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A NOTE ON MINOR ANTICHAINS OF UNCOUNTABLE GRAPHS

MAX PITZ

Abstract. A simplified construction is presented for Komjáth’s result that for every un-

countable cardinal κ, there are 2κ graphs of size κ none of them being a minor of another.

§1. Introduction

The famous Robertson-Seymour Theorem asserts that the class of finite graphs is well-quasi-

ordered under the minor relation 4: For every sequence G1, G2, . . . of finite graphs there are

indices i < j such that Gi 4 Gj .
1 This is no longer true for arbitrary infinite graphs. Thomas

[8] has constructed a sequence G1, G2, . . . of binary trees with tops of size of size continuum,

such that Gi 64 Gj whenever i < j. Here, binary tree with tops describes the class of graphs

where one selects in the rooted infinite binary tree T2 a collection R of rays all starting at the

root, adds for each R ∈ R a new vertex vR, and makes vR adjacent to all vertices on R. Let

us write G(R) for the resulting graph. In his proof, Thomas carefully selects continuum-sized

collections of rays R1,R2,R3, . . . such that Gi = G(Ri) form the desired bad sequence.

Thomas’s result raises the question whether infinite graphs smaller than size continuum

are well-quasi ordered. While this question for countable graphs is arguably the most im-

portant open problem in infinite graph theory, Komjáth [3] has established that for all other

(uncountable) cardinals κ, there are in fact 2κ pairwise minor-incomparable graphs of size κ.

The purpose of this note is to give an alternative construction for Komjáth’s result which

is simpler than the original, and also more integrated with other problems in the area:

First, our construction reinstates a pleasant similarity to Thomas’s original strategy: The

desired minor-incomparable graphs can already be found amongst the κ-regular trees with κ

many tops. Second, our construction bears a surprising similarity to a family of rays considered

in the 60’s by A.H. Stone in his work on Borel isomorphisms [6]. Third, our examples allow for

a considerable sharpening of a result by Thomas and Kriz [4] on graphs without uncountable
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1Recall that a graph H is a minor of another graph G, written H 4 G, if to every vertex x ∈ H we can

assign a (possibly infinite) connected set Vx ⊆ V (G), called the branch set of x, so that these sets Vx are

pairwise disjoint and G contains a Vx − Vy edge whenever xy is an edge of H .
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clique minors but arbitrarily large tree width. And finally, a very similar family of graphs had

recent applications for results about normal spanning trees in infinite graphs [5].

§2. Trees with tops and Stone’s example

Consider the order tree (T,6) where the nodes of T are all sequences of elements of κ of

length 6 ω including the empty sequence, and let t 6 t′ if t is a proper initial segment of t′.

The graph on T where any two comparable vertices are connected by an edge was considered

by Kriz and Thomas in [4] where they showed that any tree-decomposition of this graph must

have a part of size κ, despite not containing a subdivision of an uncountable clique.

For our purposes, however, it suffices to consider a graph G on T such that any node

represented by finite sequences of length n is connected to all its successors of length n + 1

in the tree order 6, and any node represented by an ω-sequence is connected to all elements

below in the tree order 6. Clearly, G is connected. We later use the simple fact that

(i) every connected subgraph H ⊆ G has a unique minimal node tH in (T,6).

Now given a set S ⊆ κ consisting just of cofinality ω ordinals, choose for each s ∈ S a

cofinal sequence fs : ω → s, and let F = F (S) := {fs : s ∈ S} be the corresponding collection

of sequences in κ. Let T S denote the subtree of T given by all finite sequences in T together

with F (S), and let G(S) denote the corresponding induced subgraph of G. We will refer to

G(S) as a ‘κ-regular tree with tops’, where the elements of F (S) are of course the ‘tops’.

To the author’s best knowledge, such a collection of tree branches F (S) = {fs : s ∈ S} for

S the set of all cofinality ω ordinals was first considered by Stone in [6, §5] for the case κ = ω1

and in [7, §3.5] for the general case of uncountable regular κ.

We consider below graphs G(S) where S ⊆ κ is stationary. Recall that a subset A ⊆ κ is

unbounded if supA = κ, and closed if sup(A ∩ ℓ) = ℓ implies ℓ ∈ A for all limits ℓ < κ. The

set A is a club in κ if it is both closed and unbounded. A subset S ⊆ κ is stationary (in κ) if

S meets every club of κ. Below, we use the following two elementary properties of stationary

sets of regular uncountable cardinals κ (for details see e.g. [2, §8]):

(ii) If S ⊆ κ is stationary and S =
⋃

{Sn : n ∈ N}, then some Sn is stationary.

(iii) Fodor’s lemma: If S ⊆ κ is stationary and f : S → κ is such that f(s) < s for all

s ∈ S, then there is i < κ such that f−1(i) is stationary.

§3. Constructing families of minor-incomparable graphs

At the heart of Komjáth’s proof lies the construction, for regular uncountable κ, of κ pairwise

minor-incomparable connected graphs of cardinality κ. From this, the singular case follows,

and by considering disjoint unions of these graphs, one obtains an antichain of size 2κ, see [3,

Lemma 2]. Hence, it will be enough to prove:
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Theorem 1. For regular uncountable κ, the class of κ-regular trees with κ many tops contains

a minor-antichain of size κ.

Proof. As the set of cofinality ω ordinals of a regular uncountable κ splits into κ many disjoint

stationary subsets [2, Lemma 8.8], it suffices to show: If S,R are disjoint stationary subsets

consisting of cofinality ω ordinals, then G(S) 64 G(R).

Suppose for a contradiction that G(S) 4 G(R). For ease of notation, we identify s with fs

for all s ∈ S, and similarly for R. For v ∈ T S write tv ∈ TR for the by (i) unique minimal

node of the branch set of v in G(R). Note that if v,w are adjacent in G(S), then tv and tw

are comparable in (TR,6). Since TR has countable height, by (ii) there is a stationary subset

S′ ⊆ S such that all ts for s ∈ S′ belong to the same level of TR. Suppose for a contradiction

this level has finite height n. By applying Fodor’s lemma (iii) iteratively n+1 times, we obtain

a stationary subset S′′ ⊆ S′ such that all fs for s ∈ S′′ agree on fs(i) for i 6 n. So distinct ts

for s ∈ S′′ have at least n+ 1 common neighbours below them in (TR,6), a contradiction.

Thus, we may assume that ts ∈ R for all s ∈ S, giving rise an injective function f : S →

R, s → ts. Since f is injective, we cannot have x < f(x) on a stationary subset of S by

Fodor’s lemma (iii). Hence, we may further assume that f(x) > x for all x ∈ S.

For i < κ let T S
i be the subtree of T S of all elements whose coordinates are strictly less

than i, and consider the function g : κ → κ, i 7→ min
{

j < κ : tv ∈ TR
j for all v ∈ T S

i

}

. Since

κ is regular, the function g is well-defined. And clearly, g is increasing. The function g is also

continuous. Indeed, for a limit ℓ < κ consider any v ∈ T S
ℓ \

⋃

i<ℓ T
S
i . Clearly, v is a top, and so

all its neighbours belong to
⋃

i<ℓ T
S
i . Hence, tv must be comparable to infinitely many nodes

in
⋃

i<ℓ T
R
g(i), implying that tv ∈

⋃

i<ℓ T
R
g(i), too.

Hence, the set of fixed points C of g forms a club in κ, see [2, Exercise 8.1]. But any

s ∈ S ∩C satisfies s 6 f(s) 6 g(s) = s, showing that s = f(s) ∈ S ∩R, a contradiction. �

§4. A sharpening of Kriz and Thomas’s result

Kriz and Thomas have used the graph on T where any two comparable vertices are connected

by an edge in [4, Theorem 4.2] as an example of a graph without a subdivision of an uncountable

clique, but where any tree-decomposition must have a part of size κ. For background on tree-

decompositions see [1, §12].

In this section we establish that if κ is regular, then already any graph G(S) from above –

for S ⊆ κ stationary and consisting just of cofinality ω ordinals – has the same property that

any tree-decomposition of G must have a part of size κ.

Theorem 2. For regular uncountable κ and S ⊆ κ stationary and consisting just of cofinality

ω ordinals, any tree-decomposition of G(S) has a part of size κ.
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We remark that this result is sharp: If κ = ω1 and S ⊆ ω1 is non-stationary, then G(S) has

a normal spanning tree [5], and hence a tree-decomposition into finite parts.

In the proof, Qn denotes the nth level of a rooted tree Q, and Q<n =
⋃

m<n Q
m.

Proof. We start with an observation: Given any stationary subset S′ ⊆ S and any set X of

vertices of G(S) with |X| < κ, at least one component of G(S) − X contains a stationary

subset of S′. Indeed, using the notation as in the previous proof, since X is small, we have

X ⊆ T S
i for some i < κ, and S′ \ T S

i is still stationary. Now for every s ∈ S′ \ T S
i , let ns

be minimal such that fs(ns) /∈ T S
i . By (ii) there is a stationary subset S′′ ⊆ S′ \ T S

i whose

elements agree on n = ns. By applying Fodor’s lemma (iii) n+ 1 times, there is a stationary

subset S′′′ ⊆ S′′ such that the maps fs agree on their first coordinates up to n for all s ∈ S′′′.

Then all s ∈ S′′′ have a common neighbour outside of T S
i , so belong to the same component.

Now suppose for a contradiction that G(S) has a tree-decomposition (Q, (Vq)q∈Q) such that

|Vq| < κ for all q ∈ Q. Fix an arbitrary root q0 of Q. Every s ∈ S is contained in some part;

let qs ∈ Q be minimal in the tree order of Q such that s ∈ Vqs . By (ii) there is a minimal

n ∈ N and a stationary subset S′ ⊆ S such that qs ∈ Qn for all s ∈ S′.

Then no component of G−
⋃

q∈Q<n Vq contains a stationary subset of S′, as the intersection

of any such component with S′ is contained in some less than κ sized Vqs . However, by

iteratively using our earlier observation, there is a path q0q1 . . . qn−1 starting at the root of Q,

a decreasing sequence of components Ci of G − (Vq0 ∪ · · · ∪ Vqi) and stationary subsets Si of

S′ such that each Si ⊆ Ci. But Sn−1 ⊆ Cn−1 ⊆ G−
⋃

q∈Q<n Vq, a contradiction. �
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