pi´ 1q ¨ 1pC6q ` 1pa, b, u, vqs

` 1pa, c, w, x, yq “ p3i´ 2q ¨ 1` 1paq .

Together with Σphaq “ 6pi´ 1q ` p3i´ 1q ` 2´ 1 “ 3p3i´ 2q this proves that ha has all
required properties. By symmetry, for rhb “ pi´1q ¨1pC6q`1pΓq`1pb, xq´1pv0q we obtain
N prhbq “ p3i ´ 2q1 ` 1pbq and Σprhbq “ 3p3i ´ 2q, so by (4.8) we may set hb “ rhb ´ νg.
Next,

N
`

1pxq ´ 1pv0, v2i´1, wq
˘

“ 1pcq ´ 1pa, b, u, vq ´ 1pΓq (4.13)

reveals that the function hc “ pi´1q ¨1pC6q`1pΓq`1pxq´1pv0, v2i´1, wq has the property

N phcq “ rp2i´ 2q ¨ 1` pi´ 1q ¨ 1px, yqs ` ri ¨ 1pΓq ` pi´ 1q ¨ 1pC6q ` 1pa, b, u, vqs

` r1pcq ´ 1pa, b, u, vq ´ 1pΓqs “ p3i´ 3q1` 1pcq

and because of Σphcq “ 6pi´ 1q ` p3i´ 1q ` 1´ 3 “ 3p3i´ 3q this establishes the desired
bound |C| ď p3i´ 3qp3s´ nq. Utilising that similar to (4.12), (4.13) we have

N
`

1pu, yq ´ 1pv2i´1q
˘

“ 1pc, u, w, x, yq

N
`

1pv, yq ´ 1pv0q
˘

“ 1pc, v, w, x, yq

and N
`

1pyq ´ 1pc, v0, v2i´1q
˘

“ 1pwq ´ 1pa, b, u, vq ´ 1pΓq
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one confirms easily that the functions

hu “ pi´ 1q1pC6q ` 1pΓq ` 1pu, yq ´ 1pv2i´1q ´ µf

hv “ pi´ 1q1pC6q ` 1pΓq ` 1pv, yq ´ 1pv0q ´ µf ´ νg

and hw “ pi´ 1q1pC6q ` 1pΓq ` 1pyq ´ 1pc, v0, v2i´1q ´ µf

take care of the three remaining vertex classes. �

Adding all inequalities provided by Fact 4.5 we obtain n ď p3k ´ 1qp3s´ nq (recall (4.3)
and (4.5)), whence

kn

p3k ´ 1q ď s

and the number

λ “ p3k ´ 1qs´ kn “ kp3s´ nq ´ s (4.14)

is nonnegative. For later use we rewrite this in the form

n “ p3k ´ 1qp3s´ nq ´ 3λ (4.3)
“ ωµν

`

V pΥiq
˘

p3s´ nq ´ 3λ . (4.15)

Similarly, (4.6) and (4.4) yield

|NpZq| ď s “ kp3s´ nq ´ λ “ ωµν
`

Npzq
˘

p3s´ nq ´ λ (4.16)

for every vertex z P V pΥµν
i q. Now we are ready for a lower bound on the sizes of the vertex

classes of H.

Fact 4.6. If z P V pΥiq, then

|Z| ě ωµνpzqp3s´ nq ´ λ . (4.17)

Proof. As we shall prove by means of a complete case analysis, there exist two adjacent
non-neighbours z1, z2 of z in Υµν

i such that each of the sets tx, yu and tv0, v2i´1u is either
contained in Npz1q YNpz2q Y tzu or in its complement.

Once we have two such vertices z1 and z2, the argument proceeds as follows. Due to
z1z2 P EpΥiq and zz1, zz2 R EpΥiq the union R “ tzu Ÿ Npz1q Ÿ Npz2q is disjoint. Let
S “ V pΥiqrR be the complement of R and write

RH “ Z ŸNpZ 1q ŸNpZ2q as well as SH “ V pHqrRH

for the sets corresponding to R and S in H. Fact 4.5 implies

|SH | ď ωµνpSqp3s´ nq (4.18)
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and, consequently, we have

|Z| ` |NpZ 1q| ` |NpZ2q| “ |RH | “ n´ |SH |

(4.15)
ě ωµν

`

V pΥiq
˘

p3s´ nq ´ 3λ´ ωµνpSqp3s´ nq “ ωµνpRqp3s´ nq ´ 3λ
(4.16)
ě ωµνpzqp3s´ nq ´ λ` |NpZ 1q| ` |NpZ2q| ,

i.e., |Z| ě ωµνpzqp3s´ nq ´ λ. So it remains to check that the auxiliary vertices z1 and z2

do indeed exist and we list some possible choices in the table that follows.

z v0 v1, . . . , v2i´2 v2i´1 v2i, . . . , v3i´2, a, v b, u c, w x y

z1, z2 c, v c, x c, u b, u a, v v0, vi u, v0 a, v0

This concludes the proof of Fact 4.6. �

We are left with the task of proving Lemma 4.1 itself. To this end we remark that H
can be regarded as a blow-up of the graph Gµν

i considered in Fact 4.2. In fact, every
vertex z of Υµν

i corresponds to some vertex class Z of H and due to ωµνpzq ě 1 we can
partition each such vertex class into ωµνpzq “particles” of size t|Z|{ωµνpzqu or r|Z|{ωµνpzqs

each. Owing to Fact 4.6 the sizes of these particles are at least
Z

|Z|

ωµνpzq

^

(4.17)
ě

Z

ωµνpzqp3s´ nq ´ λ
ωµνpzq

^

“ 3s´ n´
R

λ

ωµνpzq

V

(4.19)

ě 3s´ n´ λ (4.14)
“ pk ´ 1qn´ p3k ´ 4qs .

As the particles endow H with the structure of a blow-up of Gµν
i , Corollary 2.4 shows that

we have indeed
epHq ď gkpn, sq .

This concludes the proof of Lemma 4.1. �

4.3. Proof of Lemma 4.4. Corollary 2.4(i ) yields
kn

3k ´ 1 ď s ď
pk ´ 1qn
3k ´ 4 ,

whence 0 ď λ ď 3s´ n. In the special case λ “ 0 the Facts 4.5 and 4.6 imply that every
vertex z P V pΥµν

i q satisfies |Z| “ ωµνpzqp3s´ nq, meaning that statement (a ) holds. From
now on we suppose λ ě 1, which entails the estimate on s occurring in (b ) and (c ).

Claim 4.7. There exists a vertex z P V pΥµν
i q X tx, y, v0, v2i´1u such that ωµνpzq “ 1 and

|Z| “ 3s´ n´ λ.

Proof. Recall that in the proof of Lemma 4.1 we viewed H as a blow-up of the k-regular
graph Gµν

i . By Corollary 2.4 at least one of the particles occurring in this construction has
the size pk´1qn´p3k´4qs “ p3s´nq´λ. Let z P V pΥµν

i q be a vertex one of whose ωµνpzq
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particles has this size. Now (4.19) needs to hold with equality and we have rλ{ωµνpzqs “ λ.
For this reason at least one of the equations ωµνpzq “ 1 or λ “ 1 is true. In the former
case, z P tx, y, v0, v2i´1u is immediate and we are done.

Now suppose for the sake of contradiction that λ “ 1 and that |Z| ‰ 3s´n´λ holds for
every z P V pΥµν

i q X tx, y, v0, v2i´1u with ωµνpzq “ 1. Together with the Facts 4.5 and 4.6
this yields |Z| ď ωµνpzqp3s´ nq for all vertices z P V pΥµν

i q.
Concerning the set M “ tz P V pΥµν

i q : |Z| ă ωµνpzqp3s´ nqu of vertices for which this
estimate fails to be sharp we can deduce from

n “
ÿ

zPV pΥµνi q

|Z| ď ωµν
`

V pΥµν
i q

˘

p3s´ nq ´ |M |

and (4.15) that |M | ď 3. Owing to χpΥµν
i q “ 4 this shows that the neigbourhouds of the

vertices in M cannot cover the entire vertex sets of Υµν
i or, in other words, that there is a

vertex z‹ P V pΥµν
i q whose neighbourhood is disjoint to M . But now

s ě |NpZ‹q| “
ÿ

zPNpz‹q

|Z| “
ÿ

zPNpz‹q

ωµνpzqp3s´ nq “ kp3s´ nq

contradicts (4.16). This completes the proof of Claim 4.7. �

Let us observe that if the vertex z delivered by Claim 4.7 is either x or y, then µ “ 0,
while if it is one of v0, v2i´1, then ν “ 0.

First Case. We have µ “ 0 and one of X, Y has size 3s´ n´ λ.

The product of the four transpositions x ÐÑ y, a ÐÑ u, b ÐÑ v, and c ÐÑ w is an
automorphism of Υµν

i and, since we only aim at determining H up to isomorphism this
fact shows that without loss of generality we may suppose |Y | “ 3s´ n´ λ.

Now for y in place of z the proof of Fact 4.6 goes through with equality. In particular, if
we work with the pair tz1, z2u “ ta, v0u indicated in the table, we need to have equality
in (4.18), which in turn implies in view of Fact 4.5 that

|Z| “ ωµνpzqp3s´ nq (4.20)

holds for all z P tb, c, v2i, . . . , v3i´2u. Working with the pair ta, vi´1u or tb, viu instead
we learn that (4.20) is also valid for all z P tvi, . . . , v2i´2u and all z P ta, v1, . . . , vi´1u.
Altogether, this proves (4.20) for all z ‰ v0, v2i´1, u, v, w, x, y.

Now |NpV2iq| ď s “ ωµν
`

Npv2iq
˘

p3s´ nq ´ λ and Fact 4.6 yield

|W | “ ωµνpwqp3s´ nq ´ λ ,

meaning for z “ w the estimates entering the proof of Fact 4.6 hold with equality as well.
Applying this observation to tv0, viu playing the rôle of tz1, z2u and to (4.18) we conclude
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|X| ` |Y | “ 2p3s ´ nq, which in turn entails |X| “ p3s ´ nq ` λ. Thus |NpCq| ď s and
Fact 4.6 are only compatible if |Z| “ ωµνpzqp3s´ nq ´ λ holds for z “ u, v as well.

Finally, |Vi| ą ωµνpviqp3s´ nq ´ λ and Corollary 2.4(iii ) yield |NpViq| “ s, whence

|V0| “ ωµνpv0qp3s´ nq .

The same argument applied to Vi´1 discloses |V2i´1| “ ωµνpv2i´1qp3s´ nq and altogether
this concludes the proof that |Z| “ ωµνpzqp3s´ nq ´ λfpzq holds for every z P V pΥµν

i q, i.e.,
that H is as described in (b ).

Second Case. We have ν “ 0 and one of V0, V2i´1 has size 3s´ n´ λ.

We will show that outcome (c ) of our lemma occurs. The argument will be very similar
to the one we saw in previous case. First, we note that the reflection vj ÞÝÑ v2i´1´j

of Γ composed with the transpositions a ÐÑ b, u ÐÑ v constitutes an automorphism
of Υµν

i that exchanges v0 and v2i´1. Thus we may suppose without loss of generality that
|V2i´1| “ 3s´ n´ λ.

As before, we need to have equality in (4.18) when running the proof of Fact 4.6 for
z “ v2i´1 and tz1, z2u being one of the pairs ta, xu, ta, wu, or tc, uu. Consequently, (4.20)
holds whenever z P tvi, . . . , v2i´2, v2i, . . . , v3i´2, a, c, u, wu. Now |NpV3i´2q| ď s and Fact 4.6
yield

|Vi´1| “ ωµνpvi´1qp3s´ nq ´ λ .
This equality case of Fact 4.6 can be analysed by using the pair tc, xu in place of

tz1, z2u. In this manner we infer that (4.20) holds for z P tv1, . . . , vi´2u as well and,
moreover, that |V0| “ p3s´nq ` λ. Together with |NpViq| ď s and Fact 4.6 this establishes
|Z| “ ωµνpzqp3s´ nq ´ λ for z “ b, v and it remains to check (4.20) for z “ x, y. To this
end, we observe that |A| ą ωµνpaqp3s ´ nq ´ λ and Corollary 2.4(iii ) yield |NpAq| “ s,
whence |X| “ ωµνpxqp3s ´ nq. The argument for Y is similar but considers U instead
of A. �

§5. Proofs of the main results

The main ingredient of our argument is a result of Brandt and Thomassé [8] which states
that all maximal triangle-free graphs of large minimum degree are blow-ups of Andrásfai
and Vega graphs. A graph G is maximal triangle-free if adding any missing edge to G
creates a triangle.

Theorem 5.1. Every maximal triangle-free graph on n vertices with minimum degree
greater than n{3 is a proper blow-up of some Andrásfai graph or Vega graph.

Next we recall [17, Fact 2.6], which will allows us to restrict to the ’correct’ range of s
when proving Theorem 1.3.
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Fact 5.2. If n ě s ě 0 and k ě 2 are such that s R
`

k
3k´1n,

k´1
3k´4n

˘

, then

expn, sq ď gkpn, sq

We are now ready for the proof of our second main result.

Proof of Theorem 1.3. Observe that adding any edges to H can neither increase its in-
dependence number nor decrease its minimum degree. Thus, we may and shall assume
that H is a maximal triangle-free graph.

Due to Fact 5.2, it suffices to consider the case

∆pHq ď αpHq ď s ă
k ´ 1
3k ´ 4n .

Since δpHq ą pk ` 1qn{p3k ` 2q ą n{3, Theorem 5.1 tells us that H is a proper blow-up of
some graph J , which is either an Andrásfai graph Γ`, or a Vega graph Υµν

i . In the latter
case we set ` “ 9i´ p6` µ` νq. Now in both cases J has a proper `-regular blow-up on
3`´ 1 vertices and Lemma 2.2 yields k “ `. If J “ Γk is an Andrásfai graph the assertion
follows from Lemma 3.3 and if J is a Vega graph we use Lemma 4.1 instead. �

The other main result follows by means of a vertex deletion argument.

Proof of Theorem 1.2. Define

ζ “
1

8k2 and γ “
1

600k6 .

Consider a triangle-free graph G on n vertices with αpGq ď s and epGq “ expn, sq, where
k

3k ´ 1n ď s ď

ˆ

k

3k ´ 1 ` γ
˙

n . (5.1)

Since γ is sufficiently small, we have s ă pk ´ 1qn{p3k ´ 4q and Fact 5.2 implies
epGq ď g`pn, sq for every ` ‰ k. On the other hand, Lemma 3.5 yields

epGq “ expn, sq ě gkpn, sq (5.2)

and it remains to prove that this holds with equality. It will be convenient to rewrite (5.2)
as

epGq ě gkpn, sq “
1
2

“

ns´
`

pk ´ 1qn´ p3k ´ 4qs
˘`

p3k ´ 1qs´ kn
˘‰

.

Since
0 ď p3k ´ 1qs´ kn ă 3kγn

and
pk ´ 1qn´ p3k ´ 4qs ď p3k ´ 1qpk ´ 1q

k
s´ p3k ´ 4qs “ s

k
,

we have
`

pk ´ 1qn´ p3k ´ 4qs
˘`

p3k ´ 1qs´ kn
˘

ă 3γns ,
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and thus
ns´ 2epGq ă 3γns .

Therefore, the set
A “ tv P V pGq : dpvq ă p1´ ζq su (5.3)

satisfies
ζs|A| ď

ÿ

vPV

ps´ dpvqq “ ns´ 2epGq ă 3γns

and, consequently,
|A| ă

3γn
ζ
“

n

25k4 . (5.4)

Now our argument will proceed as follows. We shall verify that the graph G1 “ G´ A

satisfies the assumptions of Theorem 1.3 and, hence, epG1q is bounded from above by
gkpn´ |A|, sq. Then, using the fact that all vertices in A are of small degree, we derive an
upper bound of gkpn, sq on the number of edges in G.

For the minimum degree of G1 we obtain

δpG1q ě p1´ ζq s´ |A| ą k

3k ´ 1n´
n{2
8k2 ´

n

25k4

ą

ˆ

k ` 1
3k ` 2 `

1
12k2 ´

1
16k2 ´

1
100k2

˙

n

ą
k ` 1
3k ` 2n ě

k ` 1
3k ` 2 |V pG

1
q| .

As the graph G1 is triangle-free and satisfies αpG1q ď s, this shows that Theorem 1.3 applies
to G1 and we are lead to

epG1q ď gkpn´ |A|, sq “ gkpn, sq ´ |A|
`

kpk ´ 1qn´ 1
2kpk ´ 1q|A| ´ kp3k ´ 4qs

˘

. (5.5)

Now our choice of ζ and γ yields
`

pk ´ 1qp3k ´ 1q ´ ζ
˘

s ď

ˆ

pk ´ 1qp3k ´ 1q ´ 1
8k2

˙ˆ

k

3k ´ 1 `
1

600k6

˙

n

ă

ˆ

kpk ´ 1q ` 1
200k4 ´

1
8kp3k ´ 1q

˙

n

ă

ˆ

kpk ´ 1q ` 1
50k2 ´

1
25k2

˙

n ă kpk ´ 1q
ˆ

1´ 1
50k4

˙

n

(5.4)
ă kpk ´ 1qpn´ 1

2 |A|q ,

and for this reason (5.5) can be continued to

epG1q ď gkpn, sq ´
`

pk ´ 1qp3k ´ 1q ´ ζ ´ kp3k ´ 4q
˘

|A|s

“ gkpn, sq ´ p1´ ζq|A|s .
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Every vertex in A has degree at most p1´ ζqs in G, so we arrive at

epGq ď epG1q ` p1´ ζq|A|s ď gkpn, sq , (5.6)

which together with (5.2) concludes the proof of Theorem 1.2. �

Finally, let us remark that our results allow to determine the extremal graphs for
Theorem 1.2.

Corollary 5.3. Suppose that k ě 2 and that G denotes a triangle-free graph on n vertices
with αpGq ď s for some integer s satisfying

k

3k ´ 1n ď s ď

ˆ

k

3k ´ 1 `
1

600k6

˙

n .

If epGq “ expn, sq, then G is isomorphic to a graph in G n
k psq YH n

k psq.

Proof. Following the proof of Theorem 1.2, we see that (5.6) holds with equality, for which
reason the set A defined in (5.3) has to be empty. In other words, G1 “ G and the proof
of Theorem 1.3 discloses that G1 is a blow-up of either the Andrásfai graph Γk, or of a
Vega graph Υµν

i with k “ 9i´ p6` µ` νq. In the former case, Lemma 3.5 shows that G is
isomorphic to a graph in G n

k psq and in the latter case we apply Lemma 4.4. �

In fact, we strongly suspect that these are the only extremal graphs for the whole range
of s, i.e., that the following stronger version of our initial conjecture holds.

Conjecture 5.4. If n{3 ă s ď n{2, then

expn, sq “ min
k
gkpn, sq ,

where gkpn, sq is defined by (1.2). Moreover, each extremal graph with expn, sq edges is
isomorphic to one of the graphs from the families G n

k psq and H n
k psq described in the

Definitions 3.4 and 4.3, respectively.
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