SHORT PROOF THAT KNESER GRAPHS ARE HAMILTONIAN FOR $n \geqslant 4 k$

JOHANN BELLMANN AND BJARNE SCHÜLKE

Abstract

For integers $n \geqslant k \geqslant 1$, the Kneser graph $K(n, k)$ is the graph with vertex set $V=[n]^{(k)}$ and edge set $E=\left\{\{x, y\} \in V^{(2)}: x \cap y=\varnothing\right\}$. Chen proved that for $n \geqslant 3 k$, Kneser graphs are Hamiltonian and later improved this to $n \geqslant 2.62 k+1$. Furthermore, Chen and Füredi gave a short proof that if $k \mid n$, Kneser graphs are Hamiltonian for $n \geqslant 3 k$. In this note, we present a short proof that does not need the divisibility condition, i.e., we give a short proof that $K(n, k)$ is Hamiltonian for $n \geqslant 4 k$.

§1. Introduction

Throughout the paper, let $n \geqslant k \geqslant 1$ be integers and set $[n]=\{1, \ldots, n\}$. For a set A, define $A^{(k)}$ to be the set of all k-element subsets (or k-subsets) of A. The Kneser graph $K(n, k)$ has vertex set $[n]^{(k)}$ and two vertices form an edge if and only if they are disjoint (as subsets of [n]). With rather involved proofs Chen [2] showed that Kneser graphs with n linear in k, and even triangle-free Kneser graphs [3] contain Hamiltonian cycles. More precisely, in [3] she showed the following.

Theorem 1.1. If $n \geqslant 2.62 k+1$, then $K(n, k)$ is Hamiltonian.
Chen and Füredi [4] simplified the proof for the case when $k \mid n$ and $n \geqslant 3 k$. Katona [5] conjectured that, apart from finitely many exceptions, $K(n, k)$ is Hamiltonian if $n \geqslant 2 k+1$. Recently Mütze, Nummenpalo, and Walczak [6] showed that for $k \geqslant 3$, the Kneser graph $K(2 k+1, k)$ is Hamiltonian (and they also provide a more exhaustive coverage of the previous work in this area).

In this note, we elaborate the short proof due to Chen and Füredi to work for the general case by removing the divisibility condition. More precisely, we give a short proof that

Theorem 1.2. $K(n, k)$ is Hamiltonian for $n \geqslant 4 k$.
A Gray-Code is an enumeration $x_{1} \ldots x_{m}$ of all sets in $[n]^{(k)}$ such that each two consecutive sets and in addition x_{m}, x_{1} differ by exactly one element (of $[n]$; in general, we say two k sets $x, y \in[n]^{(k)}$ differ by i elements if $|x \backslash y|=i$. The existence of Gray-Codes follows

Key words and phrases. Kneser graph, Hamiltonian cycle.
The second author's research was supported by G.I.F. Grant Agreements No. I-1358-304.6/2016.
easily by induction (see e.g., [7]) and they were also used in [4]. Observing that the edges of $K_{n}^{(k)}$ correspond to the vertices of $K(n, k)$ and a matching of size s in $K_{n}^{(k)}$ corresponds to a clique of size s in $K(n, k)$, we get the following corollary to Baranyai's theorem [1].

Theorem 1.3. Let $n \geqslant k$ and $a_{1}, \ldots, a_{t} \leqslant \frac{n}{k}$ be integers such that $\sum_{i=1}^{t} a_{i}=\binom{n}{k}$. Then $K(n, k)$ can be partitioned into cliques A_{i} with $\left|A_{i}\right|=a_{i}$ for $i \in[t]$.

§2. Short proof of Theorem 1.2

For clarity, we first give the proof for $n \geqslant 5 k$ and afterwards, in Remark 2.1, we will go through the proof again inserting the additional arguments for $n \geqslant 4 k$.

Proof of Theorem 1.2 if $n \geqslant 5 k$. Let $p, r, m, q \in \mathbb{Z}$ such that $n=p k+r$ with $0 \leqslant r \leqslant k-1$ and $\binom{n}{k}=(m-1) p+q$ with $1 \leqslant q \leqslant p$. Set $b=b(q)=\max \{4-q, 0\}$ and define

$$
a_{i}= \begin{cases}p & \text { for } i \in[m-1-b] \tag{2.1}\\ p-1 & \text { for } i \in\{m-b, \ldots, m-1\} \\ q+b & \text { for } i=m\end{cases}
$$

Then we have $\sum_{i=1}^{m} a_{i}=\binom{n}{k}$ and Theorem 1.3 provides a partition of $K(n, k)$ into cliques A_{1}, \ldots, A_{m} with $\left|A_{i}\right|=a_{i} \geqslant 4$ for all $i \in[m]$. For $i \in[m]$, define marking vertices as follows. If there is an $x_{i} \in A_{i}$ with $n \in x_{i}$, set x_{i} to be the marking vertex of A_{i}. If there is no vertex containing n in A_{i}, we choose an arbitrary vertex $x_{i} \in A_{i}$ as marking vertex of A_{i}. We call the set of marking vertices M and note that M contains $M^{\prime}=\left\{z \cup\{n\}: z \in[n-1]^{(k-1)}\right\}$. Next, we use a Gray-Code on $[n-1]^{(k-1)}$ to obtain an enumeration $x_{1}^{\prime} \ldots x_{m^{\prime}}^{\prime}$ of $M^{\prime} \subseteq M$ with $\left|x_{i}^{\prime} \backslash x_{i+1}^{\prime}\right|=1$ for all $i \in \mathbb{Z} / m^{\prime} \mathbb{Z}$. Further, we consider a map $\varphi: M \backslash M^{\prime} \rightarrow M^{\prime}$, so that for each $x \in M \backslash M^{\prime}$, we have $|\varphi(x) \backslash x|=1$ (this is possible since for all $a \in x \in M \backslash M^{\prime}$, the vertex $x \backslash\{a\} \cup\{n\}$ is in $\left.M^{\prime}\right)$. Thus, the enumeration

$$
x_{1}^{\prime} \varphi^{-1}\left(x_{1}^{\prime}\right) x_{2}^{\prime} \varphi^{-1}\left(x_{2}^{\prime}\right) \ldots x_{m^{\prime}}^{\prime} \varphi^{-1}\left(x_{m^{\prime}}^{\prime}\right)=y_{1} \ldots y_{m}
$$

of M (here $\varphi^{-1}\left(x_{i}^{\prime}\right)$ stands for an arbitrary enumeration of $\left.\varphi^{-1}\left(x_{i}^{\prime}\right)\right)$ has the property that y_{i} and y_{i+1} differ by at most two elements (for $i \in \mathbb{Z} / m \mathbb{Z}$). Since $\left|A_{i}\right| \geqslant 4$, this yields that there is a vertex $z_{i} \in A\left(y_{i}\right)$ which is disjoint to y_{i+1}, where $A\left(y_{i}\right)$ is the clique among A_{1}, \ldots, A_{m} that contains y_{i}. Thus, denoting by α_{i} an enumeration of $A\left(y_{i}\right)$ that starts with y_{i} and ends with z_{i}, we get that $\alpha_{1} \ldots \alpha_{m}$ is a Hamiltonian cycle.

Remark 2.1. Here we mention the modifications that let the proof above work for all $n \geqslant 4 k$. Note that for $k=1$ the result is trivial, so assume $k \geqslant 2$. First, using 0 instead of b in (2.1) yields that $\left|A_{i}\right| \geqslant 4$ for $i \in[m-1]$ and $\left|A_{m}\right|=q$. If $q \geqslant 4$, the same proof
as above still works. So we can assume that $q \leqslant 3$ and hence, there is an element of $[n]$, w.l.o.g. n, that is not contained in any vertex of A_{m}. For $i \in[m-1]$, we define marking vertices as before and for A_{m}, we do not define a marking vertex. Proceeding as above gives an enumeration $y_{1} \ldots y_{m-1}$ of the marking vertices with the property that y_{i} and y_{i+1} differ by at most two elements (for $i \in \mathbb{Z} /(m-1) \mathbb{Z}$) and so we still know that the vertices z_{i} exist as before (for $i \in[m-1]$).

Thus, we get as above that $\alpha_{1} \ldots \alpha_{m-1}$ is a cycle C which covers all but at most three vertices $v_{1}, v_{2}, v_{3} \in A_{m}$. Note that for each v_{i}, we can choose a marking vertex $y_{j(i)} \in M^{\prime}$ with $\left|v_{i} \backslash y_{j(i)}\right|=1$. Since $k \geqslant 2$ and A_{m} is a clique, $y_{j(i)} \neq y_{j\left(i^{\prime}\right)}$ whenever $v_{i} \neq v_{i^{\prime}}$. Further, $\left|A\left(y_{j(i)}\right)\right| \geqslant 4$ implies that there are two vertices $u_{i}^{1}, u_{i}^{2} \in A\left(y_{j(i)}\right)$ which are disjoint to v_{i}. Note, that the enumeration $\alpha_{j(i)}$ of $A\left(y_{j(i)}\right)$ was arbitrary apart from the start $\left(y_{j(i)}\right)$ and the end $\left(z_{i}\right)$. So we can additionally request that u_{i}^{1} and u_{i}^{2} are next to each other in this enumeration and insert v_{i} into C between u_{i}^{1} and u_{i}^{2}, obtaining a Hamiltonian cycle.

References

[1] Zs. Baranyai, On the Factorization of the Complete Uniform Hypergraph, Coll. Math. Soc. Janos Bolyai 10 (1975). $\uparrow 1$
[2] Y.-C. Chen, Kneser Graphs Are Hamiltonian For $n \geqslant 3 k$, Journal of Combinatorial Theory, Series B 80 (2000), no. 1, 69-79, DOI 10.1006/jctb.2000.1969. $\uparrow 1$
[3] _ Triangle-free Hamiltonian Kneser graphs, Journal of Combinatorial Theory, Series B 89 (2003), no. 1, 1-16, DOI 10.1016/S0095-8956(03)00040-6. $\uparrow 1$
[4] Y.-C. Chen and Z. Füredi, Hamiltonian Kneser Graphs, Combinatorica 22 (2002), 147-149, DOI https://doi.org/10.1007/s004930200007. $\uparrow 1,1$
[5] G. O. H. Katona, Constructions via Hamiltonian Theorems, Discrete Mathematics 303 (2005), no. 1, 87-103, DOI 10.1016/j.disc.2005.03.029. $\uparrow 1$
[6] T. Mütze, J. Nummenpalo, and B. Walczak, Sparse Kneser graphs are Hamiltonian, STOC'18Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, 2018, pp. 912-919. $\uparrow 1$
[7] A. Nijenhuis and H. S. Wilf, Combinatorial Algorithms: For Computers and Hard Calculators, 2nd, Academic Press, Inc., Orlando, FL, USA, 1978. $\uparrow 1$

Fachbereich Mathematik, Universität Hamburg, Hamburg, Germany
E-mail address: johann.bellmann@studium.uni-hamburg.de
Fachbereich Mathematik, Universität Hamburg, Hamburg, Germany
E-mail address: bjarne.schuelke@uni-hamburg.de

