
THE FAREY GRAPH IS UNIQUELY DETERMINED

BY ITS CONNECTIVITY

JAN KURKOFKA

Abstract. We show that, up to minor-equivalence, the Farey graph is the

unique minor-minimal graph that is infinitely edge-connected but such that
every two vertices can be finitely separated.

Figure 1. The Farey graph

1. Introduction

The Farey graph, shown in Figure 1 and surveyed in [1,4], plays a role in a number
of mathematical fields ranging from group theory and number theory to geometry
and dynamics [1]. Curiously, graph theory has not been among these until very
recently, when it was shown that the Farey graph plays a central role in graph
theory too: it is one of two infinitely edge-connected graphs that must occur as
a minor in every infinitely edge-connected graph [5]. Infinite edge-connectivity,
however, is only one aspect of the connectivity of the Farey graph, and it contrasts
with a second aspect: the Farey graph does not contain infinitely many independent
paths between any two of its vertices. In this paper we show that the Farey graph
is uniquely determined by these two contrasting aspects of its connectivity: up to
minor-equivalence, the Farey graph is the unique minor-minimal graph that is infi-
nitely edge-connected but such that every two vertices can be finitely separated.
This is the first graph-theoretic characterisation of the Farey graph.

A Π-graph is an infinitely edge-connected graph that does not contain infinitely
many independent paths between any two of its vertices. A Π-graph is typical if
it occurs as a minor in every Π-graph. Note that any two typical Π-graphs are
minors of each other; we call such graphs minor-equivalent. Our main result reads
as follows:

Theorem 1.Up to minor-equivalence, the Farey graph is the unique typical Π-graph.

We shall see that there exist Π-graphs that contain the Farey graph as a minor
but are not minors of the Farey graph (Theorem 3.1).
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2 JAN KURKOFKA

Theorem 1 continues to hold if we require all minors to have finite branch sets;
see Section 3.2 and Theorem 3.2. This is best possible in the sense that one cannot
replace ‘minors with finite branch sets’ with ‘topological minors’ (Theorem 3.3).

This paper is organised as follows. Section 2 formally introduces the Farey graph.
In Section 3 we prove Theorems 3.1–3.3. We outline the overall strategy of the proof
of Theorem 1 in Section 4. We prepare the proof of Theorem 1 in Section 5 and we
prove Theorem 1 in Section 6.

2. Preliminaries

We use the notation of Diestel’s book [2]. A non-trivial path P is an A-path for a
set A of vertices if P has its endvertices but no inner vertex in A. Two u–v paths
are order-compatible if they traverse their common vertices in the same order.

The Farey graph F is the graph on Q∪ {∞} in which two rational numbers a/b
and c/d in lowest terms (allowing also ∞ = (±1)/0) form an edge if and only if
det
(
a c
b d

)
= ±1, cf. [1]. In this paper we do not distinguish between the Farey graph

and the graphs that are isomorphic to it. For our graph-theoretic proofs it will be
more convenient to work with the following purely combinatorial definition of the
Farey graph that is indicated in [1] and [4].

The halved Farey graph F̆0 of order 0 is a K2 with its sole edge coloured blue.
Inductively, the halved Farey graph F̆n+1 of order n+ 1 is the edge-coloured graph
that is obtained from F̆n by adding a new vertex ve for every blue edge e of F̆n,
joining each ve precisely to the endvertices of e by two blue edges, and colouring all
the edges of F̆n ⊆ F̆n+1 black. The halved Farey graph F̆ :=

⋃
n∈N F̆n is the union of

all F̆n without their edge-colourings, and the Farey graph is the union F = G1∪G2

of two copies G1, G2 of the halved Farey graph such that G1 ∩G2 = F̆0.

Lemma 2.1. The halved Farey graph contains the Farey graph as a minor with
finite branch sets.

Proof. If e is a blue edge of F̆1, then the Farey graph is the contraction minor of
F̆ − e whose sole non-trivial branch set is V (F̆0), i.e., (F̆ − e)/V (F̆0) ∼= F . �

3. Atypical Π-graphs and variations of the main result

In this section we provide details on and prove the three Theorems 3.1–3.3 that we
briefly mentioned in the introduction.

3.1. Atypical Π-graphs. Even though every Π-graph contains the Farey graph
as a minor by Theorem 1, the converse is generally false:

Theorem 3.1. There exist Π-graphs that contain the Farey graph as a minor but
are not minors of the Farey graph.

Proof. Let the graph G be obtained from some union of uncountably many disjoint
copies of the Farey graph by selecting one vertex in every copy and identifying all
the selected vertices. Then G is an uncountable Π-graph that contains the Farey
graph as a subgraph. However, G is not a minor of the Farey graph, because every
minor of the Farey graph must be countable. �
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3.2. Variations of the main result. To prove Theorem 1 it suffices to show the
following theorem. A tight minor is a minor with finite branch sets.

Theorem 2. Every Π-graph contains the Farey graph as a tight minor.

Theorem 2 also implies the following variation of Theorem 1 where all minors are
required to have finite branch sets. Two graphs are tightly minor-equivalent if they
are tight minors of each other. A Π-graph is tightly typical if it occurs as a tight
minor in every Π-graph.

Theorem 3.2. Up to tight minor-equivalence, the Farey graph is the unique tightly
typical Π-graph. �

This raises the question whether Theorem 1 continues to hold if we require all
minors to be topological minors. We answer this question in the negative:

Theorem 3.3. There is a Π-graph that contains the Farey graph as a tight minor
but not as a topological minor.

Proof. By a recent result [7] there exists an infinitely edge-connected graph G that
does not contain infinitely many edge-disjoint pairwise order-compatible paths be-
tween any two of its vertices; in particular, G is a Π-graph. By Theorem 2, the
graph G contains the Farey graph as a tight minor. However, G does not contain
a subdivision of the Farey graph because the Farey graph contains infinitely many
edge-disjoint pairwise order-compatible paths between any two of its vertices. �

4. Overall proof strategy

Our aim for the remainder of this paper is to prove Theorem 1. As we discussed
in the previous section, to prove Theorem 1 it suffices to show that every Π-graph
contains the Farey graph as a minor with finite branch sets (Theorem 2). And by
Lemma 2.1 in turn it suffices to find a halved Farey graph minor with finite branch
sets in any given Π-graph. The key idea of the proof is summarised in Theorem 6.1
which states:

Suppose that G is any subdivided Π-graph and that u, v are two distinct branch
vertices of G. Then there exist subgraphs Hu, Hv ⊆ G that satisfy the following
conditions:

(i) Hu[X] = Hv[X] is finite and connected for X := V (Hu) ∩ V (Hv) 6= ∅;
(ii) X avoids u and v;
(iii) both Hu/X and Hv/X are subdivided Π-graphs in which u,X and v,X are

branch vertices, respectively;
(iv) uX is an edge of Hu/X and vX is an edge of Hv/X.

With this theorem at hand, it is straightforward to construct a halved Farey
graph minor with finite branch sets in any given Π-graph G: Consider any edge
uv of G and apply the theorem in G to u and v to obtain subgraphs Hu, Hv and
a non-empty finite connected vertex set X ⊆ V (G). Then the three vertices u, v
and X span a triangle F̆1 in (Hu ∪Hv)/X. And since both Hu/X and Hv/X are
subdivided Π-graphs, we can reapply the theorem in Hu/X to u and X, and in
Hv/X to v and X. By iterating this process, we obtain a halved Farey graph minor
with finite branch sets in the original graph G at the limit, and this will complete
the proof. Therefore, it remains to prove Theorem 6.1 on the one hand, and to
use it to formally construct a halved Farey graph minor on the other hand. In the
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next section, we prepare the proof of Theorem 6.1, and in the section after next we
prove Theorem 6.1 which we then use to prove Theorems 1 and 2.

5. Grain lines

It is possible to prove Theorem 6.1 from first principles. In this paper, however,
I favour a more methodic proof. The advantage of this proof is that it intro-
duces a new tool, an x–y grain line, that allows one to control infinite systems of
edge-disjoint x–y paths even when no two paths in the system are pairwise order-
compatible. In this section we introduce the concept of an x–y grain line, we show
that these exist whenever it matters (Theorem 5.4) and we show two lemmas that
will help us prove Theorem 6.1 using grain lines at the beginning of the next section.

Informally, we may think of an x–y grain line as a pair (L,P) where P is a
sequence of pairwise edge-disjoint x–y paths P0, P1, . . . that need not be pairwise
order-compatible but solve all incompatibilities at their linearly ordered ‘limit’ L.
The limit L will not be a graph-theoretic path but will be a linearly ordered set
of vertices. We remark, however, that it is possible to use the limit L to define a
topological x–y path in a topological extension of any graph containing the grain
line, see [6, §6.3].

Here is the formal definition of an x–y grain-line:

Definition 5.1. An x–y grain line between two distinct vertices x and y is an
ordered pair (L,P) where L = (L,≤L) is a linearly ordered countable set of vertices
with least element x and greatest element y, and P = (Pn)n∈N is a sequence of
pairwise edge-disjoint x–y paths Pn, such that the following three conditions are
satisfied:

(GL1) L =
{
v
∣∣∣ {n ∈ N : v ∈ V (Pn) } is a final segment of N

}
;

(GL2) if a vertex of a path Pn is not contained in L, then it is not a vertex of any
other path Pm (m 6= n);

(GL3) for all n ∈ N, the x–y path Pn and the linearly ordered vertex set L induce
the same linear ordering on the vertex set L<n := L ∩

⋃
k<n V (Pk).

We remark that (GL3) allows Pn and L to induce distinct linear orderings on
the vertex set V (Pn)∩L if the inclusion L<n ⊆ V (Pn)∩L is proper; in particular,
Pn and Pn+1 need not be order-compatible. Allowing this becomes necessary, for
example, if an infinitely edge-connected graph does not contain infinitely many
edge-disjoint pairwise order compatible paths between x and y, see Example 5.3.

Clearly, L =
⋃
n L<n. Note that if (L, (Pn)n∈N) is a grain line, then a vertex v

lies in L if and only if it lies on all paths Pn with n ≥ N for N the first number with
v ∈ PN if and only if it lies on at least two paths Pn, Pm (n 6= m). In particular,

V (Pn) ∩
⋃
k<n

V (Pk) = L<n for all n ∈ N.

We speak of an x–y grain line (L, (Pn)n∈N) in a graph G if
⋃
n∈N Pn ⊆ G (and

hence L ⊆ V (G)). Whenever a grain line is introduced as (L,P), we tacitly assume
P = (Pn)n∈N. In general, however, we also allow sequences P = (Pn)n≥N whose
indexing starts at an arbitrary number N > 0 in which case the definition of a grain
line adapts in the obvious way. We use the interval notation for L as usual, i.e., we
write [`1, `2]L = { ` ∈ L | `1 ≤L ` ≤L `2 } and so on.
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Example 5.2. The blue Hamilton paths Pn ⊆ F̆n are pairwise edge-disjoint and
order-compatible, and hence give rise to an x–y grain line in F̆ for x and y the two
vertices of F̆0. In this case, L = V (F̆ ) is order-isomorphic to Q ∩ [0, 1].

Example 5.3. There exists an infinitely edge-connected graph G that does not
contain infinitely many edge-disjoint pairwise order-compatible paths between any
two of its vertices [7]; in particular, G is a Π-graph. We shall see that the graph G
contains a grain line between any two of its vertices because it is infinitely edge-con-
nected; see Theorem 5.4 below. However, since G does not contain infinitely many
edge-disjoint pairwise order-compatible paths between any two of its vertices, every
grain line (L,P) in G has two paths Pn and Pn+1 that are not order-compatible; in
particular, Pn induces the same linear ordering on L<n ( V (Pn)∩L as L does, but
disagrees with L on V (Pn)∩L = V (Pn)∩V (Pn+1) because L induces the ordering
of Pn+1 on V (Pn) ∩ V (Pn+1) = L<n+1. This is why we do not strengthen (GL3)
to require that Pn and L induce the same linear ordering on V (Pn) ∩ L ⊇ L<n.

Our first result on grain lines shows that they exist whenever it matters:

Theorem 5.4. Let x and y be any two distinct vertices of a graph G. Then there
exists an x–y grain line in G if and only if G contains infinitely many edge-disjoint
x–y paths.

In the proof we employ inverse systems, and for the sake of convenience we
dedicate a paragraph to their definition.

A partially ordered set (I,≤) is said to be directed if for every two i, j ∈ I
there is some k ∈ I with k ≥ i, j. Let (Xi | i ∈ I ) be a family of finite sets
indexed by some directed poset (I,≤). Furthermore, suppose that we are given
a family (ϕji : Xj → Xi )i≤j∈I of mappings which are the identity on Xi in case
of i = j and which are compatible in that ϕki = ϕji ◦ ϕkj for all i ≤ j ≤ k.
Then both families together are said to form an inverse system (of finite sets),
and the maps ϕji are called its bonding maps. We denote such an inverse system
by {Xi, ϕji, I} or {Xi, ϕji} for short if I is clear from context. Its inverse limit
lim←−Xi = lim←− (Xi | i ∈ I ) is the set

lim←−Xi = { (xi)i∈I | ϕji(xj) = xi for all j ≥ i } ⊆
∏
i∈I

Xi.

If every Xi is non-empty, then the inverse limit lim←−Xi is non-empty as well. For
more details on inverse systems and their more general definition for topological
spaces, see [3] or [8].

Proof of Theorem 5.4. Every x–y grain line comes with a system of infinitely many
edge-disjoint x–y paths. For the backward implication let x and y be given, and let
Q be any countably infinite collection of edge-disjoint x–y paths in G. Moreover,
we let X be the collection of all finite subsets of the vertex set of the subgraph⋃
Q ⊆ G, directed by inclusion.
Given X ∈ X we write lin(X) for the finite collection of all linearly ordered

subsets of X. Letting, for all X ⊆ X ′ ∈ X , the map ϕX′,X : lin(X ′)→ lin(X) take
every linearly ordered subset of X ′ to its restriction with respect to X turns the
finite sets lin(X) into an inverse system { lin(X), ϕX′,X , X }.

Every x–y path P ∈ Q naturally induces a linear ordering ≤P on its vertex
set with x <P y, and for every X ∈ X we denote by ≤XP the linear ordering on
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V (P )∩X induced by ≤P . Then for every X ∈ X we define a map ψX : Q → lin(X)
by letting

ψX(P ) := (V (P ) ∩X,≤XP )

for all P ∈ Q, and we put

LX := { ξ ∈ lin(X) | ψ−1X (ξ) ⊆ Q is infinite }

noting that LX ⊆ lin(X) is non-empty by the pigeonhole principle. Since the maps
ψX commute with the bonding maps ϕX′,X as pictured in the diagram below,

Q

lin(X) lin(X ′)

ψX ψX′

ϕX′,X

the restrictions of these bonding maps to the sets LX yield another inverse system,
namely {LX , ϕX′,X � LX′ , X }. And as the finite sets LX are all non-empty, this
inverse system has an element ( (LX ,≤X) | X ∈ X ) in its limit.

Finally, we define an x–y grain line (L,P), as follows. We let L :=
⋃
X∈X LX and

≤L :=
⋃
X∈X ≤X . To obtain P = (Pn)n∈N we choose pairwise edge-disjoint x–y

paths P0, P1, . . . from Q inductively, as follows. Choose an enumeration x0, x1, . . .
of the countable vertex set

⋃
X of

⋃
Q. At step 0, we let X0 := {x0} and choose

P0 ∈ ψ−1X0
(LX0

) arbitrarily (we abbreviate LX = (LX ,≤X)). At step n+ 1, we let
Xn+1 := Xn∪V (Pn)∪{xn+1} and we pick from the infinite preimage ψ−1Xn+1

(LXn+1)
a path Pn+1 other than the previously chosen paths P0, . . . , Pn. It is straightforward
to check that (L,P) is an x–y grain line in G. �

A grain line (L,P) is wild if L is order-isomorphic to Q ∩ [0, 1]. We call a grain
line (L,P) wildly presented if, for every n ∈ N, whenever `1 <L `2 are elements of
L<n ⊆ L then ˚̀

1Pn˚̀
2 has a vertex in (`1, `2)L. The grain line in Example 5.2 is

both wild and wildly presented. Wildly presented grain lines are wild. Conversely,
if a grain line (L,P) is wild, then P = (Pn)n∈N has a subsequence (Pnk

)k∈N such
that (L, (Pnk

)k∈N) is wildly presented.

Lemma 5.5. Every grain line in a subdivided Π-graph is wild; in particular, in a
subdivided Π-graph every grain line can be chosen to be wildly presented.

In the proof we use the following properties of grain lines. Given a grain line
(L,P) we say that a path Pn does (L,P)-grain a set U of vertices if, for all m ≥ n,
we have V (Pm) ∩ U = L ∩ U and the path Pm induces the same linear ordering
on this intersection as L does. If (L,P) is clear from context, we also say that Pn
grains U . Every path Pn grains the union

⋃
k<n V (Pk) by (GL3). And for every

finite vertex set X there is a number n ∈ N such that Pn grains X. We will use
this latter property frequently in the proofs to come.

Proof of Lemma 5.5. Suppose that (L,P) is any grain line in some given subdivided
Π-graph G. It suffices to show that (L,P) is wild. For this, consider any two
elements `1, `2 ∈ L with `1 <L `2. Then `1 and `2 must have infinite degree in G;
in particular, `1 and `2 must be branch vertices of G. Since G is a subdivided
Π-graph, we find a finite vertex set S ⊆ V (G)r {`1, `2} that separates `1 and `2 in
G − `1`2. Then we pick N ∈ N such that PN avoids the edge `1`2 and grains the
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finite vertex set S ∪ {`1, `2}. Now `1PN `2 must meet S in a vertex s, and then PN
graining S ∪ {`1, `2} implies s ∈ L with `1 <L s <L `2 as desired. �

Grain lines can be restricted such that the restriction is again a grain line, and
restricting a grain line preserves wild presentations:

Lemma 5.6. If (L,P) is a grain line with `1 <L `2 and N ∈ N is such that PN
grains {`1, `2}, then ([`1, `2]L, (`1Pn`2)n≥N ) is an `1–`2 grain line that is wildly
presented if (L,P) is.

Proof. First, we show that ([`1, `2]L, (`1Pn`2)n≥N ) is an `1–`2 grain line.
(GL1) We have to show the equality

[`1, `2]L =
{
v
∣∣∣ {n ∈ N≥N : v ∈ V (`1Pn`2) } is a final segment of N≥N

}
.

We start with the backward inclusion. If a vertex v lies on `1Pn`2 for all n in some
final segment of N≥N then it lies in L by (GL2) for (L,P), and in particular it
also lies on `1Pn`2 when Pn does (L,P)-grain {`1, v, `2} so v ∈ [`1, `2]L follows.
Conversely, if v is a vertex in [`1, `2]L and k ≥ N is minimal with v ∈ `1Pk`2, then
Pk+1 does (L,P)-grain {`1, v, `2}. Therefore, v is contained in `1Pn`2 for all n ≥ k,
and hence N≥k witnesses that v is contained in the right hand side of the equation.

(GL2) Consider any vertex v ∈ (
⋃
n≥N `1Pn`2) − [`1, `2]L and let k ≥ N be

minimal such that `1Pk`2 contains v. If v is not contained in L, then Pk is the only
path from P containing v, and hence `1Pk`2 is the only path from (`1Pn`2)n≥N
containing v. Otherwise v is contained in L r [`1, `2]L so, say, `2 <L v. Then, as
Pn with n > k does (L,P)-grain V (Pk), the vertex `2 precedes v on Pn, giving
v /∈ `1Pn`2 as desired.

(GL3) Consider any n ≥ N and write L′<n := [`1, `2]L ∩
⋃n−1
k=N V (`1Pk`2). By

the already shown (GL1) we have L′<n ⊆ V (`1Pn`2), so `1Pn`2 does induce a linear
ordering on L′<n, and it coincides with the linear ordering induced by [`1, `2]L by
(GL3) for (L,P).

Therefore, ([`1, `2]L, (`1Pn`2)n≥N ) is an `1–`2 grain line; now we show that it is
wildly presented if (L,P) is. For this consider any n ≥ N with some two elements
` <L `

′ of L′<n. Then, as (L,P) is wildly presented and L′<n ⊆ L<n, the subpath
˚̀Pn˚̀′ of `1Pn`2 has a vertex in (`, `′)L. �

6. Proof of the main result

In this section, we employ our results on grain lines to prove Theorem 6.1, which
we then use to prove Theorems 1 and 2.

Theorem 6.1. Suppose that G is any subdivided Π-graph and that u, v are two
distinct branch vertices of G. Then there exist subgraphs Hu, Hv ⊆ G that satisfy
the following conditions:

(i) Hu[X] = Hv[X] is finite and connected for X := V (Hu) ∩ V (Hv) 6= ∅;
(ii) X avoids u and v;
(iii) both Hu/X and Hv/X are subdivided Π-graphs in which u,X and v,X are

branch vertices, respectively;
(iv) uX is an edge of Hu/X and vX is an edge of Hv/X.

Proof. Without loss of generality we may assume that uv is not an edge of G. Using
that G is a subdivided Π-graph we find a finite vertex set S ⊆ V (G) r {u, v} that
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separates u and v in G. We write Cu and Cv for the two distinct components of
G−S that contain u and v respectively. Next, we use Theorem 5.4 and Lemma 5.5
to find a wildly presented u–v grain line (L,P) in G. Without loss of generality we
may assume that P0 grains the finite vertex set S. We let su be the first vertex of
the u–v path P0 in S, and we let sv be the last vertex of P0 in S. That is to say
that su and sv are the least and greatest vertex of L in S. Then, for all n ∈ N, the
paths uPnsu and svPnv are contained in G[Cu + su] and G[sv + Cv] respectively.

Next, we let xu and xv be the least and greatest vertex of L in V (P̊0). Moreover,
we let Lu := [u, xu]L and Pu := (uPnxu)n≥1, and we let Lv := [xv, v]L and Pv :=
(xvPnv)n≥1. Then (Lu,Pu) and (Lv,Pv) are wildly presented u–xu and xv–v grain
lines in G by Lemma 5.6. We claim that Hu := P0v̊ ∪

⋃
Pu and Hv := ůP0 ∪

⋃
Pv

are the desired subgraphs.
First, we show that X = V (P̊0) and that X satisfies (i), (ii) and (iv). For this, it

suffices to show that for every n ≥ 1 the paths uPnxu and xvPnv are u–P̊0 and P̊0–v
paths in G[Cu+su] and G[sv+Cv], respectively. The vertex su ∈ L∩S ⊆ L∩V (P̊0)
was a candidate for xu, implying xu ≤L su, and then for all n ≥ 1 the path Pn
graining V (P0) gives uPnxu ⊆ uPnsu ⊆ G[Cu + su] on the one hand and that xu
is the first vertex of Pn in P̊0 on the other hand; for the paths xvPnv we employ
symmetry.

(iii) follows from the facts that (Lu,Pu) and (Lv,Pv) are wildly presented and
that all paths uPnxu and xvPnv (n ≥ 1) are u–P̊0 and P̊0–v paths respectively. �

Now we have almost all we need to prove Theorems 1 and 2. In the proof of
Theorem 2, we will face the construction of a minor with finite branch sets in
countably many steps. The following notation and lemma will help us to keep the
technical side of this construction to the minimum.

Suppose that G and H are two graphs with H a minor of G. Then there are
a vertex set U ⊆ V (G) and a surjection f : U → V (H) such that the preimages
f−1(x) ⊆ U form the branch sets of a model of H in G. A minor-map ϕ : G < H
formally is such a pair (U, f). Given ϕ = (U, f) we address U as V (ϕ) and we write
ϕ = f by abuse of notation. Usually, we will abbreviate ‘minor-map’ as ‘map’.

Lemma 6.2. Let G0, G1, . . . and H0 ⊆ H1 ⊆ · · · be two sequences of graphs
Hn ⊆ Gn with maps ϕn : Gn < Gn+1 such that for every vertex x ∈ Gn+1 the
preimage ϕ−1n (x) is finite if x /∈ Hn and equal to {x} if x ∈ Hn. Then G contains⋃
n∈NHn as a minor with finite branch sets.

Proof. The proof of [5, Lemma 5.12] shows this. �

Proof of Theorem 2. Let G be any Π-graph. We have to find a Farey graph minor
in G with finite branch sets. By Lemma 2.1 it suffices to find a halved Farey graph
minor with finite branch sets in G.

Call a graph a foresighted halved Farey graph of order n ∈ N if it is the edge-
disjoint union of F̆n with subdivided Π-graphs Auv, one for every blue edge uv ∈ F̆n,
such that:

– each Auv meets F̆n precisely in u and v but uv /∈ Auv;
– u and v are branch vertices of Auv;
– every two distinct Ae and Ae′ meet precisely in the intersection e ∩ e′ of

their corresponding edges (viewed as vertex sets).
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To find a halved Farey graph minor with finite branch sets in G, it suffices by
Lemma 6.2 to find a sequence G =: H0, H1, . . . of foresighted halved Farey graphs
of orders 0, 1, . . . with maps ϕn : Hn < Hn+1 such that ϕ−1n (x) is finite for all
x ∈ Hn+1 − F̆n and ϕ−1n (x) = {x} for all x ∈ F̆n.

To get started, pick any edge e of G, and note that G = H0 is a foresighted
halved Farey graph of order 0 with Ae = G − e when we rename e to the edge of
which F̆0 = K2 consists.

At step n+ 1 suppose that we have already constructed Hn ⊇ F̆n and consider
the subdivided Π-graphs Ae that were added to F̆n to form Hn. Theorem 6.1 yields
in each Ae two subgraphs He

u, H
e
v for e = uv that satisfy the following conditions:

(i) He
u[Xe] = He

v [Xe] is finite and connected for Xe := V (He
u) ∩ V (He

v) 6= ∅;
(ii) Xe avoids u and v;
(iii) both He

u/X
e and He

v/X
e are subdivided Π-graphs in which u,Xe and v,Xe

are branch vertices, respectively;
(iv) uXe is an edge of He

u/X
e and vXe is an edge of He

v/X
e.

Then we let Auve := He
u/X

e and Avev := He
v/X

e for every blue edge uv ∈ F̆n,
where we recall that ve is the vertex ve ∈ F̆n+1 − F̆n that arises from uv ∈ F̆n in
the recursive definition of F̆n+1. After renaming the vertex Xe to ve in both Auve
and Avev, we let

Hn+1 := F̆n+1 ∪
⋃
{Af | f ∈ F̆n+1 is a blue edge }

V (ϕn) := V (F̆n) ∪
⋃
{V (He

u) ∪ V (He
v) | e = uv ∈ F̆n is a blue edge }

and we let ϕn : V (ϕn) → V (Hn+1) send w to ve if w ∈ Xe for some blue edge
e ∈ F̆n and ϕn(w) := w otherwise. This completes the proof. �

Proof of Theorem 1. Theorem 2 implies Theorem 1. �
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