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We present infinite analogues of our splinter lemma from [15]. From these
we derive several tree-of-tangles-type theorems for infinite graphs and infinite
abstract separation systems.

1 Introduction
One of the key concepts in graph minor theory is that of a tree-decomposition of a graph.
These allow us to analyse a large graph by dividing it into smaller subgraphs and, working
with these, gain insight into the graph as a whole. Tangles, ever since their introduction
by Robertson and Seymour [20], have served as a dual object to tree-decompositions of
low width in graphs. They have also been studied in their own right, as a way to express,
indirectly, highly cohesive substructures such as k-blocks or large grid minors.

Over the years, this theory has been expanded and generalised; the branch of abstract
tangle theory emerged. There, the focus shifted from the study of graph minors to
tangles as an abstract combinatorial object on an abstract separation system, replacing
the concrete separations of a graph. These separation systems are just a poset which only
expresses how separations lie in relation to each other, keeping little of the information
provided by the underlying graph; this notion is abstract enough to be applicable to
settings other than graphs. [4–6,8, 9, 12,14,15].

The two central theorems of abstract tangle theory are the tangle-tree duality theorem
and the tree-of-tangles theorem. The former provides a tree-like structure dual to the
existence of a tangle, while the latter exposes how tangles can be arranged in a tree
structure by way of a nested set of distinguishing separations. When applied to the vertex
separations of a graph, such finite nested sets of separations can easily be converted back
into a tree-decomposition in the original sense.

In [15] we introduced the ‘splinter lemma’, a unified theorem which implies the known
tree-of-tangles theorems for finite separations systems. The merit of this theorem lies
in the fact that, while it is strong enough to imply all these results, the proof of the
theorem is simple, and its assumptions are easy to check. (See Section 2 for definitions.)
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Theorem 1.1 (Splinter lemma, [15]). Let U be a universe of separations and (Ai)i≤n a
family of subsets of U. If (Ai)i≤n splinters then we can pick an element ai from each Ai
so that {a1, . . . , an} is nested.

Theorem 1.1, in a sense, is yet another step in a series of abstractions in the theory
of tangles: rather than working with the tangles themselves, it operates just on the
collection of sets of separations distinguishing a given pair of these.

Theorem 1.1 is proved by induction: it finds a separation ai ∈ Ai which is nested with
some element of every other Aj , and then proceeds inductively on the remaining n−1
family members, restricted to those separations nested with ai. This approach cannot
deal with infinite families of sets, however.

In this paper we overcome these difficulties and present two different ways to obtain a
version of Theorem 1.1 for infinite families of sets of separations. Both these versions are
as abstract and therefore as widely applicable, as our original Theorem 1.1; they differ in
they way they overcome the difficulties of infinite sets of separations, and therefore in
the assumptions required.
The first approach is to ensure that an inductive proof adopted from the finite case

converges by imposing a closedness condition in a suitable topology: In Section 3 we
present a result for profinite separation systems. These constitute a large class of infinite
separation systems, including the systems of vertex separations of an infinite graph. In
Section 4 we will, as an example, apply this theorem to precisely these graph separations.
However, to deduce the existing tangle-tree theorems in infinite graphs (see [2, 3]) we

need a second approach which does not rely one these profinite separation systems, as
not every tangle of an infinite graph is one of the corresponding profinite separation
system. Following this approach, we obtain our second main theorem, which does imply
these existing theorems (Theorems 1.4 and 1.5 below) and is therefore a truly infinite
analogue of Theorem 1.1. It asks more of the sets Ai than the profinite version; in return
the set of separations we obtain will be canonical, i.e., invariant under isomorphisms:

Theorem 1.2. If (Ai | i ∈ I ) thinly splinters with respect to some reflexive symmetric
relation ∼ on A :=

⋃
i∈I Ai, then there is a set N ⊆ A which meets every Ai and is

nested, i.e., n1 ∼ n2 for all n1, n2 ∈ N . Moreover, this set N can be chosen invariant
under isomorphisms: if ϕ is an isomorphism between (A,∼) and (A′,∼′), then we have
N((ϕ(Ai) | i ∈ I )) = ϕ(N((Ai | i ∈ I ))).

We prove this statement in Section 5. Like Theorem 1.1, the statement of this theorem
is a bit technical, as we want it to be as widely applicable as possible. We then show
the usefulness of this abstract theorem throughout Section 6, by deducing the existing
theorems about distinguishing tangles in infinite graphs from it.
As a simple example, we start with applying it to tangles in locally finite graphs

in Section 6.1. This application is straightforward and demonstrates a prototypical
application of Theorem 1.2.
It is also possible to apply Theorem 1.2 to arbitrary infinite graphs, and we do so in

Section 6.2. This application uses another new, and interesting, shift of perspective: We
cannot apply Theorem 1.2 directly to the sets of separations efficiently distinguishing

2



two profiles since, in general, these do not splinter thinly. Instead we consider a slightly
different set, namely, the set of separators, to which Theorem 1.2 does apply:

Theorem 1.3. Given a set of distinguishable robust regular profiles P of a graph G there
exists a canonical nested set of separators efficiently distinguishing any pair of profiles
in P.

This theorem acts as an intermediary result between the existing results about tangles
in arbitrary infinite graphs. On the one hand we can, waiving canonicity, transform the
nested set of separators back into a nested set of separations, recovering the following
result of Carmesin about distinguishing tangles in infinite graphs by way of a nested set
of separations:

Theorem 1.4 ([3, Theorem 5.12]). For any graph G, there is a nested set N of separations
that distinguishes efficiently any two robust principal profiles (that are not restrictions of
one another).

This theorem is a cornerstone in Carmesin’s proof that every infinite graph has a
tree-decomposition displaying all its topological ends. For more about the relation
between ends and tangles also see [11, 18]. We deduce Theorem 1.4 from Theorem 1.3 in
Section 6.2.1.

On the other hand, if we want to keep canonicity, we can use Theorem 1.3 to deduce a
result by Carmesin, Hamann and Miraftab [2]. They construct a canonical object, which
they call a tree of tree-decompositions, to distinguish the tangles:

Theorem 1.5 ([2, Remark 8.3]). Let G be a connected graph and P a distinguishable
set of principal robust profiles in G. There exists a canonical tree of tree-decompositions
with the following properties:

(1) the tree of tree-decompositions distinguishes P efficiently;

(2) if t ∈ V (T ) has level k, then (Tt,Vt) contains only separations of order k;

(3) nodes t at all levels have |V (Tt)| neighbours on the next level and the graphs assigned
to them are all torsos of (Tt,Vt).

We deduce Theorem 1.5 from Theorem 1.3 in Section 6.2.2.
Theorem 1.3 is also an interesting result in its own right: the set of separators that

it provides is a natural intermediate object between the non-canonical nested set of
separations in Theorem 1.4 and the canonical tree of tree-decompositions in Theorem 1.5.

Moreover, proving Theorem 1.4 or Theorem 1.5 by first proving Theorem 1.3 and then
deducing them breaks up the proof nicely and is, in total, shorter than the original proofs
from [2,3].
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2 Terminology and basic facts
All terminology for graphs in this paper is from [10]. This paper builds extensively on
the framework of [12, 15]. A brief summary of their definitions follows, see [12, 15] for
more in-depth exposition.

A poset S together with an order-reversing involution ∗ is called a separation system,
and its elements are (oriented) separations. Given an oriented separation s we shall
denote its inverse s∗ as s and the pair {s, s} as s. This s is called the underlying
unoriented separation of s and s, s are its orientations. We write S for the set of all
underlying unoriented separations of oriented separations in S . Informally we refer to
either just as ‘separations’ when the distinction is immaterial or the intended meaning is
clear.
Two unoriented separation r and s are nested if r ≤ s for suitable orientations of

r and s. If r and s are not nested we say that they cross. Likewise we call oriented
separations r and s nested if r and s are nested, and crossing otherwise. A nested set of
separations is one whose elements are pairwise nested.

A separation s is small if s ≤ s , in which case we say that s is cosmall. A separation
s is trivial, if there exists a separation r ∈ S such that r 6= s and both, s ≤ r and s ≤ r .
Note that every trivial separation is small. An unoriented separation is said to be trivial
or small if one of its orientations is. A tree set in a separation system S is a nested set
of separations which does not contain any trivial elements. It is regular if it does not
contain any small elements.
A separation system U is a universe if there are join and meet operators ∨,∧ which

turn the poset into a lattice. A map f : U → U ′ between universes U and U ′ is an
homomorphism of universes if f commutes with the involutions and the ∨ and ∧ operations
of U and U ′ , i.e. if f(s) = f(s)∗, f(r ∨ s) = f(r ) ∨ f(s), and f(r ∧ s) = f(r ) ∧ f(s)
for all r , s ∈ U . Clearly, if f : U → U ′ is an homomorphism of universes, then r ≤ s for
r , s ∈ U implies f(r ) ≤ f(s) in U ′ .

An isomorphism of universes is a bijective homomorphism of universes whose inverse is
also a homomorphism. Two universes are isomorphic if there is an isomorphism between
them.

The corner separations of two separations s and t are the four separations s ∨ t , s ∨ t ,
s ∨ t , s ∨ t , or their underlying unoriented separations.

An order-function on a universe U is some function |·| : U → N0 such that |s | = |s | =: |s|
for every unoriented separation s ∈ U . Note that, unlike in the finite setting, in the
infinite setting we require order-functions to take their values in N0 rather than in R≥0.
In the finite case this does not make a big difference, as there were only finitely many
orders of separations, which therefore could be scaled to be ‘essentially integer-valued’.
Since such an argument is not possible in the infinite set-up, we need to require our
order-function to be integer-valued in the first place.
An order-function is submodular if for all s, t ∈ U we have

|s |+ |t | ≥ |s ∨ t |+ |s ∧ t | .

An orientation of some set S of unoriented separations is a set O ⊆ S containing
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precisely one of s and s for each s ∈ S. An orientation O is said to be consistent if there
are no r ≤ s with r 6= s and r , s ∈ O.
If O1 and O2 are two orientations of some (possibly distinct) sets of separations, a

separation s distinguishes O1 and O2 if s ∈ O1 and s ∈ O2 for a suitable orientation of s.
If an order function is given, and s is of lowest possible order among all separations that
distinguish O1 and O2, then s distinguishes them efficiently.
For a separation system S ⊆ U inside some universe U , we say that a consistent

orientation O of S is a profile if it satisfies the profile property:

∀ r , s ∈ P : (r ∧ s) /∈ P (P)

A profile is said to be robust if additionally:

∀s ∈ P, t ∈ U : if |s ∨ t | < |s | and |s ∨ t | < |s |, then either s ∨ t ∈ P or s ∨ t ∈ P

Note that in [6], Diestel, Hundertmark and Lemanczyk also defined the much more
technical but slightly weaker condition of a set of profiles being robust, which only requires
the condition of robustness for some separations in U . Every set of distinguishable robust
profiles is a robust set of profiles in the sense of [6], and on the other hand, the reader
familiar with this terminology may replace each appearance of a set of robust profiles in
this paper by a robust set of profiles without changing the proofs.

If U comes with some order function then, for some k ∈ N ∪ {ℵ0}, we write Sk for the
set of all separations in U satisfying |s| < k. A k-profile (in U) is then a profile of Sk
and a profile in U shall mean a k-profile in U for some k.
Given some universe U and a collection B := (Ai | i ∈ I ) of subsets Ai of U , we say

that B splinters if it satisfies, for any i, j ∈ I, the following property:

∀s ∈ Ai, t ∈ Aj : s ∈ Aj or t ∈ Ai or there exists a corner of s and t in Ai ∪ Aj .

One example of a separation system are the (vertex) separations of a graph: Given
some (infinite) graph G let us consider the separations of G, these are all pairs (A,B) of
vertex sets A,B such that A∪B = V (G) and there is no edge between ArB and BrA.
For historical reasons and ease of notation the corresponding unoriented separations
are represented as {A,B} instead of {(A,B), (B,A)}, contrary to the notation in the
abstract set-up. These form a poset where (A,B) ≤ (C,D) when A ⊆ B and C ⊇ D.
The function ∗ : (A,B) 7→ (B,A) is an order-reversing involution. If A ∩ B is finite,
the order of (A,B) is defined as |A ∩ B|. Note that the set Sℵ0 of all separations of
finite order is a universe of separations where (A,B) ∨ (C,D) = (A ∪ B,C ∩ D) and
(A,B) ∧ (C,D) = (A ∩B,C ∪D). A profile in G shall be a profile of Sk ⊆ Sℵ0 for some
k ∈ N ∪ {ℵ0}.
A profile P in G is regular if it does not contain any cosmall separation of G, i.e., it

contains no separation of the form (V (G), X). Note that, in graphs, the irregular profiles
are not of large interest, since they always point towards either the empty set or a single
non-cut-vertex. Formally, we can summarize this statement from [4] as follows:
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Lemma 2.1 ([4]). Let G = (V,E) be a graph and P an irregular profile in G then either
G is connected and P = {(V, ∅)} or G has a non-cutvertex x ∈ V such that

P = {(A,B) ∈ S2 | x ∈ B and (A,B) 6= ({x}, V )}.

These irregular profiles are distinguished efficiently from each other and from all other
profiles in G by the set of separations

{{V (G), ∅}} ∪ {{V (G), {x}} | x ∈ V (G) and x is not a cutvertex of G}.

Every separation in this set is nested with all separations of G. Hence, our efforts for
applications in graphs will concentrate on regular profiles.

Given some set of vertices X ⊆ V (G), we say that a connected component C of G−X
is tight, if N(C) = X.

For two vertices x, y ∈ V (G) of a graph G, an x–y-separator of order k is a vertex set
X ⊆ V (G) r {x, y} of size k such that x and y lie in different components of G−X. We
shall need the following basic fact about such separators in infinite graphs at various
points throughout this paper.

Lemma 2.2 ([17, 2.4]). Let G be a graph, u, v ∈ V (G) and k ∈ N. Then there are only
finitely many separators of size at most k separating u and v minimally.

Another basic tool is the so-called ‘fish lemma’:

Lemma 2.3 ([6, Lemma 2.1]). Let U be a universe and r, s ∈ U two crossing separations.
Every separation t that is nested with both r and s is also nested with all four corner
separations of r and s.

Additionally we shall use the following more general observation about separations
nested with a corner separation:

Lemma 2.4. Let r and s be two separations. Every separation nested with one of r or s
is also nested with at least one of r ∧ s and r ∨ s .

Proof. Let t be a separation nested with, say, r. Then t has an orientation t with
either t ≤ r or t ≤ r . In the first case t is nested with r ∨ s by t ≤ r ≤ (r ∨ s). In the
latter case t is nested with r ∧ s by t ≤ r ≤ (r ∧ s)∗.

The separations that distinguish a given pair of profiles exhibit a lattice-like structure:

Lemma 2.5. Let U be a universe with a submodular order function and P and P ′ two
profiles in U . If r , s ∈ P distinguish P and P ′ efficiently, then both r ∨ s and r ∧ s also
lie in P and distinguish P and P ′ efficiently.

Proof. If one of r ∨s and r ∧s has order at most |r| = |s|, then that corner separation lies
in P and distinguishes P and P ′ by their consistency and the property P. The efficiency
of r and s now implies that neither of the two considered corner separations can have
order strictly lower than |r|. Therefore, by submodularity, both of them have order
exactly |r|, which implies the claim.
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Moreover we shall need a way to transition between separations and tree-decompositions
in graphs. Such a method already exists in finite graphs [1]. The ingredients of that
proof together with the results of [19] are all that is needed to show an analogous result
for infinite graphs, which we shall present here.
Let us start by recalling the definition of a tree-decomposition. A tree-decomposition

of a G is a pair (T,V) of a tree T together with a family V = (Vt)t∈T of vertex sets
Vt ⊆ V (G) such that:

(T1) V (G) =
⋃
t∈T Vt;

(T2) Given e ∈ E[G] there exists a t ∈ T such that e ⊆ Vt;

(T3) Given a path P in T from t1 to t3 and a vertex t2 ∈ P we have Vt1 ∩ Vt3 ⊆ Vt2 .

A separation (A,B) is induced by a tree-decomposition (T,V) if and only if there exists an
edge tt′ ∈ T such that for the components Tt, Tt′ of T − tt′ containing t or t′ respectively,
we have

(A,B) =

 ⋃
t′′∈Tt

Vt′′ ,
⋃

t′′∈Tt′

Vt′′

 .

A chain of order type α or a α-chain, or a chain of length α, for some ordinal number
α (we shall only use α ∈ N or α = ω or α = ω + 1) is a collection {si | 0 ≤ i < α} of
oriented separations, such that si < sj whenever i < j. A set N of unoriented separations
contains such a chain, if all the separations in that chain are orientations of separations
from N .

Kneip and Gollin [19] showed the following:

Theorem 2.6 ([19], Theorem 3.9). Every regular tree set which does not contain a chain
of order type ω + 1 is isomorphic to the edge tree set of a suitable tree.

Here the edge tree set of a tree T = (V,E) is the set of separation obtained from the
set of oriented edges E by ordering them in the natural partial order (that is vw ∈ E is
smaller than xy ∈ E if and only if the unique path from v to y meets w and x).
We shall need the following lemma, whose proof is inspired by [1].

Lemma 2.7. Let G = (V,E) be an infinite graph and let N ⊆ Sℵ0(G) be a regular tree
set. If we have for any ω-chain (A1, B1) < (A2, B2) < . . . which is contained in N that⋂
i∈NBi = ∅, then there exists a tree-decomposition (T,V) of G whose set of induced

separations is N .
Moreover this tree-decomposition can be chosen canonical: if ϕ : G → G′ is an iso-

morphism of graphs, then the tree-decomposition constructed for ϕ(N) in G′ is precisely
the image under ϕ of the tree-decomposition constructed for N in G.

Proof. Let T = (V,E) be the tree from Theorem 2.6. Note that by [19, Theorem 3.9(iii)]
any isomorphism between the edge tree sets of two distinct trees induces an isomorphism
of the underlying trees.
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Let α be the isomorphism from the edge tree set of T to N . Given some node t ∈ T
let us denote as Ft the set of oriented separations

Ft := {α(s, t) | (s, t) ∈ E } .

We define the bags of our tree-decomposition as Vt :=
⋂

(A,B)∈Ft
B. Let us verify

that (T,V) with V = (Vt )t∈T is the desired tree-decomposition.
For (T1) let v ∈ V be given; we need to find a t ∈ T with v ∈ Vt . If v ∈ A ∩ B for

some (A,B) ∈ N then v ∈ Vt for t being either of the two end-vertices of the edge whose
image under α is (A,B). Otherwise v induces an orientation O of E(T ) by orienting each
edge {x, y} of T as (x, y) if v ∈ B rA for (A,B) = α(x, y).
Observe that O is consistent. If O has a sink, that is, if there is a node t of T all of

whose incident edges are oriented inwards by O, then v ∈ Vt by definition of O. If O does
not have a sink then O contains an ω-chain. This is impossible though, since by definition
of O we would have v ∈

⋂
i∈NBi, where (Ai, Bi) is the image under α of the i-th element

of that ω-chain in O. Thus (T1) holds.
The proof that (T2) holds can be carried out in much the same way due to the fact

that every edge of G is included in either A or B for each (A,B) ∈ N .
Before we check that (T3) holds, let us show that (T,V) indeed induces N . For this

we need to show that if (x, y) is an oriented edge of T then

α(x, y) =

 ⋃
z∈Tx

Vz ,
⋃
z∈Ty

Vz

 ,

where Tx and Ty are the components of T − xy containing x and y, respectively. So
let (x, y) ∈ E be given and α(x, y) = (A,B). Observe first that A ∩ B ⊆ Vx ∩ Vy by
definition. It thus suffices to show that A ⊇

⋃
z∈Tx

Vz and B ⊇
⋃
z∈Ty

Vz to establish the
desired equality.
To see this consider a vertex v ∈ Vz for some z ∈ Tx. Let e be the first edge of the

unique z–x-path in T and let α(e) = (A′, B′). We have e ≤ (x, y) by definition of an
edge tree set, and hence (A′, B′) ≤ (A,B) since α is an isomorphism. From this we know
that A′ ⊆ A. We further have (B′, A′) ∈ Fz and thus, by definition of Vz, that v ∈ A′.
This shows v ∈ A. The argument that B ⊇

⋃
z∈Ty

Vz is similar.
Having established that (T,V) indeed induces N , we can now deduce from this that (T3)

holds: if Vt1 and Vt3 are two bags of (T,V) which both contain some vertex v, then v
also needs to lie in the separator of every separation that is an image under α of an edge
on the path P in T from t1 to t3. Therefore v lies in every Vt2 with t2 ∈ P .

3 The profinite splinter lemma
In this section we establish an extension of the splinter lemma to a large class of infinite
separation systems: the profinite universes. Informally, a separation system is profinite
if it is determined entirely by its finite subsystems. The most prominent, and most
important, example of such a universe of separations is the separation system of an
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infinite graph: two separations of an infinite graph are comparable precisely if all their
restrictions to finite subgraphs are comparable. Moreover, a pair (A,B) of sets of vertices
of an infinite graph G is a separation if and only if the restriction of (A,B) to each
finite subgraph H of G is a separation of H. We will make this relation between the
separations of a profinite universe and their finite restrictions more formal now.

3.1 Introduction to profinite universes

For an in-depth introduction to profinite separation systems we refer the reader to [7],
where this class of separation systems was first introduced. In this section we shall give
only the definitions, terms, and tools for profinite universes relevant to our studies.

A directed set is a poset P in which every two elements have a common upper bound,
i.e., in which there is an r ∈ P with p ≤ r and q ≤ r for all p, q ∈ P . Given a directed
set P , an inverse system (of finite sets) is a family X = (Xp | p ∈ P ) of finite sets,
together with maps fqp : Xq → Xp for all q > p that are compatible in the sense that
frp = fqp ◦ frq for all r > q > p. If every set Xp is a finite universe of separations Up,
and the maps fqp are homomorphisms of universes, then the family U = (Up | p ∈ P ) is
an inverse system (of universes of separations).
A limit of an inverse system X = (Xp | p ∈ P ) is a compatible choice of one element

xp from each Xp, that is, a family (xp | p ∈ P ) with xp ∈ Xp and fqp(xq) = xp for
all q > p. The inverse limit lim←− X of (Xp | p ∈ P ) is the set of all limits of X . It is a
well-known fact that every inverse system of non-empty finite sets has a limit (cf. [7]).

Limits and the inverse limit of an inverse system of universes are defined in the same
way. Then the inverse limit U = lim←− U of an inverse system of universes U = (Up | p ∈ P )
is itself a universe of separations by defining involution, partial order, joins, and meets
coordinate-wise. That is by, for r = ( rp | p ∈ P ) and s = ( sp | p ∈ P ), letting

s := ( sp | p ∈ P )

as well as
r ∨ s := ( rp ∨ sp | p ∈ P )

and
r ∧ s := ( rp ∧ sp | p ∈ P ),

with r ≤ s if and only if rp ≤ sp for all p ∈ P . In particular the involution, joins and
meets of limits of U are again limits of U .

A universe of separations is then called profinite if it is isomorphic to an inverse limit
of finite universes of separations. The most prominent example of a profinite universe of
separations comes from infinite graphs:

Example 3.1. Let G = (V,E) be an infinite graph and U = U (G) the universe of all
separations of G, including those (A,B) with |A∩B| =∞. Then U is profinite: let X be
the set of all finite Z ⊆ V . Then X , ordered by inclusion, is a directed set. For Z ∈ X let
UZ be the universe of separations of G[Z]. We define maps fZY : UZ → UY for Y ⊂ Z
by letting fZY map a separation (AZ , BZ) of G[Z] to (AZ ∩ Y , BZ ∩ Y ), which is easily
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seen to be a separation of G[Y ]. These maps are clearly compatible, and thus the family
U := (UZ | Z ∈ X ) is an inverse system of finite universes.
Let us show that U is isomorphic to the inverse limit of U . For this observe that for

every separation (A,B) of G the family of its restrictions ( (A ∩Z , B ∩Z) | Z ∈ X ) is a
limit of U , and the map f : U → lim←− U given by mapping each (A,B) ∈ U (G) to this
family ( (A∩Z , B ∩Z) | Z ∈ X ) is a homomorphism of universes. Moreover f is clearly
injective, and its inverse is a homomorphism as well. To see that f is an isomorphism
between U and lim←− U it thus remains to show that f is surjective, that is, that every
limit of U gives rise to a separation of G.

So let s = ( (AZ , BZ) | Z ∈ X ) be a limit of U . Let A and B be the union of the sets
AZ and BZ , respectively, over all Z ∈ X . We claim that (A,B) is a separation of G. If
so then f((A,B)) = s , showing that f is surjective.
Note first that A ∪B = V , since v ∈ A{v} ∪B{v} for every v ∈ V . Suppose now that

G contains an edge vw ∈ E with v ∈ A r B and w ∈ B r A. Let Z := {v, w} and
consider the induced subgraph G[Z] of G: by definition of (A,B) we have AZ = {v} and
BZ = {w}, but then vw is an edge of G[Z] between AZ rBZ and BZ rAZ , contradicting
the assumption that (AZ , BZ) ∈ UZ . Therefore (A,B) is indeed a separations of G.

For the remainder of this section, let U = (Up | p ∈ P ) be an inverse system of
universes and U its inverse limit.
Given an element s = ( sp | p ∈ P ) of U , we write (s � p) := sp for the projection

of s to Up. Likewise, for a set O ⊆ U the projection O � p to Up is the set of all s � p
with s ∈ O.

A family (Np | p ∈ P ) of finite subsets of the Up is a restriction of U if fqp(Nq) = Np

for all q > p. The inverse limit of such a restriction of U is a subset of U = lim←− U .
By equipping each Up in U with the discrete topology, the inverse limit U = lim←− U

becomes a topological space as a subspace of the product space
∏
p∈P Up . Doing so makes

the maps fqp continuous, and it is easy to see that U is a closed subset of the product∏
p∈P Up and hence compact. In fact, the topology on U can be described in terms of

the sets Up :

Lemma 3.2 ([7, Lemma 4.1]).
(i) The topological closure in U of a set O ⊆ U is the set of all limits s = ( sp | p ∈ P )

with sp ∈ O �p for all p.
(ii) A set O ⊆ U is closed in U if and only if there are sets Op ⊆ Up, with fqp(Oq) ⊆ Op

whenever p < q ∈ P , such that O = lim←− (Op | p ∈ P ).

We shall also use the following lemma, which is a re-formulation of Lemma 5.4 from [7]:

Lemma 3.3. A set N ⊆ U is nested if and only if (N �p) ⊆ Up is nested for all p ∈ P .

A consequence of Lemma 3.2 and Lemma 3.3 (which we will not use) is that the
topological closure of a nested set is still nested.
Finally, let us show that two closed sets in U intersect if all of their projections do:

Lemma 3.4. If R,S ⊆ U are closed and (R�p) ∩ (S �p) is non-empty for every p ∈ P ,
then R ∩ S is non-empty.
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Proof. The family ( (R � p) ∩ (S � p) | p ∈ P ) is an inverse system of non-empty finite
subsets of U , using as maps the restrictions of the maps fqp of (Up | p ∈ P ). Since
both R and S are closed in U , every limit of this family lies in R ∩ S, which is therefore
non-empty.

3.2 Statement and proof of the profinite splinter lemma

Using the framework of profinite separation systems, we can now extend Theorem 1.1 to
infinite separation systems:

Theorem 3.5. Let U = lim←− (Up | p ∈ P ) be a profinite universe and B a family of
non-empty closed subsets of U . If B splinters then there is a closed nested set N ⊆ U
containing at least one element from each member of B.

Proof. For p ∈ P let Bp denote the projection B � p of B to Up, that is, the family of
all B �p, where B is a member of B. Then each projection Bp splinters in Up: consider
two members Bp and B′p of Bp, with separations rp ∈ Bp and sp ∈ B′p. By definition of
Bp and B′p there are r ∈ B and s ∈ B′ with (r �p) = rp and (s �p) = sp. Since B splinters
we have either that one of r or s lies in B ∩B′, in which case its projection to Up lies in
Bp ∩ B′p, or else some corner separation c of r and s lies in B ∪ B′. In the latter case
(c �p) ∈ Bp ∪B′p is a corner separation of rp and rs, showing that Bp indeed splinters.

By the above observation and Theorem 1.1 applied to Bp and Up there is a nested
set Np ⊆ Up for every p ∈ P which contains an element of each member of Bp. Let Np
be the set of all such nested sets Np ⊆ Up. Observe that if Nq ∈ Nq and q > p then
fqp(Nq) ⊆ Up is a nested set meeting each member of Bp and hence lies in Np. Therefore
the family (Np | p ∈ P ) together with the maps mapping Nq ∈ Nq to fqp(Nq) ∈ Np for
q > p is an inverse system of non-empty finite sets.

Let (Np | p ∈ P ) be a limit of (Np | p ∈ P ). Then this limit is a restriction of U , and
hence N := lim←− (Np | p ∈ P ) is a subset of U . In fact N is a closed nested subset of U
by Lemma 3.2 and Lemma 3.3. To see that N contains an element of each member of
B, let B be a member of B. Then (N � p) ∩ (B � p) is non-empty for each p ∈ P since
(N �p) = Np ∈ Np, and thus by Lemma 3.4 and the assumption that B is closed in U
the sets N and B intersect.

4 Application of the profinite splinter lemma
For this section, let G = (V,E) be a connected graph and X the set of finite subsets
of V . As seen in Example 3.1, the universe U = U (G) of separations of G is profinite
since it arises as the inverse limit of (UZ | Z ∈ X ), where UZ denotes the universe of
separations of G[Z]. Following the notation of Section 3, we write (A,B) �Z for the
projection (A ∩ Z , B ∩ Z) of a separation (A,B) ∈ U to UZ .

For k ∈ N let Sk = Sk(G) be the separation system of all separations of order < k of G.
Using Lemma 3.2, it is easy to observe the following fact about these Sk, which will be
used throughout this section:
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Observation 4.1. For every k ∈ N the set Sk is a closed subset of U .

Our main goal in this section is to use Theorem 3.5 to find a nested set of separations
which efficiently distinguishes a large set of profiles of G. Concretely, we will be able to
distinguish the set of all regular bounded profiles in G. A profile P in G is bounded if P
is a k-profile of G for some k but is not a subset of any ℵ0-profile of G. Recall that a
profile in G is regular if it contains no separation of the form (V (G), X).

The main result of this section, then, will be the following:

Theorem 4.2. Let P be a set of robust regular bounded profiles in G. Then there is a
nested set N of separations of G which efficiently distinguishes all distinguishable profiles
in P.

It can be shown ([11]) that every ℵ0-profile P in G corresponds to either an end
of G, or a so-called ultrafilter tangle: an orientation which, for some X ∈ X , induces a
non-principal ultrafilter on the set of components of G−X. These ultrafilter tangles are
studied extensively in [11]. Ends and ultafilter tangles both exhibit a different behaviour
than profiles of finite graphs. Bounded profiles, on the other hand, do behave similarly
to profiles of finite graphs, and consequently we shall be able to utilize Theorem 3.5
to establish Theorem 4.2. The latter is a weakening of Theorem 1.4, but our proof
via Theorem 3.5 will be significantly shorter and simpler than the proof of Theorem 1.4.

For the remainder of this section let P be a set of robust regular bounded profiles
in G. Given two profiles P and P ′ in P let AP,P ′ be the set of all separations of G that
efficiently distinguish P and P ′.

In order to deduce Theorem 4.2 from Theorem 3.5 we need to show that the family of
the sets AP,P ′ splinters, and that each AP,P ′ is a closed subset of U . We will start by
showing the latter:

Proposition 4.3. Let P and P ′ be distinguishable regular bounded profiles in G. Then
AP,P ′ is a closed subset of U .

In order to prove Proposition 4.3 we will first need to show a series of lemmas about
how bounded profiles, and their efficient distinguishers, behave. The first step is to
show that a regular bounded profile, for every sufficiently small set X of vertices, points
towards a component of G−X. That is to say: bounded profiles do not behave like the
ultrafilter tangles of [11].

Lemma 4.4. Let X be a finite set of vertices and P a regular bounded profile of order at
least |X|+1 in G. Then there is a unique component C of G−X with (V rC , C∪X) ∈ P .

Proof. Suppose that P contains for every component C of G−X the separation (C ∪
X , V r C), we are going to construct an extension of P to a profile of Sℵ0 .
To determine the appropriate orientation of a separation {A,B} ∈ Sℵ0 , consider the

components of G−X and let CA be the union of all those components which are contained
in ArB. Likewise let CB be the union of all components contained in B rA and CR
the union of the remaining components, i.e., those which meet both A and B. Since each
of these needs to meet A ∩B there are only finitely many.
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By our assumption P contains for every component C of G − X the separation
(C ∪X , V r C). Since CR is a union of only finitely many components of G−X and
since P is a profile, we have (CR ∪X , V r CR) ∈ P .

We now want to prove that one of (V rCB , CB ∪N(CB)) and (V rCA , CA∪N(CB))
lies in P . Indeed, if this is not the case then their respective inverses are in P , so the
profile property gives us

(CB ∪ CA ∪N(CA ∪ CB) , V r (CA ∪ CB)) ∈ P.

This however would imply that the supremum

(CB ∪ CA ∪N(CA ∪ CB) , V r (CA ∪ CB)) ∨ (CR ∪X , V r CR) = (V,X)

lies in P by the profile property and the fact that this is a separation of order |X|. This
contradicts the regularity of P .
This proves that one of (V r CB , CB ∪N(CB)) and (V r CA , CA ∪N(CB)) lies in

P , and by consistency we cannot have both. We may thus define an orientation P ′ of
Sℵ0 by declaring that (A,B) shall be in P ′ if and only if (V rCB , CB ∪N(CB)) is in P .
This orientation is consistent since P is consistent and (A,B) ≤ (V rCB , CB ∪N(CB)).
Note that P ⊆ P ′ and it only remains to show that P ′ is a profile.
Given (A,B), (C,D) ∈ P ′ we have, by definition, (V r CB , CB ∪ N(CB)) and

(V r CD , CD ∪N(CD)) in P . The profile property of P then gives us

(V r CB , CB ∪N(CB)) ∨ (V r CD , CD ∪N(CD)) ∈ P ⊆ P ′,

so by the consistency of P ′ we have ((A,B) ∨ (C,D))∗ /∈ P ′.

Using Lemma 4.4 we can take the next step towards showing that the sets AP,P ′ are
closed by showing that for every infinite chain in AP,P ′ the sequence of the separators is
eventually constant:

Lemma 4.5. Let P and P ′ be distinguishable regular bounded profiles in G and consider
and infinite increasing sequence (A1, B1) ≤ (A2, B2) ≤ . . . in AP,P ′. Then the sequence
of separators (Ai ∩Bi)i∈N is eventually constant.

Proof. By switching their roles if necessary we may assume that P ′ contains (B1, A1).
Then, by consistency, (Bi, Ai) ∈ P ′ and consequently (Ai, Bi) ∈ P for every i ∈ N.

For i ∈ N let us write Xi := Ai ∩Bi. By Lemma 4.4 there is a unique component Ci
of G−Xi with (V r Ci , Ci ∪Xi) ∈ P . Observe that, just like (Ai, Bi), the separation
(V r Ci , Ci ∪Xi) distinguishes P and P ′ efficiently, and that Ci ⊆ Bi. This efficiency
implies that N(Ci) = Xi. Observe further that the separations (V r Ci , Ci ∪Xi) form
an increasing chain in AP,P ′ whose sequence of separators is (Ai∩Bi)i≥N. In fact Ci ⊇ Cj
for i ≤ j. It thus suffices to show that the sequence of the Ci is eventually constant. So
suppose for a contradiction that the sequence of the Ci is strictly decreasing.
Let us first show that

⋂
i∈NCi is empty. If not there is a vertex v ∈

⋂
i∈NCi. By

applying Lemma 4.4 to P ′ and each Xi, we obtain components C ′i of G−Xi such that
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(V r C ′i , C
′
i ∪Xi) ∈ P ′ for all i ∈ N. Clearly Ci 6= C ′i and N(C ′i) = Xi for all i ∈ N. Fix

any w ∈ C ′1. Then w ∈ C ′i for every i ∈ N, and each Xi is a minimal v-w-separator in G.
The latter contradicts Lemma 2.2 by the assumption that all Ci, and hence all Xi, are
distinct.
Thus

⋂
i∈NCi is indeed empty. Let us define an orientation P̃ of Sℵ0 and show that

P̃ is a profile extending P , obtaining a contradiction. Let P̃ consist of all (A,B) ∈ Sℵ0
for which there is a Ci with Ci ⊆ B r A. Since the Ci form a decreasing sequence of
connected vertex sets with

⋂
i∈NCi = ∅, and A ∩B is finite, this defines an orientation

of Sℵ0 . Moreover it is easy to see that P̃ is consistent and has the profile property.
To obtain the desired contradiction it is thus left to check that P ⊆ P̃ . How-

ever any (A,B) ∈ P with Ci ⊆ A r B for some i ∈ N would be inconsistent with
(V r Ci , Ci ∪Xi) ∈ P . Therefore P̃ is an extension of P , contrary to the assumption
that P is bounded.

Moreover, we can even show that the same statement also holds not only for chains,
but even for the entire set AP,P ′ :

Lemma 4.6. Let P and P ′ be distinguishable regular bounded profiles in G. Then the
separations (A,B) ∈ AP,P ′ have only finitely many distinct separators A ∩B.

Proof. Suppose for a contradiction that AP,P ′ contains an infinite sequence of separations
(A1, B1), (A2, B2), . . . whose separators Ai ∩ Bi are pairwise distinct. We may assume
without loss of generality that (Ai, Bi) ∈ P for every i ∈ N. By Lemma 2.5 P contains all
finite joins of these separations. For each i ∈ N let Xi be the separator of the supremum of
(A1, B1) up to (Ai, Bi), and let Ci be the component of G−Xi with (V rCi , Ci∪Xi) ∈ P
as given by Lemma 4.4. By Lemma 4.5 the sequence of the Xi is eventually constant,
and therefore so is the sequence of the Ci as P is a profile. Let C :=

⋂
i∈NCi 6= ∅.

Analogously for P ′ let X ′i be the separator of the supremum of (B1, A1) up to (Bi, Ai)
and let C ′i be the component of G − X ′i with (V r C ′i , C

′
i ∪ X ′i) ∈ P ′. As before

let C ′ :=
⋂
i∈NC

′
i 6= ∅.

Since C1 and C ′1 are disjoint so are C and C ′. Fix vertices v ∈ C and w ∈ C ′. We
claim that every separator Ai ∩Bi is a minimal v-w-separator in G, contradicting the
assertion of Lemma 2.2. To see this, consider Ai ∩ Bi for some i ∈ N. Let C̃i and C̃ ′i
be the components of G − (Ai ∩ Bi) obtained by applying Lemma 4.4 with P and P ′,
respectively. Then C ⊆ Ci ⊆ C̃i and likewise C ′ ⊆ C ′i ⊆ C̃ ′i, giving v ∈ C̃i and w ∈ C̃ ′i.
Moreover both C̃i and C̃ ′i have all of Ai ∩Bi as their neighbourhood as (Ai, Bi) efficiently
distinguishes P and P ′, and hence Ai ∩Bi is indeed a minimal v-w-separator in G.

We are now ready to prove Proposition 4.3, i.e. that the sets AP,P ′ are closed subsets
of U :

Proof of Proposition 4.3. Let two distinguishable regular bounded profiles P and P ′ in
G be given. By Lemma 4.6 only finitely many sets, say X1, . . . , Xn, appear as separators
of separations in AP,P ′ . For each Xi let Ci and C ′i be the two components of G −Xi

given by applying Lemma 4.4 to Xi for P and P ′, respectively.
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We are now able to give a complete description of the set AP,P ′ : it is easy to check that
a separation (A,B) ∈ Sℵ0

distinguishes P and P ′ efficiently if and only if A∩B = Xi for
some i with one of Ci and C ′i being a subset of A and the other a subset of B.

For each Xi, the set of all (A,B) ∈ U with A ∩B = Xi as well as Ci ⊆ A and C ′i ⊆ B
is closed by Lemma 3.2. Likewise the set of all (A,B) ∈ U with separator Xi as well as
C ′i ⊆ A and Ci ⊆ B is closed, too. Therefore AP,P ′ is the union of finitely many closed
subsets of U and hence closed.

Having established that the sets AP,P ′ are closed in U , it thus remains for us to verify
that the family of the setsAP,P ′ splinters in order to deduce Theorem 4.2 from Theorem 3.5.
Since we shall need a slightly stronger property than splintering at a later point in Section 6,
we will prove this stronger assertion here. In particular we will not make use of the
assumptions that the profiles in P are regular and bounded.

To show that the sets AP,P ′ splinter, we need to show that for all (A,B) ∈ AP,P ′ and
(C,D) ∈ AQ,Q′ , either some corner separation of (A,B) and (C,D) lies in AP,P ′ or in
AQ,Q′ , or one of (A,B) and (C,D) lies in both AP,P ′ and AQ,Q′ . In fact we will show
that the first option always occurs.
We will split our proof of this into two separate lemmas, distinguishing the cases of

equal and of distinct order of (A,B) and (C,D).
Let us first deal with the case that (A,B) is of strictly lower order than (C,D). In

this case we can say precisely which of AP,P ′ and AQ,Q′ will contain a corner separation
of (A,B) and (C,D):

Lemma 4.7. Let (A,B) ∈ AP,P ′ and (C,D) ∈ AQ,Q′ with |(A,B)| < |(C,D)|. Then
some corner separation of (A,B) and (C,D) lies in AQ,Q′.

Proof. Since |(A,B)| < |(C,D)| it follows that both Q and Q′ orient {A,B} the same,
say (A,B) ∈ Q ∩Q′. If |(A,B) ∨ (C,D)| ≤ |(C,D)| or |(A,B) ∨ (D,C)| ≤ |(C,D)|, it
follows that this corner separation efficiently distinguishes Q and Q′ by Lemma 2.3, so sup-
pose that this is not the case. Then submodularity implies that |(B,A) ∨ (C,D)| < |(A,B)|
and |(B,A) ∨ (D,C)| < |(A,B)|, which in turn contradicts the efficiency of (A,B), since
one of (B,A) ∨ (C,D) and (B,A) ∨ (D,C) would also distinguish the two robust profiles
P and P ′.

For separations r and s the corner separations given by r ∨ s and r ∨ s (as well as
their underlying unoriented separations) are referred to as opposite corner separations.
The second case is that (A,B) and (C,D) are of equal order. Here we can show

that there are two opposite corner separations of (A,B) and (C,D) that lie in AP,P ′ or
in AQ,Q′ :

Lemma 4.8. Let (A,B) ∈ AP,P ′ and (C,D) ∈ AQ,Q′ with |(A,B)| = |(C,D)|. Then
there is either a pair of two opposite corner separations of (A,B) and (C,D) with
one element in AP,P ′ and one in AQ,Q′, or else there are two pairs of opposite corner
separations of (A,B) and (C,D), the first with both elements in AP,P ′ and the second
with both elements in AQ,Q′.
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Proof. From |(A,B)| = |(C,D)| it follows that P and P ′ both orient {C,D}, and likewise
that Q and Q′ both orient {A,B}.

Let us first treat the case that one of P and P ′ orients both {A,B} and {C,D} in the
same way as one of Q and Q′ does. So suppose that, say, both P and Q contain (A,B)
as well as (C,D).

If P ′ contains (D,C), then (C,D) ∈ AP,P ′ and Lemma 2.5 gives (A,B) ∨ (C,D) ∈ AP,P ′

and (B,A) ∨ (D,C) ∈ AP,P ′ . Thus by property P we also have (A,B) ∨ (C,D) ∈ AQ,Q′ ,
producing the desired pair of opposite corner separations. If Q′ contains (B,A) we argue
analogously.
So suppose that (C,D) ∈ P ′ and (A,B) ∈ Q′. Then (B,A) ∨ (C,D) ∈ P ′ and

(A,B)∨ (D,C) ∈ Q′ by the profile property, since by submodularity and the efficiency of
(A,B) and (C,D) both of these corner separations have order exactly |(A,B)|. These
two separations, then, are opposite corner separations of (A,B) and (C,D) with the first
lying in AP,P ′ and the second lying in AQ,Q′ .
The remaining case is that no two of the four profiles agree in their orientation of
{A,B} and {C,D}. But then both of (A,B) and (C,D) lie in AP,P ′ as well as in AQ,Q′ ,
and the existence of two pairs of opposite corner separations, one with both elements in
AP,P ′ and one with both in AQ,Q′ , follows from Lemma 2.5 and the disagreement of the
four profiles on {A,B} and {C,D}.

We now have all the ingredients necessary for a proof of Theorem 4.2:

Proof of Theorem 4.2. By Proposition 4.3, we can apply Theorem 3.5. Thus we only
need to show that the collection of these sets AP,P ′ splinters. However, this follows from
Lemma 4.7 and Lemma 4.8.

We remark that even in locally finite graphs it is not generally possible to find a
tree-decomposition which efficiently distinguishes all the distinguishable robust regular
bounded profiles, as witnessed by the following example:

Example 4.9. Consider the graph displayed in Fig. 1. This graph is constructed as
follows: for every n ∈ N pick a copy of K2n+2 together with n+ 3 vertices wn1 , . . . , wnn+3.
Pick 2n vertices of the K2n+2 and call them un1 , . . . , u

n
2n . Additionally, pick 2n+1 vertices

from K2n+2 , disjoint from the set of uni , and call them vn1 , . . . , v
n
2n+1 . Now identify

un+1
i with vni and add edges between every wni and every wn+1

j as well as between wni
and vn1 = un+1

1 .
Finally we pick one copy of K10 and join one vertex v0

1 of this K10 to u1
1 and u2

1.
Additionally we pick two vertices w0

1, w
0
2 which are distinct from v0

1 from this K10 and
add an edge between each w0

i and each w1
j .

Now each of the chosen K2n+2 induces a robust profile Pn of order 2
3 · 2

n+1 which
obviously is regular and bounded. The only separation which efficiently distinguishes Pn
and Pn+1 is the separation sn with separator {vi1 | i < n} ∪ {un+1

j }.
Additionally, the K10 induces a robust profile P0 of order 4. However the only

separation that efficiently distinguishes P0 and P1 has the separator {v0
1, w

0
1, w

0
2}. But

these separations s1, s2, ..., and s0 can be oriented such as to form a chain of order
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Figure 1: A locally finite graph where no tree-decomposition distinguishes all the robust
regular bounded profiles efficiently. The green separator is the one of the only
separation which efficiently distinguishes the profile induced by the K64 from
the profile induced by the K128.

type ω + 1. This chain witnesses that there cannot be a tree-decomposition which
distinguishes all regular bounded profiles efficiently: the separations given by such a
tree-decomposition would have to contain this chain of order type ω + 1 which is not
possible as every chain in the edge tree set of a tree has length at most ω, cf. Lemma 2.7.

5 The thin splinter lemma
In this section we take a different approach to generalising the finite splinter lemma into
an infinite setting. Unlike Theorem 3.5, the result we are going to prove does not require
our universe to be ‘closed’. Instead we will require that the separations involved do not,
in a sense, cross too badly in that they cross only finitely many separations of lower
order.
This will allow us to choose separations that minimise the number of separations

crossing them, an idea which also appeared in Carmesin’s original proof of Theorem 1.4
in [3], as well as in [2] and our proof of the canonical spinter theorem for finite separation
systems in [15]. However, our theorem here applies to a more general setting and will
allow us directly to deduce Carmesin’s theorem for locally finite graphs.
In order to also be able to deduce the full Theorem 1.4 for arbitrary graphs, we will

state our theorem in more generality here: not as a theorem about nestedness and
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separations, but as a theorem about a general nestedness-like relation. This allows us
to apply the theorem in Section 6.2 not to separations directly, where it would fail, but
to substitute separators as a proxy giving our Theorem 1.3. From this result we will
retrieve the separations for our proof of Theorem 1.4 in Section 6.2.1, but we will also
build from this a tree of tree-decompositions to deduce Theorem 1.5 in Section 6.2.2.

The statement of our Theorem 1.2 is also inspired by our canonical splinter lemma for
the finite setting in [15], and it will too result in a canonical nested set, a set which is
invariant under isomorphisms.

So let A be some set and ∼ a reflexive and symmetric binary relation on A. In analogy
to our terminology for separation systems, we say that two elements a and b of A are
nested if a ∼ b. Elements of A that are not nested cross. As usual, a subset of A is
nested if all of its elements are pairwise nested, and a single element is nested with a set
N if it is nested with every element of N .

In an abuse of notation, given elements a and b of A, we call c ∈ A a corner of a and b if
every element of A crossing c also crosses one of a and b. Observe that with this definition
corners of elements of A exhibit the same behaviour as was asserted by Lemma 2.3 for
corner separations. However, in contrast to the terminology of separation systems, we do
not insist here that a corner of a and b is itself nested with both a and b. This distinction
will become relevant in Section 6.2.

Now let (Ai | i ∈ I ) be a family of non-empty subsets of A and | | : I → N0 some
function, where I is a possibly infinite index set. We shall think of |i| as the order of the
elements of Ai. For an a ∈ A and k ∈ N0 the k-crossing number of a is the number of
elements of A that cross a and lie in some Ai with |i| = k. This k-crossing number is
either a natural number or infinity. The family (Ai | i ∈ I ) thinly splinters if it satisfies
the following three properties:

1. For every i ∈ I all elements of Ai have finite k-crossing number for all k ≤ |i|.

2. If ai ∈ Ai and aj ∈ Aj cross with |i| < |j|, then Aj contains some corner of ai
and aj that is nested with ai.

3. If ai ∈ Ai and aj ∈ Aj cross with |i| = |j| = k ∈ N0, then either Ai contains
a corner of ai and aj with strictly lower k-crossing number than ai, or else Aj
contains a corner of ai and aj with strictly lower k-crossing number than aj .

We are now ready to state and prove the main result of this section:

Theorem 1.2. If (Ai | i ∈ I ) thinly splinters with respect to some reflexive symmetric
relation ∼ on A :=

⋃
i∈I Ai, then there is a set N ⊆ A which meets every Ai and is

nested, i.e., n1 ∼ n2 for all n1, n2 ∈ N . Moreover, this set N can be chosen invariant
under isomorphisms: if ϕ is an isomorphism between (A,∼) and (A′,∼′), then we have
N((ϕ(Ai) | i ∈ I )) = ϕ(N((Ai | i ∈ I ))).

Proof. We shall construct inductively, for each k ∈ N0, a nested set Nk ⊆ A extending
Nk−1 and meeting every Ai with |i| ≤ k, such that the choice of Nk is invariant under
isomorphisms. The desired nested set N will then be the union of all these sets Nk.
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We set N−1 := ∅. Suppose that for some k ∈ N0 we have already constructed a nested
set Nk−1 such that Nk−1 is canonical and meets every Ai with |i| ≤ k − 1. We shall
construct a canonical nested set Nk ⊇ Nk−1 that meets every Ai with |i| ≤ k.

Let N+
k be the set consisting of the following: for every i ∈ I with |i| = k, among those

elements of Ai that are nested with Nk−1, those of minimum k-crossing number. We
claim that Nk := Nk−1 ∪N+

k is as desired.
Since the choice of N+

k is invariant under isomorphisms, and Nk−1 is canonical by
assumption, Nk is clearly canonical as well. It thus remains to show that Nk meets
every Ai with |i| = k, and that the set Nk is nested.
To see that the former is true, let i ∈ I with |i| = k be given. It suffices to show

that Ai contains some element that is nested with Nk−1. If Ai already meets Nk−1 there
is nothing to show, so suppose that it does not. By property 1 every element of Ai crosses
only finitely many elements of Nk−1; pick an ai ∈ Ai that crosses as few as possible.
Suppose for a contradiction that ai crosses some element of Nk−1, that is, some aj ∈ Aj
with |j| < |i|. But then, by property 2, Ai contains a corner of ai and aj that is nested
with aj . This element of Ai does not cross aj and therefore, by virtue of being a corner
of ai and aj , crosses fewer elements of Nk−1 than ai does, contrary to the choice of ai.
Therefore Nk indeed contains an element of each Ai with |i| ≤ k.

Let us now show that Nk is nested. Since Nk−1 is a nested set by assumption, and
every element of N+

k is nested with Nk−1, we only need to show that the set N+
k itself is

nested. So suppose that some two elements of N+
k cross. These two elements then are

some ai ∈ Ai and aj ∈ Aj with |i| = |j| = k. But now property 3 asserts that one of Ai
and Aj contains a corner of ai and aj with a strictly lower k-crossing number than the
corresponding element ai or aj . Since both ai and aj are nested with Nk−1 their corner
is nested with Nk−1 as well, and hence contradicts the choice of ai or aj for N+

k .

6 Applications of the thin splinter lemma
In this section we are going to apply Theorem 1.2 to infinite graphs. The application to
locally finite graphs in Section 6.1 will be a straightforward application to a universe of
separations, whereas in Section 6.2 we are going to use a more involved argument.
For either case we will utilise the fact that separations which efficiently distinguish

two regular profiles are tight. Recall that for a set X ⊆ V a component C of G−X is
tight if N(C) = X. We say that a separation (A,B) of G is tight if for X := A ∩B each
of ArB and B rA contains some tight component of G−X.

Lemma 6.1. Let P, P ′ be two distinct regular profiles in an arbitrary graph G. If (A,B)
is a separation of finite order that efficiently distinguishes P and P ′, then (A,B) is tight.

Proof. Let (A,B) ∈ P , (B,A) ∈ P ′.
Suppose for a contradiction that BrA does not contain a tight component ofG−(A∩B).

Let Y1, . . . Ym be an enumeration of all proper subsets of A∩B. For every Yl let Cl be the
set of components of G− (A ∩B) in B with neighbourhood exactly Yl. By consistency
of P ′ we have (

⋃
Cl ∪ Yl, V r

⋃
Cl) ∈ P ′. Since moreover (A,B) efficiently distinguishes
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P from P ′ and |Yl| < |A ∩B| we know that (
⋃
Cl ∪ Yl, V r

⋃
Cl) ∈ P as well. Moreover,

(A ∩ B, V ) ∈ P since P is regular. Thus, by an inductive application of the profile
property P we have that for every l

(A ∩B, V ) ∨ (
⋃
C1 ∪ Y1, V r

⋃
C1) ∨ · · · ∨ (

⋃
Cl ∪ Yl, V r

⋃
Cl) ∈ P.

However, for l = m this contradicts the assumption since

(A ∩B, V ) ∨ (
⋃
C1 ∪ Y1, V r

⋃
C1) ∨ · · · ∨ (

⋃
Cm ∪ Ym, V r

⋃
Cm)) = (B,A) /∈ P .

6.1 Locally finite graphs

In this section we apply Theorem 1.2 to the set of separations of a locally finite graph,
which will result in a canonical nested set of separations efficiently distinguishing any two
distinguishable regular profiles in G. The proof of this theorem will be a straightforward
application of Theorem 1.2 to sets AP,P ′ of separations efficiently distinguishing two
profiles in G. Following the strategy of this proof, one might be able to obtain similar
results for other infinite separation systems, e.g., in a matroid.
So let G = (V,E) be a locally finite connected graph and P a set of robust regular

profiles in G.
Let I be the set of pairs of distinguishable profiles in P. For each pair P and P ′ of

distinguishable profiles in P let AP,P ′ be the set of all separations of G that distinguish P
and P ′ efficiently. Observe that by definition all separations in AP,P ′ are of the same
order; let us write |P, P ′| for this order.

Let A be the union of all the AP,P ′ . We wish to show that (Ai | i ∈ I ) thinly splinters,
using as the relation ∼ on A the usual nestedness of separations. We shall prove first
that property 1 is satisfied, i.e. that each separation in an AP,P ′ crosses only finitely
many other separations from sets AQ,Q′ with |Q,Q′| ≤ |P, P ′|.
Making use of the tightness of the separations in the AP,P ′ , property 1 will follow

immediately from the following assertion:

Proposition 6.2. Let (A,B) be a separation that efficiently distinguishes some two
regular profiles in G. Then G has only finitely many tight separations of order at most
|(A,B)| that cross (A,B).

We shall derive Proposition 6.2 from the following lemma about tight separations:

Lemma 6.3. Let (A,B) and (A′, B′) be two tight separations of G. Then (A′, B′) is
either nested with (A,B), or its separator A′ ∩B′ is a ⊆-minimal x-y-separator in G for
some pair x, y of vertices from (A ∩B) ∪N(A ∩B).

Proof. Since (A′, B′) is tight each of A′ rB′ and B′ rA′ contains some tight component
of G−(A′∩B′). If A∩B meets all tight components of G−(A′∩B′) then in particular A∩B
meets these two components, say in x and in y. But then A′ ∩ B′ is a ⊆-minimal x-y-
separator with x, y ∈ A ∩B.
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Therefore we may assume that A∩B misses some tight component C ′ of G− (A′ ∩B′).
By switching their names if necessary we may assume that this component C ′ is contained
in ArB. Since C ′ ⊆ ArB has no neighbours in BrA but has A′∩B′ as its neighbourhood
we can infer that (A′ ∩B′) ⊆ A.

Consider now a tight component C of G − (A ∩ B) that is contained in B r A.
From (A′ ∩B′) ⊆ A it follows that C does not meet A′ ∩B′ and is hence contained in
either A′ rB′ or B′ rA′. By possibly switching the roles of A′ and B′ we may assume
that C ⊆ A′ rB′. As above we can conclude from the tightness of C that (A ∩B) ⊆ C.
It remains to check two cases. If (B r A) ∩ (B′ r A′) is empty we have B ⊆ A′

and B′ ⊆ A, that is, that (A′, B′) is nested with (A,B). The other remaining case is
that (B rA) ∩ (B′ rA′) is non-empty.
In that case, since G is connected, the set (A ∩B) ∩ (A′ ∩B′) must be non-empty as

well, since N((B rA) ∩ (B′ rA′)) ⊆ (A ∩B) ∩ (A′ ∩B′). Pick a vertex z from that set.
Since (A′, B′) is tight z has neighbours x and y in some tight components of G− (A′∩B′)
contained in A′rB′ and in B′rA′, respectively. Then A′∩B′ is a ⊆-minimal x-y-separator
in G, and moreover x, y ∈ (A ∩B) ∪N(A ∩B) since z ∈ A ∩B.

Let us now use Lemma 6.3 to establish Proposition 6.2:

Proof of Proposition 6.2. Since G is locally finite the set (A ∩ B) ∪N(A ∩ B) is finite.
Therefore, by Lemma 2.2, there are only finitely many ⊆-minimal x-y-separators of size
at most |(A,B)| with x, y ∈ (A ∩ B) ∪N(A ∩ B). Leveraging again the fact that G is
locally finite and using that G is connected, we get that there are only finitely many
separations of G with such a separator.
The assertion now follows from Lemma 6.3 since we know by Lemma 6.1 that (A,B)

is tight.

The family (Ai | i ∈ I ) therefore has property 1. With regard to property 2 it turns
out that we already did the required work back in Section 4:

Corollary 6.4. If ai ∈ Ai and aj ∈ Aj cross with |i| < |j|, then Aj contains some corner
separation of ai and aj.

Proof. This is the assertion of Lemma 4.7.

It remains to show that (Ai | i ∈ I ) has property 3.
Using again our preparatory work from Section 4, we can now show that (Ai | i ∈ I )

has property 3 using Lemma 2.4:

Lemma 6.5. If ai ∈ Ai and aj ∈ Aj cross with k = |i| = |j|, then either Ai contains a
corner separation of ai and aj with strictly lower k-crossing number than ai, or else Aj
contains a corner separation of ai and aj with strictly lower k-crossing number than aj.

Proof. By switching their roles if necessary we may assume that the k-crossing number
of ai is at most the k-crossing number of aj.
From Lemma 4.8 it follows that Aj contains a corner separation of ai and aj whose

opposite corner separation lies in either Ai or Aj . Now Lemma 2.4 implies that the sum
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of the k-crossing numbers of this pair of opposite corner separations is at most the sum
of the k-crossing numbers of ai and aj. This inequality is in fact strict since ai and aj
cross each other but are each nested with both corner separations.

If the first corner separation is not already as desired, that is, if its k-crossing number
is not strictly lower than the k-crossing number of aj, we can infer that the k-crossing
number of the opposite corner separation is strictly lower than that of ai. Since we
assumed in the beginning that the k-crossing number of ai is no greater than that of aj
this proves the claim.

We are now ready to prove the main result of this subsection, which is similar to
[2, Theorem 7.5]:

Theorem 6.6. Let G be a locally finite connected graph and P some set of robust regular
profiles in G. Then there exists a nested set N of separations which efficiently distinguishes
any two distinguishable profiles in P. Moreover, this set is canonical, i.e. invariant under
isomorphisms: If α : G→ G′ is an isomorphism, then α(N (G,P)) = N (α(G), α(P )).

Proof. The combination of Proposition 6.2, Corollary 6.4, and Lemma 6.5 shows that
the family (Ai | i ∈ I ) thinly splinters. The nested set N ⊆ A produced by Theorem 1.2
meets each set Ai and thus disinguishes all pairs of dinstinguishable profiles in P
efficiently.

The nested set found by Theorem 6.6 does not in general correspond to a tree-
decomposition of G, as Example 4.9 demonstrated. However Theorem 6.6 can be used to
shown that for every fixed integer k the subset of N consisting of all separations of order
at most k gives rise to a tree-decomposition of G, as this subset will satisfy the conditions
from Lemma 2.7. In particular we can use Theorem 6.6 together with Lemma 2.7 to prove
[2, Theorem 7.3], that there is for every k ∈ N, every locally finite graph G and every
set P of distinguishable robust regular profiles, pairwise distinguishable by a separation
of order at most k, a canonical tree-decomposition of G that efficiently distinguishes all
profiles from P.

6.2 Graphs with vertices of infinite degree

When we consider graphs with vertices of infinite degree, the method of the previous
section fails as we loose Proposition 6.2: It does not necessarily hold that every separation
in an AP,P ′ crosses only finitely many other separations from sets AQ,Q′ with |Q,Q′| ≤
|P, P ′|. Moreover, Dunwoody and Krön [13] gave an example of a graph which does not
contain a canonical nested set of separations separating its ends. As ends induce robust
regular profiles, in arbitrary graphs, it is not generally possible to find a canonical nested
set of separations distinguishing all the robust regular profiles.
To show the result for locally finite graphs we made use of the observation that only

finitely many different separators are involved, and then used that every separator appears
in only finitely many separations. Thus in this section instead of applying Theorem 1.2
directly to some set of separations, we are going to apply it to only the set of separators.
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With this approach we show that in an arbitrary graph you can find a canonical
nested set of separators which efficiently distinguishes all the robust regular profiles in
G. We shall make the meaning of this more precise shortly. We propose that this set of
separators is a natural intermediate object for distinguishing profiles. Moreover we will
show that if we restrict ourselves to the set of robust principal profiles – which we will
define at the end of this section – then from this set we can build both a non-canonical
nested set of separations as in Theorem 1.4 (from [3]) as well as a canonical tree of
tree-decompositions in the sense of [2].
Either of these objects can trivially be converted back to a set of separators. Our

technique splits the process of building either of these cleanly into two independent steps,
which makes it more accessible than the proofs in [3] and [2]. Moreover, the first step of
this process also works for non-principal but regular profiles, allowing us to also get a
(intermediate) result for those profiles, unlike the theorems from [3] and [2]. Note that
distinguishing non-principal profiles is also discussed extensively in [16].
Many of the techniques applied throughout are similar to or inspired by arguments

made in [2], particularly the approach of minimising the crossing-number, even though
the different levels of abstraction make it hard to draw concrete parallels.
Let us now begin with the formal notation. We say that a set of vertices X ⊆ V (G)

efficiently distinguishes a pair P and P ′ of profiles in G if there exists a separation
(A,B) of G with separator A ∩B = X which efficiently distinguishes P and P ′. Such a
separation (A,B) is then a witness that X efficiently distinguishes P and P ′.

Given some set of distinguishable robust regular profiles P of an (infinite) graph G, we
define as A the set of all such separators X which distinguish some pair of profiles in
P efficiently. We say that a separator X is nested with Y ∈ A, i.e. X ∼ Y , whenever
X is contained in C ∪ Y for some component C of G− Y . In other words Y does not
properly separate any two vertices of X. This relation is reflexive, the following lemma
shows that it is also symmetric on A. Unfortunately, its natural extension to all finite
subsets of V (G) is not. The reader should take note that this will lead to some situations
where we argue that some set Y is nested with some X ∈ A provided that Y ∈ A.

Lemma 6.7. If X,Y ∈ A and X is contained in Y together with some component of
G− Y , then Y is contained in X together with some component of G−X.

Proof. Pick a separation (A,B) witnessing that X ∈ A. Since this separation efficiently
distinguishes two regular profiles, by Lemma 6.1, there are at least two tight components
of G −X, one in either side of (A,B). At least one of these tight components, say C,
does not meet Y and is therefore contained in a connected component C ′ of G− Y . Now,
as required, we find

X = N(C) ⊆ C ∪N(C) ⊆ C ′ ∪N(C ′) ⊆ C ′ ∪ Y.

As usual we take as I the set of pairs of distinguishable profiles in P. But this time
we define AP,P ′ for each pair P, P ′ in I to be the set of all the sets of vertices in G which
distinguish P and P ′ efficiently. All these separators in AP,P ′ have the same size; this
size shall be |P, P ′|.
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We claim that {AP,P ′ | {P, P ′} ∈ I} thinly splinters. Before we can show property 1
we need to make two basic observations about how the vertices of a crossing pair of
separators in A lie:

Lemma 6.8. If X,Y ∈ A cross, then Y contains a vertex from every tight component
of G−X.

Proof. If C is a tight component of G−X such that Y does not contain any vertex of C
then C is contained in some component C ′ of G−Y . However, then X = N(C) ⊆ C ′∪Y ,
i.e., X is nested with Y contradicting the assertion.

Lemma 6.9. If X,Y ∈ A cross, then Y contains a pair of vertices v and w such that
X is a ⊆-minimal v–w-separator.

Proof. There are at least two tight components C1, C2 of G−X and Y meets both of
them by Lemma 6.8. Let v be a vertex in Y ∩ C1 and w a vertex in Y ∩ C2. As both C1
an C2 are tight components, X is indeed a ⊆-minimal v-w-separator.

We can now combine these with Lemma 2.2 to prove property 1.

Lemma 6.10. For every pair of profiles P, P ′ ∈ P every X ∈ AP,P ′ has finite k-crossing-
number for all k ≤ |P, P ′|.

Proof. By Lemma 6.9, for every Y ∈ A of size k which crosses X, there are vertices
v, w ∈ X which are minimally separated by Y . However, there is only a finite number of
pairs of vertices v, w in X and by Lemma 2.2 every pair has only finitely many minimal
separators of size k. Therefore only finitely many such Y ∈ A exist.

The following lemmas show how the separators of corner separations behave under our
new nestedness relation. We will need these to prove properties 2 and 3. Recall from
Section 5 that a corner of two separators X,Y ∈ A is a separator Z ∈ A which crosses
only elements of A which cross either X or Y . Note that this does not imply that Z is
nested with X and Y .

Lemma 6.11. Let X,Y ∈ A be a crossing pair of separators and let (AX , BX) and
(AY , BY ), respectively, be separations which witness that these are in A. Then for
every Z ∈ A which is nested with both X and Y there is a component CZ of G − Z,
such that X ∪ Y ⊆ CZ ∪ Z. In particular (AX ∪ AY ) ∩ (BX ∩ BY ) , the separator of
(AX , BX) ∨ (AY , BY ), is a corner of X and Y provided that it lies in A.

Proof. We first show that Z does not separate X and Y . Since Z is nested with X and X
efficiently distinguishes two regular profiles there is, by Lemma 6.1, a tight component CX
of G−X which is disjoint from Z. By Lemma 6.8, there is a vertex y ∈ CX ∩Y ⊆ Y rZ.
By a symmetrical argument there also exists a vertex x ∈ X r Z. Since CX is tight

there is a path from x to y contained in CX except for x. This path avoids Z.
Now, since Z is nested with X there is a component CZ of G − Z which contains

X r Z. In particular this component contains x. Similarly, there is a component of
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G− Z containing Y r Z and hence, in particular, y. Since Z does not separate x and
y this component is the same as CZ . Therefore X ∪ Y ⊆ CZ ∪ Z, as required. In
particular, if (AX ∪AY )∩ (BX ∩BY ) ∈ A then (AX ∪AY )∩ (BX ∩BY ) ⊆ CZ ∪Z, hence
(AX ∪ AY ) ∩ (BX ∩ BY ) ∼ Z and therefore (AX ∪ AY ) ∩ (BX ∩ BY ) is a corner of X
and Y .

Lemma 6.12. Let X,Y ∈ A be a crossing pair of separators and let (AX , BX) and
(AY , BY ), respectively, be witnesses that these are in A. If Z ∈ A is nested with X,
and each of the corner separations (AX , BX) ∨ (AY , BY ) and (AX , BX) ∧ (AY , BY )
distinguishes some pair of profiles efficiently then Z is nested with one of the separators
(AX ∪AY ) ∩ (BX ∩BY ) or (AX ∩AY ) ∩ (BX ∪BY ).

Proof. Since Z and X are nested there is a component CZ of G−X such that Z ⊆ CZ∪X.
Let us assume without loss of generality that CZ ⊆ AX , we will show that Z is nested
with (AX ∪AY ) ∩ (BX ∩BY ).

Since (AX , BX) ∨ (AY , BY ) efficiently distinguishes some regular profiles there is, by
Lemma 6.1, a tight component of (AX ∪ AY ) ∩ (BX ∩ BY ) contained in (BX ∩ BY ).
However Z ⊆ AX , so this component cannot meet Z. Hence, by Lemma 6.8, Z cannot
cross the separator (AX ∪AY ) ∩ (BX ∩BY ).

These now allow us to reuse the Lemmas 4.7 and 4.8 to prove properties 2 and 3:

Lemma 6.13. If two separators X ∈ AP,P ′ and Y ∈ AQ,Q′ cross and |P, P ′| < |Q,Q′|
then there is a corner Y ′ ∈ AQ,Q′ of X and Y which is nested with X.

Proof. Let (AX , BX) be a separation witnessing that X ∈ AP,P ′ and let (AY , BY ) be a
separation witnessing that Y ∈ AQ,Q′ . By Lemma 4.7 there is a corner separation of
(AX , BX) and (AY , BY ) which also distinguishes Q and Q′ efficiently. The separator Y ′
of this corner separation does not meet all tight components of G−X, so Y ′ is nested
with X and thus is by Lemma 6.11 as desired.

Lemma 6.14. If two separators X ∈ AP,P ′ and Y ∈ AQ,Q′ cross and |P, P ′| = |Q,Q′| =
k then either there is a corner Y ′ ∈ AQ,Q′ of X and Y which has a strictly lower k-
crossing-number than Y , or there is a corner X ′ ∈ AP,P ′ of X and Y which has strictly
lower k-crossing-number than X.

Proof. By switching their roles if necessary we may assume that the k-crossing number
of Y is at most the k-crossing number of X. Let (AX , BX) be a separation witnessing that
X ∈ AP,P ′ and let (AY , BY ) be a separation witnessing that Y ∈ AQ,Q′ . By Lemma 4.8
there is a corner separation of (AX , BX) and (AY , BY ) which efficiently distinguishes P
and P ′ and whose opposite corner separation efficiently distinguishes either P and P ′ or
Q and Q′. Let us denote their separators as Z and Z ′ respectively.

By the Lemmas 6.11 and 6.12 and the fact that Z and Z ′ are nested with both X and
Y we have that Z and Z ′ are corners of X and Y and that the sum of the k-crossing
numbers of Z and Z ′ is strictly lower than the sum of the k-crossing numbers of X and Y .

Thus, if the k-crossing number of Z is strictly lower than the k-crossing number of X,
we can take Z for X ′. Otherwise we can infer that the k-crossing number of Z ′ is strictly
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lower than that of Y . Since we assumed in the beginning that the |i|-crossing number
of Y is not greater than that of X. This proves the claim since we can then take Z ′ for
X ′ or Y ′, depending.

With this all the requirements of Theorem 1.2 are satisfied. Immediately we obtain
the main result of this section:

Theorem 1.3. Given a set of distinguishable robust regular profiles P of a graph G there
exists a canonical nested set of separators efficiently distinguishing any pair of profiles
in P.

As noted before, to be able to deduce Theorem 1.4 and [2, Remark 8.3] we restrict
our set P to be a set of principal robust profiles. A k-profile P in G is principal if it
contains for every set X of less than k vertices a separation of the form (V (G)rC,C∪X)
where C is a connected component of G −X. In particular, every principal profile is
regular. Note that this notion of principal profiles is equivalent to the notion of ‘profiles’
in Carmesin’s [3]; the term principal profiles comes from [2]. Observe that in locally
finite graphs an inductive application of the profile property P shows that every profile is
principal.
This restriction to principal profiles is necessary for Theorem 1.4, as Elm and Kur-

kofka [16, Corollary 3.4] have shown that there is a graph together with a set of (non-
principal but robust and distinguishable) profiles, which do not permit the existence of a
nested set of separations distinguishing all of them.

6.2.1 Nested sets of separations

If we restrict P to a set of principal profiles, the nested set of separators from Theorem 1.3
can be transformed into a nested set of separations which still distinguishes all the profiles
in P if we give up on canonicity. This task is not entirely trivial.

The natural approach would be to take for each separator every one of the separations
belonging to one of its tight components, i.e. the separation (C ∪X,V r C) for every
tight component C of G − X. However, if the separators overlap the resulting set of
separations might not be nested. The following recent result by Elm and Kurkofka states
that we need to omit no more than one of the tight components for each separator to
reclaim nestedness.

Theorem 6.15 ([16, Corollary 6.1]). Suppose that Y is a principal collection of vertex
sets in a connected graph G. Then there is a function K assigning to each X ∈ Y a subset
K(X) ⊆ CX (the set CX consists of the components of G−X whose neighbourhoods are
precisely equal to X) that misses at most one component from CX , such that the collection

{{V rK,X ∪K} | X ∈ Y and K ∈ K(X)}

is nested.
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Here, a principal collection of vertex sets is just a set Y of subsets of V such that,
for every X,Y ∈ Y, there is at most one component of G −X which is met by Y . In
particular, any nested set of separators is a principal collection of vertex sets.
Having for every separator all but one of these tight component separations is still

enough to efficiently distinguish all the profiles in P . However, as Theorem 6.15 does not
give as a canonical choice for the function K, we need to give up the canonicity at this
point. However, this still allows us to prove the following theorem by Carmesin:

Theorem 1.4 ([3, Theorem 5.12]). For any graph G, there is a nested set N of separations
that distinguishes efficiently any two robust principal profiles (that are not restrictions of
one another).

Proof. If G is not connected, then every robust principal profile of G induces a robust
principal profile on exactly one of the connected components of G. It is easy to see that
we can then apply the theorem to all connected components from G independently and
obtain our desired nested set of separations of G from those of the connected components
together with separations of the form (C, V rC) for connected components C of G. Thus
let us suppose that G is connected.

Let N be the nested set of separations obtained by applying Theorem 6.15 to the set
N of separators obtained from Theorem 1.3. Given any two profiles P,Q ∈ P there is a
separator X in N which efficiently distinguishes P and Q. By Lemma 6.1 there are two
distinct tight components C and C ′ of G−X such that both (V r C,C ∪X) ∈ P and
(C ′ ∪X,V r C ′) ∈ P efficiently distinguish P and Q. However, at least one of these two
separations is an element of N .

For the readers convenience, we also offer a direct proof of Theorem 1.4 which does
not use Theorem 6.15. Instead we perform an argument akin to one of the arguments
used in the proof of Theorem 6.15 but in slightly simpler form, as the statement we need
is a weaker one than Theorem 6.15.

Direct proof of Theorem 1.4. Let N be the nested set of separators obtained from The-
orem 1.3 applied to the set of robust principal profiles. Pick an enumeration of N which
is increasing in the size of the separators, i.e., an enumeration N = {Xα | α < β} such
that |Xα| ≤ |Xγ | whenever α < γ.

We will construct a transfinite ascending sequence of nested sets (Nγ)γ≤β , of separations.
Each Nγ will contain only separations with separators in {Xα | α < γ}, and every pair
of profiles efficiently distinguished by such a separator Xα, α < γ, will also be efficiently
distinguished by some separation in Nγ .
For the successor steps of our construction suppose that we already constructed Nγ

and consider Xγ . Since Xγ is nested with all Xα satisfying α < γ we know that Xγ

induces a consistent orientation of Nγ since any separation (A,B) ∈ Nγ satisfies either
Xγ ⊆ A or Xγ ⊆ B but not both, as |(A,B)| ≤ |Xγ |.

Consider the set C of tight components of G−Xγ and let D be the set of the remaining,
non-tight, components of G−Xγ .
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Given any separation (A,B) ∈ Nγ pointing away from Xγ (that is Xγ ⊆ A), the side B
is contained in the union of one component CB ∈ C together with some components in D:
Since Xγ is nested with A∩B there is a component in G−Xγ containing (A∩B) rXγ ,
thus, any other component C of G − Xγ meeting B does not meet A ∩ B and must
therefore satisfy N(C) ⊆ A ∩B ∩Xγ , i.e. this component is not tight.
Given a tight component C ∈ C let DC ⊆ D be the set of all components D in D

with the property that there is some (A,B) ∈ Nγ pointing away from Xγ such that D
meets B and CB = C. Informally, these sets DC are the components which we will
need to group together with their C when choosing our next separations. The DC are
pairwise disjoint: Indeed, given two separations (A,B) and (A′, B′) pointing away from
Xγ , if (B′, A′) ≤ (A,B) then the set B′ and B are disjoint, and if (A,B) ≤ (A′, B′), then
(A′ ∩B′) rXγ and (A ∩B) rXγ cannot be contained in different tight components of
G−Xγ .

Let Nγ+ consist of Nγ together with, for every tight component C ∈ C of G−Xγ , the
separation

(
C ∪

⋃
DC ∪ Xγ , V (G) r (C ∪

⋃
DC)

)
. It is easy to see that this set is a

nested set of separations. Moreover, any pair of profiles efficiently distinguished by Xγ is
efficiently distinguished by one of these new separations.
For limit ordinals γ let Nγ :=

⋃
α<γ Nα, this set is nested since every pair in Nγ is

already in some Nα.
Then N := Nβ is the desired nested set of separations.

6.2.2 Canonical trees of tree-decompositions

To canonically and efficiently distinguish a robust set of principal profiles in a graph
Carmesin, Hamann and Miraftab [2] introduced more complex objects than nested sets
of separations: trees of tree-decompositions. These consist of a rooted tree where every
node is associated with a tree-decomposition. At the root this is a tree decomposition
of G. At every remaining node there is a tree-decomposition of one of the torsos of the
tree-decomposition at the parent node. Their main result is the following:

Theorem 1.5 ([2, Remark 8.3]). Let G be a connected graph and P a distinguishable
set of principal robust profiles in G. There exists a canonical tree of tree-decompositions
with the following properties:

(1) the tree of tree-decompositions distinguishes P efficiently;

(2) if t ∈ V (T ) has level k, then (Tt,Vt) contains only separations of order k;

(3) nodes t at all levels have |V (Tt)| neighbours on the next level and the graphs assigned
to them are all torsos of (Tt,Vt).

We can also construct such a tree of tree-decompositions from our nested set of
separators. In order to do that, let us recall the most important definitions from [2].
In a rooted tree (T, r), the level of a vertex t ∈ V (T ) is d(t, r) + 1. A tree of tree-

decompositions is a triple ((T, r), (Gt)t∈V (T ), (Tt,Vt)t∈V (T )) consisting of a rooted tree
(T, r), a family (Gt)t∈V (T ) of graphs and a family (Tt,Vt)t∈V (T ) of tree-decompositions of
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the Gt. The graphs G′t assigned to the neighbours t′ on the next level from a node t ∈ V (T )
shall be distinct torsos of the tree-decomposition (Tt,Vt). This tree of tree-decompositions
is a tree of tree-decompositions of G, if Gr = G.
A separation (A,B) of G induces a separation (A′, B′) of Gt if A ∩ Gt = A′ and

B ∩ Gt = B′. Given two profiles P, P ′, we say that a tree of tree-decompositions
(efficiently) distinguishes P and P ′ if there is a separation (A,B) in G (efficiently)
distinguishing them and a node t ∈ V (T ) such that the separation induced by (A,B)
on Gt is one of the separation induced by the tree-decomposition (Tt,Vt) of Gt.

In order to deduce Theorem 1.5 from Theorem 1.3 it is useful to observe that our set
of separators is nested in an even stronger sense: We say that two separators X and Y
are strongly nested if there is a component C of G −X such that Y ⊆ C ∪N(C) and
there is a component C ′ of G− Y such that X ⊆ C ′ ∪N(C ′). The separators from the
nested set N from Theorem 1.3 are strongly nested:

Lemma 6.16. If X and Y are a pair of nested separators each of which efficiently
distinguishes some pair of robust principal profiles, then they are strongly nested.

Proof. We show that there is a component C of G−X such that Y ⊆ C ∪N(C).
If Y ⊆ X the statement is obvious, by picking as C a tight component of G−X. So

we may assume that Y meets some component C of G−X in a vertex v ∈ Y ∩ C. By
nestedness Y ⊆ C ∪X. Suppose for a contradiction that Y 6⊆ C ∪N(C), i.e., Y contains
a vertex w ∈ X rN(C).
Since Y efficiently distinguishes two principal profiles there are two distinct tight

components C1, C2 of G− Y , by Lemma 6.1. X meets at most one of C1 and C2 since
it is nested with Y ; without loss of generality we may assume X ∩ C2 = ∅. Since C2 is
a tight component of G− Y there is a path P from v to w with all its interior vertices
in C2. On the other hand v lies in C and w outside of C ∪N(C), so N(C) separates v
from w. But N(C) ⊆ X does not meet P since X ∩ C2 = ∅. This is a contradiction.

Note that for a separator X to be strongly nested with itself is a non-trivial property:
It is precisely the statement that there is a tight component of G−X. Thus, if we talk
about a strongly nested set of separators, we mean that not only any pair of distinct
separators from that set is strongly nested, we also require each of the separators from
that set to be nested with itself.
Next we show that we can close our strongly nested set under taking subsets:

Lemma 6.17. Let N be a strongly nested set of separators and let N ′ be the set of all
subsets of elements of N . Then N ′ is strongly nested as well.

Proof. Let X,Y ∈ N and let X ′ ⊆ X,Y ′ ⊆ Y , possibly equal. Take CX to be a
component of G−X for which Y ⊆ CX ∪N(CX), then in particular Y ′ ⊆ CX ∪N(CX).
Since X ′ ⊆ X there is some component CX′ ⊇ CX of G−X ′, thus Y ′ ⊆ CX′ ∪N(C ′X).

By symmetry we also find a component CY ′ such that X ′ ⊆ CY ′ ∪N(CY ′)

So let N ′ be the strongly nested set of all subsets of separators from N , the canonical
nested set of separators from Theorem 1.3. As such, N ′ is canonical as well. The following
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lemma about separations with strongly nested separators will allow us to construct a tree
of tree-decompositions from N ′ inductively, starting with the separators of lowest size.

Lemma 6.18. If X,Y are distinct strongly nested separators and (AX , BX) and (AY , BY )
are separations with separators X and Y respectively, such that Y ⊆ BX , X ⊆ BY , then
either (AX , BX) and (AY , BY ) are nested, or there is a component C of G − (X ∩ Y )
which meets neither X nor Y .

Proof. Suppose that (AY , BY ) 6≤ (BX , AX). Then either there is a vertex in AY which
does not lie in BX , or there is a vertex in AX which does not lie in BY . Since AX ∩BX =
X ⊆ BY and AY ∩BY = Y ⊆ BX either of these cases implies that there is a vertex v in
(AX rBX)∩ (AY rBY ). This vertex v needs to lie in some component C of G− (X ∪Y ).
However, C cannot send an edge to X r Y since such an edge would contradict the fact
that (AY , BY ) is a separation. Similarly, C cannot be adjacent to any vertex of Y rX.
Thus C is in fact a component of G− (X ∩ Y ) which meets either X nor Y .

Now we are ready to deduce Theorem 1.5 from Theorem 1.3:

Proof of Theorem 1.5. Let N ′ be as above. We will build our tree of tree-decompositions
inductively level-by-level, adding at stage k to every node t on level k− 1 new neighbours
on level k, one for every torso of the tree-decompositions (Tt,Vt). We do this in a way
that ensures the following properties:

(i) If d(r, t) = k then every separation in (Tt,Vt) has order k + 1.

(ii) Every separator in N ′ of size at least k+ 2 is contained in exactly one of the torsos
of (Tt,Vt) whenever d(t, r) ≤ k.

(iii) If d(t, r) = k, every torso of (Tt,Vt) meets at most one component of G −X for
every X ∈ N ′ of size ≤ k with X ⊆ V (Gt).

Our inductive construction goes as follows: For k = 0 we consider the set S1 which
consists of, for every separator X of size 1 in N ′ and every component C of G−X, the
separation (C ∪X,V (G) r C), unless C is the only component of G−X.
Observe that S1 is a nested set of separations: any two separations with the same

separator are nested by construction and for separations with distinct separators X and
Y the separators are disjoint, so G− (X ∩ Y ) = G is connected and Lemma 6.18 gives
that the separations are nested.
Moreover every ω-chain (A1, B1) < (A2, B2) < . . . in S1 has

⋂
i∈NBi = ∅: We may

assume without loss of generality that no two of these separations have the same separator
since S1 has no 3-chain of separations with the same separator. On the other hand a
path from a vertex in

⋂
i∈NBi to A1 (which has finite length) would need to meet all the

infinitely many disjoint separators Ai ∩Bi.
Since S1 contains no small separations by construction it is a regular tree set. Thus by

Lemma 2.7 it induces a canonical tree-decomposition (Tr,Vr) of Gr = G. We assign this
tree-decomposition to the root of our tree of tree-decompositions and shall now verify (i)
to (iii).
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Observe that this decomposition satisfies (i) and (iii) as we only used separators of size
1 and every torso of (Tt,Vt) meets at most one component of G−X for every X ∈ N ′ of
size ≤ 1 with X ⊆ V (Gt). Moreover, (ii) is also satisfied since every separator X in N ′
of size at least 2 is nested with each of the separators used in (Tr,Vr): Such a separator
cannot be contained in two distinct torsos since then a separation with separator in
N ′ would separate them. Conversely, there is a torso which contains X: Otherwise
consider a torso Vt that contains as much of X as possible and another torso V ′t which
contains a vertex in X r Vt. Then one of the edges on the path between t and t′ in T
again corresponds to a separation which separates X. But this is not possible since the
separators of these separations are in N ′ and thus nested with X.

For the k-th step of our construction, for k ≥ 1, we attach at every node t on level k−1
of our so-far constructed tree of tree-decompositions, for every torso G′ of (Tt,Vt) a new
node t′ (which then is at level k) with Gt′ := G′. We the independently construct tree-
decompositions for each of these torsos Gt′ . For every torso we use all those separators
from N ′ which are of size k + 1 and lie inside that torso. Note that (ii) guarantees that
every separator in N ′ of size k + 1 is contained in exactly one of the newly added torsos.
Given one torso Gt′ of the tree-decomposition (Tt,Vt), we let Sk+1 be the set of all

separations (A,B) of Gt′ of order k+ 1 with separator in N ′ and the property that ArB
is a component of G− (A ∩B) but not the only one.

We claim that Sk+1 is a nested set of separations. Indeed, if two separations from Sk+1
with different separators X and Y were to cross then by Lemma 6.18 there would be a
component of Gt′ − (X ∩Y ) avoiding X and Y . However, X ∩Y has size less than k, lies
in N ′ and Gt′ meets, by (iii), at most one component of G− (X ∩ Y ). Hence if we take
vertices x and y in Gt′ − (X ∩ Y ) we find a path P between them in G− (X ∩ Y ). But
since Gt′ is obtained from G by repeatedly building a torso, P ∩ Gt′ needs to contain
a path between x and y in Gt′ . In particular, this path does not meet X ∩ Y and thus
Gt′ − (X ∩ Y ) has only one component, in particular every component of Gt′ − (X ∩ Y )
meets X and Y .

Now consider an ω-chain (A1, B1) < (A2, B2) < . . . in Sk+1. We may assume without
loss of generality that no two of these separations have the same separator, as in the
case k = 0. If

⋂
i∈NBi is non-empty then its neighbourhood Z := NGt′ (

⋂
i∈NBi) needs

to be properly contained in some Al ∩Bl: Every vertex in Z needs to be contained in
some Am ∩ Bm and if such a vertex lies in Am ∩ Bm, then it also lies in An ∩ Bn for
every n ≥ m. In particular, if |Z| ≥ k + 1, there would be an m such that Am ∩Bm ⊆ Z
and thus An ∩Bn = Am ∩Bm∀n ≥ m contradicting the assumption that no two of the
(Al, Bl) have the same separator. Hence |Z| ≤ k and we can easily find an l such that
Z ( Al ∩Bl.

But then again Gt′ would meet two distinct components of G−Z: one meeting
⋂
i∈NBi

and one meeting Al. This however is not possible since |Z| < |Al ∩Bl| and Z ∈ N ′.
By construction Sk+1 contains no small separations, it is thus a regular tree set, so

by Lemma 2.7 the set Sk+1 induces a canonical tree-decomposition (Tt′ ,Vt′) of Gt′ . In
this way we construct all the tree-decompositions for nodes at level k. We need to verify
(i) to (iii). (i) is obvious. For (ii) we observe that every separator in N ′ of size at least
k+ 2 which was contained in Gt′ was nested with every separator of a separation in Sk+1
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and is therefore contained in exactly one of the torsos of (Tt′ ,Vt′), by the same argument
as in the case k = 0.
For (iii) we note that for separators X of size ≤ k every torso of (Tt′ ,Vt′) meets at

most one component of G−X as, by induction Gt′ itself only meets one component of
G−X. For a separator X of size k + 1 let H be a torso of (Tt′ ,Vt′). Firstly, H meets at
most one component of Gt′ −X since if Gt′ −X has more than one component then X is
one of the separators of (Tt′ ,Vt′) and therefore, as Sk+1 includes every separation of the
form (C ∪X,Gt′ rX) for any component C of Gt′ −X, there needs to be a component
C of Gt′ −X such that H is contained in C ∪X .
Secondly, when building the torso Gt′ from G we never add edges between distinct

components of G − X since we only add edges inside of separators in N ′, which are
nested with X. Hence, if H would meet two components of G−X it would also meet
two component of Gt′ − X. Hence H meets at most one component of G − X. This
gives (iii).

Correctness Let us now verify that the so constructed tree of tree-decompositions
((T, r), (Gt)t∈V (t), (Tt,Vt)t∈V (T )) – which is canonical by construction – has the properties
(1) to (3) from the assertion. The properties (2) and (3) are fulfilled by construction, so
we only need to verify (1).

Let P, P ′ be two robust principal profiles from P. By Theorem 1.3, N ′ contains some
separator X which belongs to a separation efficiently distinguishing P and P ′, say |X| = k.
By our inductive construction, there is a unique Gt at level k which contains X. As P
and P ′ are principal profiles, there are two distinct components C,C ′ of G−X such that
(V (G) rC,C ∪X) ∈ P , and (V (G) rC ′, C ′ ∪X) ∈ P ′. We claim that C ∩ V (Gt) is not
empty.

Note that Gt is obtained from G by repeatedly taking some separation (A,B) of order
< k with X ⊆ B, deleting ArB and making A∩B complete. If we apply this operation
for a single (A,B) which, say, turns some graph H with V (H) ⊆ V (G) into H ′ then this
preserves for H ′ the properties of H that (i) H[C ∩ V (H)] is connected and (ii) every
vertex in X has, in H, a neighbour in C ∩ V (H). Thus every vertex in X has, in Gt, a
neighbour in C ∩ V (Gt) proving that C ∩ V (Gt) is non-empty.

By a symmetrical argument not only C but also C ′ meets some component of Gt −X.
Moreover, no two distinct components of G−X can meet the same component of Gt−X:
This would require an edge between these components, which would have to be added by
the torso operation – but this operation only adds edges inside a separator Y ∈ N ′. And
since Y is nested with X, that is Y meets only one component of G −X, this cannot
add edges between different components of G−X.

Thus there is exactly one component Ct of Gt−X such that Ct ⊆ C and this component
is not the only one from Gt−X. So, by construction the separation (Ct∪X,GtrX), which
efficiently distinguishes the induced profiles of P and P ′ onto Gt is induced by (Tt,Vt).
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