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Abstract

Simplicial presheaves on cartesian spaces provide a general notion of smooth spaces. We define
a corresponding smooth version of the singular complex functor, which maps smooth spaces to
simplicial sets. We exhibit this functor as one of several Quillen equivalences between the Kan-
Quillen model category of simplicial sets and a motivic-style R-localisation of the (projective or
injective) model category of smooth spaces. These Quillen equivalences and their interrelations are
powerful tools: for instance, they allow us to give a purely homotopy-theoretic proof of a Whitehead
Approximation Theorem for manifolds. Further, we provide a functorial fibrant replacement in the
R-local model category of smooth spaces. This allows us to compute the homotopy types of mapping
spaces in this model category in terms of smooth singular complexes. We explain the relation of
our fibrant replacement functor to the concordance sheaves introduced recently by Berwick-Evans,
Boavida de Brito, and Pavlov. Finally, we show how the R-local model category of smooth spaces
formalises the homotopy theory on sheaves used by Galatius, Madsen, Tillmann, and Weiss in their
seminal paper on the homotopy type of the cobordism category.
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1 Introduction and overview

Topological spaces and simplicial sets can be used to construct the same homotopy theory. This is
made rigorous by the fact that the singular complex and the geometric realisation functors form a
Quillen equivalence between the standard model structure on the category Top of topological spaces
and the Kan-Quillen model structure on the category Set∆ of simplicial sets. Both of these model
categories formalise what is often called the homotopy theory of spaces, or ∞-groupoids (these are
the same according to Grothendieck’s homotopy hypothesis). The two models differ significantly in
their features, though, in that topological spaces encode homotopies via the notion of continuity, while
simplicial sets are inherently combinatorial. Consequently, each of these two models for the homotopy
theory of spaces has its own merits in different contexts and applications.

Apart from continuity or combinatorics, another important feature that spaces can possess and
that is relevant in many problems in mathematics is smoothness. The prime example of a category of
smooth spaces is the category Mfd of manifolds and smooth maps, which underlies much of geometry.
There exists a notion of smooth homotopy within the category Mfd, and one can find smooth versions
of many topological concepts, such as cohomology, which are invariant under these smooth homotopies.
It would therefore be desirable to have a homotopy theory on the category of manifolds. However,
the category Mfd is poorly behaved in many ways. For instance, it is far from being complete or
cocomplete, thus making it unable to admit a model structure in the sense of Quillen.

The way to cure this is to weaken—and therefore to generalise—the concept of a manifold. Here,
we take the following approach to smooth spaces, with the main goal of simultaneously capturing the
notions of a manifold and of a (higher) stack. We start from the category Cart of cartesian spaces: its
objects are all smooth manifolds that are diffeomorphic to R

n for any n ∈ N0, and its morphisms are all
smooth maps between these manifolds. We define a smooth space to be a simplicial presheaf on Cart—
informally, we understand the sections of a simplicial presheaf over c ∈ Cart as c-parameterised families
of simplices in a space. We denote the category of simplicial presheaves on Cart by H∞. It contains
many geometrically interesting objects that are not manifolds or even diffeological spaces [IZ13] (for
instance the presheaf of k-forms, or the simplicial presheaf of G-bundles with connection, for any Lie
group G). The category of manifolds, the category of diffeological spaces, and the category of simplicial
sets each include fully faithfully into H∞.

The category H∞ carries two natural model structures, namely the projective and the injective
model structures on functors Cartop → Set∆, where Set∆ carries the Kan-Quillen model structure.
We denote the projective and injective model categories by H

p
∞ and Hi

∞, respectively, and we write
H
p/i
∞ to refer to either of these model structures simultaneously. The projective and injective model

structures are canonically Quillen equivalent via the identity functors H
p
∞ ⇄ Hi

∞, but they are not
Quillen equivalent to Set∆. In that sense, the model structures Hp/i

∞ do not yet define smooth versions
of the homotopy theory of spaces. To achieve that, one needs a weaker notion of equivalence in H∞.

There exist (at least) two candidates for such weakened versions of equivalences in H∞. First,
in [MW07, GTMW09] a notion of weak equivalence has been introduced on sheaves on Mfd as fol-
lows: let ∆k

e
∼= R

k denote the smooth extended (affine) k-simplex. Extending the usual face and
degeneracies of the topological standard simplices, this gives rise to a cosimplicial cartesian space
∆e : ∆ → Cart ⊂ Mfd. Via precomposition, this induces a functor from (pre)sheaves on manifolds
to simplicial sets. In [MW07, GTMW09], a morphism of sheaves is considered a weak equivalence
of (pre)sheaves whenever it becomes a weak equivalence of simplicial sets under this functor. We
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adapt this to our set-up as follows: for technical reasons, we work with presheaves on cartesian spaces
rather than manifolds, and we work with simplicial (pre)sheaves instead of ordinary (pre)sheaves. Let
δ : ∆→ ∆× ∆ denote the diagonal functor. We define the smooth singular complex functor

Se : H∞
∆∗

e−−→ sSet∆
δ∗
−→ Set∆ , (1.1)

where the first functor evaluates F ∈ H∞ on the extended simplices to obtain a bisimplicial set, of
which the second functor then takes the diagonal. Let S−1

e (WSet∆) denote the class of morphisms in
H∞ that are mapped to a weak equivalence by Se. The formal generalisation of the homotopy theory
from [MW07, GTMW09] is then the localisation

LS−1
e (WSet∆

)H
p/i
∞ .

The second notion of weak equivalence in H∞ is motivated by motivic homotopy theory (see [Voe98,
MV99, DLØ+07], for instance). Let I denote the class of all morphisms in H∞ of the form c×R→ c,
where c ranges over all objects in Cart, and where the morphism is the identity on c and collapses R

to the point. The localisation
Hp/i I

∞ := LIH
p/i
∞

is then a version in smooth geometry of motivic localisation. We call Hp/i I
∞ the R-local model category

of simplicial presheaves on Cart, or equivalently of smooth spaces. This localisation has appeared
before in [Sch, Dug01b] and other works of these authors. Our first main result is

Theorem 1.2 Let Se : H∞ → Set∆ be as in (1.1).

(1) The functor Se : H
pI
∞ → Set∆ is a left Quillen equivalence.

(2) The functor Se : HiI
∞ → Set∆ is both a left and a right Quillen equivalence.

In particular, the localised model structures H
p/i I
∞ define homotopy theories of smooth spaces that

are equivalent to the usual homotopy theories of spaces. The key to proving this is to relate the functor
Se to other functors that extract spaces from objects of H∞. One of these functors is the left Quillen
functor

Re : Hp
∞ → ∆Top , F 7−→

∫ c∈Cartop

|F (c)| ×Dc ,

where ∆Top is the category of ∆-generated topological spaces (see Section 2.3 for details). Further,
|−| : Set∆ → ∆Top is the usual geometric realisation functor, and where Dc ∈ ∆Top is the topological
space underlying c ∈ Cart. We show:

Theorem 1.3 Let Qp : Hp
∞ → H

p
∞ be a cofibrant replacement functor for the projective model struc-

ture. There is a zig-zag of natural weak equivalences

|−| ◦ Se
∼
←− |−| ◦ Se ◦Q

p ∼
−→ Re ◦Qp .

In particular, given any F ∈ H∞, we can identify |Se(F )| ∈ ∆Top with the homotopy colimit of the
diagram |F | : Cartop → ∆Top.

This comparison result has several implications. First, on a very formal level, it allows us to identify
Se as a presentation of the left adjoint in the cohesive structure on the∞-topos of presheaves of spaces
on Cart. This has been indicated recently in [BEBdBP]; here we prove this formally (see the end of
Section 4, and see [Buna] for an ∞-categorical treatment of this fact).

Further, we can apply Theorem 1.3 to give a purely homotopy-theoretic proof of the following
result, which is sometimes referred to as the Whitehead Approximation Theorem:
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Theorem 1.4 Let M be any manifold. The smooth singular complex of M—that is, the simplicial
set Mfd(∆e,M)—and the singular complex Sing(M) of the topological space underlying M are weakly
equivalent in Set∆.

In our proof, at no point do we need to approximate a continuous map by smooth maps. In-
stead, the proof relies on a result about Čech nerves of open coverings from [DHI04], a version of the
Nerve Theorem, see e.g. [Bor48, Ler50, Seg74, DI04] (concretely, we use [Lur17, Thm. A.3.1], which is
sometimes also called Lurie’s Seifert van Kampen Theorem), and a modified two-sided simplicial bar
construction for simplicial presheaves, which we introduce in Appendix C. This illustrates that the
model categories H

p/i I
∞ are of interest beyond their abstract properties: they provide useful tools for

doing smooth homotopy theory.

Next, we construct a fibrant replacement functor Ccp/i for the localisation H
p/i I
∞ ; this construction

is motivated by the concordance sheaves introduced recently in [BEBdBP]. Thereby, we obtain explicit
access to the mapping spaces in H

p/i I
∞ . Proving that Ccp/i is indeed a fibrant replacement relies on

the properties of the functor Se that we prove throughout this text, and in particular on Theorem 1.2.
Combining this with Theorems 1.3 and 1.4, we can compute the mapping spaces in the localisation
H
p/i I
∞ :

Theorem 1.5 Let F,G ∈ H∞ be any simplicial presheaves on Cart. Let M ∈ Mfd be any manifold,
and define M ∈ H∞ by setting M(c) = Mfd(c,M) for any cartesian space c ∈ Cart. There are
canonical isomorphisms

MapSet∆(SeF, SeG)
∼= Map

H
p/i I
∞

(F,G) ,

Map∆Top(M, |SeG|) ∼= Map
H

p/i I
∞

(M,G)

in hSet∆, the homotopy category of spaces.

Here, the injective case is more easy to treat since every object in HiI
∞ is cofibrant, so we prove

this case first. We then show the projective case, based on the injective case and on an explicit
Quillen equivalence Q′ : Hi

∞ ⇄ H
p
∞ : R′ which we construct in Appendix A. (Note that this Quillen

equivalence goes in the opposite direction of the immediate Quillen equivalence H
p
∞ ⇄ Hi

∞ induced
by the identity functors.) Further, we relate Theorem 1.5 to [BEBdBP] explicitly. This relation relies
on results of [BEBdBP] and on a comparison between homotopy sheaves on Cart with respect to good
open coverings and homotopy sheaves on Mfd with respect to open coverings: in Appendix B, we
provide an explicit Quillen equivalence between model categories whose fibrant objects are these two
classes of homotopy sheaves.

Finally, we apply Theorem 1.5 to identify the homotopy theory on H∞ motivated by the ideas
of [MW07, GTMW09] with the R-local homotopy theory in the following very strong sense:

Theorem 1.6 There is an identity of localisations of Hp/i
∞ :

Hp/i I
∞ = LS−1

e (WSet∆
)H

p/i
∞ .

This extends and formalises the homotopy theory used in [MW07, GTMW09] and provides further
interpretation to each of these model structures.

Outline. This paper is organised as follows: We begin in Section 2 by defining the R-localisations
H
p/i I
∞ of Hp/i

∞ . We show that H
pI
∞ and HiI

∞ have the same weak equivalences and that they can also
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be seen as further localisations of the local model structures with respect to differentiably good open
coverings. We define the functor Re : HpI

∞ → ∆Top and show that it is a left Quillen equivalence.

In Section 3, we study the smooth singular complex functor Se : H∞ → Set∆. We first show
that Se : H

p/i I
∞ → Set∆ is a left Quillen equivalence. Subsequently, we establish Se : H

iI
∞ → Set∆ as

a right Quillen equivalence. As an intermediate step, we relate the model categories HiI
∞ and Set∆

to localisations of the model category of complete Segal spaces. This sheds additional light on the
interpretation of the functor Se. Section 3 contains the proof of Theorem 1.2.

Section 4 is concerned with the comparison of different ways of extracting spaces from simplicial
presheaves on Cart. The key concept is to extend the homotopy equivalence that embeds the topological
standard simplices into the smooth extended simplices to obtain natural weak equivalences between
functors from H∞ to Set∆ and ∆Top. Here we prove Theorem 1.3.

The Whitehead Approximation Theorem, Theorem 1.4, is proven in Section 5. We start from
an open covering of a manifold and manipulate it via the modified two-sided bar construction from
Appendix C until we can apply [Lur17, Thm. A.3.1].

In Section 6 we construct a fibrant replacement functor for Hp/i I
∞ and use it to prove Theorem 1.5.

We spell out the relation of this theorem to [BEBdBP] and works of Dugger. Then we apply Theo-
rem 6.6 to prove the coincidence of model structures from Theorem 1.6.

Finally, we include four appendices; Appendix A contains the explicit construction of a fibrant re-
placement functor for the injective model structure on H∞, which features in the proof of Theorem 1.5.
Building on this, we provide a Quillen equivalence between model categories for homotopy sheaves on
Cart and homotopy sheaves on Mfd in Appendix B. In Appendix C, we develop our modified two-sided
bar construction, which we use to prove Theorem 1.4, and in Appendix D we include some rather
standard material on recognising Quillen equivalences.

Notation and conventions We briefly summarise some notational conventions that will be used
throughout this text.

• We let Cat denote the category of categories, and we let ∆ denote the simplex category.
• Given two categories C, I, we write Cat(I,C) or CI for the categories of functors I→ C.
• We let Set∆ = Cat(∆op, Set) denote the category of simplicial sets. In this article, when viewing Set∆

as a model category, we will always use the cartesian closed Kan-Quillen mode structure on Set∆,
that is, the model structure for ∞-groupoids.

• We will also be working with the category sSet∆ = Cat(∆op, Set∆) of bisimplicial sets. Our convention
is always to write a bisimplicial set as a functor

X : ∆
op → Set∆ , [n] 7→ Xn , with Xn,k :=

(
X[n]

)
[k] .

• If C is a simplicial category, we write C(−,−) : Cop × C −→ Set∆ for the simplicially enriched hom-
functor.

• We let ∆Top denote the symmetric monoidal, simplicial model category of ∆-generated topological
spaces.
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2 R-local model structures and smooth spaces

We start by setting up the model-categorical background used throughout this paper. Partially fol-
lowing [Sch] and [Dugb], we consider the category of simplicial presheaves on cartesian spaces with
its canonical projective and injective model structures. In analogy with A

1-local homotopy theory, we
localise this category at all the morphisms c×R→ c, where c is any cartesian space and where the mor-
phism collapses the real line. Extending ideas from [Dugb], we establish several Quillen equivalences
of this localised model category with the categories of simplicial sets and topological spaces.

2.1 R-local model structures on simplicial presheaves

In this section we start by setting up the various model structures on simplicial presheaves that will play
a role in this article. Let Cart denote the (small) category of submanifolds of R∞ that are diffeomorphic
to R

n, for any n ∈ N0. These manifolds are called cartesian spaces. The morphisms c→ d in Cart are
the smooth maps c → d between these manifolds; in other words, Cart is the full subcategory of the
category Mfd of smooth manifolds and smooth maps on the cartesian spaces.

Let H∞ := Cat(Cartop, Set∆) denote the category of simplicial presheaves on Cart. There is a fully
faithful inclusion

(−) : Mfd→ H∞ , M(c) = Mfd(c,M) .

We view Set∆ as endowed with the Kan-Quillen model structure. The category Cart carries a
Grothendieck pretopology τ of differentiably good open coverings—see [Bunb, FSS12] for details. A
covering of c ∈ Cart in this pretopology is a collection of morphisms {ιi : ci → c}i∈Λ in Cart such that
each ιi is an embedding of an open subset, the images of the maps ιi cover c (i.e. each x ∈ c lies in the
image of some ιi), and every finite intersection

Ci0...in :=
n⋂

a=0

ιia(cia) ⊂ c (2.1)

with i0, . . . , in ∈ Λ is either empty or a cartesian space. (For F ∈ H∞ we set F (∅) = ∗, in accordance
with the Yoneda Lemma and H∞(∅, F ) = ∗, where here ∅ ∈ H∞ is the initial object.) We let ℓ denote
the class of Čech coverings in H∞ with respect to the Grothendieck pretopology τ . Given a simplicial
model category M and a class S of morphisms in M, we denote by LSM the simplicially enriched left
Bousfield localisation of M at the morphisms in S (see [Bar10] for more background).

Definition 2.2 We define the following model categories:

(1) H
p/i
∞ is the projective (resp. injective) model structure on H∞. We also refer to H

p/i
∞ as the model

categories of smooth spaces.
(2) We define the Set∆-enriched left Bousfield localisations

Hp/i ℓ
∞ := LℓH

p/i
∞ .

6



This is the projective (resp. injective) model structure for sheaves of ∞-groupoids on Cart.

(3) Let I := {Yc × YR −→ Yc}c∈Cart be the set of morphisms obtained by taking the product of the
collapse map R→ ∗ with all identities {1c}c∈Cart. We define the projective (resp. injective) R-local
model category of smooth spaces as the enriched left Bousfield localisation

Hp/i I
∞ := LIH

p/i
∞ .

(4) We can further define the model categories

Hp/i ℓI
∞ := LIH

p/i ℓ
∞ , Hp/i Iℓ

∞ := LℓH
p/i I
∞ .

Remark 2.3 We interpret the localisation H
p/i I
∞ as an R-localisation of Hp/i

∞ akin to motivic localisa-
tion (see, for example, [Voe98, MV99, DLØ+07]). Though thinking of objects in H∞ as smooth spaces,
we will mostly refer objects in H∞ by the more technically precise term of simplicial presheaves, and
we will sometimes refer to fibrant objects in H

p/i I
∞ as locally constant simplicial presheaves. ⊳

Proposition 2.4 All model structures in Definition 2.2 are simplicial, left proper, tractable, and
symmetric monoidal.

Proof. Except for the claim that the model structures are symmetric monoidal, all assertions follow
from [Bar10, Thm. 4.46]. The model structures for sheaves of ∞-groupoids are symmetric monoidal
by [Bar10, Thm. 4.58]. To see that Hp/i I

∞ is symmetric monoidal, observe that the objects Yc, c ∈ Cart,
form a set of homotopy generators for Hp/i

∞ . Let F ∈ H
p/i I
∞ be a local object, and consider the internal

hom object F Yd for any d ∈ Cart. For any of the morphisms Yc × YR → Yc in I, the internal hom
adjunction yields a commutative diagram of simplicially enriched hom spaces

H∞(Yc, F
Yd) H∞(Yc × YR, F

Yd)

H∞(Yc×d, F ) H∞(Yc×d × YR, F )

∼= ∼=

Here we have used that Cart has finite products. The bottom horizontal morphism is induced by the
morphism c × d × R → c × d, which is an element of I. Hence, the bottom morphism is a weak
equivalence in Set∆. Therefore, it follows from [Bar10, Prop. 4.47] that H

p/i I
∞ is symmetric monoidal.

The exact same proof shows that H
p/i ℓI
∞ is symmetric monoidal as well. The fact that H

p/i Iℓ
∞ is

symmetric monoidal will be seen in Corollary 2.12.

Proposition 2.5 There are commutative diagrams of simplicial Quillen adjunctions:

H
p
∞ Hi

∞

H
pℓ
∞ Hiℓ

∞

H
pℓI
∞ HiℓI

∞

and

H
p
∞ Hi

∞

H
pI
∞ HiI

∞

H
pIℓ
∞ HiIℓ

∞

where the rightwards and downwards arrows are the left adjoints. All arrows are identity functors, and
all horizontal arrows are Quillen equivalences.
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Proof. This follows directly from [Bunb, Prop. 3.13] and the well-known fact that the identity functor
on H∞ induces a Quillen equivalence H

p
∞ ⇄ Hi

∞.

Proposition 2.6 Each pair of model categories defined in Definition 2.2(1)–(4) (based on either the
projective or the injective model structure), respectively, has the same weak equivalences.

Proof. For the model structures in (1) this is clear by definition of the projective and injective model
structures. Regarding the pairs of model categories in (2), let Q : H∞ → H∞ be a cofibrant replacement
functor for the projective model structure H

p
∞. A morphism f : F → G is a weak equivalence in H

pℓ
∞

if and only if Qf : QF → QG is a weak equivalence in H
pℓ
∞. Since the identity functor on H∞ induces

a Quillen equivalence H
pℓ
∞ ⇄ Hiℓ

∞ (Proposition 2.5), and since the left adjoint of a Quillen equivalence
preserves and reflects weak equivalences between cofibrant objects, Qf is a weak equivalence in H

pℓ
∞ if

and only if it is a weak equivalence in Hiℓ
∞. Since the canonical natural transformation Q

∼
−→ 1 is an

objectwise weak equivalence, that is equivalent to f being a weak equivalence in H
pℓ
∞ itself. The proofs

for (3) and (4) are analogous.

The reason why we also refer to fibrant objects in H
p/i I
∞ as locally constant simplicial presheaves

is the following fact (the second statement is a generalisation of [Dugb, Lemma 3.4.2]):

Proposition 2.7 Let F ∈ H∞. The following statements hold true:

(1) The canonical morphism F ⊗ Yc → F is a weak equivalence in H
p/i I
∞ , for every c ∈ Cart.

(2) The object F is fibrant in H
p/i I
∞ if and only if it is fibrant in H

p/i
∞ and the canonical map F (∗)→

F (c) is a weak equivalence in Set∆ for every c ∈ Cart

Proof. Ad (1): By Proposition 2.5, it suffices to show this for HiI
∞. There, every object is cofibrant

(since every object in Set∆ is cofibrant), so that the functor F ⊗ (−) : HiI
∞ → HiI

∞ is left Quillen. Thus,
it suffices to show that the morphism Yc → ∗ is a weak equivalence. Since c ∼= R

n for some n ∈ N0, we
can reduce to the case where c = R

n.

We can write the collapse morphism R
n → ∗ as a composition

R
n ∼= R

n−1 × R −→ R
n−1 ∼= R

n−2 × R −→ · · · −→ ∗ ,

where each arrow is an element of I. Thus, the claim follows.

Ad (2): The second condition implies that F is fibrant in H
p/i I
∞ : since Cart has finite products, we

have a commutative triangle
F (∗)

F (c) F (c× R)

∼ ∼

for any c ∈ Cart. The fact that F is I-local thus follows from the two-out-of-three property of weak
equivalences in Set∆.

It remains to check the other implication. By part (1) we know that for each c ∈ Cart, the morphism
Yc → ∗ is a weak equivalence in H

p/i I
∞ . The claim then follows from the enriched Yoneda Lemma: the

top arrow in the commutative diagram

H∞(∗, F ) H∞(Yc, F )

F (∗) F (c)

∼= ∼=

8



is a weak equivalence since H
p/i I
∞ is symmetric monoidal (Proposition 2.4), so that H∞(−, F ) is a right

Quillen functor. As representables are cofibrant in H
p/i I
∞ , the functor H∞(−, F ) thus preserves the

weak equivalence Yc
∼
−→ ∗.

We can show that our definitions of model structures on H∞ are redundant. This uses the following
strong theorem, which goes back to Joyal.

Theorem 2.8 [Rie14, Thm. 15.3.1] Let M and M′ be two model categories with the same underlying
category. Then, M and M′ coincide as model categories if and only if they have the same cofibrations
and the same fibrant objects.

Corollary 2.9 We have to following identities of model categories:

Hp/i ℓI
∞ = Hp/i I

∞ = Hp/i Iℓ
∞ .

In particular, every Čech-local weak equivalence is an I-local weak equivalence.

Proof. By their construction as left Bousfield localisations, all of the above three model categories have
the same cofibrations. Thus, it suffices to check that their fibrant objects coincide.

We first show that H
p/i ℓI
∞ = H

p/i I
∞ . An object F ∈ H

p/i ℓI
∞ is fibrant if and only if it is fibrant in

H
p/i ℓ
∞ and satisfies that the canonical map

F (c) ∼= H∞(Yc, F ) −→ H∞(Yc × YR, F ) ∼= F (c× R)

is a weak equivalence in Set∆, for every c ∈ Cart. That is, an object in H
p/i ℓI
∞ is fibrant precisely if it

is fibrant in both H
p/i ℓ
∞ and in H

p/i I
∞ . In particular, this implies that F is fibrant also in H

p/i I
∞ .

Conversely, let F ∈ H
p/i I
∞ be fibrant. We need to check that F satisfies descent with respect to the

Grothendieck pretopology τ of differentiably good open coverings on Cart. To that end, let c ∈ Cart,
let U = {ci → c}i∈Λ be a covering of c in the site (Cart, τ), and consider the commutative diagram

F (c) −→holim
∆

Set∆
(
· · ·

∏

i0,...,in

H∞(QCi0...in , F ) · · ·
)

≃ holim
∆

Set∆
(
· · ·

∏

i0,...,in

F (Ci0...in) · · ·
)
,

where Ci0...in are as in (2.1). (The superscript on holim denotes the category in which the homotopy
limit is formed.) Since F is locally constant (i.e. fibrant in F ∈ H

p/i I
∞ ), by Proposition 2.7 the collapse

maps c→ ∗ induce weak equivalences F (∗) ∼
−→ F (c). We thus have a commutative diagram

F (∗) holim
∆

Set∆
(
· · ·

∏

i0,...,in∈Λ

F (∗) · · ·
)

F (c) holim
∆

Set∆
(
· · ·

∏

i0,...,in∈Λ

F (Ci0...in) · · ·
)

∼
∼

in Set∆. We claim that the top morphism in this diagram is an equivalence: to see this, we first note
that, by assumption on the covering U, the collapse morphism Sing(Ci0...in)→ ∗ is a weak equivalence
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in Set∆ for any i0, . . . , in ∈ Λ such that Ci0...in is non-empty. For any fibrant K ∈ Set∆, we thus obtain
a weak equivalence

K ∼= Set∆(∗,K)
∼
−→ Set∆

(
Sing(Ci0...in),K

)
.

Since F (∗) ∈ Set∆ is fibrant, the product of these morphisms indexed by i0, . . . , in ∈ Λ is still a weak
equivalence, so we obtain a commutative diagram

F (∗) holim
∆

Set∆
(
· · ·

∏

i0,...,in∈Λ

F (∗) · · ·
)

Set∆
(
Sing(c), F (∗)

)
Set∆

(
hocolim

∆op

Set∆
(
· · ·

∐

i0,...,in∈Λ

Sing(Ci0...in) · · ·
)
, F (∗)

)
∼

∼ (2.10)

It follows from an application of [Lur09, Thm. A.3.1], or by [DI04, Thm. 1.1] that the morphism

hocolim
∆op

Set∆
(
· · ·

∐

i0,...,in∈Λ

Sing(Ci0...in) · · ·
)
−→ Sing(c)

is a weak equivalence in Set∆. This is preserved by the right Quillen functor Set∆(−, F (∗)), and thus

the claim follows. The proof for H
p/i Iℓ
∞ = H

p/i I
∞ works entirely in parallel.

Remark 2.11 Corollary 2.9 fails for simplicial (pre)sheaves on manifolds: the proof we give above
relies on the fact that the left-hand vertical morphism in Diagram (2.10) is a weak equivalence. This
is true because every c ∈ Cart has an underlying topological space which is contractible. In contrast,
consider a simplicial presheaf on manifolds, G : Mfdop → Set∆, which is projectively fibrant and I-
local, i.e. it satisfies that the canonical morphism G(M)→ G(M ×R) is a weak equivalence for every
M ∈Mfd. Then, G does not necessarily satisfy descent with respect to open coverings of manifolds. For
instance, consider the presheaf [−,S1], sending M ∈Mfd to the set of homotopy classes of continuous
(or smooth) maps from M to S

1. This is projectively fibrant and I-local. However, let U = {Ui}i∈Λ
be an open covering of M = S

1 such that each finite intersection Ui0...in is empty or a cartesian space.
Then,

holimSet∆
∆

∏

i0,...,in∈Λ

[Ui0...in ,S
1] ≃ ∗ ,

but [S1,S1] 6≃ ∗. For more details on the relation between sheaves on Cart and sheaves on Mfd, see
Appendix B. ⊳

Corollary 2.12 The model category H
p/i Iℓ
∞ is symmetric monoidal.

Proposition 2.13 Let LR•H
p/i
∞ denote the simplicial left Bousfield localisation of Hp/i

∞ at the collapse
morphisms {c → ∗}c∈Cart. Further, let LCartH

p/i
∞ denote the left Bousfield localisation of H

p/i
∞ at all

morphisms in Cart. We have the following identities of model categories:

Hp/i I
∞

(1)
= LR•Hp/i

∞
(2)
= LCartH

p/i
∞ .

Proof. The first identity follows from Proposition 2.7 and Theorem 2.8. The second identity holds true
since for any morphism c→ d in Cart there exists a commutative triangle

c d

∗

10



Therefore, the weak equivalences and the cofibrations in LR•H
p/i
∞ and in LCartH

p/i
∞ coincide.

2.2 Evaluation on the point

Here we present the first of several ways of extracting a space from an object F ∈ H∞ and show that
it provides a Quillen equivalence between H

p/i I
∞ and the Kan-Quillen model category Set∆.

Consider the adjunction

c̃ : Set∆ H
p/i
∞ : ev∗ ,⊥

whose left adjoint c̃ sends a simplicial set K to the constant simplicial presheaf with value K, and
whose right adjoint evaluates a simplicial presheaf at the final object ∗ ∈ Cart. (Indeed, the adjunction
is Quillen for both targets Hp

∞ and Hi
∞; in the projective case, we readily see that ev∗ is right Quillen,

and in the injective case we see that c̃ is left Quillen.) Composing this with the localisation adjunction
H
p/i
∞ ⇄ H

p/i I
∞ , we obtain Quillen adjunctions

c̃ : Set∆ H
p/i I
∞ : ev∗ .⊥ (2.14)

Lemma 2.15 Let e : c̃ ◦ ev∗ → 1H∞ denote the evaluation natural transformation of the adjunc-
tion (2.14). The morphism e|F : c̃◦ev∗(F ) −→ F is an objectwise weak equivalence whenever F ∈ H

p/i I
∞

is fibrant.

Proof. For any F ∈ H∞, the morphism e|F of simplicial presheaves is the morphisms F (c) → F (∗)

in Set∆ induced by the collapse maps c → ∗. It readily follows from Proposition 2.7 that e|F is an
objectwise weak equivalence whenever F is fibrant.

Lemma 2.16 Let K ∈ Set∆ be any simplicial set. Let Ri : Hi
∞ → Hi

∞ denote a fibrant replacement
functor in Hi

∞ (see Appendix A for an explicit construction). Then, the simplicial presheaf Ric̃(K) is
fibrant in HiI

∞.

Proof. The simplicial presheaf Ri ◦ c̃(K) is fibrant in Hi
∞ by construction. It further comes with an

objectwise weak equivalence ri
c̃K : c̃K

∼
−→ Ric̃(K). Thus, it follows by the two-out-of-three property of

weak equivalences in Set∆ that, for any c ∈ Cart, the canonical map (Ric̃(K))(∗) −→ (Ric̃(K))(c) is a
weak equivalence. The claim then follows from Proposition 2.13.

We can now prove a version of [Dugb, Thm. 3.4.3] in the context of simplicial presheaves on
cartesian spaces rather than on manifolds. (There, the proof is outlined for simplicial presheaves on
manifolds, where several additional steps are necessary. Since we work over cartesian spaces, we can
employ a slightly different strategy in our proof that allows us to avoid these additional steps.)

Theorem 2.17 The Quillen adjunction c̃ ⊣ ev∗ from (2.14) is a Quillen equivalence.

Proof. It is evident that c̃ both preserves and reflects weak equivalences as a functor c̃ : Set∆ → H
p/i
∞ .

We claim that it still has that property as a functor c̃ : Set∆ → H
p/i I
∞ . First, since every weak

equivalence in H
p/i
∞ is also a weak equivalence in H

p/i I
∞ , it follows that c̃ : Set∆ → H

p/i I
∞ still preserves

weak equivalences. It thus remains to check that it still reflects weak equivalences. To see this, let
ψ : K → L be an arbitrary morphism in Set∆. Since c̃ takes values in cofibrant objects (in both the
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projective and the injective situation), it follows that the morphism c̃ψ : c̃K → c̃L is a weak equivalence
in H

p/i I
∞ if and only if, for every fibrant object G ∈ H

p/i I
∞ , the induced morphism

H∞(c̃L,G) H∞(c̃K,G)
(c̃ψ)∗

is a weak equivalence of simplicial sets. By adjointness, this is equivalent to requiring that the morphism

Set∆(L, ev∗G) Set∆(K, ev∗G)
ψ∗

be a weak equivalence in Set∆ whenever G ∈ H
p/i I
∞ is fibrant. Suppose that this is the case, i.e. suppose

that c̃(ψ) is a weak equivalence in H
p/i I
∞ .

We briefly need to treat the projective and injective cases separately: for a model category C,
let Cf denote the full subcategory of C on the fibrant objects. In the projective case, the functor
ev∗ : (H

pI
∞)f → (Set∆)f is surjective; it hits every Kan complex. Therefore, it follows that the map

Set∆(L, T ) Set∆(K,T )
ψ∗

is a weak equivalence for every Kan complex T ∈ Set∆. Hence, ψ is a weak equivalence. For the
injective case, one may now invoke the fact that H

pI
∞ and HiI

∞ have the same weak equivalences
(Proposition 2.6); that already proves the claim in the injective case as well.

However, for later purposes, we briefly give the following alternative argument: the construction
in Lemma 2.16 shows that every Kan complex is weakly equivalent to one in the image of the functor
ev∗ : (H

iI
∞)f → (Set∆)f . By the two-out-of-three property and the fact that every simplicial set is

cofibrant, it then follows that the map

Set∆(L, T ) Set∆(K,T )
ψ∗

is a weak equivalence for every Kan complex T , and thus that ψ is a weak equivalence.

To complete the proof that c̃ ⊣ ev∗ provides a Quillen equivalence Set∆ ⇄ H
p/i I
∞ , let F ∈ H

p/i I
∞ be

fibrant, and consider the composition

c̃ ◦QSet∆ ◦ ev∗(F ) c̃ ◦ ev∗(F ) F ,
c̃(q| ev∗ F ) e|F

where QSet∆ is a cofibrant replacement functor in Set∆ with natural weak equivalence q : QSet∆ → 1,
and where the second morphism e|F is the component at F of the evaluation of the adjunction c̃ ⊣ ev∗.
Since every object in Set∆ is cofibrant and since c̃ is left Quillen, we have that c̃(q| ev∗ F ) is a weak
equivalence. Further, the morphism e|F is an equivalence by Lemma 2.15. The claim now follows
by [Hov99, Cor. 1.3.6].

Example 2.18 Let G be a Lie group with Lie algebra g. Consider the object Bun∇G,0 ∈ H
p
∞, whose

value on c ∈ Cart is the nerve of the following groupoid (in particular, Bun∇G,0 is fibrant in H
p
∞ by

construction): its objects are g-valued 1-forms A ∈ Ω1(c, g) such that dA + 1
2 [A,A] = 0, and its

morphisms A → A′ are smooth maps g : c → G such that A′ = Ad(g−1) ◦ A + g∗µG, where µG is
the Maurer-Cartan form on G. In other words, A is a flat G-connection on a trivial principal G-
bundle on c, and g is equivalently a morphism of flat principal G-bundles on c. In particular, any such
morphism g is actually a constant map g : c→ G. Observe that Bun∇G,0(∗) is the nerve of the groupoid
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with one object and the group underlying G as its morphisms. It hence follows that the functor
Bun∇G,0(∗) −→ Bun∇G,0(c) is fully faithful (on the underlying groupoids), for any c ∈ Cart. Since any
flat G-bundle on c is isomorphic to the trivial flat G-bundle (because c ∼= R

n for some n ∈ N0), the
functor Bun∇G,0(∗) −→ Bun∇G,0(c) is also essentially surjective. Since the nerve of an equivalence of
groupoids is an equivalence of Kan complexes, it follows that Bun∇G,0 is a fibrant object in H

pI
∞. ⊳

2.3 Topological realisation

In this subsection we further build on and extend ideas from [Dugb] to investigate a second way of
obtaining a space from a simplicial presheaf on Cart. This time, we send a simplicial presheaf to a
certain coend valued in topological spaces.

More precisely, we let ∆Top denote the category of ∆-generated topological spaces (see [Duga,
Vog71] for background). We will be working with ∆Top as our choice of category of topological spaces
throughout; however, most of the theory in this paper also works with the category of Kelley spaces
(see, for instance, [Hov99]), except for where we work explicitly with diffeological spaces (Lemma 2.27,
Remark 4.12).

We provide some very compact background on ∆-generated topological spaces. A topological space
X is ∆-generated precisely if its topology coincides with the final topology induced by all continuous
maps |∆n| → X, for all n ∈ N0. (Here, |∆n| is the standard topological n-simplex.) In particular,
the category of ∆-generated topological spaces and continuous maps, denoted ∆Top, is symmetric
monoidal and cartesian closed [Vog71]. Note, however, that the product in ∆Top is not the usual
product of topological spaces—one has to pass to the ∆-generated topology after taking the usual
product of topological spaces.

The category ∆Top carries a cofibrantly generated model structure, having the same generat-
ing cofibrations and generating trivial cofibrations as the standard model structure on topological
spaces [Duga]. The geometric realisation functor |−| : Set∆ → ∆Top takes values in ∆-generated
spaces, since ∆Top is closed under colimits of topological spaces and contains |∆n| for each n ∈ N0.
By construction of the model structure on ∆Top, the induced adjunction |−| : Set∆ ⇄ ∆Top : Sing is
a Quillen adjunction (|−| sends generating (trivial) cofibrations to (trivial) cofibrations). Further, by
the same proof as in [Hov99, Lemma 3.18], it follows that |−| preserves finite products. Then, the proof
of [Hov99, Prop. 4.2.11] applies as well, showing that ∆Top is a symmetric monoidal model category.
It also follows that ∆Top is a simplicial model category and that |−| is a monoidal left Quillen functor.
Finally, the Quillen adjunction |−| ⊣ Sing is even a Quillen equivalence, since the inclusion of ∆Top

into Kelley spaces (or all topological spaces) is a Quillen equivalence [Duga]; the claim then follows
from the two-out-of-three property of Quillen equivalences.

In this section, we provide a left Quillen equivalence H
pI
∞ → ∆Top. The main ideas for this section

stem from [Dugb]; there the full proof is technically rather involved. Again, we circumvent these
problems here by working over cartesian spaces rather than over the category of manifolds.

Let Dfg denote the category of diffeological spaces as defined in [Bunb]—this is the full subcategory
of Cat(Cartop, Set) on the concrete sheaves with respect to the Grothendieck pretopology τ (see the
beginning of Section 2.1). Concretely, a diffeological space can be defined as a pair (X,PlotX), where
X ∈ Set, and where PlotX assigns to every cartesian space c ∈ Cart a subset PlotX(c) ⊂ Set(c,X) of
the maps from the underlying set of c to X. These maps are called plots of X and have to satisfy that

(1) PlotX(∗) = X (every constant map is a plot),
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(2) for every f ∈ Cart(c, d) and every g ∈ PlotX(d), we have that g ◦ f ∈ PlotX(c) (i.e. PlotX is a
presheaf on Cart), and

(3) the presheaf PlotX is a sheaf with respect to τ .

We will often identify a diffeological space (X,PlotX) with the sheaf it defines (see [Bunb] for more
background), and we will denote this simply by X.

Example 2.19 For any manifold M ∈Mfd, the presheaf M , given by c 7→Mfd(c,M), is a diffeological
space. ⊳

Definition 2.20 Let D: Dfg → ∆Top be the functor defined as follows: for X ∈ Dfg, we let DX be
the underlying set of the diffeological space X ∈ Dfg, endowed with the final topology defined by its
plots c→ X, where c ranges over all cartesian spaces. A morphism f ∈ Dfg(X,Y ) is sent to the map
it defines on the sets underlying X and Y . We call D the diffeological topology functor and D(X) the
underlying topological space of X.

The ∆-generated topological spaces are in fact precisely those topological spaces that arise as the
underlying topological spaces of diffeological spaces [SYH, CSW14].

Proposition 2.21 [CW14, SYH] There exists an adjunction

D : Dfg ∆Top : C ,⊥

where (under the embedding of Dfg into presheaves on Cart) we have C(T )(c) = ∆Top(c, T ) for any
topological space T and any cartesian space c.

The following proposition consists of results that can already be found in [CSW14]; we only include
the proofs here for completeness.

Proposition 2.22 Let (−) × (−) denote the product in ∆Top, and let (−) ×t (−) denote the usual
product of topological spaces. The functor D has the following properties:

(1) For any manifold M , the space D(M ) coincides with the underlying topological space of M .

(2) For any manifolds M,N ∈Mfd, the canonical maps D(M ×N)→ DM ×DN → DM ×t DN are
homeomorphisms.

(3) D: Dfg→ ∆Top preserves finite products.

Proof. Part (1) is [CW14, E.g. 3.7]: it is clear that any subset U ⊂ M which is open in the manifold
topology is also open in the diffeological topology. Conversely, if U is open in D(M ), then its intersection
with all images of charts of M must be open. As these images form a basis for the manifold topology,
U is open in the manifold topology.

Part (2) follows readily from Part (1) together with the fact that M ×N is again a manifold.

Part (3) is merely [CSW14, Lemma 4.1] and the remarks following that lemma. For completeness,
we fill in the details omitted there. In [CSW14] it is proven that the natural map D(X×Y )→ DX×DY

is a homeomorphism whenever DX is locally compact Hausdorff. Since Dc is locally compact Hausdorff
for any c ∈ Cart, and since D preserves colimits, we have the following canonical isomorphisms in ∆Top:
let X,Y ∈ Dfg be arbitrary. Using that Dfg and ∆Top are cartesian closed, we compute

D(X × Y ) ∼= D
(
(colim
Cart/X

Dfgc)× Y
)

∼= colim
Cart/X

∆TopD(c × Y )
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∼= (colim
Cart/X

∆TopDc)× Y

∼= DX ×DY .

In the third isomorphism we have used the above-mentioned result [CSW14, Lemma 4.1].

We point out that we only use manifolds without boundary or corners here. For manifolds with
boundary, part (1) of Proposition 2.22 fails—see, for instance, [CW14, Cor. 4.47] and [OT, Warn-
ing 2.22]. Since each cartesian space c ∈ Cart is diffeomorphic to R

n for some n ∈ N0, and since R
n

is (isomorphic to) a CW complex for any n ∈ N0, it follows that Dc is cofibrant in ∆Top for every
c ∈ Cart. We have the following version of [Dug01b, Prop. 2.3]:

Theorem 2.23 There exists a Quillen adjunction Re ⊣ S, sitting inside a weakly commutative diagram

Cart ∆Top

H
p
∞

Y

D

S

Re (2.24)

Further, there is a canonical natural isomorphism Re ◦ Y ∼= D.

Proof. The functor Re is defined as the (enriched) left Kan extension of D along Y in digram (2.24).
Explicitly, we can write

Re(F ) =

∫ c∈Cart

F (c) ⊗Dc (2.25)

=

∫ c∈Cart

|F (c)| ×Dc ,

S(T )(c) = ∆Top(|∆•| ×Dc, T )

∼= Sing(TDc) .

Since Dc is cofibrant in ∆Top and Sing : Set∆ → ∆Top is right Quillen, it follows that S maps fibrations
(resp. trivial fibrations) in ∆Top to objectwise fibrations (resp. trivial fibrations) in H∞. Thus, S is
right Quillen.

The second claim follow from the canonical isomorphisms

Re(Yd) =

∫ c∈Cart

Yd(c) ⊗Dc ∼=

∫ c∈Cart

Cart(c, d) ×Dc ∼= Dd .

The statement now follows from Proposition 2.22(1).

Lemma 2.26 The adjunction Re ⊣ S has the following properties:

(1) It is a simplicial adjunction.

(2) S is monoidal.

Proof. Part (1) holds true since geometric realisation preserves finite products of simplicial sets and
since the functor K ⊗ (−) : ∆Top → ∆Top is a left adjoint, for any K ∈ Set∆. Part (2) holds true
since S is right adjoint and ∆Top is cartesian monoidal.
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Lemma 2.27 Consider the fully faithful inclusion ι : Dfg →֒ Cat(Cartop, Set) →֒ H∞. The diagram

Dfg H∞

∆Top

ι

D
Re

commutes up to natural isomorphism. In particular, for any manifoldM ∈Mfd, ReM is homeomorphic
to the underlying topological space of M .

Proof. For X ∈ Dfg, we have canonical natural isomorphisms

Re ◦ ι(X) ∼= Re

∫ c∈Cart

ι(X)(c) ⊗ Yc
∼=

∫ c∈Cart

ι(X)(c) ⊗Dc

and

DX ∼= D

∫ c∈Cart

ι(X)(c) ⊗ c ∼=

∫ c∈Cart

ι(X)(c) ⊗Dc .

Combining this with Proposition 2.22 completes the proof.

Proposition 2.28 The pair Re ⊣ S induces a Quillen adjunction

Re : HpI
∞ ∆Top : S .⊥

Proof. By [Hir03, Prop. 3.1.6, Prop. 3.3.18], it suffices to show that S preserves fibrant objects as a
functor ∆Top → H

pI
∞. By Proposition 2.13 we are thus left to check that, for every T ∈ ∆Top and

any c ∈ Cart, the canonical morphism S(T )(∗) → S(T )(c) is a weak equivalence in Set∆. However,
recalling the canonical isomorphism S(T )(c) ∼= Sing(TDc), this follows readily from the fact that both
∗ and c are cofibrant in ∆Top, that T is fibrant, and that Sing is a right Quillen functor. Consequently,
the functor c 7→ S(T )(c) maps the weak equivalence c→ ∗ in ∆Top to a weak equivalence in Set∆.

Proposition 2.29 The functor Re from diagram (2.24) has the following properties:

(1) Re sends the morphism F × YR → F to a weak equivalence in ∆Top, for every cofibrant F ∈ H
p
∞.

(2) Re sends every Čech nerve ČU→ Yc to a weak equivalence in ∆Top, for every differentiably good
open covering U = {ca → c}a∈A in Cart.

Proof. Ad (1): The morphism is a weak equivalence in H
pI
∞ between cofibrant objects by Proposi-

tion 2.7. Therefore, the claim follows from Proposition 2.28.

Ad (2): Let ČU → Yc denote Čech nerve of the covering U. We view this as a morphism from a
simplicial presheaf ČU to a simplicially constant presheaf Yc. Since U is a differentiably good open
covering, ČU is levelwise a coproduct of representable presheaves on Cart; hence, ČU is cofibrant in
H
p
∞. By construction of the Čech model structure H

pℓ
∞, we have that the morphism ČU → Yc is a

weak equivalence in H
pℓ
∞. By Corollary 2.9, this is also a weak equivalence in H

pI
∞. The result now

follows from Proposition 2.28 and since both ČU and Yc are cofibrant.

We now prove an important property of the model categories H
p/i I
∞ that allows us to detect I-local

weak equivalences. Dugger calls this property rigidity in [Dugb].
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Proposition 2.30 [Dugb, Lemma 3.4.4] If F,G ∈ H
p/i I
∞ are fibrant, then a morphism ψ : F → G is

an I-local weak equivalence if and only if the morphism ψ|∗ : F (∗) → G(∗) is a weak equivalence in
Set∆.

Proof of Proposition 2.30. Since ψ is a morphism between local objects in a left Bousfield localisation
of Hp/i

∞ , it is an equivalence in H
p/i I
∞ if and only if it is a weak equivalence in H

p/i
∞ . That is, ψ is an

I-local weak equivalence if and only if it is an objectwise weak equivalence.

Therefore, it immediately follows that if ψ is an I-local weak equivalence, then ψ|∗ is a weak
equivalence of simplicial sets.

Conversely, suppose that ψ|∗ is a weak equivalence in Set∆. For any c ∈ Cart, we have the following
commutative square in Set∆:

F (∗) =
(
c̃ ev∗(F )

)
F (c)

G(∗) =
(
c̃ ev∗(G)

)
G(c)

e|F

ψ|∗ ψ|c

e|G

As both F and G are I-local objects, it follows from Lemma 2.15 that the horizontal morphisms are
weak equivalences in Set∆. Together with the assumption that ψ|∗ is a weak equivalence on simplicial
sets, it now follows that ψ is, in fact, an objectwise weak equivalence.

Theorem 2.31 There is a commutative diagram of simplicial Quillen equivalences

H
pI
∞

Set∆ ∆Top

Re

ev∗

|−|

c̃

Sing

S

(2.32)

where c̃, Re, and |−| are the left adjoints.

Proof. It is well-established that the pair |−| ⊣ Sing is a simplicial Quillen equivalence (see e.g. [Hov99]).
We have also seen in Theorem 2.17 that the adjunction c̃ ⊣ ev∗ is a simplicial Quillen equivalence. The
commutativity of (2.32) follows from the definitions (2.25) of the functors Re and S, which use |−| and
Sing, respectively. The fact that Re ⊣ S is a Quillen equivalence then follows from the two-out-of-three
property of Quillen equivalences and Corollary D.8.

Remark 2.33 A slightly different version of Theorem 2.31 has been found previously in [Dug01b,
Dugb], working over Mfd instead of Cart. We found that Cart has several technical advantages (in par-
ticular, we do not need to additionally consider stalk-wise weak equivalences) and provides a sufficiently
large category of parameter spaces to describe geometric and topological structures, as Theorem 2.31
shows (see also [Bunb] for a treatment of geometric structures). ⊳
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3 The smooth singular complex of a simplicial presheaf

In this section we introduce the smooth singular complex, sometimes also called the concordance space,
of a simplicial presheaf on Cart. We investigate its homotopical properties—for instance, it sends
smooth homotopies to simplicial homotopies—and we establish it both as a left Quillen equivalence
H
p/i I
∞ → Set∆ and as a right Quillen equivalence HiI

∞ → Set∆.

3.1 Extended simplices and the smooth singular complex

In a fashion similar to motivic homotopy theory (see e.g. [MV99, Voe98, DLØ+07]), we consider the
extended affine simplices in order to build our smooth singular complex functor. However, we purely
rely on the smooth manifold structure of the affine cartesian simplices rather than on their function
algebras.

Definition 3.1 The extended n-simplex is the cartesian space

∆n
e :=

{
(t0, . . . , tn) ∈ R

n+1
∣∣

n∑

i=0

ti = 1
}
⊂ R

n+1 .

Face and degeneracy maps are defined as the affine linear extensions of the face and degeneracy maps
of the standard simplices |∆n|. The extended simplices thus define a functor ∆e : ∆→ Cart.

By construction, the topological standard simplex

|∆n| = {t ∈ R
n+1 |

n∑

i=0

ti = 1, 0 ≤ ti ≤ 1 ∀i = 0, . . . , n}

is a subset of the extended simplex ∆n
e , for any n ∈ N0. This inclusion |∆n| →֒ ∆n

e is compatible with
the face and degeneracy maps. Recalling the functor D: Dfg → ∆Top from Definition 2.20, we see
that there is a morphism

ι : |∆| → D∆e

of functors ∆→ ∆Top. In particular, the diagram

|∆n| D∆n
e

|∆k| D∆k
e

ιn

|∆|(σ) D∆e(σ)

ιk

(3.2)

in ∆Top commutes for every morphism σ ∈ ∆([n], [k]).

The extended simplices functor ∆e induces a Quillen adjunction

H
p
∞ Hi

∞ (Set∆
∆
op
)i = (Set∆

∆
op
)Reedy .

1
⊥

∆∗
e

⊥
1 (∆e)!

Here we have made use of [Hir03, Thm. 15.8.7], which implies that the injective model structure on
bisimplicial sets agrees with the Reedy model structure.
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Theorem 3.3 [Rie14, Thm. 5.2.3] Let M be a simplicial model category. Then, the realisation functor

|−|M : M∆
op
→M , X• 7−→

∫ [n]∈∆
op

∆n ⊗Xn

is a left Quillen functor with respect to the Reedy model category structure on M∆
op

.

Proposition 3.4 Let δ : ∆→ ∆× ∆ be the diagonal functor. There exists a canonical isomorphism

|−|Set∆
∼= δ∗ ,

of functors sSet∆ → Set∆, where δ∗(X)n = Xn,n is the pullback along the diagonal functor.

Proof. This is a straightforward application of the Yoneda Lemma in the (co)end calculus.

Corollary 3.5 The diagonal functor is a left Quillen functor

δ∗ :
(
Set∆

(∆op)
)i
−→ Set∆ .

In particular, it is homotopical, i.e. it preserves all weak equivalences.

Consequently, we can define a left Quillen functor as the composition

Se := δ∗ ◦∆∗
e : H

p/i
∞ −→ Set∆ .

Consider a complete and cocomplete category E, two categories C,D, and a functor F : C→ D. Recall
that, in this situation, the functor F ∗ : Cat(D,E) −→ Cat(C,E) has a left adjoint F! and a right adjoint
F∗, which are given by the left and the right Kan extension along F . By the construction of Se as a
composition of pullback functors which act on categories of simplicial presheaves, we infer:

Proposition 3.6 The functor Se = δ∗ ◦∆∗
e has both adjoints. We thus obtain a triple of adjunctions

Le ⊣ Se ⊣ Re, where Le and Re are given by the compositions

Le = ∆e! ◦ δ! , and Re = ∆e∗ ◦ δ∗ .

The adjunction Se ⊣ Re is a simplicial Quillen adjunction.

Definition 3.7 We call the functor Se : H
p/i
∞ → Set∆ the smooth singular complex functor. For

F ∈ H∞, the simplicial set SeF is called the smooth singular complex of F .

3.2 Se as a left Quillen equivalence

We further investigate the homotopical properties of the smooth singular complex functor Se. So far, we
know that the adjunction Se : H

p/i
∞ ⇄ Set∆ : Re is Quillen. Our goal here is to show that this Quillen

adjunction descends to the localisation H
p/i I
∞ and that there it even forms a Quillen equivalence.

Definition 3.8 Let F,G ∈ H∞ be two simplicial presheaves on Cart, and let f0, f1 : F → G be a pair
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of morphisms. A smooth homotopy from f0 to f1 is a commutative diagram

F ×∆{0}

F × R G

F ×∆{1}

f0

h

f1

(3.9)

in H∞, where the vertical inclusions are induced by the maps ∗ → R, given by ∗ 7→ 0 and ∗ 7→ 1.

Lemma 3.10 The functor Se : H∞ → Set∆ maps smoothly homotopic morphisms to simplicially ho-
motopic morphisms.

Proof. The projection (t0, t1) 7→ t0 yields a diffeomorphism ψ : ∆1
e → R of cartesian spaces. Observe

that there is a morphism of simplicial sets

ν : ∆1 −→ SeR = Cart(∆•
e,R) ,

defined by sending the generating non-degenerate 1-simplex of ∆1 to the 1-simplex ψ. Hence, using
the fact that Se preserves products, we apply Se to diagram (3.9) and augment it using ν to obtain a
commutative diagram

SeF ×∆{0}

SeF ×∆1 SeF × SeR SeG

SeF ×∆{1}

Sef0

1×ν
Seh

Sef1

This establishes a simplicial homotopy Seh ◦ (1X × ν) from Sef0 to Sef1.

Lemma 3.10 can be seen as a generalisation of [CW14, Lemma 4.10] away from diffeological spaces
to simplicial presheaves. Indeed, the composition

Dfg H∞ Set∆
ι Se

is precisely the smooth singular functor from [CW14].

Proposition 3.11 For any c ∈ Cart, the functor Se sends the collapse morphism c : Yc → ∗ to a weak
equivalence in Set∆.

Proof. Let c ∈ Cart, and let x ∈ c be any point. The inclusion x : ∗ → c induces a smooth homotopy
equivalence ∗ ⇄ c. The functor Se maps this to a simplicial homotopy equivalence according to
Lemma 3.10.
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Corollary 3.12 The functor Se induces Quillen adjunctions

Se : H
p/i I
∞ Set∆ : Re .⊥

Proof. Each morphism Yc×YR → Yc in I is a morphism between cofibrant objects in H
p/i
∞ . Therefore,

by [Hir03, Prop. 3.3.18] it suffices to show that Se sends each morphism in I to a weak equivalence
in Set∆. One way to see that this holds true is by observing that Se preserves finite products (it is a
monoidal functor). Therefore, we have that

Se(Yc × YR → Yc) = Se
(
Yc

1Yc−−→ Yc
)
× Se

(
YR

c

−→ ∗
)

= Se(1Yc)⊗ Se
(
YR

c

−→ ∗
)
,

where c : YR → ∗ is the collapse morphism. By Proposition 3.11, the morphism Se(c) is a weak
equivalence in Set∆, and since Set∆ is a monoidal model category in which every object is cofibrant, it
follows that Se(1Yc)⊗ Se(c) is a weak equivalence as well.

Proposition 3.13 The functors Se : H
p/i I
∞ → Set∆ are homotopical.

Proof. Se : HiI
∞ → Set∆ is homotopical because it is left Quillen and every object in HiI

∞ is cofibrant.
The corresponding statement for the projective model structure now follows from Proposition 2.6.

Note, in particular, that by Proposition 2.9 the functor Se also sends weak equivalences in the Čech
local model structures H

p/i ℓ
∞ to weak equivalences in Set∆.

Theorem 3.14 The Quillen adjunctions

Se : H
p/i I
∞ Set∆ : Re⊥

are Quillen equivalences.

Proof. We have Quillen adjunctions

Set∆ H
p/i I
∞ Set∆⊥

c̃

⊥

Se

ev∗ Re

and we know from Theorem 2.17 that the Quillen adjunction c̃ ⊣ ev∗ is even a Quillen equivalence.
We readily see that Se ◦ c̃ is the identity functor on Set∆. Therefore, Se ⊣ Re is a Quillen equivalence
by Corollary D.8.

Corollary 3.15 The functor Se both preserves and reflects weak equivalences in H
p/i I
∞ .

Proof. In the injective case, this follows from Theorem 3.14 since every object in HiI
∞ is cofibrant and

Se is a left Quillen equivalence (see e.g. [Hov99, Prop. 1.3.16]). The projective case then follows from
Proposition 2.6.

Corollary 3.16 Any smooth homotopy equivalence in H∞ is a weak equivalence in H
p/i I
∞ .

Proof. By Proposition 3.10, Se sends smooth homotopy equivalences to simplicial homotopy equiv-
alences, which are, in particular, weak equivalences in Set∆. Thus, the claim follows from Corol-
lary 3.15.
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Remark 3.17 Let WSet∆ denote the class of weak equivalences in Set∆, and let S−1
e (WSet∆) denote

the class of morphisms in H∞ whose image under Se is in WSet∆ . Corollary 3.15 lets us suspect that
there is an equivalence of model categories

Hp/i I
∞ ≃ LS−1

e (WSet∆
)H

p/i
∞ .

Using properties of local weak equivalences in Bousfield localisation should allow us to prove that
conjecture here already, but instead we give a very direct proof later in Theorem 6.10. ⊳

3.3 Se as a right Quillen equivalence

The goal of this subsection is to establish the smooth singular functor as a right Quillen functor
Se : H

iI
∞ → Set∆. Apart from having convenient technical implications on the functor Se : HiI

∞ → Set∆,
the appearance of several intermediate model structures of bisimplicial sets sheds additional light on
the way that the functor Se works. We already know from Proposition 3.6 that Se = δ∗ ◦∆∗

e has a
left adjoint Le = ∆e! ◦ δ!. We will show that both its constituting functors ∆e! and δ! are left Quillen
functors.

3.3.1 Model structures for ∞-groupoids on the category of bisimplicial sets

We start by analysing the functor δ! in more detail. Let

ιn : Spn := ∆1 ⊔
∆0
· · · ⊔

∆0
∆1 ∆n

denote the spine-inclusion of the n-simplex ∆n, for n ≥ 1. (Note that for n = 1 the morphism ι1 is an
isomorphism.) Let Sp := {ιn : Spn →֒ ∆n |n ≥ 1} denote the set of all spine inclusions.

We write sSet∆ = Cat(∆op, Set∆) for the category of bisimplicial sets. There exists a bifunctor

⊠ : Set∆ × Set∆ −→ sSet∆ , (K ⊠ L)m,n := Km × Ln.

We view a bisimplicial set X as a simplicial diagram m 7→ Xm,• in Set∆. Let J ∈ Set∆ denote the nerve
of the groupoid with two objects and a unique isomorphism between them. The following definitions
are taken from [Rez01, Bar05, Hor15].

Definition 3.18 We define the following model structures on the category sSet∆ of bisimplicial sets:

(1) We view sSet∆ = Cat(∆op, Set∆) as endowed with the injective model structure. Recall that this
coincides with the Reedy model structure [Hir03].

(2) We let SSp := LSpsSet∆ be the left Bousfield localisation of sSet∆ at the spine inclusions. This is
the model category for Segal spaces.

(3) The model category for complete Segal spaces is the localisation CSS := LJ⊠∆0SSp.

Let L∆•⊠∆0sSet∆ denote the left Bousfield localisation of the injective model category of bisimplicial
sets at all collapse morphisms {∆n⊠∆0 → ∆0⊠∆0 |n ∈ N0}. Let L∆⊠∆0sSet∆ denote the left Bousfield
localisation of sSet∆ at all morphisms {∆n⊠∆0 → ∆m⊠∆0 |n,m ∈ N0}. (Compare these localisations
to those in Proposition 2.13.) We will mostly be using the model category L∆•⊠∆0sSet∆. However,
for conceptual clarity and for an interpretation as model categories for ∞-groupoids, we include the
following proposition.
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Proposition 3.19 The following left Bousfield localisations yield identical model categories:

L∆⊠∆0sSet∆
(1)
= L∆•⊠∆0sSet∆

(2)
= L∆1⊠∆0SSp

(3)
= L∆1⊠∆0CSS .

Proof. By Theorem 2.8 it suffices to check that all four model categories have the same cofibrations
and fibrant objects. For cofibrations, this is trivial since each of the model categories is a left Bousfield
localisation of sSet∆. It thus remains to check that the fibrant objects of the three model categories
coincide.

Identity (1) is a direct consequence of the two-out-of-three property of weak equivalences.

For identity (2), let X ∈ L∆•⊠∆0sSet∆ be fibrant. That is, X is injective fibrant in sSet∆ and the
canonical map X0 → Xn is a weak equivalence in Set∆ for any n ∈ N0. We have to show that X
satisfies the Segal condition, i.e. that for every n ≥ 2 the spine inclusion Spn →֒ ∆n induces a weak
equivalence

Xn −→ X1 ×
X0

· · · ×
X0

X1 .

(As pointed out in [Rez01], the strict pullback is a homotopy pullback here because X is Reedy fibrant.)
Consider the commutative diagram

Xn X1 ×
X0

· · · ×
X0

X1

X0 X0 ×
X0

· · · ×
X0

X0

s

(1X0
,...,1X0

)

∼=

s0×···×s0 (3.20)

Since X is Reedy fibrant, the pullbacks on the right-hand side are homotopy pullbacks. Therefore,
both vertical maps in (3.20) are weak equivalence. It follows by the commutativity of the diagram that
X satisfies the Segal condition. Then, X is fibrant in L∆1⊠∆0SSp since, by assumption, the morphism
X0 → X1 is a weak equivalence.

Conversely, if X is fibrant in L∆1⊠∆0SSp, then the top horizontal morphism in diagram (3.20) is
a weak equivalence because X satisfies the Segal condition, and the right-hand vertical morphism is a
weak equivalence because X is injective fibrant and X is local with respect to ∆1⊠∆0 → ∆0⊠∆0. It
thus follows by the commutativity of the diagram that also the left vertical morphism is an equivalence,
for any n ≥ 2, so that X is fibrant in L∆•⊠∆0sSet∆.

For identity (3), recall that in any Segal space X there is a notion of when a morphism f ∈ X1

is invertible (or a ‘homotopy equivalence’ in the language of [Rez01]). One defines the space Xweq

of homotopy equivalences in X to be the union of those connected components of X1 that contain
invertible morphisms (by [Rez01, Lemma 5.8], if X ∈ SSp is fibrant, then a connected component of
X1 contains a homotopy equivalence if and only if it consists purely of homotopy equivalences). For
any Segal space, the degeneracy morphism s0 : X0 → X1 factors as

Xweq

X0 X1

ιX
ŝ0

s0

(3.21)

Let X ∈ CSS be fibrant. In other words, X is a fibrant object in SSp and the morphism ŝ0 : X0 →

Xweq is a weak equivalence in Set∆. Then, X is local in L∆1⊠∆0CSS precisely if, additionally, the

23



morphism s0 : X0 → X1 is a weak equivalence of simplicial sets. Since every fibrant object in CSS is
also fibrant in SSp, this implies that every fibrant object in L∆1⊠∆0CSS is fibrant in L∆1⊠∆0SSp.

Conversely, let Y ∈ SSp be fibrant. Then, Y is local in L∆1⊠∆0SSp precisely if the morphism
s0 : Y0 → Y1 is a weak equivalence. We need to show that if this criterion is satisfied, then Y satisfies
that ŝ0 : Y0 → Yweq is a weak equivalence in Set∆. However, since ιY : Yweq → Y is the inclusion of a
union of connected components of Y1, diagram (3.21) and the fact that s0 is a weak equivalence imply
that ιY hits every connected component of Y1. Therefore, ιY is a weak equivalence; it follows from the
two-out-of-three property that ŝ0 : Y0 → Yweq is a weak equivalence as well.

Remark 3.22 Let X ∈ SSp be fibrant. Since ιX : Xweq → X1 is the inclusion of a union of connected
components of X1, it follows that ιX is a weak equivalence precisely if it is an isomorphism, i.e. precisely
if Xweq = X1. In other words, a fibrant object in both L∆1⊠∆0SSp and L∆1⊠∆0CSS is a complete Segal
space with all 1-morphisms invertible. In that sense, the fibrant objects in these model categories
are ∞-groupoids. The model category L∆⊠∆0sSet∆ can be seen as the model category of essentially
constant simplicial diagrams of spaces, in analogy to how LCartH

p/i
∞ describes locally constant simplicial

presheaves. ⊳

Remark 3.23 The model structures in Proposition 3.19 agree with the diagonal model structure on
bisimplicial sets: these model categories have the same underlying categories, the same cofibrations,
an, by [Ras, Thm. 2.1], they also have the same fibrant objects. Thus, the claimed equality follows
from Theorem 2.8. ⊳

Proposition 3.24 The diagonal δ∗ : sSet∆ → Set∆ induces a Quillen adjunction

δ! : Set∆ L∆•⊠∆0sSet∆ : δ∗ .⊥

Proof. This is a direct consequence of Remark 3.23 and [Ras, Thm. 2.4].

From now on, we will understand the adjunction δ! ⊣ δ
∗ as the above Quillen adjunction. There

is another Quillen adjunction that relates L∆•⊠∆0sSet∆ to the model category of simplicial sets, in
analogy with Theorem 2.17.

Proposition 3.25 Consider the adjoint pair c∆ : Set∆ ⇄ sSet∆ : ev[0], where c∆ = ∆0 ⊠ (−), and
where ev[0](X) = X0,•. This satisfies:

(1) c∆ ⊣ ev[0] is a Quillen adjunction Set∆ ⇄ sSet∆.

(2) Composing the Quillen adjunction from (1) with the localisation adjunction sSet∆ ⇄ L∆•⊠∆0sSet∆
yields a Quillen equivalence

c∆ : Set∆ L∆•⊠∆0sSet∆ : ev[0] .⊥

Proof. It is straightforward to see that c∆ : Set∆ → sSet∆ preserves cofibrations and further preserves
as well as reflects weak equivalences. This proves claim (1).

To see part (2), we first show that c∆ : Set∆ → L∆•⊠∆0sSet∆ still reflects weak equivalences. The
logic of the proof is entirely parallel to the proof of Theorem 2.17 for the injective case: consider any
morphism ψ : K → L of simplicial sets and suppose that c∆ψ : c∆K → c∆L is a weak equivalence in
L∆•⊠∆0sSet∆. This is the case if and only if, for any fibrant X ∈ L∆•⊠∆0sSet∆, the induced map

sSet∆(c∆L,X) sSet∆(c∆K,X)
(c∆ψ)

∗
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is an equivalence in Set∆. By adjointness, that is equivalent to the map

Set∆(L, ev[0]X) Set∆(K, ev[0]X)
ψ∗

being a weak equivalence of simplicial sets for every X ∈ (L∆•⊠∆0sSet∆)f . Using a fibrant replacement
in the injective model category sSet∆, we see in analogy with Lemma 2.16 and the proof of Theorem 2.17
that every Kan complex is weakly equivalent to an object in the image of the (Kan-complex-valued)
functor ev[0] : (L∆•⊠∆0sSet∆)f −→ (Set∆)f . Thus, it follows that ψ∗ is a weak equivalence.

Now consider a fibrant object X ∈ L∆•⊠∆0sSet∆ and the composition

c∆ ◦Q
Set∆ ◦ ev[0](X) c∆ ◦ ev[0](X) X ,

c∆(q| ev[0] X
) e|X

where e : c∆ ◦ ev[0] → 1sSet∆ is the evaluation natural transformation of the adjunction c∆ ⊣ ev[0].
Further, q : QSet∆ ∼

−→ 1Set∆ is a cofibrant replacement functor in Set∆ (which we can take to be the
identity, since (Set∆)c = Set∆). The first morphism is a weak equivalence since c∆ preserves weak
equivalences, and the second morphism is a weak equivalence as a consequence of the fibrancy of X;
compare to the proof of Theorem 2.17. This proves the claim by [Hov99, Cor. 1.3.16].

3.3.2 The functors ∆e! and Le

Next, we show that ∆e! : sSet∆ → HiI
∞ is left Quillen, and that the Quillen adjunction ∆e! ⊣ ∆e∗

descends to the localisation L∆1⊠∆0SSp of sSet∆. The functor ∆e! acts as

∆e!(X) =

∫ n

Xn,• ⊗∆n
e .

In particular, for bisimplicial sets in the image of (−)⊠ (−) we find

∆e!(K ⊠ L) =

∫ n

Kn ⊗ L⊗∆n
e (3.26)

∼= L⊗

∫ n

Kn ⊗∆n
e

∼= L⊗∆e!(K ⊠∆0) .

It follows that
∆e!(∆

0
⊠ L) ∼= c̃L (3.27)

for any L ∈ Set∆, where c̃ : Set∆ → H∞ is the constant-presheaf functor.

Lemma 3.28 For any n ∈ N0, the morphism ∆e!(∂∆
n ⊠∆0 −→ ∆n ⊠∆0) is a cofibration in Hi

∞.

Proof. For n = 0, 1 this is straightforward. Consider the presentation of ∂∆n as a coequaliser,

∂∆n ∼= coeq

( ∐

0≤i<j≤n

∆n−2
⇒

∐

0≤k≤n

∆n−1

)
.

Since ∆e! preserves colimits, we obtain

∂∆n
e := ∆e!(∂∆

n
⊠∆0) ∼= coeq

( ∐

0≤i<j≤n

∆n−2
e ⇒

∐

0≤k≤n

∆n−1
e

)
. (3.29)
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The colimit is taken in H∞ (not in Dfg, even though all ∆k
e are diffeological spaces), and so we have

∂∆n
e (c)

∼= coeq

( ∐

0≤i<j≤n

∆n−2
e (c) ⇒

∐

0≤k≤n

∆n−1
e (c)

)

for any c ∈ Cart. In particular, any section of ∂∆n
e over c ∈ Cart comes from some section f ∈ ∆n−1

e (c)

of a face of ∆n
e . Two such sections f, g ∈ ∆n−1

e (c) are identified precisely if they factor through the
copy of ∆n−2

e that joins the respective faces of ∆n
e and if, further, f and g agree as maps c→ ∆n−2

e .

Let f, g ∈ ∂∆n
e (c) be any two elements, and assume that ιne ◦ f = ιne ◦ g, where ιne : ∂∆

n
e −→ ∆n

e is
the canonical morphism. Observe that ιne is injective as a map on the underlying sets ∂∆n

e (∗) →֒ ∆n
e (∗).

Since every section f : Yc → ∂∆n
e is, in particular, a map Yc(∗) → ∂∆n

e (∗) of the underlying sets, and
analogously a section Yc → ∆n

e is, in particular, a map Yc(∗) → ∆n
e (∗) of underlying sets, it follows

that ιne : ∂∆
n
e → ∆n

e is an objectwise monomorphism.

Remark 3.30 We point out that ∂∆n
e , as defined in (3.29), is not a diffeological space for n ≥ 2. For

instance, consider a differentiably good open covering c = c0∪ c1 of a cartesian space c. We denote the
intersection c0 ∩ c1 by c01 ∈ Cart. Let fi : ci → ∆n−1

e be smooth maps, for i = 0, 1, to adjacent faces
of ∆n

e , such that fi|c01 : c01 → ∆n−2
e factors through the n−2-simplex which joins the two faces. These

data to not lift to a section f ∈ ∂∆n
e (c), since such an f must factor through one of the faces ∂∆n−1

e .
That is, ∂∆n

e does not satisfy the sheaf condition. ⊳

Let C,D,E be categories. Recall the notion of an adjunction of two variables C × D → E (see,
for example, [Hov99, Def. 4.1.12]). We will denote an adjunction of two variables only by its tensor
functor ⊗ : C×D→ E. If E has pushouts, then there is an induced pushout product, or box product on
morphisms: given morphisms f : A→ B in C and g : X → Y in D, their pushout product (relative to
⊗) is the induced morphism in E given by

A⊗ Y ⊔
A⊗B

B ⊗X B ⊗ Y .
f�g

We recall following definitions:

Definition 3.31 [Hov99, Def. 4.2.1] Let C,D,E be model categories, and let ⊗ : C × D → E be an
adjunction of two variables. Then, ⊗ is a Quillen adjunction of two variables if the induced pushout
product f, g 7→ f�g satisfies the pushout-product axiom:

(1) if both f and g are cofibrations, then so is f�g, and

(2) if, in addition, f or g is a weak equivalence, then so is f�g.

Definition 3.32 [Hov99, Def. 4.2.6] A (symmetric) monoidal model category is a closed (symmetric)
monoidal category (C,⊗) together with a model structure on the underlying category C such that:

(1) the closed monoidal structure is a Quillen adjunction of two variables ⊗ : C× C→ C.

(2) Let u ∈ C be the monoidal unit, and let qu : QCu
∼
−→ u be a cofibrant replacement. Then, tensoring

with any cofibrant object from the left or the right sends qu to a weak equivalence.

Example 3.33 The model category sSet∆ with the injective model structure is symmetric monoidal.
Similarly, each of the model categories H

p/i
∞ , H

p/i ℓ
∞ , and H

p/i I
∞ is symmetric monoidal by Proposi-

tion 2.4. In each of the monoidal model structures we encounter here, the monoidal unit is already
cofibrant, so that the second axiom of Definition 3.32 is trivially satisfied. ⊳
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The injective model structure on Set∆ is cofibrantly generated (see e.g. [Rez01]), with generating
cofibrations

I =
{
(∂∆n

⊠∆0 →֒ ∆n
⊠∆0)�(∆0

⊠ ∂∆m →֒ ∆0
⊠∆m)

∣∣n,m ∈ N0

}

and generating trivial cofibrations

J =
{
(∂∆n

⊠∆0 →֒ ∆n
⊠∆0)�(∆0

⊠ Λmk →֒ ∆0
⊠∆m)

∣∣m,n ∈ N0, 0 ≤ k ≤ m
}
.

Proposition 3.34 There is a Quillen adjunction

∆e! : sSet∆ Hi
∞ : ∆∗

e .⊥

Proof. We have already seen in Lemma 3.28 that ∆e! sends the morphism ∂∆n ⊠∆0 →֒ ∆n ⊠∆0 to
the injective cofibration ∂∆n

e →֒ ∆n
e in Hi

∞. Further, it follows from Equations (3.26) and (3.27) that

∆e!(∆
0
⊠ ∂∆m →֒ ∆0

⊠∆m) =
(
c̃∂∆m −→ c̃∆m

)
,

which is an injective cofibration, and that

∆e!(∆
0
⊠ Λmk →֒ ∆0

⊠∆m) =
(
c̃Λmk −→ c̃∆m

)
,

which is an injective trivial cofibration. Since Hi
∞ is a symmetric monoidal model category, and since

∆e! preserves pushouts, it now follows that ∆e! sends the generating (trivial) cofibrations of Set∆ to
(trivial) cofibrations in Hi

∞. Thus, ∆e! is a left Quillen functor by [Hov99, Lemma 2.1.20].

Corollary 3.35 There is a Quillen adjunction

∆e! : sSet∆ HiI
∞ : ∆∗

e .⊥

Proposition 3.36 The Quillen adjunction ∆e! ⊣ ∆∗
e descends to a Quillen adjunction

∆e! : L∆•⊠∆0sSet∆ HiI
∞ : ∆∗

e .⊥

Proof. This is a direct consequence of the fact that ∆e!(∆
n ⊠ ∆0) ∼= ∆n

e . The collapse morphism
∆n
e → ∗ is a weak equivalence in HiI

∞ by Proposition 2.7.

Corollary 3.37 The adjunction Le : Set∆ ⇄ HiI
∞ : Se is a Quillen adjunction.

Proof. This is a direct consequence of Proposition 3.24 and Proposition 3.36.

Theorem 3.38 There is a commutative triangle of Quillen equivalences

L∆•⊠∆0sSet∆

Set∆ HiI
∞

∆e!

ev[0]

c̃

c∆

ev∗

∆∗
e

where c∆, ∆e!, and c̃ are the left adjoints.
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Proof. We know from Theorem 2.17 that the bottom adjunction is a Quillen equivalence, and we know
from Proposition 3.25 that the left diagonal adjunction is a Quillen equivalence. Further, it is evident
that the diagram of right adjoints commutes strictly. Thus, the claim follows from the two-out-of-three
property of Quillen equivalences.

Lemma 3.39 Consider the functors ev∗, Se : H∞ → Set∆.

(1) There is a canonical natural transformation γ : ev∗ → Se.

(2) The restriction of γ to a morphism between functors (H
p/i I
∞ )f −→ (Set∆)f is a natural weak

equivalence.

Proof. Consider first the functors ∆∗
e, c∆ ◦ ev[0] : H

p/i I
∞ −→ sSet∆. For any F ∈ H∞, the collapse map

∆n
e → ∗ induces a morphism γ̂|F,n : F (∗) → F (∆n

e ) of simplicial sets. Since ∗ ∈ Cart is final, this
induces a natural transformation γ̂ : c∆ ◦ ev∗ −→ ∆∗

e. Applying the diagonal functor δ∗ to this natural
transformation, we obtain a natural transformation

γ : ev∗ = δ∗ ◦ c∆ ◦ ev∗ −→ δ∗ ◦∆∗
e = Se .

This shows part (1). Part (2) then follows from the fact that, whenever F ∈ H
p/i I
∞ is fibrant, the

morphism F (∗) → F (∆n
e ) is a weak equivalence for every n ∈ N0. Therefore, if F is fibrant, then

γ̂|F : c∆(F (∗)) −→ ∆∗
eF is an objectwise weak equivalence in sSet∆. The claim now follows from the

fact that the diagonal functor δ∗ is homotopical.

Theorem 3.40 The Quillen adjunction

Le : Set∆ HiI
∞ : Se .⊥

is a Quillen equivalence.

Proof. We will show that the total right derived functor RSe : hH
iI
∞ −→ hSet∆ is an equivalence of

categories. If RiI : HiI
∞ → HiI

∞ is a fibrant replacement functor in HiI
∞, we can write RSe as the

composition [Hov99, Def. 1.3.6]

hHiI
∞ h(HiI

∞)f Set∆ .
hRiI hSe

Consider the natural transformation γ : ev∗ → Se from Lemma 3.39. Since its component on each
fibrant object F ∈ HiI

∞ is a weak equivalence, γ induces a natural isomorphism

Rγ = hRiI(hγ) : R ev∗
∼=
−→ RSe

of total right derived functors. Since ev∗ is a right Quillen equivalence by Theorem 2.17, its total
right derived functor R ev∗ is an equivalence of categories. Therefore, it now follows that also RSe
is an equivalence of categories. Thus, it follows from Proposition D.3 that Le ⊣ Se is a Quillen
equivalence.

Corollary 3.41 The Quillen adjunction

δ! : Set∆ L∆1⊠∆0sSet∆ : δ∗ .⊥

is a Quillen equivalence.
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Proof. This follows from the fact that Le = ∆e! ◦ δ!, together with Theorem 3.38 and the two-out-of-
three property for Quillen equivalences.

Corollary 3.41 becomes particularly interesting in light of Proposition 3.19: it establishes a Quillen
equivalence between the Kan-Quillen model structure on simplicial sets and each of the model structures
in Proposition 3.19. In other words, Corollary 3.41 shows that each of the model categories from
Proposition 3.19 is a model category for ∞-groupoids.

4 Comparison of spaces constructed from simplicial presheaves

In Sections 2 and 3 we have seen several ways of extracting a space from a simplicial presheaf on Cart.
The main goal of this section is to establish comparisons between the resulting spaces. In particu-
lar, these comparisons are useful tools in applications of the R-local homotopy theory of simplicial
presheaves, such as in Section 5.

The right adjoint of Se = δ∗ ◦ ∆∗
e is given as Re = ∆e∗ ◦ δ∗. We start by making this functor

more explicit: consider a simplicial set K ∈ Set∆ and a cartesian space c ∈ Cart. Since the adjunction
Se ⊣ Re is simplicial, there are natural isomorphisms

(ReK)(c) ∼= H∞(Yc, ReK) (4.1)
∼= Set∆(SeYc,K)

∼= KSe(Yc) .

The following lemma is then immediate:

Lemma 4.2 There exist canonical natural isomorphisms

Se ◦ c̃ ∼= 1Set∆ , and ev∗ ◦Re ∼= 1Set∆ .

It follows that there exists a natural isomorphism ev∗ ◦Re ◦ Sing ∼= Sing.

Lemma 4.3 There is an isomorphism

Sing(T )K ∼= Sing
(
T |K|

)
,

natural in both T ∈ ∆Top and in K ∈ Set∆.

Proof. Since the adjunction |−| ⊣ Sing is simplicial (because |−| preserves finite products), we have
binatural isomorphisms

Sing(T )K = Set∆
(
K,Sing(T )

)

∼= ∆Top(|K|, T )

= Sing(T |K|) .

Here we have used that ∆Top is cartesian closed and simplicially enriched.

Lemma 4.4 For every manifold M ∈Mfd there exist morphisms

ϕM : SeM −→ Sing(DM) and ψM : |−| ◦ Se(M) −→ DM
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of simplicial sets and of topological spaces, respectively. These assemble into natural transformations

ϕ : Se −→ Sing ◦D and ψ : |−| ◦ Se −→ D

of functors Mfd→ Set∆ and Mfd→ ∆Top, respectively.

Proof. Let n ∈ N0 and consider the set M(∆n
e ) = Mfd(∆n

e ,M); it is the set of all smooth maps
∆n
e → M of manifolds. Recall the morphism ι• : |∆•| −→ D∆•

e of cosimplicial topological spaces
from (3.2). If f : ∆n

e →M is any smooth map, then the composition f ◦ ιn : |∆n| → DM is continuous.
Here we have used that DM coincides with the underlying topological space of the manifold M (see
Proposition 2.22). This provides a map

ϕM |n : M(∆n
e ) = Mfd(∆n

e ,M)
D
−→ ∆Top(D∆n

e ,DM)
(ιn)∗

−→ ∆Top(|∆n|,DM) .

Since ι• is a morphism of cosimplicial topological spaces, and since the maps ϕM |n are defined by
precomposition by ιn, it readily follows that ϕM |n is natural in both M ∈ Mfd and n ∈ ∆. Thus, we
obtain the desired morphism of simplicial sets

ϕM : SeM −→ Sing(DM) .

The composition

ψM : |SeM |
|ϕM |
−−−→ |Sing(DM)|

eM−−→
∼

DM

then defines the morphism ψM , where e : |−| ◦ Sing
∼
−→ 1∆Top is the evaluation morphism of the

adjunction |−| ⊣ Sing.

Lemma 4.5 The restrictions of ϕ and ψ to Cart ⊂ Mfd are natural weak equivalences of functors
Cart→ Set∆ and Cart→ ∆Top, respectively.

Proof. This follows readily from the observation that, for any cartesian space c ∈ Cart, both |SeYc|
and D(Yc) are weakly equivalent to ∗ ∈ ∆Top. Hence, by the two-out-of-three property of weak
equivalences any morphism |SeYc| −→ D(Yc) is a weak equivalence.

Proposition 4.6 There exists a natural weak equivalence

∆Top H
p/i I
∞ .

Re◦Sing

S

η ∼

Proof. We consider the projective case; the injective case then follows since H
pI
∞ and HiI

∞ have the
same weak equivalences (Proposition 2.6). Given a topological space T ∈ ∆Top, by Equation (4.1)
and Lemma 4.3 we have

Re ◦ Sing(T )(c) ∼= Sing
(
T |SeYc|

)
and S(T )(c) ∼= Sing

(
TDc

)
.

The natural morphisms ψ from Lemma 4.4 induce a morphism

η|T := Sing
(
Tψ

)
: S(T ) −→ Re ◦ Sing(T )

in H∞, which is natural in T ∈ ∆Top.
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In order to see that the morphism Sing(Tψ) is a weak equivalence in H
pI
∞, we first observe that

both S(T ) and Re ◦ Sing(T ) are fibrant in H
pI
∞. We have that

ev∗
(
S(T )

)
= Sing(T ) and ev∗

(
Re ◦ Sing(T )

)
= Sing

(
T |Se(∗)|

)
= Sing(T ) .

Further, the morphism ψ|∗ : |Se(∗)| = ∗ → ∗ = D(∗) is the identity, so that also the morphism

(
Sing

(
Tψ

))
|∗
: S(T )(∗) = Sing(T ) −→ Sing(T ) = Re ◦ Sing(T )(∗)

is the identity. The fact that η is a natural weak equivalence now follows from the fact that the right
Quillen equivalence ev∗ : H

pI
∞ → Set∆ reflects weak equivalences between fibrant objects (which was

also the content of Proposition 2.30).

Corollary 4.7 There is a natural weak equivalence

∆Top Set∆ .

Sing

Se◦S

η′ ∼

Proof. Since the functor Se : H
p/i I
∞ → Set∆ is homotopical, we obtain a natural weak equivalence

Seη : Se ◦ S
∼
−→ Se ◦Re ◦ Sing .

Let e : Se ◦ Re −→ 1Set∆ denote the evaluation morphism of the adjunction Se ⊣ Re. The fact that
every object in Set∆ is cofibrant, together with the fact that Se ⊣ Re is a Quillen equivalence imply
that the morphism e|K : Se ◦ Re(K) −→ K is a weak equivalence in Set∆ for every fibrant simplicial
set K. Since Sing : ∆Top→ Set∆ takes values in fibrant simplicial sets, it follows that the composition

η′ : Se ◦ S
Seη
−−→
∼

Se ◦Re ◦ Sing
eSing
−−−→

∼
Sing

is a natural weak equivalence.

Corollary 4.8 Let Qp : HpI
∞ → H

pI
∞ be a cofibrant replacement functor, with associated natural weak

equivalence qp : Qp → 1H∞ . There is a zig-zag of natural weak equivalences

Se
Seqp
←−−−

∼
Se ◦Q

p η′′
−→
∼

Sing ◦Re ◦Qp (4.9)

of functors H
pI
∞ −→ ∆Top.

Proof. The left-facing natural transformation is a weak equivalence since Se is homotopical. The
right-facing morphism is the composition

η′′ : Se ◦Q
p SecoQp

−−−−→ Se ◦ S ◦Re ◦Q
p (η′)ReQp

−−−−−→
∼

Sing ◦Re ◦Qp ,

where co : 1∆Top −→ S ◦ Re is the coevaluation morphism of the adjunction Re ⊣ S. Since this
adjunction is a Quillen equivalence and since every object in ∆Top is fibrant, it follows that coF : F →

S ◦Re(F ) is a weak equivalence for every cofibrant object F ∈ H
pI
∞.
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Proposition 4.10 There exists a zig-zag of natural weak equivalences

|−| ◦ Se
|Se(qp)|
←−−−−−

∼
|−| ◦ Se ◦Q

p η′′′
−−→
∼

Re ◦Qp

of functors H
pI
∞ −→ ∆Top. In particular, there exists a natural isomorphism of total left derived

functors

hHpI
∞ h∆Top .

LRe

h|−|◦hSe

η′′′ ∼= (4.11)

Observe that Se and |−| are already homotopical, so that we do not need to precompose them by
a cofibrant replacement in order to obtain their total left derived functors.

Proof. We readily obtain a zig-zag as in (4.11) by applying the functor |−| to the zig-zag (4.9) and
then postcomposing by the evaluation transformation e : |−| ◦ Sing

∼
−→ 1∆Top. However, there is an

alternative way of obtaining a zig-zag as in (4.11) directly and explicitly, which we think is worth
showing: let Qp be Dugger’s cofibrant replacement functor for H

p
∞ [Dug01b]. Explicitly, it sends a

simplicial presheaf F to the two-sided bar construction

QpF = BH∞(F,Cart,Y) ,

in the notation of [Rie14]. (The superscript indicates in which simplicial category we are forming the
bar construction.) Using that Re is simplicial and commutes with colimits, and that there is a natural
isomorphism Re ◦ Yc ∼= Dc for any cartesian space c ∈ Cart (cf. Lemma 2.27), we obtain a canonical
isomorphism

Re ◦Qp(F ) ∼= B∆Top(F,Cart,D) .

Now we use that the morphism ψ from Lemma 4.4 induces a natural weak equivalence ψ : |−| ◦Se
∼
−→

D of functors Cart → ∆Top (cf. Lemma 4.5). Since each of the functors F : Cartop → Set∆ and
D, |−| ◦ Se : Cart → ∆Top are objectwise cofibrant, [Rie14, Cor. 5.2.5] implies that ψ induces a weak
equivalence

B∆Top(−,Cart, ψ) : B∆Top(−,Cart, |−| ◦ Se)
∼
−→ B∆Top(−,Cart,D) = Re ◦Qp

of functors H∞ → ∆Top.

On the other hand, since both |−| and Se are left adjoints, we have a natural isomorphism

B∆Top(F,Cart, |−| ◦ Se) ∼= |−| ◦ Se
(
BH∞(F,Cart,Y)

)

= |−| ◦ Se ◦Q
p(F ) .

Now, the morphism qp : Qp
∼
−→ 1H∞ , together with the fact that both |−| and Se preserve weak

equivalences, yield the claim.

Remark 4.12 Recall the embedding ι : Dfg →֒ H∞ of diffeological spaces into simplicial presheaves.
By Lemma 2.27, the composition Re◦ι agrees with the functor D: Dfg→ ∆Top that sends a diffeolog-
ical space to its underlying topological space, whose topology is induced by its plots. It is interesting
to ask whether the homotopy type of DX agrees with that of the smooth singular complex Seι(X) of
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X, for any diffeological space X ∈ Dfg. So far, however, we only see that the homotopy type of SeιX
agrees with the cobar construction

Seι(X) ≃ B∆Top(X,Cart,D)

=

∫ n

|∆n| ×
( ∐

c0,...,cn∈Cart

Dc0 × Cart(c0, c1)× Cart(cn−1, cn)×X(cn)
)

rather than with the underlying topological space DX of X. This is in accordance with—and maybe
provides some further insight to—results from [CSW14, OT] that the smooth singular complex of a
diffeological space X is not in general equivalent to the smooth singular complex of DX. ⊳

To conclude this section, we can interpret the functor Re—and because of Proposition 4.10 also
the functor Se—in the context of the cohesive ∞-topos H of presheaves of spaces on Cart as follows
(see [Sch] for more background). From the proof of Proposition 4.10 we see that there are canonical
weak equivalences

Re ◦Qp(F ) ∼= B∆Top(F,Cart,D)

≃ B∆Top(F,Cart, ∗)

∼=
∣∣BSet∆(F,Cart, ∗)

∣∣ .

Using the fact that the topological realisation of a bisimplicial set is independent of which simplicial
direction one realises first (up to canonical isomorphism), we obtain canonical weak equivalences

∣∣BSet∆(F,Cart, ∗)
∣∣ ∼=

∣∣BSet∆(∗,Cartop, F )
∣∣

≃ hocolim∆Top
(
|−| ◦ F : Cartop −→ ∆Top

)
.

Consequently, from Proposition 4.10 we obtain that each of the functors

Re ◦Qp ≃ |−| ◦ Se ◦Q
p ≃ |−| ◦ Se

models the homotopy colimit of the diagram |F | : Cartop → ∆Top, for any F ∈ H∞. Therefore, the
functors they present on the ∞-categories underlying H

p
∞ and ∆Top are equivalent, and they are

further equivalent to the∞-colimit functor. Consequently, on the level of the underlying ∞-categories
they each present left-adjoints to the functor that sends a space to the constant presheaf whose value
is that space. This means that both Re and Se provide explicit presentations for the left-adjoint Π

in the three-fold adjunction which implements the cohesive structure on H (see [Sch]). This appears
to have been known for Re, but the functor Se has not been formally identified as a model for the
cohesion functor Π (although this has been indicated in [BEBdBP]).

5 A Whitehead Approximation Theorem

In the last section we established several comparison results for the various simplicial sets and topo-
logical spaces that we can naturally extract from an object F ∈ H∞. It does not seem to be true,
however, that the functors Re and |−|◦Se are generally weakly equivalent. We were only able to relate
these functors on the level of homotopy categories and their derived functors (Proposition 4.10). The
results about diffeological spaces referred to in Remark 4.12 show that, in general, we cannot expect
anything better for general simplicial presheaves on Cart.
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In this section, we show that if a simplicial presheaf comes from a smooth manifold M , then
the smooth singular complex SeM and the underlying topological space DM are canonically weakly
equivalent. This is a classical result, sometimes referred to as Whitehead’s Approximation Theorem
for manifolds (see [OT], for instance). Here, we employ our results thus far to give a purely homotopy-
theoretic proof of this theorem, which avoids having to approximate continuous maps by smooth ones.

Theorem 5.1 The natural transformations

Mfd Set∆ .

Sing ◦D

Se◦(−)

ϕ Mfd ∆Top .

D

|−|◦Se◦(−)

ψ

introduced in Lemma 4.4 are natural weak equivalences. In particular, the smooth singular complex of
M has the same homotopy type as SingM .

The proof of Theorem 5.1 requires a couple of steps, which will occupy the remainder of this section.
To start with, let U = {Ua}a∈A be a differentiably good open covering of M (see Section 2.1), and let
ČU→M be the associated Čech covering in H∞.

Lemma 5.2 The augmentation map ČU→M is a weak equivalence in H
p/i ℓ
∞ .

Proof. The morphism ČU0 =
∐
a∈A Ua −→ M is a local epimorphism, or generalised cover (in the

sense of [DHI04, p. 7]) with respect to the Grothendieck topology of differentiably good open coverings
on Cart [FSS12, Bunb]. Hence, the result follows from [DHI04, Cor. A.3].

For a differentiably good open covering U = {Ua}a∈A of M , every non-empty finite intersection
Ua0...an is representable in H∞; in particular, each Ua0...an , as well as the Čech nerve ČU, is cofibrant
in H

p
∞. We let sA denote the partially ordered set of non-empty finite subsets of A, ordered by

inclusion. By abuse of notation, we denote the category associated to a partially ordered set P also
by P . For a partially ordered set P , we write s<P for the partially ordered set of totally ordered finite
subsets of P . The assignment {a0, . . . , an} 7→ Ua0...an defines a functor U (−) : sA

op → H∞, which
takes values in cofibrant objects (where Ua0...an is either the presheaf represented by the cartesian
space Ua0 ∩ · · · ∩Uan if this is non-empty, or it is the initial presheaf ∅ ∈ H∞). We will show that the
Čech nerve of a differentiably good open covering U of M is equivalent (more precisely, isomorphic in
hH

p/i
∞ ) to the homotopy colimit of the functor U (−) : sA

op → H
p/i
∞ . To that end, we use the modified

two-sided simplicial bar construction BH∞
Ex , which is introduced in Appendix C.

Proposition 5.3 For any differentiably good open covering U = {Ua}a∈A of a manifold M , there is
an objectwise weak equivalence in H

p
∞,

hocolimH
p/i
∞ (sAop

U (−)
−−−→ Hp

∞) ≃ BH∞(∗, sAop, U (−))
∼
−→ BH∞

Ex (∗, sAop, U (−)) .

Proof. This is a direct application of Proposition C.7 and Corollary C.8 for objectwise cofibrant dia-
grams.

Example 5.4 A 1-simplex of BH∞
Ex (∗, sAop, U (−))(c) consists of a finite subset α0,1 ⊂ A, together with

a choice of two non-empty subsets α0, α1 ⊂ α0,1 and a smooth map c→ Uα0,1 . Here we have used that c
is connected, so that each map Yc → BH∞

Ex (∗, sAop, U (−))1 must factor through exactly one component
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of the coproduct on the right-hand side. Note, however, that each of the subsets α0, α1, α0,1 ⊂ A may
have any finite (non-zero) number of elements. ⊳

Definition 5.5 We say a covering U = {Ua}a∈A is closed under finite intersections if it satisfies the
following property: for any finite subset α = {a0, . . . , an} ⊂ A such that Uα 6= ∅ there exists an element
a ∈ A such that Uα = Ua.

Lemma 5.6 Given any differentiably good open covering U = {Ua}a∈A of M , there exists a differen-
tiably good open covering Ucl of M which is closed under finite intersections, and such that there is a
weak equivalence ČU ∼

−→ ČUcl in H
p/i ℓ
∞ over M .

Proof. Let U = {Ua}a∈A be a differentiably good open covering of M . As before, given a finite subset
α = {a0, . . . , an} ⊂ A, we set Uα :=

⋂n
i=0 Uai . Let

Ucl := {Uα |α ∈ sA, Uα 6= ∅}

be the open covering of M consisting of all non-empty finite intersections of the patches of the covering
U. It is indexed over sA, and it is differentiably good if U is so. (Any finite intersection of elements of
Ucl can be written as a finite intersection of elements of U.) The canonical inclusion U →֒ Ucl induces
a commutative triangle

ČU ČUcl

M

∼ ∼

in H∞. The diagonal arrows are weak equivalences in the Čech model structures Hp/i ℓ
∞ by Lemma 5.2.

Therefore, it follows that the horizontal morphism is a Čech weak equivalence as well.

Let A be a set, and let A[•] denote the simplicial set with (A[•])n = An+1, and whose i-th face
map forgets the i-th entry of a tuple. In other words, A[•] is the Čech nerve of the collapse map
A→ ∗ in Set. Let Ex: Set∆ → Set∆ be the right adjoint to the simplicial subdivision functor (for more
background, see Appendix C and [Cis19]). There exists a morphism of simplicial sets,

σA : A
[•] −→ ExN(sA) ,

which can be described as follows: By adjointness and [Cis19, Lemma 3.1.25], we have
(
ExN(sA)

)
n
∼= Set∆

(
Sd∆n, N(sA)

)
(5.7)

∼= Set∆
(
N(s<[n]), N(sA)

)

∼= PoSet
(
s<[n], sA

)
,

where PoSet is the category of partially ordered sets, and where in the last step we have used that
the nerve functor N is fully faithful. Given an n-simplex (a0, . . . , an) ∈ A

[n] = An+1, we thus need
to describe a map of partially ordered sets from s<[n] to sA. Recall that the elements of s<[n] are
the totally ordered finite subsets of the partially ordered set [n]. For any 0 ≤ k ≤ n and any element
{i0, . . . , ik} ∈ s<[n], we set

σA(a0, . . . , an)
(
{i0, . . . , ik}

)
:= {ai0 , . . . , aik} .

Further, there exists a morphism of simplicial sets

̺A : Ex ◦N(sA) −→ (sA)[•] ,
(
α : s<[n]→ sA

)
7−→

(
α({0}), . . . , α({n})

)
.
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The n-simplices of (sA)[•] are nothing but (n+1)-tuples of finite subsets of A. For (a0, . . . , an) ∈ A
[n],

we have
̺A ◦ σA(a0, . . . , an) =

(
{a0}, . . . , {an}

)
∈ (sA)[n] . (5.8)

Let U = {Ua}a∈A be an open covering of a manifold M . Consider the morphism

ψ : ČU −→ BH∞
Ex (∗, sAop, U (−))

induced by σA; on simplicial level n it reads as

ψn :
∐

a0,...,an∈A

Ua0...an −→
∐

α∈ExN(sA)

Uα({0,...,n}) ,

and it maps the component labelled by a0, . . . , an ∈ A to the component labelled by σA(a0, . . . , an)

using the identity on Ua0...an . Further, consider the morphism

φ : BH∞
Ex (∗, sAop, U (−)) −→ ČUcl

defined as follows. The morphism φ maps the component labelled by α ∈ (ExN(sA))n to the compo-
nent labelled by ̺A(α) = (α({0}), . . . , α({n})) using the canonical inclusion

Uα{0,...,n} →֒ U⋃n
i=0 α({i})

.

Proposition 5.9 Let U = {Ua}a∈A be a differentiably good open covering of a manifold M . Then, the
morphism

φ : BH∞
Ex (∗, sAop, U (−)) −→ ČUcl

induced by ̺A is a trivial fibration in H
p
∞. Further, the canonical inclusion ČU →֒ ČUcl factors as

ČU
ψ
−→ BH∞

Ex (∗, sAop, U (−))
φ
−→ ČUcl

in the slice category (H∞)/M . In particular, the morphism ψ is a weak equivalence in H
p/i ℓ
∞ .

Proof. The second part of the claim is straightforward from (5.8); we thus have to prove that φ is a
projective trivial fibration. To that end, we check that φ has the right lifting property with respect
to the morphisms Yc ⊗ ∂∆

n → Yc ⊗ ∆n for c ∈ Cart and n ∈ N0. These morphisms form a set of
generating cofibrations for the projective model structure H

p
∞ (see e.g. [Bar10, Proof of Prop. 4.52]).

For any morphism p : Y → X of simplicial presheaves, there is a bijection between solutions to the
lifting problems

Yc ⊗ ∂∆
n Y

Yc ⊗∆n X

p and

∂∆n Y (c)

∆n X(c)

p|c

in H∞ and in Set∆, respectively.

In the case n = 0, the right-hand side amounts to a commutative diagram

∅ BH∞
Ex (∗, sAop, U (−))(c)

∆0 ČUcl(c)

φ|c
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in Set∆. Since c is connected, a vertex in ČUcl(c) consists of an element α ∈ sA and a smooth map
c→ Uα, which is precisely the same as the data for a vertex of BH∞

Ex (∗, sAop, U (−))(c). In other words,
the map φ|c is a bijection on vertices, for every c ∈ Cart.

For n = 1, we need to consider diagrams in Set∆ of the form

∂∆1 BH∞
Ex (∗, sAop, U (−))(c)

∆1 ČUcl(c)

(β,g)

φ|c

(α,f)

A 1-simplex in ČUcl(c) is a pair (α0, α1) ∈ (sA)2 (i.e. a pair of finite subsets of A), together with a
smooth map f : c → Uα0 ∩ Uα1 = Uα0∪α1 . The top morphism corresponds to elements βi ∈ sA and
smooth maps gi : c → Uβi for i = 0, 1. The commutativity of the diagram is precisely the condition
that βi = αi and that we have commutative diagrams

c Uα0∪α1

Uαi

f

gi

of smooth maps, for i = 0, 1. Thus, there exists a lift in the diagram, provided by the 1-simplex

(α0 →֒ α0 ∪ α1 ←֓ α1, f : c→ Uα0∪α1) ∈ BH∞
Ex (∗, sAop, U (−))1(c) .

For n > 1, we need to consider commutative diagrams

∂∆n BH∞
Ex (∗, sAop, U (−))(c)

∆n ČUcl(c)

(β,g)

φ|c

(α,f)

(5.10)

An n-simplex in ČUcl(c) is an (n+1)-tuple (α0, . . . , αn) ∈ (sA)n+1, together with a smooth map
f : c → U⋃n

i=0 αi
. The top morphism is equivalently the following data: we have (n−1)-simplices

βj ∈ (ExN(sA))n−1 and smooth maps gj : c → Uβj({0,...,n−1}). Via (5.7) we can rephrase βj as a
morphism of posets βj : s<[n − 1] → sA. For notational purposes, we use the canonical identification
of the poset [n − 1] with the poset {0, . . . , ĵ, . . . , n}, where the hat means that we are omitting the
respective index. Then, we can write the smooth maps gj as

gj : c −→ Uβj({0,...,ĵ,...,n}) = Uβj(dj{0,...,n}) .

Here, dj is the j-th face map in the simplicial set Ns<[n]. The fact that these (n−1)-simplices
assemble into a map from ∂∆n amounts to {βj}j=0,...,n forming a map ∂∆n → ExN(sA) and to the
commutativity of the diagrams

Uβj(dj{0,...,n}) Uβj(didj{0,...,n})

c

Uβi(di{0,...,n}) Uβi(dj−1di{0,...,n})

gj

gi

∀ 0 ≤ i < j ≤ n .
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This implies that each map gi factors through a unique map ĝ : c→ U⋃n
j=0 βj [n−1] ⊂ Uβi[n−1].

The commutativity of diagram (5.10) means that

βj{i} =

{
αi , i < j ,

αi+1 , i ≥ j

and that the map f : c→ U⋃n
i=0 αi

factors through the map

ĝ : c→ U⋃n
j=0 βj(dj{0,...,n})

⊂ U⋃n
i=0 αi

.

Consequently, there exists an n-simplex β̂ ∈ (ExN(sA))n, with

β̂({0, . . . , n}) =
n⋃

j=0

βj(dj{0, . . . , n})

and whose boundary is β. The pair (β̂, ĝ) then provides a lift in diagram (5.10).

Corollary 5.11 Let U = {Ua}a∈A be a differentiably good open covering of a manifold M . The
canonical morphism

hocolim
sA

H∞(U (−)) = BH∞(∗, sAop, U (−)) −→M

is a weak equivalence in H
p/i ℓ
∞ .

Proof. This is a combination of Lemma 5.2, Proposition 5.3, and Proposition 5.9.

Proof of Theorem 5.1. Choose a differentiably good open covering U = {Ua}a∈A of M and denote
by πU : B

H∞(∗, sAop, U (−)) −→ M the canonical Čech weak equivalence from Corollary 5.11. By
Propositions 2.5 and 2.6, this is a weak equivalence in HiI

∞. Since each of the functors |−| : Set∆ →
∆Top, Se : H∞ → Set∆, and Re : H∞ → ∆Top is left adjoint and simplicial, each of them preserves
two-sided bar constructions. Therefore, applying |−| ◦ Se to the morphism πU, we obtain a morphism

|SeπU| : B
∆Top

(
∗, sAop, |SeU (−)|

)
−→ |SeM | ,

which is a weak equivalence since both |−| and Se are homotopical. On the other hand, applying the
functor Re to πU yields a morphism

Re(πU) : B
∆Top

(
∗, sAop, ReU (−)

)
−→ ReM .

Observing that the functor U (−) : sA
op → H∞ factors through the category of manifolds, we can use

Proposition 2.22 to replace Re by the functor D from Definition 2.20; we can thus equivalently (up to
canonical isomorphism) write Re(πU) as a morphism

Re(πU) : B
∆Top

(
∗, sAop,DU (−)

)
−→ DM .

By Lemma 4.4, we obtain a diagram

B∆Top
(
∗, sAop, |SeU (−)|

)
B∆Top

(
∗, sAop,DU (−)

)

|SeM | DM

B∆Top(∗,sAop,ψ)

|SeπU| ∼ Re(πU)

ψM

(5.12)
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This diagram commutes by the naturality of ψ.

Both functors |SeU (−)| and DU (−) take values in cofibrant topological spaces. This has two impli-
cations: first, by Lemma 4.5 and by the homotopical properties of the bar construction [Rie14, Sec. 5]
the top morphism in diagram (5.12) is a weak equivalence. Second, both bar constructions model
the homotopy colimits in ∆Top of the diagrams |SeU (−)| : sA

op → ∆Top and D: sAop → ∆Top,
respectively.

We now aim to show that the right-hand vertical map is a weak equivalence. To that end, we
consider the diagram DU (−) : sA

op → ∆Top. For a topological space T , let O(T ) denote its partially
ordered set of open subsets. Then, we can write DU (−) as a diagram DU (−) : sA

op → O(DM). For
x ∈ DM , let (sAop)x ⊂ sAop denote the full subcategory of sAop on those objects α ∈ sA satisfying
that x ∈ Uα ⊂M . Since U is an open covering of M , the category (sAop)x is non-empty and filtered,
for each x ∈ M . We can therefore apply Lurie’s Seifert-van Kampen Theorem [Lur17, Thm. A.3.1]
(which, in this particular incarnation is often called the Nerve Theorem): the map

hocolimSet∆
(
sAop

DU(−)
−−−−→ ∆Top

Sing
−−→ Set∆

)
−→ SingDM

is a weak equivalence of simplicial sets. Applying the realisation functor and using that the evaluation
morphism |−| ◦ Sing ∼

−→ 1∆Top is a natural weak equivalence (every object in ∆Top is fibrant, and
every object in Set∆ is cofibrant), we obtain a commutative diagram

hocolim∆Top
(
sAop

DU (−)
−−−−→ ∆Top

|−|◦Sing
−−−−−→ ∆Top

)
|SingDM |

hocolim∆Top
(
sAop

DU (−)
−−−−→ ∆Top

)
DM

∼

∼ ∼

It follows that the morphism Re(πU) : hocolim
∆Top(sAop

DU (−)
−−−−→ ∆Top) −→ DM is a weak equivalence

of topological spaces. Thus, in the commutative diagram (5.12), the vertical morphisms and the top
morphism are weak equivalences of topological spaces. It follows that the bottom morphism ψM is a
weak equivalence as well.

6 Local fibrant replacement, concordance, and mapping spaces

In this section, we present a fibrant replacement functor in the model structures Hp/i I
∞ . Its construction

is motivated by the concordance sheaf construction from [BEBdBP]. This functor allows us to compute
mapping spaces in H

p/i I
∞ in Theorem 6.6. We start by presenting the fibrant replacement functor:

Lemma 6.1 Suppose that F0, F1 ∈ H∞ and that h : F0 × R → F1 is a smooth homotopy between
morphisms f, g : F0 → F1. Then, for any G ∈ H∞, there is a smooth homotopy h̃ : GF1 × R → GF0

from Gf to Gg : GF1 → GF0 .

Proof. Applying the exponential functor G(−) to the morphism h, we obtain a morphism

Gh ∈ H∞(GF1 , GF0×R) ∼= H∞(GF1 , (GF0)R) .

Using the internal-hom adjunction of H∞ then yields a morphism h̃ = (Gh)⊣ ∈ H∞(GF1 ×R, GF0) as
desired.
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We consider the following construction: let ∆k
e ∈ H∞ denote the simplicial presheaf represented

by the extended affine simplex ∆k
e ∈ Cart. This provides a functor

∆e : ∆→ H∞ , [k] 7−→ ∆k
e = Y∆k

e
.

Given an object F ∈ H∞, we can compose this functor by the functor F (−) : H∞ → H∞, obtaining
an object F∆e ∈ Cat(∆op,H∞). Equivalently, we can view this as a bisimplicial presheaf

F∆e : Cartop −→ sSet∆ , c 7−→ F (∆e × c) ,

which we can now compose by the diagonal functor δ∗ : sSet∆ → Set∆ to obtain a new simplicial
presheaf on Cart. Putting everything together, this defines a functor

δ∗ ◦ (−)∆e : H∞ → H∞ , F 7−→ δ∗ ◦ F∆e .

The collapse morphisms ∆k
e → ∗ induce a natural transformation ∆e → ∗ of functors ∆ → H∞ (this

even consists of I-local equivalences by Proposition 2.7). From this we obtain a natural transformation

γ : 1H∞ −→ δ∗ ◦ (−)∆e .

Now, let Rp/i : H∞ → H∞ be a fibrant replacement functor for the projective (resp. injective) model
structure, with natural objectwise weak equivalence rp/i : 1H∞

∼
−→ Rp/i. (Observe, in particular, that a

fibrant replacement functor Rp for the projective model structure can be obtained by postcomposition
with a fibrant replacement functor in Set∆, i.e. we can use Rp(F ) = RSet∆ ◦F for F ∈ H∞. An explicit
model for an injective fibrant replacement functor is given in Appendix A.) We define functors

Ccp/i : H∞ → H∞ , F 7−→ Rp/i
(
δ∗ ◦ F∆e

)
,

for the projective and for the injective model structure, respectively. Further, we define the natural
transformation

cc
p/i
|F : F

γ|F
−−→ δ∗ ◦ F∆e

rp/i
−−→
∼

Ccp/iF .

Proposition 6.2 The functors Ccp/i, together with the natural morphisms ccp/i provide a functorial
fibrant replacement in H

p/i I
∞ .

Proof. First, we show that Ccp/iF is indeed fibrant in the I-local model structure H
p/i I
∞ , for every

F ∈ H∞. By construction, Ccp/iF is a fibrant object in H
p/i
∞ . It thus remains to show that it is

R-local. Given any c ∈ Cart, we have
(
δ∗ ◦ F∆e

)
(c) = δ∗

(
F (c×∆e)

)
= δ∗

(
F Yc(∆e)

)
= Se(F

Yc) .

By Lemma 6.1, the smooth homotopy equivalence Yc → ∗ induces a smooth homotopy equivalence
F → F Yc , which is a weak equivalence in H

p/i I
∞ by Corollary 3.16. Since rp/i is a natural weak

equivalence of functors valued in H
p/i
∞ , its component

δ∗ ◦ F∆e
rp/i
−−→
∼

Rp/i
(
δ∗ ◦ F∆e

)

is an objectwise weak equivalence. Consequently, for every c ∈ Cart, we have a commutative square
(
δ∗ ◦ F∆e

)
(c) Rp/i

(
δ∗ ◦ F∆e

)
(c)

(
δ∗ ◦ F∆e

)
(∗) Rp/i

(
δ∗ ◦ F∆e

)
(∗)

rp/i

∼

rp/i
∼

∼
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whose vertical morphisms are induced from the collapse morphism c → ∗. It follows that Ccp/iF is
R-local and hence a fibrant object in H

p/i I
∞ .

Finally, we need to show that the morphism γ|F : F −→ δ∗ ◦ F∆e , induced by the collapse ∆e → ∗,
is a weak equivalence in H

p/i I
∞ . Since the functor Se : H

p/i I
∞ → Set∆ preserves as well as reflects weak

equivalences, that is equivalent to showing that the induced morphism

Se(γ|F ) : SeF −→ Se
(
δ∗ ◦ F∆e

)

is a weak equivalence of simplicial sets. More explicitly, Se(γ|F ) is the morphism

δ̃∗
(
F (∆̃e)

)
−→ δ̃∗

(
δ∗F (∆̃e ×∆e)

)

induced by collapsing the extended simplices ∆e without the tilde. Note that we have only added the
tilde in order to keep track of which diagonal functor refers to which copy of ∆e. We have canonical
isomorphisms

Se
(
δ∗ ◦ F∆e

)
∼= δ̃∗

(
δ∗F (∆̃e ×∆e)

)
∼= δ∗

(
(δ̃∗ ◦ F ∆̃e)(∆e)

)

and we know from the first part of this proof that the morphism

δ̃∗
(
F (∆̃e)

)
= (δ̃∗ ◦ F ∆̃e)(∗) −→ (δ̃∗ ◦ F ∆̃e)(∆k

e)

is a weak equivalence, for every k ∈ N0. This induces a (levelwise) weak equivalence of bisimplicial
sets

∆0
⊠ δ̃∗

(
F (∆̃e)

) ∼
−→ (δ̃∗ ◦ F ∆̃e)(∆e) ,

which under δ∗ maps to the morphism Se(γ|F ). Since the diagonal functor δ∗ : sSet∆ → Set∆ is
homotopical, we obtain that Se(γ|F ), and thus also γ|F , is indeed a weak equivalence.

Corollary 6.3 Mapping spaces in H
p/i I
∞ can be computed (up to isomorphism in hSet∆) as the sim-

plicially enriched hom spaces

MapHiI
∞
(F,G) ≃ H∞

(
F,Ri(δ∗ ◦G∆e)

)
, (6.4)

Map
H

pI
∞
(F,G) ≃ H∞

(
QpF,RSet∆ ◦ δ∗ ◦G∆e

)
,

where Qp is a cofibrant replacement functor for the projective model structure H
p
∞.

Definition 6.5 Given an object F ∈ H∞, we call Ccp/iF its (projective/injective) derived concordance
sheaf. For G ∈ H∞ we refer to the spaces in (6.4) as the spaces of derived concordances of morphisms
from F to G.

We can apply these insights to describe the mapping spaces in the model categories H
p/i I
∞ . In

particular, given any G ∈ H∞, part (3) of the following theorem shows that the derived sections of the
derived concordance sheaf of G (in the sense of Definition 6.5) on manifolds are represented by maps
from the space underlying M to the smooth singular complex of G.

Theorem 6.6 There are natural isomorphisms in hSet∆ as follows:

(1) For F,G ∈ H∞, we have

MapSet∆(SeF, SeG)
∼= Map

H
p/i I
∞

(F,G) .
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(2) For F,G ∈ H∞, we have

Map∆Top(|SeF |, |SeG|)
∼= Map

H
p/i I
∞

(F,G) .

(3) For any manifold M and G ∈ H∞, we have

Map∆Top(M, |SeG|) ∼= Map
H

p/i I
∞

(M,G) .

Proof. For claim (1), we consider the injective case first. The projective case then follows immediately
from Corollary A.10. Using that every object in HiI

∞ is cofibrant, we have the following isomorphisms
in hSet∆:

MapSet∆(SeF, SeG)
∼= Set∆(SeF,R

Set∆SeG)

∼= H∞

(
F,ReR

Set∆Se(G)
)

∼= H∞

(
F,ReR

Set∆SeCc
i(G)

)

∼= H∞

(
F,Cci(G)

)

∼= MapHiI
∞
(F,G) .

The first isomorphism is merely the fact that Set∆ is a simplicial model category in which every object
is cofibrant. In the second isomorphism, we use the fact that Se ⊣ Re is a simplicial adjunction. To see
the third isomorphism, we use the weak equivalence cci|G : G

∼
−→ Cci(G) from Proposition 6.2. Since

both Se and RSet∆ are homotopical functors, and since Re preserves fibrant objects, the morphism
ReR

Set∆Se(cc
i
|G) is a weak equivalence between fibrant objects in HiI

∞, which is thus preserved by
H∞(F,−). The fourth isomorphism stems from the fact that Se ⊣ Re is a Quillen equivalence, so
that the canonical natural transformation 1H∞ −→ ReR

Set∆Se is a weak equivalence in HiI
∞ on every

cofibrant object—that is, it is a weak equivalence on every object, since all objects in HiI
∞ are cofibrant.

Further, its component at the object Cci(G) is a weak equivalence between fibrant objects in HiI
∞, which

is again preserved by H∞(F,−). The final isomorphism directly follows from the insight that Cci is a
fibrant replacement functor for HiI

∞ (Proposition 6.2).

Claim (2) then follows from the fact that every object in ∆Top is fibrant and that every object of
Set∆ is cofibrant: if K,L ∈ Set∆, then there are canonical isomorphisms in hSet∆

Map∆Top

(
|K|, |L|

)
∼= ∆Top

(
|K|, |L|

)

∼= Set∆
(
K,Sing |L|

)

∼= Set∆
(
K,Sing |RSet∆(L)|

)

∼= Set∆
(
K,Sing |RSet∆(L)|

)

∼= Set∆
(
K,RSet∆(L)

)

∼= MapSet∆(K,L) .

Claim (3) now follows from combining part (2) with Theorem 5.1.

Remark 6.7 Part (3) of Theorem 6.6 is related to recent results by Berwick-Evans, Boavida de Brito,
and Pavlov from [BEBdBP]: in that paper, the authors work with the category H̃∞ of simplicial
presheaves on Mfd. Given G̃ ∈ H̃∞, they consider the concordance sheaf

BG̃ = δ∗G̃∆e , (6.8)
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where the exponential is taken in H̃∞. The inclusion functor ι : Cart →֒Mfd induces a homotopy right
Kan extension hoRan′ι : H∞ → H̃∞ (see Appendix B for details). Explicitly, working with projective
model structures, we have

hoRanι(F )(M) ∼= H∞(Q′M,F )

for any M ∈ Mfd, where Q′ : Hp
∞ → H

p
∞ is the cofibrant replacement functor introduced in Ap-

pendix A. The functor hoRan′ι : H
pℓ
∞ → H̃

pℓ
∞ is a right Quillen functor, where on the target side we con-

sider the Čech localisation with respect to open coverings—this is a consequence of [Bunb, Prop. 3.16,
Thm. 3.18]. It provides a concrete way of comparing sheaves on Cart to sheaves on Mfd; the functor

hoRan′ι : H
pℓ
∞ → H̃pℓ

∞

is a right Quillen equivalence by Theorem B.8.

We can now compare the derived concordance sheaves from Definition 6.5 to the concordance sheaf
construction (6.8) from [BEBdBP]: let F ∈ H∞ be any simplicial presheaf on Cart. On the one hand,
we have

hoRan′ι(Cc
pF )(M) = H∞(Q′M,CcpF ) ,

and on the other hand, we have
(
BhoRan′ι(F )

)
(M) = δ∗

(
H∞(Q′(M ×∆e), F )

)
.

Given that hoRan′ι(F ) is a sheaf on Mfd, it now follows from [BEBdBP, Thm. 1.1, Thm. 1.2] that
BhoRan′ι(F ) is a sheaf on Mfd as well. Then, the results in Appendix B imply that hoRan′ι(Cc

pF )

and BhoRan′ι(F ) are isomorphic in hH̃pℓ
∞ if and only if their images under the restriction functor

ι∗ : H̃pℓ
∞ → H

pℓ
∞ are isomorphic in hHpℓ

∞.

If M = c is a cartesian space, we readily obtain a natural weak equivalence

hoRan′ι(Cc
pF )(c) = H∞(Q′c,CcpF )

∼
←− Ccp(F )(c) ,

and we further obtain natural weak equivalences
(
BhoRan′ι(F )

)
(M) = δ∗

(
H∞(Q′(c×∆e), F )

)

∼
←− δ∗

(
H∞(c×∆e, F )

)

∼= δ∗F (c×∆e)
∼
−→ Ccp(F )(c) .

The first weak equivalence uses that ∆k
e is a cartesian space, for each k ∈ N0, so that c × ∆k

e is
representable in H∞, and the last morphism arises from postcomposing with a fibrant replacement
functor in Set∆. This establishes a natural zig-zag of weak equivalences between hoRan′ι(Cc

pF ) and
BhoRan′ι(F ). Note that the results [BEBdBP, Thm. 1.1, Thm. 1.2] enter crucially in the construction
of this zig-zag because we use the fact that BhoRan′ι(F ) is a sheaf on Mfd. ⊳

Remark 6.9 We outline an alternative proof of Theorem 6.6, based on Proposition 6.2 and Theo-
rem 2.17 (which we recall goes back to [Dugb]). Let F,G ∈ H∞, and let Q : Hp

∞ → H
p
∞ denote a

cofibrant replacement functor. In the homotopy category hSet∆ of spaces, we have natural isomor-
phisms

Map
H

pI
∞
(F,G) ∼= H∞(QF,CcpG)

∼= H∞(QF, c̃RSet∆SeG)
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∼= Set∆(colim
Cartop

QF,RSet∆SeG)

∼= Set∆(hocolim
Cartop

F,RSet∆SeG)

∼= Set∆(SeF,R
Set∆SeG)

∼= MapSet∆(SeF, SeG) .

In the second isomorphism, we have used that CcpG is locally constant and that CcpG(∗) = RSet∆◦SeG.
The third isomorphism arises from the Quillen adjunction colim : Hp

∞ ⇄ Set∆ : c̃, and the fourth
isomorphism stems from fact that colim◦Qmodels the homotopy colimit. Finally, the fifth isomorphism
arises from our observation at the end of Section 4 that SeF is a model for the homotopy colimit of
the diagram F : Cartop → Set∆. Parts (2) and (3) of Theorem 6.6 then follow as in our proof above. ⊳

We can now give a direct proof of the relation between model categories from Remark 3.17; that
is, we identify the homotopy theory induced on H∞ by the smooth singular complex functor Se:

Theorem 6.10 Let WSet∆ denote the class of weak equivalences in Set∆, and let S−1
e (WSet∆) denote the

class of morphisms in H∞ whose image under Se is in WSet∆. There is an identity of model categories

Hp/i I
∞ = LS−1

e (WSet∆
)H

p/i
∞ .

Proof. We set
Mp/i := LS−1

e (WSet∆
)H

p/i
∞ .

The model categories H
p/i I
∞ and Mp/i have the same cofibrations, since they are left Bousfield locali-

sations of the same model category. (Here we use either the projective or the injective model structure
on both sides.) By Theorem 2.8 it now suffices to show that they have the same fibrant objects.
Corollary 3.15 implies that I ⊂ S−1

e (WSet∆); thus, any fibrant object in Mp/i is also fibrant in H
p/i I
∞ .

To see that any fibrant object of Hp/i I
∞ is also fibrant in Mp/i, consider a fibrant object G ∈ H

p/i I
∞

and a morphism f : F0 → F1 in S−1
e (WSet∆). By Theorem 6.6, we have a commutative diagram

Map
H

p/i I
∞

(F1, G) Map
H

p/i I
∞

(F0, G)

MapSet∆(SeF1, SeG) MapSet∆(SeF0, SeG)

f∗

∼= ∼=

(Sef)∗

in hSet∆. By assumption on f , the morphism Sef is a weak equivalence in Set∆. Hence, it induces a
weak equivalence on mapping spaces; that is, the bottom morphism in the diagram is an isomorphism
in hSet∆. From that, it follows that also the top morphism is an isomorphism in hSet∆, which implies
that G is S−1

e (WSet∆)-local, and therefore fibrant in Mp/i.

A An injective fibrant replacement of simplicial presheaves

From the definition of the projective and the injective model structure on H∞, it follows directly that
there is a Quillen equivalence

H
p
∞ Hi

∞ .⊥
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Both of the functors in this adjunction are the identity on H∞. Here, we will construct a Quillen
equivalence in the opposite direction, i.e.

Q′ : Hi
∞ H

p
∞ : R′ .⊥

We start by defining the functor Q′. Its construction is not specific to simplicial presheaves on Cart,
but it works for simplicial presheaves over any small category. Thus, let C be a small category, let K∞

denote the category of simplicial presheaves on C, and let Y : C→ K∞ denote the Yoneda embedding.
We denote the projective and the injective model structures on K∞ by K

p
∞ and by Ki

∞, respectively.
The conventional two-sided simplicial bar construction provides a functor [Rie14]

B•

(
(−),C,Y

)
: K∞ −→ (K∞)∆

op
, F 7−→ B•(F,C,Y) .

Lemma A.1 The functor B•((−),C,Y) sends injective cofibrations in K∞ to injective cofibrations
in (Kp

∞)∆
op

. That is, if f : F → G is an objectwise cofibration of simplicial presheaves on C, then
Bn(f,C,Y) is a projective cofibration of simplicial presheaves, for each n ∈ N0.

Proof. We have that

Bn(F,C,Y) =
∐

c0,...,cn∈C

F (cn)⊗ C(cn−1, cn)⊗ · · · ⊗ C(c0, c1)⊗ Yc0 .

Observing that Yc ∈ K
p
∞ is cofibrant for every c ∈ C and recalling that K

p
∞ is a simplicial model

category, we see that, in each part of the coproduct, the functor

(−)⊗ C(cn−1, cn)⊗ · · · ⊗ C(c0, c1)⊗ Yc0 : Set∆ → K∞

preserves cofibrations. Since the objects under the coproduct are each cofibrant, these cofibrations
induce a cofibration between the coproducts.

Let I be a small category, V a symmetric monoidal category, and M a model category category
enriched, tensored and cotensored over V (i.e. a model V-category in the terminology of [Bar10]).
Following the notation in [Rie14], we let

(−)⊗
I
(−) : VIop ×MI −→M and {−,−}I : VI ×MI −→M

denote the functor tensor product and the functor hom, respectively. Let ∆/(−) : ∆ → Cat denote the
functor that sends [k] ∈ ∆ to the slice category ∆/[k], and let N denote the nerve functor. We now
define the functor

Q′ : K∞ −→ K∞ , Q′ := N(∆/(−))
op ⊗

∆op
B•

(
(−),C,Y

)
. (A.2)

Lemma A.3 The functor Q′ : Ki
∞ → K

p
∞ preserves cofibrations.

Proof. We view the functor tensor product in the definition of Q′ as

(−) ⊗
∆op

(−) : (Set∆)
∆ × (Kp

∞)∆
op
−→ Kp

∞ .

Further, the functor tensor product is a left Quillen bifunctor when endowing the two source cate-
gories with any of the pairs of model structures (projective, injective), (Reedy, Reedy), or (injective,
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projective) [Rie14, Thms. 11.5.9, 14.3.1]. Further, the functor N(∆/(−))
op : ∆ −→ Set∆ is projectively

cofibrant [Hir03, Prop. 14.8.8]. (Note that it is then also Reedy cofibrant.) Consequently, the functor

N(∆/(−))
op ⊗

∆op
(−) : (Kp

∞)∆
op
−→ Kp

∞

is left Quillen with respect to the injective model structure on (Kp
∞)∆

op
(and hence also with respect

to the Reedy model structure). We can write Q′ as the composition

Ki
∞

(
(Kp

∞)∆
op)

inj
K
p
∞ .

B•((−),C,Y) N(∆/(−))
op⊗∆op (−)

The model category of simplicial diagrams in the middle carries the injective model structure. We have
shown in Lemma A.1 that the first functor preserves cofibrations, and it follows from our arguments
above that also the second functor preserves cofibrations.

Next, we are going to employ the Bousfield-Kan map to show that Q′ can also be seen as a cofibrant
replacement functor on K

p
∞. The Bousfield-Kan map is a morphism

bk : N(∆/(−))
op −→ ∆•

of cosimplicial simplicial sets. We will use the following two statements:

Proposition A.4 [Hir03, Prop. 18.7.2] The Bousfield-Kan map is a Reedy weak equivalence between
Reedy cofibrant cosimplicial simplicial sets.

Proposition A.5 For any F ∈ K∞, the simplicial object in K∞ given as B•(F,C,Y) is Reedy cofibrant.

Proof. This follows directly from [Rie14, Rmk. 5.2.2], applied to the functor Y : C→ K
p
∞.

We now consider the induced natural transformation

bk ⊗
∆op

B•

(
(−),C,Y

)
: Q′ −→ ∆• ⊗

∆op
B•

(
(−),C,Y

)
= B

(
(−),C,Y

)
. (A.6)

By Proposition A.5, the functor

(−) ⊗
∆op

B•

(
F,C,Y

)
:
(
(Set∆)

∆
)
Reedy

−→ Kp
∞

is a left Quillen functor for every F ∈ K. It then follows from Proposition A.4 and the arguments
in the proof of Proposition A.3 that the natural transformation (A.6) is a natural weak equivalence
of functors K∞ → K

p
∞. Finally, we use that the functor B((−),C,Y) agrees with Dugger’s cofibrant

replacement functor Qp for Kp
∞ from [Dug01b]. In particular, it comes with a natural weak equivalence

qp : Qp → 1K∞ . Composing qp with the morphism (A.6), we obtain a natural weak equivalence
q′ : Q′ → 1K∞ . Putting everything together, we have proven

Proposition A.7 The functor Q′ from (A.2), together with the natural weak equivalence q′ provide a
cofibrant replacement functor for K

p
∞. In particular, Q′ preserves objectwise weak equivalences.

Finally, we observe that Q′ has a right adjoint, which is explicitly given by

R′ : K∞ −→ K∞ , R′(G) =
{
N(∆/(−))

op, C•(G,Cop,Y(−))
}

∆
, (A.8)

where Y(−) : Cop → Cat(C, Set∆) denotes the co-Yoneda embedding of C.
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Theorem A.9 The functors Q′ and R′ satisfy the following properties:

(1) The adjunction Q′ ⊣ R′ is a Quillen equivalence

Q′ : Hi
∞ H

p
∞ : R′ .⊥

(2) There is a natural transformation r′ : 1K∞ → R′ such that r′|G : G→ R′G is a weak equivalence in
Ki

∞ for every projectively fibrant G ∈ K∞.

(3) Let RSet∆ be a fibrant replacement functor for simplicial sets. Then, G 7→ R′(RSet∆ ◦G) is a fibrant
replacement functor on Ki

∞.

Proof. Ad (1): Proposition A.7, together with the observation that Q′ is a left adjoint, readily implies
that Q′ is a left Quillen functor. The fact that this is a Quillen equivalence follows from the existence
of the natural weak equivalence q′ : Q′ ∼

−→ 1K∞ . Formally, this implies that the composition of Q′

by the left Quillen equivalence 1K∞ : Kp
∞ → Ki

∞ is weakly equivalent to the identity functor on K∞.
Thus, the statement follows from the two-out-of-three property of Quillen equivalences [Hov99] and
Corollary D.8.

Ad (2): Let
τF,G : K∞(Q′F,G) −→ K∞(F,R′G)

be the natural isomorphism that establishes the adjunction Q′ ⊣ R′. We define r′ : 1K∞ → R′ to be
the image under τ of the natural transformation q′.

Let G ∈ K∞ be a projectively fibrant object. Since every object in Ki
∞ is cofibrant and since

Q′ ⊣ R′ is a Quillen equivalence, a morphism ϕ : Q′F → G is a weak equivalence (in K
p
∞) if and only

if τF,G(ϕ) : F → R′G is a weak equivalence (in Ki
∞).

Now consider the weak equivalence q′|G : Q
′G→ G, for G ∈ K

p
∞ fibrant. This is a weak equivalence

of the form considered above; thus, the morphism r′|G : G→ R′G is a weak equivalence whenever G is
projectively fibrant.

Ad (3): Let RSet∆ be a fibrant replacement functor in Set∆, with associated natural weak equivalence
rSet∆ : 1Set∆

∼
−→ RSet∆ . Let G ∈ K∞ be arbitrary and consider the composition

G RSet∆ ◦G R′(RSet∆ ◦G) .
rSet∆◦1G r′|RSet∆G

The first morphism is an objectwise weak equivalence by definition. Since RSet∆ ◦ G is projectively
fibrant, the second morphism is a weak equivalence as well by part (2).

Corollary A.10 Let F,G be any two objects in K∞. There is a canonical isomorphism between (the
homotopy types of) the mapping spaces of the projective and the injective model structures

MapKp
∞
(F,G) ∼= MapKi

∞
(F,G)

in the homotopy category hSet∆ of spaces.

Proof. Since both K
p
∞ and Ki

∞ are simplicial model categories, we have the following isomorphisms in
hSet∆:

MapKp
∞
(F,G) ∼= K∞(Q′F,RSet∆ ◦G)

∼= K∞(F,R′RSet∆ ◦G)
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∼= MapKi
∞
(F,G) .

The first isomorphism arises from the fact that Kp
∞ is simplicial and that Q′ is a cofibrant replacement

functor in K
p
∞ (Proposition A.7). The second isomorphism is the adjointness Q′ ⊣ R′, and the third

isomorphism stems from the facts that every object in Ki
∞ is cofibrant and that the functor G 7→

R′(RSet∆ ◦G) is a fibrant replacement functor in Ki
∞ (Theorem A.9).

B Sheaves on manifolds and sheaves on cartesian spaces

This appendix is devoted to the comparison of two Čech localisations: on the one hand, we consider the
localisation H

pℓ
∞ of the projective model structure Hp

∞ of simplicial presheaves on cartesian spaces at the
differentiably good open coverings (see Section 2.1). On the other hand, we have the Čech localisation
H̃
pℓ
∞ of the projective model structure H̃

p
∞ of simplicial presheaves on manifolds at the open coverings.

(The same arguments also apply to the localisation of H̃p
∞ at the surjective submersions.)

We will compare these localisations by means of the functors

hoRanι : H∞ −→ H̃∞ , F 7→ H∞

(
Q(−), F

)
,

hoRan′ι : H∞ −→ H̃∞ , F 7→ H∞

(
Q′(−), F

)
,

where ι : Cart →֒ Mfd is the canonical inclusion, and where Q : Hp
∞ → H

p
∞ is Dugger’s cofibrant

replacement functor for the projective model structure on simplicial presheaves (see Appendix A).
Further, Q′ ⊣ R′ is the Quillen equivalence from Theorem A.9. The natural transformation (A.6)
induces a natural transformation η : hoRanι −→ hoRan′ι whose component η|F on every fibrant object
F ∈ H

p
∞ is a projective weak equivalence.

The functor hoRanι : H
p
∞ → H̃

p
∞ is a right Quillen functor with left adjoint Q◦ ι∗, and this Quillen

adjunction descends to a Quillen adjunction on Čech localisations,

Q ◦ ι∗ : H̃pℓ
∞ H

pℓ
∞ : hoRanι ,⊥

which follows from [Bunb, Thm. 3.18]. Analogously, hoRan′ι : H
p
∞ → H̃

p
∞ is a right Quillen functor

(since Q′ is homotopical and valued in projectively cofibrant simplicial presheaves). Further, the
natural transformation η : hoRanι −→ hoRan′ι establishes that hoRan′ι maps local objects in H

pℓ
∞ to

local objects in H̃
pℓ
∞, and hence that we also have a Quillen adjunction

Q′ ◦ ι∗ : H̃pℓ
∞ H

pℓ
∞ : hoRan′ι .⊥

Note that we can also write the right adjoint as

hoRan′ι
∼= ι∗ ◦R

′ ,

with R′ : H∞ → H∞ defined as in (A.8), and where ι∗ is the right Kan extension along ι.

Lemma B.1 The derived counit of the Quillen adjunction Q′ ◦ ι∗ ⊣ hoRan′ι is a projective weak
equivalence on every fibrant F ∈ H

p
∞.
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Proof. Let Q̃ : H̃p
∞ → H̃

p
∞ be a cofibrant replacement functor with associated natural weak equivalence

q̃ : Q̃
∼
−→ 1

H̃∞
. Consider a fibrant object F ∈ H

p
∞ and the diagram

(Q′ ◦ ι∗) ◦ Q̃ ◦ (ι∗ ◦R
′)(F )

(Q′ ◦ ι∗) ◦ (ι∗ ◦R
′)(F ) (Q′ ◦R′)(F ) F

(Q′◦ι∗)q̃|ι∗◦R′(F )

∼=

The left-hand vertical morphism is a weak equivalence in H
p
∞ because q̃|ι∗◦R′(F ) is a projective weak

equivalence and ι∗ : H̃p
∞ → H

p
∞ is homotopical, as is Q′. The left-hand bottom morphism is the counit

of the adjunction ι∗ ⊣ ι∗, which is an isomorphism by the Yoneda Lemma. The right-hand bottom
morphism is a weak equivalence by Theorem A.9 and the fact that every object in Hi

∞ is cofibrant.

It follows that the total derived functor R hoRan′ι : hH
p
∞ → hH̃p

∞ is fully faithful, and hence that
also R hoRan′ι : hH

pℓ
∞ → hH̃pℓ

∞ is fully faithful.

Next, we would like to show that R hoRan′ι is also essentially surjective. We start by recalling
that, for any open covering U = {Ua}a∈A of a manifold M , the induced Čech nerve ČU → M is a
weak equivalence in both H

pℓ
∞ and H̃

pℓ
∞ (this follows directly from [DHI04, Cor. A.3]). If U is even

a differentiably good open covering of M (i.e. each finite intersection of patches is either empty or a
cartesian space), then ČU is levelwise a coproduct of representables in H∞, and hence it is cofibrant
in H

pℓ
∞.

Suppose that G ∈ H̃
pℓ
∞ is fibrant. Given a manifold M with a differentiably good open covering U,

we have weak equivalences

G(M) ∼= H̃∞(M,G)
∼
−→ H̃∞(ČU, G) ∼= H∞(ČU, ι∗G) . (B.2)

In this sense, the value of a sheaf G on manifolds is determined by its values on cartesian spaces.
However, the above weak equivalence is by no means functorial in M , so to make this statement
precise, we need to improve on (B.2).

For M ∈Mfd, let Cov(M) denote the following category: an object of Cov(M) is an open covering
U = {Ua}a∈A of M , and given another open covering V of M there is a unique morphism V → U

precisely if V refines U. Let GCov(M) denote the full subcategory of Cov(M) on the differentiably good
open coverings. Note that Cov(M) is cofiltered since every pair (U,V) of open coverings has a common
refinement U ×M V. Moreover, any open covering of M has a differentiably good refinement [FSS12,
App. A], which implies that GCov(M) is cofiltered and that the canonical inclusion jM : GCov(M) →֒

Cov(M) is final, since for any U ∈ Cov(M) the slice category j/U is cofiltered as well.

Given G ∈ H̃∞, we consider the diagrams in simplicial sets

Cov(M)op −→ Set∆ , U 7−→ H̃∞(ČU, G) and U 7−→ G(M) .

Since Cov(M)op is filtered and Set∆ is combinatorial, the ordinary colimits of these diagrams model
their homotopy colimits [Dug01a, Prop. 7.3], so that we obtain a morphism

G(M) −→ colimSet∆

U∈Cov(M)op

(
H̃∞(ČU, G)

)
≃ hocolimSet∆

U∈Cov(M)op

(
H̃∞(ČU, G)

)
. (B.3)
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(The right-hand side of (B.3) is Grothendieck’s Plus Construction, applied to M and G.) If G ∈ H̃
pℓ
∞

is fibrant, then the morphism in (B.3) is a weak equivalence, for each manifold M ∈ Mfd. Since
jopM : GCov(M)op →֒ Cov(M)op is cofinal, we further obtain a canonical isomorphism

colimSet∆

U∈Cov(M)op

(
H̃∞(ČU, G)

)
∼= colimSet∆

U∈GCov(M)op

(
H̃∞(ČU, G)

)
.

If U ∈ GCov(M), then ČU is levelwise a coproduct of presheaves represented by cartesian spaces.
Hence, there is a further canonical isomorphism

colimSet∆

U∈GCov(M)op

(
H̃∞(ČU, G)

)
∼= colimSet∆

U∈GCov(M)op

(
H∞(ČU, ι∗G)

)
, (B.4)

where ι : Cart →֒Mfd is the canonical inclusion functor. Thus, for any G ∈ H̃∞ and any M ∈Mfd we
obtain a morphism

γG,M : G(M) −→ colimSet∆

U∈GCov(M)op

(
H∞(ČU, ι∗G)

)

which is natural in G and which is a weak equivalence whenever G ∈ H̃
pℓ
∞ is fibrant.

Next we show that γG,M is also natural in M . Let f : M → N be a smooth map. This induces
a functor f∗ : Cov(N) → Cov(M), acting via f∗({Ua}a∈A) = {f−1(Ua)}a∈A. This establishes the
assignment M 7→ Cov(M) as a (strict) functor Cov : Mfdop → Cat. Given an open covering U of
N , the map f induces a canonical morphism f̂ : Č(f∗U) → ČU in H̃∞. This induces a natural
transformation

Cov(N)op Cov(M)op

Set∆

f∗

H̃∞(Č(−),G) H̃∞(Č(−),G)

ϕ

Further, recall that for any composition of functors I
F
−→ J

D
−→ C there is a canonical morphism

colim(D ◦ F )→ colim(D). Thus, we have a canonical morphism

colimSet∆

U∈Cov(N)op

(
H̃∞

(
Č(f∗U), G

))
−→ colimSet∆

U∈Cov(M)op

(
H̃∞(ČU, G)

)
.

Combining this morphism with the natural transformation ϕ yields a morphism

colimSet∆

U∈Cov(N)op

(
H̃∞

(
ČU, G

))
−→ colimSet∆

V∈Cov(M)op

(
H̃∞(ČV, G)

)

in Set∆ which is compatible with composition of smooth maps of manifolds. Finally, we use the
isomorphisms (B.4) to define the top morphism in the diagram

colimSet∆

U∈GCov(N)op

(
H∞

(
ČU, ι∗G

))
colimSet∆

V∈GCov(M)op

(
H∞(ČV, ι∗G)

)

colimSet∆

U∈Cov(N)op

(
H̃∞

(
ČU, G

))
colimSet∆

V∈Cov(M)op

(
H̃∞(ČV, G)

)
∼= ∼=

It follows that the assignment

M 7−→ colimSet∆

V∈GCov(M)op

(
H∞(ČV, ι∗G)

)
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defines a functor Mfdop → Set∆. That is, we obtain a functor

Pl : H̃∞ → H̃∞ , PlG(M) = colimSet∆

V∈GCov(M)op

(
H∞(ČV, ι∗G)

)
, (B.5)

coming with a natural transformation γ : 1
H̃∞
→ Pl which is an objectwise weak equivalence on every

fibrant G ∈ H̃
pℓ
∞. In particular, we have shown:

Proposition B.6 Let G,G′ ∈ H̃
pℓ
∞ be fibrant. A morphism g : G→ G′ is a weak equivalence in H̃

pℓ
∞ if

and only if ι∗g : ι∗G→ ι∗G′ is a weak equivalence in H
pℓ
∞.

Note that for G,G′ ∈ H̃
pℓ
∞ fibrant, a morphism g : G→ G′ is a weak equivalence in H̃

pℓ
∞ precisely if it

is an objectwise equivalence (since both G and G′ are local objects), and analogously ι∗g : ι∗G→ ι∗G′

is a weak equivalence if and only if it is an objectwise equivalence (since ι∗ : H̃pℓ
∞ → H

pℓ
∞ preserves

fibrant objects).

Lemma B.7 The functor R hoRan′ι : hH
pℓ
∞ −→ hH̃pℓ

∞ is essentially surjective.

Proof. Let G ∈ H̃
pℓ
∞ be fibrant. We show that there is a zig-zag of weak equivalences in H̃

pℓ
∞ linking

G to hoRan′ι ◦ι
∗(G). First, since G and hoRan′ι ◦ι

∗(G) are both sheaves on Mfd, there are local weak
equivalences

G
∼
−→ PlG and hoRan′ι ◦ι

∗(G)
∼
−→ Pl

(
hoRan′ι ◦ι

∗(G)
)
,

where Pl: H̃pℓ
∞ → H̃

pℓ
∞ is the functor from (B.5). Further, for c ∈ Cart we have that

ι∗
(
hoRan′ι ◦ι

∗(G)
)
(c) = H

(
Q′(c), ι∗(G)

)
,

so the natural weak equivalence Q′ ∼
−→ 1H∞ induces a projective weak equivalence

ι∗(G)
∼
−→ ι∗

(
hoRan′ι ◦ι

∗(G)
)
.

For any manifold M and any differentiably good open covering U of M , this induces a weak equivalence

H∞(ČU, ι∗G)
∼
−→ H∞

(
ČU, ι∗(hoRan′ι ◦ι

∗(G))
)
.

Since GCov(M)op is filtered, this yields a weak equivalence PlG
∼
−→ Pl(hoRan′ι ◦ι

∗(G)), thus estab-
lishing the desired zig-zag of weak equivalences.

Combining Lemmas B.1 and B.7, we obtain that the total derived functor R hoRan′ι : hH
pℓ
∞ → hH̃pℓ

∞

is an equivalence. Thus, we have shown

Theorem B.8 The adjunction

Q′ ◦ ι∗ : H̃pℓ
∞ H

pℓ
∞ : hoRan′ι⊥

is a Quillen equivalence.

C A modified two-sided bar construction

A very efficient and “unreasonably effective” [Rie14, Sec. 4] tool for the computation of homotopy
colimits in simplicial model categories is given by the two-sided (simplicial) bar construction. We
recommend the book [Rie14] as an introduction and as a reference. Let I be a small category, and
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consider I-shaped diagrams in a simplicial category M. Heuristically, the homotopical meaningfulness
of the bar construction stems from the fact that it introduces coherence data into diagrams D : I→M

by keeping track of composable sequences of morphisms in I. That is, it takes into account all n-
simplices of the nerve NI.

For the purposes of Section 5 of this paper, however, we need a bar construction for diagrams
of simplicial presheaves that builds on cospans in I rather than on ordinary morphisms in I. More
concretely, in Section 5 we consider the category whose objects are the open sets in an open covering of
a manifold and all finite intersections of these open sets. The morphisms in this category are inclusions
of open subsets. In the ordinary bar construction, we obtain a morphism for every inclusion. However,
geometrically, it is often more useful to view an overlap Uab of two elements Ua and Ub of the cover
as a morphism Ua → Ub. Including higher overlaps naturally leads us to considering subdivisions of
simplicial sets and the associated Ex functor (explained in more detail below). This can be seen as a
generalisation of constructions in [DI04, Sec. 4].

The purpose of this appendix is to introduce a modified two-sided (simplicial) bar construction
whose coherence data is encoded not by the nerve NI, but by the simplicial set ExNI. Again heuristi-
cally, since NI and ExNI are weakly equivalent in Set∆, we should expect the modified bar construction
to be equivalent to the original version—we indeed prove this in Proposition C.7.

Let C be a small category, and let K∞ denote the category of simplicial presheaves on C. We denote
by K

p/i
∞ the category K∞ endowed with the projective or the injective model structure, respectively.

Let I be a small category, and let E : I→ K∞ be a diagram. We can equivalently view E as a functor
E : Cop × I→ Set∆. Further, let F : Iop → Set∆ be a functor. Given these data, there is an associated
two-sided bar construction [Rie14]

BK∞(F, I, E) =

∫ n∈∆

∆n ⊗BK∞
n (F, I, E) ,

where the n-th level of the two-sided simplicial bar construction in K∞ reads as

BK∞
n (F, I, E) =

∐

i0,...,in∈I

E(−, i0)× I(i0, i1)× · · · × I(in−1, in)× F (in) . (C.1)

We will refer to the two-sided bar construction as the bar construction, for short. We can use the bar
construction to model the homotopy colimit in K∞ as follows [Rie14, Sec. 5]:

hocolim
I

K∞(E) ≃ BK∞(∗, I, QK∞ ◦E) ,

where K∞ is endowed with some simplicial model structure, and where QK∞ is a cofibrant replacement
functor for that model structure. In particular, if E : I → K∞ is objectwise cofibrant with respect to
that model structure, then we have

hocolim
I

K∞(E) ≃ BK∞
n (∗, I, E) .

We record the following immediate results:

Lemma C.2 Let F ∈ K∞, E : I→ K∞, and view K∞ as a simplicial category.

(1) For any c ∈ C, there is a canonical isomorphism, natural in c,

BK∞(F, I, E)(c) ∼= BSet∆
(
F, I, E(c,−)

)
.
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(2) The bar construction is naturally isomorphic to the composition

(Set∆)
Iop × (K∞)I (K∞)∆

op ∼= (sSet∆)
Cop

K∞ .
BK∞

• (−,I,−) δ∗◦(−)

Let Y(−) : I → Cat(Iop, Set) denote the Yoneda embedding of I, and let Y(−) : Iop → Cat(I, Set)

denote the co-Yoneda embedding of I, i.e. for i ∈ I we have Yi = I(i,−). Recall that there are
canonical natural isomorphisms

SetI(Yi, Z)
∼=
−→ Z(i)

for any i ∈ I and Z ∈ SetI.

Definition C.3 Consider a pair of functors X : Iop → Set and Y : I → Set. We define the following
categories:

(1) The category I/X has as objects the morphisms χ : Yi → X in SetI
op

. A morphism χ0 → χ1 consists
of a morphism f : i0 → i1 such that the following triangle commutes:

Yi0

X

Yi1

Yf

χ0

χ1

(2) The category IY/ has as objects the morphisms ν : Yi → Y in SetI. A morphism ν0 → ν1 consists
of a morphism f : i0 → i1 such that the following triangle commutes:

Yi0

Y

Yi1

ν0

Yf

ν1

(3) We define the category IY //X as the strict pullback of categories

IY //X := IY/ ×
I
I/X .

Example C.4 Let i ∈ I and Y = Yi. Then, the category IYi/ can be described as follows: an object
ν : Yi0 → Yi is equivalent to a morphism ν : i → i0, and a morphism f : ν0 → ν1 is equivalent to a
morphism f : i0 → i1 such that f ◦ ν0 = ν1. In other words, there is an isomorphism of categories

IYi/
∼= Ii/ ,

where the category on the right-hand side is the usual slice category under the object i ∈ I. This also
justifies our notation IY/. ⊳

We obtain the following lemma directly from Definition C.3:

Lemma C.5 Let Cat1 be the strict (1-)category of categories and functors. The constructions in
Definition C.3 give rise to functors

I/(−) : Set
Iop −→ Cat1 , I(−)/ : Set

I −→ Cat1 , and I(−)//(−) : Set
I × SetI

op
−→ Cat1 .
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Now consider again the functors F : I → Set∆ and E : Cop × I → Set∆. We can equivalently view
these as functors

F : ∆
op × I −→ Set and E : ∆

op × Cop × I −→ Set .

Given any [k] ∈ ∆ and c ∈ C, we see from (C.1) and Definition C.3 that there is a canonical isomorphism
of sets (or, more formally, of discrete simplicial sets)

BSet∆
n

(
Fk, I, Ek(c,−)

)
∼= N(IEk(c,−)//Fk

)n ,

which extends to an isomorphism of simplicial sets

BSet∆
•

(
Fk, I, Ek(c,−)

)
∼= N(IEk(c,−)//Fk

) .

Because of the functoriality of I(−)//(−), we even obtain a natural isomorphism

BK∞
•

(
Fk, I, Ek

)
∼= N(IEk//Fk

) : Cop −→ Set∆

of functors Cop → Set∆, i.e. of simplicial presheaves. Letting [k] ∈ ∆ vary, and again using the
functoriality of I(−)//(−), we obtain an isomorphism

BK∞
•

(
F⋆, I, E⋆

)
∼= N(IE⋆//F⋆

) : ∆
op −→ K∞

of simplicial objects in K∞.

We introduce the following auxiliary construction, which is interesting in its own right. Let
Ex: Set∆ → Set∆ denote the right adjoint to the simplicial subdivision functor Sd—recall that Sd

sends ∆n to the nerve of the category of totally ordered subsets of [n]. For instance, Sd∆1 can be
sketched as the cospan {0} → {0, 1} ← {1}. Our main reference on Ex is [Cis19, Sec. 3.1]. The functor
Ex comes with a natural weak equivalence b : 1Set∆

∼
−→ Ex (see, for instance, [Cis19, Prop. 3.1.21]).

Definition C.6 Let F : I → Set∆ and E : Cop × I → Set∆ be functors. Given any [k] ∈ ∆ and c ∈ C,
we set

BSet∆
Ex,•,k

(
F, I, E(c,−)

)
:= Ex ◦N(IEk(c,−)//Fk

) .

By the functoriality of Ex and I(−)//(−), we obtain a functor

BK∞
Ex,•,⋆(F, I, E) := Ex ◦N(IE⋆//F⋆

) : ∆
op × ∆

op −→ SetC
op
.

Finally, we set

BK∞
Ex (F, I, E) :=

∫ n

∆n ⊗BK∞
Ex,n,⋆(F, I, E) ∼=

∫ n

∆n ⊗
(
Ex ◦N(IE⋆//F⋆

)
)
n
.

This defines a functor

BK∞
Ex (−, I,−) : SetI

op
× (K∞)I −→ K∞ .

Proposition C.7 The natural weak equivalence b : 1Set∆
∼
−→ Ex indues a natural transformation

bK∞ : BK∞(−, I,−) −→ BK∞
Ex (−, I,−) ,

all of whose components bK∞
F,E : BK∞(F, I, E)

∼
−→ BK∞

Ex (F, I, E) are objectwise weak equivalences in K∞.
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Proof. The naturality of b : 1Set∆ → Ex readily implies that the morphisms

b|N(IEk(c,−)//Fk
) : N(IEk(c,−)//Fk

) −→ Ex ◦N(IEk(c,−)//Fk
)

are weak equivalences of simplicial sets and that they are natural in [k] ∈ ∆ and c ∈ C, as well as in F
and E. Letting [k] vary, we obtain a morphism

b|N(IE⋆(c,−)//F⋆)
: N(IE⋆(c,−)//F⋆

) −→ Ex ◦N(IE⋆(c,−)//F⋆
)

of bisimplicial sets which is natural in c, and which is a horizontal weak equivalence. We know that
the diagonal δ∗ : sSet∆ → Set∆ is homotopical, i.e. that it sends all vertical weak equivalences of
bisimplicial sets to weak equivalences in Set∆. However, since δ∗(X•,⋆) = δ∗(X⋆,•), it follows that δ∗

also sends horizontal weak equivalences in sSet∆ to weak equivalences in Set∆. Therefore, the natural
isomorphisms

BK∞
Ex (F, I, E)(c) ∼= BSet∆

Ex

(
F, I, E(c,−)

)
∼= δ∗

(
BSet∆

Ex,•,⋆

(
F, I, E(c,−)

))

complete the proof.

Corollary C.8 Let E : I→ K∞ be an I-shaped diagram in K∞. The modified bar construction models
the homotopy colimit:

hocolim
I

K∞(E) ≃ BK∞
Ex (∗, I, QK∞ ◦E) .

If E is pointwise cofibrant in K∞, then we have

hocolim
I

K∞(E) ≃ BK∞
Ex (∗, I, E) .

We conclude this section by considering the case I = C. Let F : Cop → Set∆ be an object in K∞.
We recall Dugger’s cofibrant replacement functor for the projective model structure K

p
∞: it reads as

QpF = BK∞(F,C,Y) .

More explicitly, for c ∈ C, and [n] ∈ ∆ we have

QpF (c)n =
∐

~c∈(NC)n

Yc0(c)× Fn(cn)

∼=
(
N(Cc//Fn

)
)
n
.

Here, ~c = (c0 → · · · → cn) is equivalently a functor [n]→ C (or, equivalently, a morphism ∆n → NC).
Using the modified two-sided bar construction, we define

QpExF := BK∞
Ex (F,C,Y) .

That is, for c ∈ C, and [n] ∈ ∆ we have
(
(QpExF )(c)

)
n
= Ex ◦N(CY(−)(c)//Fn

)n ∼=
(
Ex ◦N(Cc//Fn

)
)
n
.

The map N(Cc//Fn
)n −→ Fn(c), which sends an element of N(Cc//Fn

)n to the unique composition
Yc → Fn, induces a natural augmentation map qpEx : Q

p
Ex → 1K∞ and we obtain a commutative diagram

QpF

F

QpExF

qpF
∼

∼

qpEx,F
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Hence, qpEx : Q
p
Ex

∼
−→ 1K∞ is a natural weak equivalence. Since every level of QpExF is a coproduct of

representables, we infer

Proposition C.9 (QpEx, q
p
Ex) is a cofibrant replacement functor in K

p
∞.

D Comparing adjunctions and detecting Quillen equivalences

Here we recall and collect some basic background on how to detect Quillen equivalences. We first recall
the following well-known fact and definition:

Proposition D.1 Let C and D be categories, and let F : C ⇄ D : G be an adjoint pair. The following
are equivalent:

(1) The counit and unit of the adjunction are isomorphisms.
(2) F is an equivalence.
(3) G is an equivalence.

Proof. It is clear that (1) implies both (2) and (3). We will show that (2) implies (1)—the proof
that (3) implies (1) is analogous. Thus, suppose that F is an equivalence, i.e. suppose that it is fully
faithful and essentially surjective. It follows that the coevaluation morphism co : 1C → GF is a natural
isomorphism. The triangle identity then implies that the component e|Fc : FG(Fc) → F (c) of the
evaluation morphism e : FG→ 1D is an isomorphism for every c ∈ C. Since F is essentially surjective,
it follows from the naturality of e that e is a natural isomorphism as well.

Definition D.2 In any of the equivalent cases of Proposition D.1, the adjunction F ⊣ G is called an
adjoint equivalence.

A similar characterisation exists for Quillen equivalences:

Proposition D.3 [Lur09, A.2.5.1] Let F : C ⇄ D : G be a Quillen adjunction between model cate-
gories. The following are equivalent:

(1) The total left derived functor LF : hC→ hD is an equivalence of categories.
(2) The total right derived functor RG : hD→ hC is an equivalence of categories.
(3) The pair F ⊣ G is a Quillen equivalence.

Let (F,G,ϕ) be an adjunction C ⇄ D, where F : C→ D is the left adjoint, G : D→ C is the right
adjoint, and ϕ : D(F (−),−) −→ C(−, G(−)) is the binatural isomorphism that establishes the adjunc-
tion. A morphism of adjunctions (F,G,ϕ) → (F ′, G′, ϕ′) is a pair (f, g) of natural transformations
f : F → F ′, g : G′ → G, such that, for every c ∈ C and d ∈ D, the diagram

D(F ′c, d) D(Fc, d)

C(c,G′d) C(c,Gd)

f∗
|c

ϕ′
c,d

∼= ϕc,d∼=

(g|d)∗

(D.4)

commutes. As an equation, this amounts to demanding that

ϕc,d(χ ◦ f|c) = g|d ◦ ϕ
′
c,d(χ)

for every morphism χ : F ′c→ d in D.
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Definition D.5 Let C,D be categories. We define the following categories:

(1) Let FunL(C,D) ⊂ Cat(C,D) be the full subcategory on the left adjoint functors.
(2) Let Adj(C,D) be the category whose objects are adjunctions (F,G,ϕ), and whose morphisms are

morphisms (f, g) of adjunctions.
(3) Let FunL,AE(C,D) ⊂ FunL(C,D) be the full subcategory on the left adjoint functors which are

equivalences of categories.
(4) Let AdEq(C,D) ⊂ Adj(C,D) be the full subcategory on the adjoint equivalences, i.e. on those

adjunctions (F,G,ϕ) where both F and G are equivalences.
(5) Suppose both C and D are endowed with model structures. Let FunLQ(C,D) ⊂ FunL(C,D) be the

full subcategory on the left Quillen functors.
(6) Finally, let QAdj(C,D) ⊂ Adj(C,D) be the full subcategory on the Quillen adjunctions.

There are canonical projection functors

π : Adj(C,D) −→ FunL(C,D) ,

πAE : AdEq(C,D) −→ FunL,AE(C,D) ,

πQ : QAdj(C,D) −→ FunLQ(C,D) .

Proposition D.6 The functors π, πQ, and πAE are fibred and cofibred in groupoids, with contractible
fibres. They are equivalences and surjective on objects.

Proof. Consider the functor π : Adj(C,D) −→ FunL(C,D), (F,G,ϕ) 7→ F . This is surjective on
objects. Let F0, F1 ∈ FunL(C,D), and let f : F0 → F1 be a natural transformation. Suppose we are
given lifts (Fi, Gi, ϕi) of Fi to Adj(C,D), for i = 0, 1. Then, for any d ∈ D, we define a morphism
g|d : G1d→ G0d by the Yoneda Lemma and by demanding commutativity of diagram (D.4). Thus, once
the lifts (Fi, Gi, ϕi) are specified, there exists a unique lift of f to a morphism (f, g) : (F0, G0, ϕ0) −→

(F1, G1, ϕ1) of adjunctions. In particular, π is an equivalence of categories. This also shows that
Adj(C,D) is both fibred and cofibred in groupoids over FunL(C,D).

The functors πAE and πQ can be seen as restrictions of π to full subcategories; the same reasoning
applies.

Consequently, given adjunctions (F0, G0, ϕ0) and (F1, G1, ϕ1), specifying a morphism of adjunctions
is equivalent to specifying a natural transformation f : F0 → F1. Recalling that any functor which is
naturally isomorphic to an equivalence is an equivalence itself, and combining this with Proposition D.1,
we obtain

Proposition D.7 Let (F0, G0, ϕ0) and (F1, G1, ϕ1) be two adjunctions C ⇄ D such that there ex-
ists a natural isomorphism f : F0 → F1. Then, (F0, G0, ϕ0) is an adjoint equivalence if and only if
(F1, G1, ϕ1) is so.

Corollary D.8 Let F0, F1 : C → D be left Quillen functors such that there exists a natural weak
equivalence f : LF0 → LF1 as functors hC→ hD. Then, F0 is a Quillen equivalence if and only if F1

is a Quillen equivalence.

Proof. Let (Fi, Gi, ϕi) be lifts of Fi to Quillen adjunctions C ⇄ D. We can apply Proposition D.7
to the induced adjunctions (LFi,RGi,hϕ) on homotopy categories hC ⇄ hD. The claim then follows
from Proposition D.3.
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