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Abstract. We prove a new sufficient pair-degree condition for Hamiltonian cycles in 3-
uniform hypergraphs that asymptotically improves the best known pair-degree condition
due to Rödl, Ruciński, and Szemerédi. For graphs, Chvátal improved on Dirac’s tight
condition on the minimum degree of a graph ensuring a Hamiltonian cycle by characterising
all degree sequences that guarantee the existence of a Hamiltonian cycle. A step towards
Chvátal’s theorem was taken by Pósa who showed that a graph on at least 3 vertices
whose degree sequence dp1q ď ¨ ¨ ¨ ď dpnq satisfies dpiq ě i` 1, for all i ă pn´ 1q{2, and
furthermore d prn{2sq ě rn{2s, when n is odd, contains a Hamiltonian cycle.

More recently, there has been some progress on generalising Dirac’s theorem to hy-
pergraphs. Rödl, Ruciński, and Szemerédi obtained an asymptotically tight minimum
pair-degree condition for 3-uniform hypergraphs (and generalised this result to k-graphs).

In this work, we will take a step towards a full characterisation of all pair-degree
matrices that ensure the existence of Hamiltonian cycles in 3-uniform hypergraphs by
proving a 3-uniform analogue of Pósa’s result. In particular, our result strengthens the
asymptotic version of the result by Rödl, Ruciński, and Szemerédi.

§1. Introduction

The search for conditions ensuring the existence of Hamiltonian cycles in graphs has
been one of the main themes in graph theory. For graphs, several classic results exist,
starting with the necessary condition by Dirac [5] stating that every graph G “ pV,Eq on
at least 3 vertices and with minimum degree δpGq ě |V |{2 contains a Hamiltonian cycle.
Pósa [12] improved this result to a condition on the degree sequence:

Theorem 1.1. Let G “ prns, Eq be a graph on n ě 3 vertices with dp1q ď ¨ ¨ ¨ ď dpnq.
If dpiq ě i ` 1 for all i ă pn ´ 1q{2 and if furthermore d prn{2sq ě rn{2s when n is odd,
then G contains a Hamiltonian cycle.

Finally, Chvátal [3] achieved an even stronger result: A graph G “ prns, Eq on n ě 3
vertices with degree sequence dp1q ď ¨ ¨ ¨ ď dpnq contains a Hamiltonian cycle if for all i ă n

2

we have: dpiq ď iñ dpn´iq ě n´i. On the other hand, for any sequence a1 ď ¨ ¨ ¨ ď an ă n
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not satisfying this condition there exists a graph on vertex set rns with ai ď dpiq for all i P rns
that does not contain a Hamiltonian cycle.

One can also investigate Hamiltonian cycles in more general structures: A k-uniform
hypergraph (or k-graph) is a pair pV,Eq consisting of a (vertex) set V and an (edge)
set E Ď V pkq. In the following let H “ pV,Eq be a 3-graph. We write EpHq :“ E for
the edge set and for U Ď V we define HrU s :“ pU,EpUqq with EpUq :“ te P E : e Ď Uu.
For vertices v, w P V we denote by dpv, wq :“ |tx P V : vwx P Eu| the pair-degree, where
for convenience we write an edge as vwx instead of tv, w, xu. In addition, it is also
common to study the vertex degree dpvq :“ |te P E : v P eu|. The minimum pair-degree
is δ2pHq :“ minvwPV p2q dpv, wq and the minimum vertex degree is δpHq :“ minvPV dpvq. Of-
ten it is useful to consider something like a 2-uniform projection of H with respect to a
vertex v P V : We define the link graph Lv of v as the graph pV, txy : xyv P Euq.

We will follow the definition of paths and cycles in [13], suggested by Katona and
Kierstead in [9]. A hypergraph P is a tight path of length `, if |V pP q| “ ` ` 2 and
there is an ordering of the vertices V pP q “ tx1, . . . , x``2u such that a triple e forms a
hyperedge of P if and only if e “ txi, xi`1, xi`2u for some i P r`s. The ordered pairs px1, x2q

and px``1, x``2q are the end-pairs of P and we say that P is a tight px1, x2q-px``1, x``2q-
path. All other vertices of P are called internal. We might identify a path with the
sequence of its vertices x1, . . . , x``2. Accordingly, a tight cycle C of length ` ě 4 consists of
a path x1, . . . , x` of length `´ 2 together with the two hyperedges x`´1x`x1 and x`x1x2. A
tight walk of length ` is a hypergraph W with V pW q “ tx1, . . . , x``2u, where the xi are not
necessarily distinct, and EpW q “ txixi`1xi`2, i P r`su. Note that the length of a path, a
cycle or a walk is the number of its edges and we will use this convention for cycles, paths
and walks in graphs as well.

So tight paths are hypergraphs with ordered vertex set and all consecutive triples
appearing as edges. Since consecutive edges intersect in two vertices, these paths are called
tight. One can also consider degree conditions for loose Hamiltonian cycles, looking at
loose paths and cycles in which consecutive edges only intersect in one vertex. Loose
Hamiltonian cycles were for instance studied in [1, 4, 7, 10].

From now on we only consider tight paths and cycles and consequently we may omit the
addition of “tight”.

In recent years there has been some progress to achieve Dirac-like results on hypergraphs.
Rödl, Ruciński, and Szemerédi [15] started by showing that for given α ą 0, there is n0 P N
such that every 3-graph on n ě n0 vertices with minimum pair-degree at least p1

2 ` αqn

contains a Hamiltonian cycle. Actually, in [16] they improved the result to the following,
which is optimal (as minimum pair-degree condition):
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Theorem 1.2. Let H be a 3-graph on n vertices, where n is sufficiently large. If H
satisfies δ2pHq ě tn{2u, then H has a (tight) Hamiltonian cycle. Moreover, for every n
there exists an n-vertex 3-graph Hn such that δ2 pHnq “ tn{2u´ 1 and Hn does not have a
(tight) Hamiltonian cycle.

Some important ideas of the present work originate in the proof of an asymptotically
optimal sufficient condition for the vertex degree of hypergraphs that Reiher, Rödl, Ruciński,
Schacht, and Szemerédi achieved in [13]:

Theorem 1.3. For every α ą 0, there exists an integer n0 such that every 3-graph H
with n ě n0 vertices and with minimum vertex degree δpHq ě

`5
9 ` α

˘

n2

2 contains a (tight)
Hamiltonian cycle.

In this work, we study a new asymptotically optimal pair-degree condition that forces
large 3-graphs to contain a Hamiltonian cycle. It would be very desirable to get a
result for 3-graphs similar to the one by Chvátal: A condition on the matrix of pair-
degrees DpHq “ pdpi, jqqijPrns2 of a 3-graph H “ prns, Eq that forces H to contain a
Hamiltonian cycle, while for each matrix A PMpnˆ n,Nq not satisfying that condition,
there exists a 3-graph H such that DpHq ě A (pointwise) and H does not contain a
Hamiltonian cycle. For the graph case, Pósa’s result (Theorem 1.1) was a step towards
the characterisation by Chvátal. In a sense, our main result can be seen as a 3-uniform
(asymptotic) analogue of the theorem by Pósa.

Theorem 1.4 (Main result). For α ą 0, there exists an n0 P N such that for n ě n0 the fol-
lowing holds: If H “ prns, Eq is a 3-graph with dpi, jq ě min

`

i`j
2 ,

n
2

˘

` αn for all ij P rnsp2q,
then H contains a (tight) Hamiltonian cycle.

This result strengthens the asymptotic version of Theorem 1.2 achieved in [15].
Let us remark that recently there have also been related results on degree sequences in

graphs. Namely, Treglown [19] gave a degree sequence condition that forces the graph to
contain a clique factor and Staden and Treglown [17] proved a degree sequence condition
that forces the graph to contain the square of a Hamiltonian cycle.

Note that in the proof (and the proofs of the Lemmas) we can always assume α ! 1.
Before we start with the outline of the proof of Theorem 1.4 in the next section, we give
the following examples showing that our result is asymptotically optimal.

Example 1.5. (i) Consider the partition X 9YY “ rns with X “
“P

n`1
3

T‰

and let H be
the hypergraph on rns containing all triples e P V p3q such that |eXX| ‰ 2.

Then for γ ă 1{2 and 1
n
! α ! γ, we have dpi, jq ě min

`

γ pi` jq , n2
˘

` αn for
all ij P rnsp2q. On the other hand, if there was a Hamiltonian cycle C in H, it would
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contain at least one edge with two vertices from X. But such an edge can only lie
in a cycle in which all vertices are from X ( rns. Hence, H does not contain a
Hamiltonian cycle.

(ii) Next, look at the partition X 9YY “ rns with X “
“X

n
2

\‰

and let H be the hypergraph
on rns containing all triples e P V p3q such that |eX Y | ‰ 2.

Then for all ij P rnsp2q, we have dpi, jq ě n
2 ´ 2. But an analogous argument as

above shows that H does not contain a Hamiltonian cycle.

The two examples show that Theorem 1.4 does not hold when replacing the degree
condition with dpi, jq ě min

`

γpi` jq, n2
˘

`αn, where γ ă 1{2, and neither when replacing
it with dpi, jq ě min

`

i`j
2 , γn

˘

` αn, where again γ ă 1{2.

Organisation. In the next section we give an overview over the proof, state the auxiliary
results for each step and finally deduce the main result Theorem 1.4 from these. Sections 3-6
are devoted to the proofs of the auxiliary results. In the end, we collect some interesting
related problems in Section 7.

§2. Overview and Final Proof

Our proof follows the strategy of Rödl, Ruciński, and Szemerédi in [15]. Since a
Hamiltonian cycle is a substructure that includes every vertex of a hypergraph H, it seems
suitable to attack the problem via the absorption method: We find a cycle that uses almost
all vertices of H and show that we can “absorb” the remaining vertices, meaning we can
integrate them into the large cycle. For that, we use that for every vertex v P V pHq, there
exist many absorbers in H, path-like structures into which we can insert v. Then, utilising
the probabilistic method, we can construct an absorbing path, a path containing many
absorbers for every vertex. Lastly, we build a long cycle containing this path and almost
all vertices. Consequently, we can then absorb the small set of remaining vertices into that
cycle and obtain a Hamiltonian cycle in H.

For these constructions we often need to connect two paths, that is, find a path between
their end-pairs. Hence, we will begin by showing that we can connect every pair of pairs of
vertices by a large number of paths with a fixed length.

Lemma 2.1 (Connecting Lemma). Let α ą 0. There exist n0, L P N, ϑ ą 0 such that for
all n ě n0 the following holds: If H “ prns, Eq is a 3-graph with

dpi, jq ě min
ˆ

i` j

2 ,
n

2

˙

` αn

for all ij P rnsp2q, then for all disjoint ordered pairs of distinct vertices px, yq, pw, zq P rns2,
there exist at least ϑnL´2 many px, yq-pw, zq-paths of length L in H.
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See Section 3 for the proof of Lemma 2.1. Note that of course the conclusion still holds
for a ϑ1 ! ϑ, 1{L in place of ϑ. For simplicity, we might say “we choose ϑ ! 1{L as in the
Connecting Lemma” (or something similar) instead of introducing this new ϑ1.

Later, we will use this result whenever we need to connect different paths that have
been constructed before. In fact, we will take a special selection of vertices - the reservoir -
aside, with the property that for every pair of pairs of vertices, we still have many paths of
fixed length connecting them, where all internal vertices of those paths are vertices of the
reservoir. The existence of such a set will be shown by the probabilistic method.

Lemma 2.2 (Reservoir Lemma). For every α ą 0, there exists an n0 P N such that for
all n ě n0 the following holds: If H “ prns, Eq is a 3-graph satisfying

dpi, jq ě min
ˆ

i` j

2 ,
n

2

˙

` αn

for all ij P rnsp2q and 1{L " ϑ are given by the Connecting Lemma (Lemma 2.1), then there
exists a reservoir set R Ď rns with ϑ2

2 n ď |R| ď ϑ2n such that for all disjoint ordered pairs
of distinct vertices px, yq and pw, zq, there are at least ϑ |R|L´2

{2 (tight) px, yq-pw, zq-paths
of length L in H whose internal vertices all belong to R.

We further show that removing a few vertices from the reservoir will not destroy its
connectability property.

Lemma 2.3 (Preservation of the Reservoir). For every α ą 0, there exists an n0 P N such
that for all n ě n0 the following holds: If H “ prns, Eq is a 3-graph satisfying

dpi, jq ě min
ˆ

i` j

2 ,
n

2

˙

` αn

for all ij P rnsp2q, and 1{L " ϑ are given by the Connecting Lemma 2.1, and R is a
reservoir set given by the previous Lemma 2.2, and R1 Ď R is an arbitrary subset of size at
most 2ϑ4n, then for all disjoint ordered pairs of distinct vertices px, yq and pw, zq, there is
a (tight) px, yq-pw, zq-path of length L in H with all internal vertices belonging to R r R1.

See Section 4 for the proof of Lemma 2.2 and Lemma 2.3.
The proof will continue with the definition of the absorbers and we will show that for

each vertex there are many absorbers. We make use of this fact when we show that a small
random selection of small paths still contains many absorbers for every v P V pHq. With
the Connecting Lemma we can afterwards connect all the small paths in that selection to
a path that can absorb any small set of vertices.
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Lemma 2.4 (Absorbing Path). For every α ą 0, there exists an n0 P N such that for
all n ě n0 the following holds: If H “ prns, Eq is a 3-graph satisfying

dpi, jq ě min
ˆ

i` j

2 ,
n

2

˙

` αn

for all ij P rnsp2q, ϑ ! α is given by the Connecting Lemma 2.1 and R by the Reservoir
Lemma 2.2, then there exists a path PA Ď H r R with vpPAq ď ϑn and with the (absorbing)
property that for each X Ď rns with |X| ď 2ϑ2n, there is a path with vertex set X Y V pPAq
and the same end-pairs as PA.

See Section 5 for the proof of Lemma 2.4.
At last, we find a path in H containing almost all vertices using hypergraph regularity,

similarly as Rödl, Ruciński, and Szemerédi did in [15], though we use a simpler version of
regularity. We will regularise H and in that way reduce the problem to finding an almost
perfect matching in a reduced hypergraph that almost obeys the same degree condition
as H.

Proposition 2.5 (Long Path). For all α ą 0, there is an n0 P N such that for all n ě n0,
the following holds: Let H “ prns, V q be a 3-graph with dpi, jq ě min

`

i`j
2 ,

n
2

˘

` αn for
all ij P rnsp2q. Let ϑ ! α be given by the Connecting Lemma 2.1, let R be the reservoir from
the Reservoir Lemma 2.2, and PA the absorbing path from the Absorbing Path Lemma 2.4.
Then there exists a path Q in H with V pQq Ď rnsr PA such that

vpQq ě
`

1´ 2ϑ2˘n´ v pPAq

and |V pQq XR| ď ϑ4n.

See Section 6 for the proof of Proposition 2.5.
Now we are ready to prove our main result, Theorem 1.4.

Proof of Theorem 1.4. Let 1 " α be given and let L be as in the Connecting Lemma.
Choose an integer n " 1{ϑ " L such that all the Lemmas and Propositions above hold. Now
let H “ prns, Eq be a 3-graph satisfying the degree condition dpi, jq ě min

`

i`j
2 ,

n
2

˘

` αn

for all ij P rnsp2q. Lemmas 2.2, 2.4, and Proposition 2.5 provide a reservoir R, an absorbing
path PA and a long path Q, respectively. Let pa, bq, pc, dq be the end-pairs of PA and
let pr, sq, pt, uq be the end-pairs of Q (note that they are disjoint since we have Q Ď H ´ PA).
Since |RX V pQq| ď ϑ4n and V pPAq XR “ ∅, by Lemma 2.3 we can choose a path P1 of
length L connecting pt, uq and pa, bq with all internal vertices in Rr pV pQq Y V pPAqq and,
since ϑ4n " L´ 2, we also find a path P2 of length L connecting pc, dq and pr, sq with all
internal vertices in R r pV pQq Y V pPAq Y V pP1qq. That leaves us with a cycle C in H
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a

b

c

d

r s t u

PA

Q

leftover

Ď R

Ď R

absorbing

Figure 2.1. Overview of the proof

which satisfies vpCq ě p1´ 2ϑ2qn and PA Ď C. The absorbing property of PA guarantees
that for X :“ rnsr V pCq, there exists a path P 1A with V pP 1Aq “ V pPAq YX that has the
same end-pairs as PA (which are connected to Q) and hence there is a Hamiltonian cycle
in H. �

§3. Connecting Lemma

Before we start with the actual proof of Lemma 2.1, let us take a look at some other
strategies. Say, we want to connect two pairs px, yq and pw, zq. One can easily reduce the
case of both pairs being arbitrary to that of both having pair-degree of at least n

2 ` αn

by “climbing up” in the degree sequence (see the beginning of the proof). For the results
on the minimum pair-degree conditions for 3-graphs [15,16] the Connecting Lemma was
proved by a cascade-like method: In each step the “front” of reachable vertices with a
good “backward connectivity” grows, one of those cascades growing from each of the two
pairs that are to be connected. In the end one can find vertices v1, v2 in the last front
of each starting pair, respectively, that have high “backward degree“. Thus, utilising the
minimum pair-degree condition for v1v2 gives us a neighbour of those v1v2 that is also a
backward neighbour of v1 or v2 in their respective cascades, allowing us to find a path back
to each px, yq and pw, zq.

However, with our pair-degree condition we cannot guarantee that the vertices v1, v2 with
high backward degree in the cascade (which we might still find) have a high pair-degree,
since v1, v2 may be small. On the other hand, it might be possible to connect px, yq with
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some pairs pv1, v2q of low pair-degree that we can also connect with pw, zq if we construct
the connecting walks more flexibly than with cascades. We therefore omit the approach
via cascades and change our strategy to one similar to the one used in [13].

In the simplest form, the strategy goes as follows: We connect two pairs by consider-
ing N ppx, yq, pw, zqq, the common neighbours of px, yq and pw, zq, which exist because of
the high pair-degrees, and then find many connections between y and w in the common
link graphs of those neighbours. In a second step, one can then insert the elements
of N ppx, yq, pw, zqq at every third position, thereby obtaining a 3-uniform walk.

So we could connect two pairs if the link graphs of vertices in N ppx, yq, pw, zqq inherit
the right degree condition, i.e., if the vertices are large (regarded as elements of N).

However, we cannot control how large the elements of N ppx, yq, pw, zqq are. Therefore,
the degree condition that the link graphs of vertices in N ppx, yq, pw, zqq inherit may not
be strong enough to let us connect two vertices by “climbing up” the degree sequence. The
idea to insert a middle pair ab, as done in [13], overcomes this problem. If ab has some large
common neighbours with px, yq and some with pw, zq, then we can find some px, yq-pw, zq
walks passing through ab by applying the strategy explained above (now we can connect
vertices in the link graphs by “climbing up” the degree sequence). The number of those
walks will depend on the number of large common neighbours that ab has with each xy
and wz. So roughly speaking, if the sum over all ab of large common neighbours of ab
and xy and of ab and wz is large, we can indeed prove the Connecting Lemma 2.1. This
last point (in its accurate form) will follow from the observation that each two link graphs
have many common edges.

Note that this strategy can be used in the seemingly different settings of our pair-degree
condition and the minimum vertex degree condition in [13], since in both cases we have
“well connected” subgraphs in every link graph and each two of these subgraphs intersect
in many edges: In [13] those subgraphs are the robust subgraphs and in our case we can
just consider the complete link graphs.

Proof of Lemma 2.1. For n " 1
α
" 1, let H be given as described, let px, yq, pw, zq P rns2

be two disjoint ordered pairs of distinct vertices.
First we will show that it is possible to “climb up” along the degree sequence in

(compared to n) few steps, starting from the pairs px, yq and pw, zq and ending with pairs
of vertices ě n

2 .
In the second step we will connect these two by utilising an analogous “climb up”

argument in the link graphs of neighbours of a pair and slipping in an additional connective
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pair, similarly as in [13]. We first look for walks rather than paths and conclude by
remarking that many of them will actually be paths.

First Step. By induction on ` ě 3, we will prove the following statement: There exist at
least

`

α
3

˘`´2
n`´2 walks x1 “ x, x2 “ y, x3, . . . , x` such that for i ě 3 we have:

xi ě min
´α

4npi´ 2q, n2

¯

`
α

4n (3.1)

We will first show the statement for ` “ 3 and ` “ 4 and then deduce it for any ` ě 5 given
that it holds for `´ 1.
` “ 3 : By the degree condition on H we have dpx, yq ě min

`1`2
2 , n2

˘

` αn. Hence, there
exist at least α

3n possible vertices x3 such that x1, x2, x3 build a walk and x3 ě
α
4n`

α
4n.

` “ 4 : Let x1, x2, x3 be one of those
`

α
3

˘

n walks satisfying the condition (3.1) that we
get by the precious case. We then have dpx2, x3q ě min

´

1`α
2 n

2 , n2

¯

` αn so there exist at
least α

3n possible vertices x4 such that x1, x2, x3, x4 build a walk and xi ě α
4npi´ 2q ` α

4n

for i “ 3, 4.
` ě 5 : Let x1, x2, x3 . . . x`´1 be one of the

`

α
3

˘`´3
n`´3 walks satisfying

xi ě min
´α

4npi´ 2q, n2

¯

`
α

4n

for i ě 3 that we get by induction. Then our pair-degree condition

dpx`´2, x`´1q ě min
ˆ

2`´ 7
2 ¨

α

4n`
α

4n,
n

2

˙

` αn ě min
´

p`´ 2qα4n,
n

2

¯

`
α

4n`
αn

2
gives rise to at least α

3n possible vertices x` such that x1, x2, . . . x` build a walk and we
have xi ě min

`

α
4npi´ 2q, n2

˘

` α
4n for all i P r`s, i ě 3.

This leaves us with
`

α
3

˘r 2
αs
nr 2

αs possibilities for walks

x1 “ x, x2 “ y, x3, . . . , xr 2
αs`2

with xr 2
αs`1, xr 2

αs`2 ě
n
2 and an analogous argument for pw, zq with just as many possibilities

for walks
z1 “ z, z2 “ w, z3, . . . , zr 2

αs`2

with zr 2
αs`1, zr 2

αs`2 ě
n
2 .

Second Step. Let m be the smallest even number ě 1
α
` 1. It now suffices to show

that for all ordered pairs px1, y1q, pw1, z1q of vertices, where the vertices within each pair
are distinct and x1, y1, w1, z1 ě n

2 , there are at least ϑ1n3m`4 many px1, y1q-pw1, z1q walks
with 3m` 4 internal vertices, where ϑ1 ! α does not depend on n.

Since x1, y1 have at least n
2 ` αn neighbours, there exists

Ux1y1 “
 

u1, . . . , utαnu

(

Ď
“

rn{2s
‰
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x1 y1

a b

w1 z1

r1 sm

r2 sm´1

rm´1 s2

rm s1

r3

r4

s3

s4

Ux1y1

uip1q

uip2q

uipm
2 `1q

Uw1z1

vjp1q

vjp2q

vjpm
2 `1q

Figure 3.1. Idea of the second step, the picture is similar to [13, Fig. 4.1]

such that x1y1 P E pLuiq for all i P
“

tαnu
‰

(recall that Lui denotes the link graph of ui).
Similarly, there exists

Uw1z1 “
 

v1, . . . , vtαnu

(

Ď
“

rn{2s
‰

such that w1z1 P E pLviq for all i P
“

tαnu
‰

.
For pa, bq P rns2 let Iab “ ti P rtαnus : ab P E pLuiq X E pLviqu. Since all vertices ě n

2

(apart from ui, vi) have in both Lui and Lvi at least n
2 ` αn many neighbours, and

therefore 2αn vertices that they are adjacent to in both Lui and Lvi , there are at
least 1

22αn
`

n
2 ´ 3

˘

ě αn2

4 common edges of Lvi and Lui . Thus, by double counting we have
ÿ

pa,bqPrns2

|Iab| ě
ÿ

iPrtαnus

|E pLviq X E pLuiq| ě
αn2

4 tαnu .

Next, for fixed pa, bq P rns2 we find a lower bound for the number Lab of 3-uniform walks
of the form

x1y1uip1qr1r2uip2q . . . uipm2 q
rm´1rmuipm2 `1qab

where y1r1r2 . . . rm´1rma is a 2-uniform walk in Luipkq and ipkq P Iab for all k P
“

m
2 ` 1

‰

.
To this goal, first observe that for all i P

“

tαnu
‰

there are
`

α
3

˘m
nm many y1a-walks of

length m` 1 in Lui : In Lui any vertex j has degree ě min
`

j, n2
˘

` αn because ui ě n{2.
Therefore, there are at least

`X

αn
2

\˘m´1 many walks of length m´ 1 starting in a, in which
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each vertex is either ě n
2 `

αn
2 or at least αn

2 larger than the preceding vertex. Since we
set m ě 1{α ` 1, each of these walks ends in a vertex ě n

2 and for at least
`

αn
3

˘m´1 of
them the ending vertex is not y1. For each such walk T with its last vertex a1T ‰ y1 there
are 2αn possibilities for common neighbours of y1 and a1T (note that the degrees in Lui of
both y1 and a1T are at least n

2 ` αn). In total, that gives us at least
`

αn
3

˘m many y1a-walks
of length m` 1 in Lui .

Now, for ~r P rnsm we set Dab p~rq :“ ti P Iab : y1~ra is a walk in Luiu.
Again we get by double counting that

ÿ

~rPrnsm

|Dab p~rq| “
ÿ

iPIab

ˇ

ˇ

 

~r P rnsm : y1~ra is a walk in Lupiq
(ˇ

ˇ ě |Iab|
´α

3

¯m

nm.

For each ~r P rnsm we have that x1y1uip1qr1r2uip2q . . . uipm2 q
rm´1rmuipm2 `1qab, with ~r being

a y1a walk in Luipkq for every k P
“

m
2 ` 1

‰

, is a 3-uniform px1y1q-pabq-walk of lengthm` m
2 ` 3

in H. Hence, by Jensen’s inequality we derive:

Lab ě
ÿ

~rPrnsm

|Dab p~rq|
m
2 `1

ě nm
ˆ

ÿ 1
nm
|Dab p~rq|

˙
m
2 `1

ě nm
´

|Iab|
´α

3

¯m¯m
2 `1

.

We define Rab analogously as the number of 3-uniform walks of the form

abvjp1qs1s2vjp2q . . . vjpm2 q
sm´1smvjpm2 `1qw

1z1

where bs1s2 . . . sm´1smw
1 is a 2-uniform walk in Lvjpkq and jpkq P Iab for all k P

“

m
2 ` 1

‰

and get the same lower bound by an analogous argument.
At last, let W be the number of px1y1q-pw1z1q-walks of length 3m ` 6 in H. We apply

Jensen’s inequality a second time to obtain:

W ě
ÿ

pa,bqPrns2

LabRab

ěn2m
´α

3

¯m2`2mÿ

pa,bqPrns2

|Iab|
m`2

ěn2m
´α

3

¯m2`2m
n2

ˆ

1
n2
αn2

4 tαnu

˙m`2

ě

´α

3

¯m2`2m
ˆ

α2

5

˙m`2

n3m`4

ě

ˆ

α2

5

˙m2`3m`2

n3m`4.
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In total, putting together the walks connecting px, yq and px1, y1q, px1, y1q and pw1, z1q
and pw1, z1q and pw, zq we have

ˆ

´α

3

¯r 2
αs
nr 2

αs

˙2

ˆ

˜

ˆ

α2

5

˙m2`3m`2

n3m`4

¸

many possibilities for px, yq-pw, zq walks of length 2 ¨
P 2
α

T

` 3m` 6 in H.
Only O

´

n2rα2 s`3m`3
¯

of these fail to be a path. Therefore, recalling 1 " α " 1
n
, we have

at least
´

α2

9

¯r 2
αs`m2`3m`2

n2rα2 s`3m`4 many px, yq-pw, zq paths of length 2 ¨
P 2
α

T

` 3m` 6
in H. �

§4. Reservoir

In this section we will prove the existence of a small set, the reservoir, such that any two
pairs of vertices can be connected by paths with all internal vertices lying in the reservoir.
The probabilistic proof of this Lemma as done in [13] works in almost the same way with
different conditions as soon as the Connecting Lemma is provided. We will state two
important inequalities first that we will need for the probabilistic method.

Lemma 4.1 (Chernoff, see for instance Cor. 2.3 in [8]). Let X1, X2, . . . , Xm be a sequence
ofm independent random variables Xi :Ñ t0, 1u with P pXi “ 1q “ p and P pXi “ 0q “ 1´ p.
Then we have for δ P p0, 1q:

‚ P
´

ř

iPrmsXi ě p1` δq pm
¯

ď exp
´

´ δ2

3 pm
¯

‚ P
´

ř

iPrmsXi ď p1´ δq pm
¯

ď exp
´

´ δ2

2 pm
¯

Lemma 4.2 (Azuma-Hoeffding, McDiarmid, Cor. 2.27 in [8] and Thm. 1 in [11]). Sup-
pose that X1, . . . , Xm are independent random variables taking values in Λ1, . . . ,Λm and
let f : Λ1 ˆ ¨ ¨ ¨ ˆ Λm Ñ R be a measurable function. Moreover, suppose that for certain
real numbers c1, . . . , cm ě 0, we have that if J, J 1 P

ś

Λi differ only in the k-th coordinate,
then |fpJq ´ f pJ 1q| ď ck. Then the random variable X :“ f pX1, . . . , Xmq satisfies

P p|X ´ EpXq| ě tq ď 2 exp
ˆ

´
2t2
ř

c2
i

˙

We are now ready to prove Lemma 2.2.

Proof of Lemma 2.2. Let α,L, ϑ be given as in the statement. Then we choose n P N
such that we have the following hierarchy: 1 " α, 1

L
" ϑ " 1{n. Let H be given as

described in the Lemma. We choose a random subset R Ď rns, where we select each vertex
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independently with probability p “
`

1´ 1
10L

˘

ϑ2. Since |R| is now binomially distributed,
we can apply Chernoff’s inequality (Lemma 4.1) and utilise the hierarchy to obtain

P
`

|R| ă ϑ2n{2
˘

ď P
ˆ

|R| ă 2
3E pRq

˙

ď exp
˜

´
p1{3q2

2 pn

¸

ă 1{3. (4.1)

We also have ϑ2n ě p1` cpLqqE p|R|q for some small cpLq P p0, 1q not depending on n and
therefore, again by Chernoff (Lemma 4.1) we get for large n:

P
`

|R| ą ϑ2n
˘

ď P p|R| ě p1` cpLqqE pRqq ď exp
ˆ

´
cpLq2

3 pn

˙

ă 1{3 (4.2)

By the Connecting Lemma 2.1 we have that for all disjoint ordered pairs of distinct
vertices px, yq and pw, zq, there exist ϑnL´2 many px, yq-pw, zq-paths of length L in H.
Let X “ X ppx, yq, pw, zqq denote the random variable counting the number of those px, yq-
pw, zq-paths in H that are of length L and have all internal vertices in R. We then
have EpXq ě pL´2ϑnL´2.

Now we apply the Azuma-Hoeffding inequality (Lemma 4.2) (with X1, . . . , Xn being the
indicator variables for the events “1 P R”,... ,“n P R”) which gives us, since the presence
or absence of one particular vertex in R affects X by at most pL´ 2qnL´3, that

P
ˆ

X ď
2
3ϑppnq

L´2
˙

ďP
ˆ

X ď
2
3EpXq

˙

ď2 exp
˜

´
2
`

pL´2ϑnL´2˘2

9n ppL´ 2qnL´3q
2

¸

“ exp p´Ωpnqq .

By the union bound, also the probability, that for one of the at most n4 pairs of pairs that
we have to consider the respective number of connecting paths with all internal vertices
in R is less than 2

3ϑppnq
L´2, can be bounded from above by

exp p´Ωpnqq ˆ n4
ă 1{3 (4.3)

for n large. Moreover, recalling our hierarchy we have

2
3ϑp

L´2nL´2
“

ˆ

1´ 1
10L

˙L´2 2
3ϑ

`

ϑ2n
˘L´2

ě
ϑ

2
`

ϑ2n
˘L´2

which together with (4.2) and (4.3) implies the following: With probability ą 1{3 the
chosen set R satisfies |R| ď ϑ2n and has the property that for all disjoint ordered pairs
of distinct vertices px, yq and pw, zq there exist at least ϑ

2 |R|
L´2 paths of length L in H

that connect those pairs and have all their internal vertices in R. Therefore, combining
this with (4.1) ensures that there indeed exists a version of R that has all the required
properties of our reservoir set. �



14 B. SCHÜLKE

It is not hard now to show the preservation of the reservoir, Lemma 2.3.

Proof of Lemma 2.3. Let α,L, ϑ be as in the statement. Choose n P N such that we have
the hierarchy 1 " α, 1

L
" ϑ " 1

n
. Let H,R,R1 be as in the statement of the Lemma.

Consider any two disjoint ordered pairs of distinct vertices px, yq and pw, zq. We have

|R1
| ď 2ϑ4n ď ϑ3{2ϑ

2

2 n ď ϑ3{2
|R|

by the lower bound we get from Lemma 2.2. Since every particular vertex in R1 is an
internal vertex of at most pL´ 2q|R|L´3 many px, yq-pw, zq-paths of length L in H with
all internal vertices from R, the Reservoir Lemma tells us that there are at least

ϑ

2 |R|
L´2

´ |R1
| pL´ 2q|R|L´3

ě
ϑ

2 |R|
L´2

´ ϑ3{2
pL´ 2q|R|L´2

ą 0

such px, yq-pw, zq-paths with all internal vertices in R r R1. �

§5. Absorbing Path

In this section we will construct a short absorbing path PA that can “absorb” every
small set of arbitrary vertices: For each such set, we can build a path P containing each
vertex in the set and all the vertices from the path PA while keeping the same end-pairs
as PA. Later, it will then suffice to find a cycle containing PA and almost all vertices and
then absorb the remaining vertices into PA. Since we already have a Connecting Lemma,
actually the only step left will be to find a long path. So this approach allows us to reduce
the problem of finding a certain subgraph containing all vertices (in this case a Hamiltonian
cycle) to the easier problem of finding a subgraph (in our case a cycle or actually a path)
that contains only almost all vertices - this is the core idea of the absorption method.

In order to construct such an absorbing path, one first has to find many absorbers for
each vertex v: In our case, those are two small paths that allow us to build two new small
paths with the same end-pairs, containing all vertices of the first two paths and in addition
the “absorbed” vertex v. This makes sure that we can maintain the path structure when
absorbing single vertices, since the linking pairs remain unchanged. Once we know that for
every vertex v, there exist many such v-absorbers in H, the probabilistic method provides
a small set of disjoint paths with the property that for every vertex v, this set contains
many v-absorbers. We simply connect all these paths via the Connecting Lemma and
then we can absorb a small set of vertices by greedily inserting each vertex into a different
absorber.

The difficult part is to find the right structure for those absorbers, namely one that
ensures the existence of many absorbers in H. Here we can use an idea similar to one
in the proof of a minimum vertex degree condition in [13]: It seems difficult to directly
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v
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d

z

u

w

x

y

v

a b

c d

z

u
w

x y
PA

Figure 5.1. Structure of the absorbers with hyperedges used before ab-
sorption of v in dark red and hyperedges used after absorption of v in light
red; the pictures are similar to [13, Fig. 6.1]

absorb an arbitrary vertex into a path with four vertices, as it would be possible with a
minimum pair-degree of p1

2 ` αqn. However, for certain vertices, namely large ones, we can
do just this. We can thus absorb an arbitrary vertex by inserting it into a short path at
the position of a large vertex (here we utilize the concept of link graphs once again). In a
second step, we then easily absorb that large vertex.

Definition 5.1. Let H “ prns, Eq. For v P rns, a 9-tuple pa, b, c, d, z, u, w, x, yq P rns9 of
distinct vertices is called v-absorber (in H) if

vab, vbc, vcd, abz, bcz, cdz, zuw, zwx, zxy, uwx,wxy P E

Note that an absorber can be seen as two paths in one of which v can take the place
of z and z can be inserted into the second (both without changing the end-pairs), see also
Figure 5.1.

Lemma 5.2 (Many Absorbers). For every α ą 0, there exists an n0 P N such that for
all n ě n0 the following holds: If H “ prns, Eq is a 3-graph that satisfies

dpi, jq ě min
ˆ

i` j

2 ,
n

2

˙

` αn

for all ij P rnsp2q and R is a reservoir set given by the Reservoir Lemma 2.2, then for
every v P rns, there exist at least α14n9 many v-absorbers in prnsr Rq9.
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Proof of Lemma 5.2. Let n " 1
ϑ
" 1

α
" 1, where ϑ is as in the Reservoir Lemma. Let H be

as in the statement, v P rns. There are at least αn
2 possibilities to choose a vertex z ě n´αn

with z ‰ v. Also, there are at least αn
2 many vertices ě n´ αn that are neither v nor z

and those have a degree of at least n
2 `

α
2n in the link graph of v and in the link graph

of z. Hence, Lv and Lz share at least α2n2

4 edges. The following claim ensures many short
walks in Lv X Lz.

Claim 5.3. If two graphs G1 “ pV,E1q, G2 “ pV,E2q share at least α2n2

4 edges, that

is, |E1 X E2| ě
α2n2

4 , then there are at least
´

α2

8

¯4
n4 quadruples pa, b, c, dq P V 4 that form

a walk of length four in G1 XG2.

Proof. Start with F1 :“ G1XG2 and for i ě 2, let Fi be the graph on vertex set V obtained
from Fi´1 by deleting all edges incident to those vertices s P V with dFi´1psq ă

α2

8 n. This
procedure ends with some Fj in which for every vertex t with dFjptq ą 0, we actually
have dFjptq ě α2

8 n. Since e pFjq ą e pF1q ´ nα
2n
8 ě α2n2

8 and noting that all neighbours
(in Fj) of a vertex t with dFjptq ě

α2

8 n also have degree ě α2

8 n in Fj, there are indeed
at least α2

8 n vertices in Fj that have degree ą 0, therefore ě α2

8 n. Now, just choose an
arbitrary vertex a with dFjpaq ě

α2

8 n and then b P NFjpaq, c P NFjpbq (not necessarily
different from a), d P NFjpcq (not necessarily different from a or b). That gives us a walk of
length four in G1 XG2 and since for each of the choices there are at least α2

8 n possibilities
this proves the claim. �

Thus, we have at least
´

α2

8

¯4
n4 quadruples pa, b, c, dq P rns4 that form a walk of length 4

in Lv X Lz. There are at least αn
2 possible choices for w ‰ z as a vertex ě n ´ αn.

Then dpw, zq ě n
2 ` αn implies that there are ě tαnu choices for x such that zwx P E

and x ě n
2 . So we have dpz, wq ě n

2 ` αn, dpz, xq ě
n
2 ` αn and dpw, xq ě n

2 ` αn which
means there exist at least 2αn vertices u P Npz, wq XNpw, xq and there are at least 2αn
vertices y P Npz, xq XNpw, xq.

In total, there are at least tαnu
5
¨ α

8

212n
4 ě α13

217 n
9 choices for pabcdzuwxyq P V 9 such that

vab, vbc, vcd, abz, bcz, cdz, zuw, zwx, zxy, uwx,wxy P E.

We only have O pn8q 9-tuples in which not all vertices are distinct and at most 9ϑ2n9

9-tuples contain a vertex from R. Thus, with 1 " α " ϑ " 1
n
there are at least α14n9

v-absorbers pa, b, c, d, z, u, w, x, yq P prnsr Rq9. �

We are now ready to prove Lemma 2.4.

Proof of Lemma 2.4. The proof proceeds in two steps. First, we will use the probabilistic
method, showing that a randomly chosen set of 9-tuples contains with probability ą 0
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many absorbers, while being not too large and each tuple consisting (just as the absorber)
of two paths. In the second part we connect all those paths using the Connecting Lemma.

Let α, ϑ with ϑ ! α be given as in the statement and let L ! 1{ϑ be given by the
Connecting Lemma. Choose n " 1

ϑ
and let H,R be given as in the statement.

Select each 9-tuple from prnsr Rq9 independently with probability p :“ 4ϑ2

α14n8 to be in a
random selection X Ď prnsr Rq9. Then E r|X |s ď pn9 “ 4ϑ2

α14n and by Markov’s inequality
we get

P
ˆ

|X | ą 24ϑ2

α14 n

˙

ď
1
2 . (5.1)

Calling two distinct 9-tuples overlapping if they contain a common vertex, we observe
that there are at most 81n17 ordered pairs of overlapping 9-tuples. Let us denote the
number of overlapping pairs with both of their tuples occurring in X by D. We then
get ErDs ď 81n17p2 “ 81

´

4ϑ2

α14

¯2
n and Markov yields

P
“

D ą ϑ2n
‰

ď P

«

D ą 324
ˆ

4ϑ2

α14

˙2

n

ff

ď
1
4 (5.2)

since α " ϑ " 1{n.
Next, we focus on the number of absorbers contained in X . For v P rns let Av denote

the set of all v-absorbers. Lemma 5.2 gives us for every v P rns that

E r|Av X X |s ě α14n9p “ 4ϑ2n.

Since |Av X X | is binomially distributed, we may apply Chernoff’s inequality to get for
all v P rns:

P
`

|Av X X | ď 3ϑ2n
˘

ď exp
˜

´

`1
4

˘2

2 4ϑ2n

¸

ă
1

5n (5.3)

Hence, by (5.1), (5.2) and (5.3) there exists a selection F˚ of 9-tuples from prnsr Rq9 with:

‚ |F˚| ď 8ϑ2

α14n

‚ F˚ contains at most ϑ2n overlapping pairs
‚ F˚ contains at least 3ϑ2n many v-absorbers for all v P rns

For each overlapping pair, we delete one of its 9-tuples and thus lose at most ϑ2n many
absorbers. Furthermore, we delete all those 9-tuples pa, b, c, d, z, u, w, x, yq P F˚ for which
we do not have abz, bzc, zcd, uwx,wxy P E and those whose vertices are not all distinct.
Note that we do not lose any absorbers by the last two steps since absorbers satisfy both
conditions. This deletion process gives rise to an F Ď prnsr Rq9 satisfying:

‚ |F | ď 8ϑ2

α14n
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‚ all 9-tuples in F are pairwise disjoint and all the vertices in each 9-tuple are distinct
‚ if pa, b, c, d, z, u, w, x, yq P F , then abz, bzc, zcd, uwx,wxy P E
‚ for every v P rns, there are at least 2ϑ2n many v-absorbers in F

Next, we want to connect the elements in F to a path utilising the Connecting Lemma 2.1.
Let G be the set consisting of all the paths abzcd and uwxy for each pabcdzuwxyq P F :

G “
ď

pabcdzuwxyqPF

tabzcd, uwxyu

We then have |G| “ 2|F | ď 16ϑ2

α14 n. Let G˚ Ď G be a maximal subset such that there exists
a path P ˚ Ď H ´R with:

‚ P ˚ contains all paths in G˚ as subpaths
‚ V pP ˚q X

Ť

PPGrG˚ V pP q “ ∅
‚ P ˚ satisfies v pP ˚q ď pL´ 2` 5q |G˚| ` 2.

First assume G˚ ( G, and let Q˚ P G r G˚. Notice that by 1 " α, 1
L
" ϑ " 1

n
we have

v pP ˚q `

ˇ

ˇ

ˇ

ˇ

ˇ

ď

PPGrG˚
V pP q

ˇ

ˇ

ˇ

ˇ

ˇ

` |R| ď 2` pL` 3q 16ϑ2

α14 n` ϑ
2n ď 2ϑ3{2n ď

ϑn

2 pL´ 2q . (5.4)

The Connecting Lemma 2.1 now tells us that there are at least ϑnL´2 paths of length L
connecting an end-pair px, yq of P ˚ with an end-pair pw, zq of Q˚ (which are disjoint by the
choice of P ˚). By (5.4) at least half of those are disjoint to RY

Ť

PPGrG˚rtQ˚u V pP q and
(apart from the end-pairs) disjoint to V pP ˚q and V pQ˚q. Hence, there exists a path P ˚˚,
starting with P ˚ and ending with Q˚ whose vertex set is disjoint to

Ť

PPGrG˚rtQ˚u V pP q

and for which we further have

v pP ˚˚q “ v pP ˚q ` L´ 2` v pQ˚q ď 2` pL´ 2` 5q |G˚ Y tQ˚u| .

Therefore G˚ Y tQ˚u contradicts the maximality of G˚.
Thus G˚ “ G. Also, for PA :“ P ˚, the hierarchy 1 " α, 1

L
" ϑ " 1

n
gives us the required

bound on v pPAq:

v pPAq ď 2` pL´ 2` 5q16ϑ2

α14 n ď ϑn.

And lastly, the structure and the number of the absorbers in PA ensures the absorb-
ing property: Let X Ď rns with |X| ď 2ϑ2n. For each v P X, we can choose one v-
absorber pa, b, c, d, z, u, w, x, yq from F such that all chosen absorbers are distinct, since
for every v P V , there are at least 2ϑ2n many v-absorbers appearing as two subpaths in PA.
For every v P X, we then replace the two subpaths abzcd and uwxy of PA with the two
new paths abvcd, uwzxy (those are paths because of the edge requirements on v-absorbers)
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that have the same end-pairs as the former two paths. That leaves us with a path P 1 that
satisfies V pP 1q “ V pPAq YX and has the same end-pairs as PA. �

§6. Long Path

In this section we will prove the existence of a path that contains almost all vertices.
To do so, we will need a weak form of the hypergraph regularity method which we will
therefore introduce briefly.

Let H “ pV,Eq be a 3-graph and V1, V2, V3 Ď V ; we write

E pV1, V2, V3q “ tpv1, v2, v3q P V1 ˆ V2 ˆ V3 : v1v2v3 P Eu

and e pV1, V2, V3q “ |EpV1, V2, V3q|. Further, we write

HpV1, V2, V3q “ pV1 9YV2 9YV3, E pV1, V2, V3qq.

A central definition for the regularity method is that of quasirandomness: The property
of three partition classes having roughly the same edge density on each selection of subsets
of the partition classes: For δ ą 0, d ě 0 and V1, V2, V3 Ď V , we say that HpV1, V2, V3q is
weakly pδ, dq-quasirandom if for all U1 Ď V1, U2 Ď V2, U3 Ď V3, we have that

|e pU1, U2, U3q ´ d |U1| |U2| |U3|| ď δ |V1| |V2| |V3| .

We say that HpV1, V2, V3q is weakly δ-quasirandom if it is weakly pδ, dq-quasirandom for
some d ě 0. For brevity, we might also say that V1, V2, V3 are weakly pδ, dq-quasirandom
(or δ-quasirandom) (in H). Lastly, since we only look at weak quasirandomness in this
section, we may omit the addition of “weakly”.

The regularity lemma is a strong tool in extremal combinatorics. While the full generali-
sation to hypergraphs is more involved than the version for graphs, there is also a light
version for hypergraphs that can already be useful and indeed it is for us:

Lemma 6.1 (Weak Hypergraph Regularity Lemma). For δ ą 0, t0 P N, there exists
a T0 P N such that for every 3-graph H “ prns, Eq with n ě t0 there exist an integer t
with t0 ď t ď T0 and a partition rns “ V0 9YV1 9Y . . . 9YVt such that:

‚ |V0| ď δn and |V1| “ ¨ ¨ ¨ “ |Vt|

‚ for i ě 1, we have max pViq ď max pVi`1q and max pViq ´min pViq ď n
t0

‚ there are at most δt3 many ijk P rtsp3q such that the “triplet” Vi, Vj, Vk, also written
as V ijk, is not weakly δ-quasirandom in H.

For a proof of Lemma 6.1 see for instance [2, 6, 18]. One can get the slight extra
requirement on the ordering of the vertices by dividing the vertex set in intervals of
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length
Y

n
t0

]

and afterwards going on with the proof refining those sets. This has been
remarked before, e.g. by Reiher, Rödl, and Schacht in [14].

We will now proceed in the following way that roughly imitates the strategy of Rödl,
Ruciński, and Szemerédi in [15]: We regularise H and then observe that a triplet V ijk that
is quasirandom and has a certain density can almost be covered with not too short disjoint
paths. Now we can think of the situation as a reduced hypergraph with the partition
classes as vertices and edges encoding those “good triplets” that in H we can almost cover
with paths. Then we notice that we can almost transfer the degree condition to that
reduced hypergraph. This degree condition will ensure an almost perfect matching in the
reduced hypergraph. But that means that in H almost all vertices can be covered with
paths, which we can then connect through the reservoir to a long path in H.

Lemma 6.2 (Good Triplets). For ξ ą 0, d ą 0, δ ą 0, n P N with dξ3´δ
2 n ě 3, the following

holds. Let H “ pU 9YV 9YW,Eq with |U |, |V |, |W | “ n be a 3-graph and suppose that U, V,W
are weakly pδ, dq-quasirandom in H. Then at least 3n´ 3ξn vertices of H can be covered
by vertex disjoint paths of length at least dξ3´δ

2 n´ 2.

Proof of Lemma 6.2. For convenience set c “ dξ3´δ
6 n. Let P be a maximal set of vertex

disjoint paths of length 3 rcs´ 2 in H, where each path takes alternatingly vertices from
each partition class, i.e., each path is of the form

u1v1w1u2v2w2 . . . urcsvrcswrcs

with ui P U, vi P V,wi P W .
Assume, |V | ´ |

Ť

PPP V pP q| ą 3ξn. Then the sets

U 1 :“ U r
ď

PPP
V pP q, V 1 :“ V r

ď

PPP
V pP q,W 1 :“ W r

ď

PPP
V pP q

satisfy |U 1| , |V 1| , |W 1| ą ξn.
Next we will use a similar argument as in the proof of Claim 5.3: We delete all the edges

that contain vertex pairs of small pair-degree. With the edges that still remain after this
process we can build a path of the required length.

We start with F1 “ H rU 1, V 1,W 1s and set Fi`1 for i ě 1 as the hypergraph ob-
tained from Fi by deleting all edges containing a vertex pair xy with dˆFipx, yq ď c,
where dˆFipx, yq “ |te P E pFiq : x, y P e, |eX U 1| “ |eX V 1| “ |eXW 1| “ 1u|. This process
stops with a hypergraph Fj in which for all x, y P V pFjq we either have dˆFjpx, yq “ 0
or dˆFjpx, yq ě c. The deletion condition guarantees

eˆpF1q ´ e
ˆ
pFjq ď c ¨ 3n2,
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with eˆ pFiq “ |te P E pFiq : |eX U 1| “ |eX V 1| “ |eXW 1| “ 1u|, and the quasirandomness
of U, V,W gives that eˆpF1q “ e pU 1, V 1,W 1q ě pdξ3 ´ δqn3. Thus, there still exists an
edge u1v1w1 in Fj with u1 P U

1, v1 P V
1 and w1 P W

1. But this means that there is a
path of length 3 rcs ´ 2 in Fj: Let P ˚ “ u1v1w1 . . . uk, vk, wk be a maximal path in Fj

with ui P U 1, vi P V 1 and wi P W 1 for all i P rks (note that k ě 1). Assuming k ă rcs for
a contradiction, less than c vertices of U 1 appear in P ˚. But since vkwk is contained
in the edge ukvkwk P Eˆ pFjq, we actually have that dˆFj pvk, wkq ě c, whence there is
a uk`1 P U

1 r V pP ˚q such that P ˚uk`1 is a path in Fj.
The same argument applied to wkuk`1 gives a vk`1 P V

1 such that P ˚uk`1vk`1 is a
path in Fj and finally applying the argument to uk`1vk`1 gives rise to a wk`1 P W

1 such
that the path P ˚uk`1vk`1wk`1 exists in Fj and thus contradicts the maximality of P ˚,
telling us that P ˚ actually contains an alternating path of length 3 rcs´ 2. That, on the
other hand, gives us another alternating path of length at least 3 rcs ´ 2 that is vertex
disjoint to all paths in P and therefore contradicts the maximality of P. So we indeed
have |V | ´ |

Ť

PPP V pP q| ď 3ξn. �

As mentioned before, we later want to find an almost perfect matching in a reduced
hypergraph whose edges represent “good” triplets like in the Lemma before. Then translat-
ing back those edges in the matching will give us a set of (not too many) paths in H that
almost covers all vertices. To find an almost perfect matching in a hypergraph satisfying
our pair degree condition for almost all pairs, we look at a maximal matching in which the
sum of the vertices not contained in it is also maximal. This should give us the best chance
to enlarge the matching if too many vertices would be left over, deriving a contradiction. A
similar maximisation idea has also been used in [19] when a degree sequence condition was
given for a graph. The following Lemma will later guarantee the existence of an almost
perfect matching in the reduced hypergraph.

Lemma 6.3 (Matching). For all α, β ą 0, there exists an n0 P N such that the following
holds: If H “ prns, Eq is a 3-graph, GH a graph on vertex set rns with ∆ pGHq ď βn and H
satisfies dpi, jq ě min

`

i`j
2 ,

n
2

˘

` αn for all ij P rnsp2q such that ij R E pGHq, then H has a
matching M with vpMq ě p1´ 3βqn.

Proof of Lemma 6.3. Without restriction let α ! 1 and β ă 1{3. Given α and β we
then choose n " 1

α
, 1
β
. For this n let H,GH be given as in the statement. Now, let M

be a maximal matching in H and subject to that such that
ř

vPrnsrV pMq v is maximised.
Assuming the claim is false gives an A Ď rnsr V pMq with |A| ě 3βn. Let us call a
pair true if it is not an edge in GH . Since ∆ pGHq ď βn we can find 2 tβnu distinct
vertices v1, . . . , vtβnu, w1, . . . , wtβnu P A such that all the pairs viwi are true. Notice that all
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the neighbours of each such pair lie inside V pMq, otherwise adding the respective edge
to M would lead to a larger matching. In the following we will show two properties and
afterwards deduce the statement from them.

Firstly, we have that for each viwi there are at least αn
3 edges in M in which viwi

has at least two neighbours: Let us first consider a pair viwi with vi`wi
2 ď n

2 . For
any edge abc of the matching with a P N pvi, wiq we have that b ` c ď vi ` wi as
otherwise EpMqr tabcu Y taviwiu would be the edge set of a matching M 1 with the same
size as M , but

ř

vPrnsrV pM 1q
v being larger than the respective sum for M . Since in each

edge of M that contains only one neighbour of viwi there are two vertices ď vi ` wi (and
all those edges are disjoint), at most vi`wi

2 many neighbours of viwi can lie in edges that
contain no further neighbour of viwi. Hence, recalling d pvi, wiq ě vi`wi

2 ` αn, at least αn
3

edges in M contain at least two neighbours of viwi.
For a pair viwi with vi`wi

2 ě n{2, there exist at least αn
3 edges in M containing more

than one neighbour of viwi as well, since d pvi, wiq ě n
2 ` αn but epMq ď n{3.

Secondly, note that any edge of M that contains at least two neighbours of one true
pair cannot contain a neighbour of any other true pair: Assume for contradiction there
were true pairs viwi and vjwj together with an edge abc P EpMq such that a P N pvi, wiq
and |tabcu XN pvj, wjq| ě 2. Then b or c, without restriction b, is a neighbour of vjwj
and EpMqr tabcu Y taviwi, bvjwju is the edge set of a matching in H contradicting the
maximality of M .

Summarised, for each of the tβnu true pairs viwi in rnsrV pMq, we get a set of at least αn
3

edges in M that contain more than one neighbour of the respective pair and thus all those
sets of edges are pairwise disjoint. Therefore, we have αn

3 ˆtβnu distinct edges inM which is
a contradiction for αβ " 1

n
. SoM was indeed a matching satisfying vpMq ě p1´ 3βqn. �

We are now ready to prove Proposition 2.5. For that we will apply the Weak Regularity
Lemma to H (actually to a slightly smaller subgraph), obtain a pair-degree condition for
the reduced hypergraph and hence find a matching in it by the previous Lemma. Lastly,
we will “unfold” the edges of that matching to paths in H by Lemma 6.2 and connect these
to a long path by the Connecting Lemma.

Proof of Proposition 2.5. Let α, ϑ be given as in the Proposition and set α1 “ α ´ ϑ´ ϑ2.
Next choose ξ, δ, t0 such that we have α1 " ϑ " ξ " δ " 1

t0
. Applying the Weak Regularity

Lemma 6.1 to δ, t0 gives us a T0 and we choose n " T0. Now let H,R, PA be given as in
the statement. Notice that H 1 “ H rrnsr pRY V pPAqqs after a renaming of the vertices
can be seen as a 3-graph H 1 “ prn1s, E 1q with n1 ě p1´ ϑ2 ´ ϑqn and satisfying the usual
degree condition: dpi, jq ě min

`

i`j
2 ,

n1

2

˘

` α1n1 for all ij P rn1sp2q.
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For H 1, the statement of the Weak Regularity Lemma provides an integer t P rt0, T0s

and a partition V “ V0 9YV1 9YV2 9Y . . . 9YVt satisfying all three points of Lemma 6.1. Set-
ting m “ |V1| “ ¨ ¨ ¨ “ |Vt|, we have that n1

t
ě m ě 1´δ

t
n1 and recall that |V0| ď δn1. Note

that for vi P Vi, we have vi ě i ¨m´ n1

t0
. Summarised, we have the following hierarchy:

1 " α1 " ϑ " ξ " δ "
1
t0
,
1
t
,

1
T0
"

1
n1
. (6.1)

Let us write eˆ
`

V ijk
˘

“ |te P E 1 : |eX Vi| “ |eX Vj| “ |eX Vk| “ 1u| for the number of
crossing edges in V ijk and we call a triplet V ijk dense, if eˆ

`

V ijk
˘

ě α1m3

2 .
Now we will show that we can almost “transfer” the pair-degree condition to a reduced

hypergraph. We will do this in two steps: First we show that every pair ViVj belongs
to many dense triplets V ijk, and second we show that we can almost keep that up when
restricting ourselves to quasirandom triplets.

Claim 6.4. For every ij P rtsp2q, there are at least min
`

i`j
2 ,

t
2

˘

` α1t
3 many k P rts ´ ti, ju

such that V ijk is a dense triplet.

Proof. Suppose there is a pair ViVj, ij P rtsp2q, belonging to less than min
`

i`j
2 ,

t
2

˘

` α1t
3

dense triplets V ijk. Let S be the set of hyperedges in H 1 that contain one vertex in Vi, one
in Vj and a third vertex outside of Vi 9YVj . By applying the pair-degree condition of H 1 and
with the hierarchy (6.1) we get that

|S| ěm2
„

min
ˆ

pi` jqm

2 ´
n1

t0
,
n1

2

˙

` α1n1 ´ 2m


ą
n13

t2
p1´ δq3

ˆ

min
ˆ

i` j

2t ,
1

2p1´ δq

˙

`
6
7

α1

1´ δ

˙

We will derive a contradiction by finding a smaller upper bound on |S|. For that we
split S into two parts. By S1 let us denote the set of those edges in S that lie in a
dense triplet V ijk for some k P rts r ti, ju (we say an edge e lies or is in V ijk if we
have |e X Vi| “ |e X Vj| “ |e X Vk| “ 1). Since in one triplet there are at most m3 edges
and by assumption ViVj does not belong to many dense triplets, we get

|S1| ă

ˆ

min
ˆ

i` j

2 ,
t

2

˙

`
α1t

3

˙

m3
ď
n13

t2

ˆ

min
ˆ

i` j

2t ,
1
2

˙

`
α1

3

˙

Let S2 “ S r S1 be the set of edges in S lying in triplets that are not dense. There are less
than α1

2 m
3 crossing edges in each triplet that is not dense and ViVj belongs to at most t

triplets. Hence

|S2| ă
α1

2 m
3
ˆ t ď

n13

t2
α1

2 .
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Summarised, we have

n13

t2
p1´ δq3

ˆ

min
ˆ

i` j

2t ,
1

2p1´ δq

˙

`
6
7

α1

1´ δ

˙

ă|S| “ |S1| ` |S2|

ă
n13

t2

ˆ

min
ˆ

i` j

2t ,
1
2

˙

`
5α1
6

˙

which is a contradiction when considering (6.1). Thus, the assumption that ViVj is not
contained in many triplets is wrong and the claim is proven. �

From the Weak Regularity Lemma we also get that in total at most δt3 triplets V ijk are
not δ-quasirandom.

Let us now complete the “reduction” of the hypergraph and notice that we can find
an almost perfect matching in the reduced hypergraph. Denote with D the hypergraph
on the vertex set rts with ijk being an edge if and only if the triplet V ijk is dense. Let,
on the other hand, IR be the hypergraph on the vertex set rts with ijk being an edge if
and only if V ijk is not weakly δ-quasirandom in H 1. In the following we will remove a
few vertices in such a way that D ´ IR induced on the remaining vertices satisfies our
pair-degree condition for almost all pairs.

We call a pair ij P rts2 malicious pair if it belongs to more than
?
δt edges of IR.

Since epIRq ď δt3, there are at most 3
?
δt2 malicious pairs. Let B be the graph on vertex

set rts in which the edges are given by the malicious pairs. We call a vertex i malicious
vertex if dBpiq ą δ1{4t, i.e., if it belongs to many malicious pairs. The upper bound on
the number of malicious pairs implies that there are at most 6δ1{4t malicious vertices.
Now we remove these malicious vertices and set D1 :“ D rrtsr tv P rts : v maliciousus
and B1 “ B rrtsr tv P rts : v maliciousus.

The reduced hypergraph we looked for is now K “ D1 ´ IR, in which edges encode
dense, δ-quasirandom triplets. In K every pair ij P V pKqp2q with ij R E rB1s satisfies

dKpi, jq ě min
ˆ

i` j

2 ,
t

2

˙

`

ˆ

α1

3 ´ 6δ1{4
´
?
δ

˙

t ě min
ˆ

i` j

2 ,
t

2

˙

`
α1

4 t.

Thus, we have that the graph GK on vertex set V pKq with ij being an edge if and only
if ij does not satisfy the degree condition dKpi, jq ě min

`

i`j
2 ,

t
2

˘

` α1

4 t is a subgraph of B1.
Therefore ∆ pGKq ď ∆ pB1q ď δ1{4t and we can apply Lemma 6.3 to K with α1

4 in place of α
and δ1{4 instead of β and obtain a matching M in K covering all apart from at most 3δ1{4t

vertices of K.
Finally, notice that each triplet V ijk with ijk being an edge in K is pδ, dijkq-quasirandom

with dijk ě α1

2 ´ δ ě
α1

3 . Hence, we may apply Lemma 6.2 (with ξ as in (6.1), dijk ě α1

3 in
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place of d and δ as δ) to each of the triplets V ijk that corresponds to an edge in M . Doing
so and recalling the definition of H 1, we notice that in H we can cover at least

n´
``

δ ` 3δ1{4
` 6δ1{4

` ξ
˘

n1 ` ϑ2n` v pPAq
˘

ě n´
`

2ϑ2n` v pPAq
˘

vertices with paths of length at least
α1

3 ξ
3´δ

2 m´ 2 that are all disjoint to R and V pPAq. We
can connect all those at most 3t

pα
1

3 ξ
3´δq

paths in H through R to a path Q by Lemma 2.3,
since until we connect the last one we have still only used at most

pL´ 2q ¨ 3t
α1

3 ξ
3 ´ δ

ă ϑ4n

vertices from R (recall the hierarchy (6.1)). In fact, we have that Q has at most
a small intersection with R, that is, |V pQq XR| ď ϑ4n and it covers many vertices,
i.e., vpQq ě p1´ 2ϑ2qn´ v pPAq. Hence, Q is a path satisfying the claims in the state-
ment. �

§7. Concluding Remarks

We would like to finish by pointing to some related problems. Firstly, as mentioned in the
introduction, our result can be seen as a stepping stone towards a complete characterisation
of those pair-degree matrices that force a 3-graph to contain a Hamiltonian cycle.

Further, it seems possible to generalise our proof without too much effort for k-uniform
hypergraphs H “ prns, Eq with n large satisfying the degree condition

dk´1pi1, . . . , ik´1q ě min
˜

1
k ´ 1

k´1
ÿ

j“1
ij,
n

2

¸

` αn,

where dk´1pi1, . . . , ik´1q “ |t e P E : i1, . . . , ik´1 P e u| is the (k-uniform) codegree. However,
it is not clear whether common counter examples can show that the factor 1

k´1 is optimal
as it is for k “ 3. It would be interesting both if there is another kind of counter examples
or if “averaging” as in the condition above is not optimal.

Another very interesting problem is to get a similar result for the vertex degree, strength-
ening the result by Reiher, Rödl, Ruciński, Schacht, and Szemerédi in [13]: Does every
3-graph H “ prns, Eq with dpiq ě min

`

max pi, γnq , 5
9n
˘

` αn for some γ ă 5{9 contain a
Hamiltonian cycle if n is large? The proof of Theorem 1.3 in [13] depends on the existence
of robust subgraphs for every vertex, for which one needs the factor 5{9.

Lastly, one could try to improve Theorem 1.4 by weakening the pair-degree condition
to dpi, jq ě min

`

i`j
2 ,

n
2

˘

, i.e. without the additional αn term, as Rödl, Ruciński, and
Szemerédi did for the minimum pair-degree condition in [16].



26 B. SCHÜLKE

§8. Acknowledgement

Up to minor changes, this present article is my master thesis from summer 2018 which
was supervised by Christian Reiher. I would like to thank him for introducing me to the
absorption method and to this problem.

References

[1] E. Buß, H. Hàn, and M. Schacht, Minimum vertex degree conditions for loose Hamilton
cycles in 3-uniform hypergraphs, J. Combin. Theory Ser. B 103 (2013), no. 6, 658–678,
DOI 10.1016/j.jctb.2013.07.004. MR3127586 Ò1

[2] F. R. K. Chung, Regularity lemmas for hypergraphs and quasi-randomness, Random Structures
Algorithms 2 (1991), no. 2, 241–252, DOI 10.1002/rsa.3240020208. Ò6

[3] V. Chvátal, On Hamilton’s ideals, J. Combinatorial Theory Ser. B 12 (1972), 163–168. Ò1
[4] A. Czygrinow and T. Molla, Tight codegree condition for the existence of loose Hamilton cycles in

3-graphs, SIAM J. Discrete Math. 28 (2014), no. 1, 67–76, DOI 10.1137/120890417. MR3150175 Ò1
[5] G. A. Dirac, Some theorems on abstract graphs, Proc. London Math. Soc. (3) 2 (1952), 69–81,

DOI 10.1112/plms/s3-2.1.69. Ò1
[6] P. Frankl and V. Rödl, The uniformity lemma for hypergraphs, Graphs Combin. 8 (1992), no. 4,

309–312, DOI 10.1007/BF02351586. MR1204114 Ò6
[7] J. Han and Y. Zhao, Minimum vertex degree threshold for loose Hamilton cycles in 3-uniform

hypergraphs, J. Combin. Theory Ser. B 114 (2015), 70–96, DOI 10.1016/j.jctb.2015.03.007. MR3354291
Ò1

[8] S. Janson, T. Łuczak, and A. Rucinski, Random graphs, Wiley-Interscience Series in Discrete Mathe-
matics and Optimization, Wiley-Interscience, New York, 2000. MR1782847 Ò4.1, 4.2

[9] G. Y. Katona and H. A. Kierstead, Hamiltonian chains in hypergraphs, J. Graph Theory 30 (1999),
no. 3, 205–212, DOI 10.1002/(SICI)1097-0118(199903)30:3<205::AID-JGT5>3.3.CO;2-F. MR1671170
Ò1

[10] D. Kühn and D. Osthus, Loose Hamilton cycles in 3-uniform hypergraphs of high minimum degree, J.
Combin. Theory Ser. B 96 (2006), no. 6, 767–821, DOI 10.1016/j.jctb.2006.02.004. MR2274077 Ò1

[11] C. McDiarmid, On the method of bounded differences, Surveys in combinatorics, 1989 (Norwich, 1989),
London Math. Soc. Lecture Note Ser., vol. 141, Cambridge Univ. Press, Cambridge, 1989, pp. 148–188.
MR1036755 Ò4.2

[12] L. Pósa, A theorem concerning Hamilton lines, Magyar Tud. Akad. Mat. Kutató Int. Közl. 7 (1962),
225–226. Ò1

[13] Chr. Reiher, V. Rödl, A. Ruciński, M. Schacht, and E. Szemerédi, Minimum vertex degree condition
for tight Hamiltonian cycles in 3-uniform hypergraphs, Proc. Lond. Math. Soc. (3) 119 (2019), no. 2,
409–439, DOI 10.1112/plms.12235. MR3959049 Ò1, 1, 3, 3.1, 4, 5, 5.1, 7

[14] Chr. Reiher, V. Rödl, and M. Schacht, On a Turán problem in weakly quasirandom 3-uniform
hypergraphs, J. Eur. Math. Soc. (JEMS) 20 (2018), no. 5, 1139–1159, DOI 10.4171/JEMS/784.
MR3790065 Ò6

http://dx.doi.org/10.1016/j.jctb.2013.07.004
http://www.ams.org/mathscinet-getitem?mr=3127586
http://dx.doi.org/10.1002/rsa.3240020208
http://dx.doi.org/10.1137/120890417
http://www.ams.org/mathscinet-getitem?mr=3150175
http://dx.doi.org/10.1112/plms/s3-2.1.69
http://dx.doi.org/10.1007/BF02351586
http://www.ams.org/mathscinet-getitem?mr=1204114
http://dx.doi.org/10.1016/j.jctb.2015.03.007
http://www.ams.org/mathscinet-getitem?mr=3354291
http://www.ams.org/mathscinet-getitem?mr=1782847
http://dx.doi.org/10.1002/(SICI)1097-0118(199903)30:3<205::AID-JGT5>3.3.CO;2-F
http://www.ams.org/mathscinet-getitem?mr=1671170
http://dx.doi.org/10.1016/j.jctb.2006.02.004
http://www.ams.org/mathscinet-getitem?mr=2274077
http://www.ams.org/mathscinet-getitem?mr=1036755
http://dx.doi.org/10.1112/plms.12235
http://www.ams.org/mathscinet-getitem?mr=3959049
http://dx.doi.org/10.4171/JEMS/784
http://www.ams.org/mathscinet-getitem?mr=3790065


A PAIR-DEGREE CONDITION FOR HAMILTONIAN CYCLES IN 3-GRAPHS 27

[15] V. Rödl, A. Ruciński, and E. Szemerédi, A Dirac-type theorem for 3-uniform hypergraphs, Combin.
Probab. Comput. 15 (2006), no. 1-2, 229–251, DOI 10.1017/S0963548305007042. MR2195584 Ò1, 1, 2,
2, 3, 6

[16] V. Rödl, A. Ruciński, and E. Szemerédi, Dirac-type conditions for Hamiltonian paths and cycles in
3-uniform hypergraphs, Adv. Math. 227 (2011), no. 3, 1225–1299, DOI 10.1016/j.aim.2011.03.007.
MR2799606 Ò1, 3, 7

[17] K. Staden and A. Treglown, On degree sequences forcing the square of a Hamilton cycle, SIAM J.
Discrete Math. 31 (2017), no. 1, 383–437, DOI 10.1137/15M1033101. MR3615461 Ò1

[18] A. Steger, Die Kleitman-Rothschild Methode, Ph.D. thesis, Forschungsinstitut für Diskrete
Mathematik, Rheinische Friedrich-Wilhelms-Universität Bonn 114 (1990), no. 1, 70-96,
DOI 10.1016/j.jctb.2015.03.007. Ò6

[19] A. Treglown, A degree sequence Hajnal-Szemerédi theorem, J. Combin. Theory Ser. B 118 (2016),
13–43, DOI 10.1016/j.jctb.2016.01.007. Ò1, 6

Fachbereich Mathematik, Universität Hamburg, Hamburg, Germany
E-mail address: bjarne.schuelke@uni-hamburg.de

http://dx.doi.org/10.1017/S0963548305007042
http://www.ams.org/mathscinet-getitem?mr=2195584
http://dx.doi.org/10.1016/j.aim.2011.03.007
http://www.ams.org/mathscinet-getitem?mr=2799606
http://dx.doi.org/10.1137/15M1033101
http://www.ams.org/mathscinet-getitem?mr=3615461
http://dx.doi.org/10.1016/j.jctb.2015.03.007
http://dx.doi.org/10.1016/j.jctb.2016.01.007

	1. Introduction
	Organisation

	2. Overview and Final Proof
	3. Connecting Lemma
	First Step
	Second Step

	4. Reservoir
	5. Absorbing Path
	6. Long Path
	7. Concluding Remarks
	8. Acknowledgement
	References

