COVERING 3-EDGE-COLOURED RANDOM GRAPHS WITH MONOCHROMATIC TREES

YOSHIHARU KOHAYAKAWA, WALNER MENDONÇA, GUILHERME OLIVEIRA MOTA, AND BJARNE SCHÜLKE

Abstract

We investigate the problem of determining how many monochromatic trees are necessary to cover the vertices of an edge-coloured random graph. More precisely, we show that for $p \gg n^{-1 / 6}(\ln n)^{1 / 6}$, in any 3 -edge-colouring of the random graph $G(n, p)$ we can find three monochromatic trees such that their union covers all vertices. This improves, for three colours, a result of Bucić, Korándi and Sudakov.

§1. Introduction

Given a graph G and a positive integer r, let $\operatorname{tc}_{r}(G)$ denote the minimum number k such that in any r-edge-colouring of G, there are k monochromatic trees T_{1}, \ldots, T_{k} such that the union of their vertex sets covers $V(G)$, i.e.,

$$
V(G)=V\left(T_{1}\right) \cup \cdots \cup V\left(T_{k}\right) .
$$

We define $\operatorname{tp}_{r}(G)$ analogously by requiring the union above to be disjoint.
It is easy to see that $\operatorname{tp}_{2}\left(K_{n}\right)=1$ for all $n \geqslant 1$, and Erdős, Gyárfás and Pyber [8] proved that $\operatorname{tp}_{3}\left(K_{n}\right)=2$ for all $n \geqslant 1$, and conjectured that $\operatorname{tp}_{r}\left(K_{n}\right)=r-1$ for every n and r. Haxell and Kohayakawa [10] showed that $\operatorname{tp}_{r}\left(K_{n}\right) \leqslant r$ for all sufficiently large $n \geqslant n_{0}(r)$. We remark that it is easy to see that $\operatorname{tc}_{r}\left(K_{n}\right) \leqslant r$ (just pick any vertex $v \in V\left(K_{n}\right)$ and let T_{i}, for $i \in[r]$, be a maximal monochromatic tree of colour i containing v), but it is not even known whether or not $\operatorname{tc}_{r}\left(K_{n}\right) \leqslant r-1$ for every n and r (as would be implied by the conjecture of Erdős, Gyárfás and Pyber).

Concerning general graphs instead of complete graphs, Gyárfás [9] noted that a wellknown conjecture of Ryser on matchings and transversal sets in hypergraphs is equivalent to the statement that for every graph G and integer $r \geqslant 2$, we have $\operatorname{tc}_{r}(G) \leqslant(r-1) \alpha(G)$.

1991 Mathematics Subject Classification. 05C80 (primary); 05C70 (secondary).
Key words and phrases. Graph partitioning, monochromatic trees, random graphs.
Y. Kohayakawa was partially supported by CNPq (311412/2018-1, 423833/2018-9) and FAPESP (2018/04876-1). G. O. Mota was partially supported by CNPq (304733/2017-2, 428385/2018-4) and FAPESP (2018/04876-1). W. Mendonça was partially supported by CAPES (88882.332408/2010-01). B. Schülke was partially supported by G.I.F. Grant Agreements No. I-1358-304.6/2016. The cooperation of the authors was supported by a joint CAPES/DAAD PROBRAL project (Proj. 430/15, 57350402, 57391197). This study was financed in part by CAPES, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Brasil, Finance Code 001. FAPESP is the São Paulo Research Foundation. CNPq is the National Council for Scientific and Technological Development of Brazil.

In particular, Ryser's conjecture, if true, would imply that $\operatorname{tc}_{r}\left(K_{n}\right) \leqslant r-1$, for every $n \geqslant 1$ and $r \geqslant 2$. Ryser's conjecture was proved in the case $r=3$ by Aharoni [1], but for $r \geqslant 4$ very little is known. For example, Haxell and Scott [11] proved (in the context of Ryser's original conjecture) that there exists $\varepsilon>0$ such that for $r \in\{4,5\}$, we have $\mathrm{tc}_{r}(G) \leqslant(r-\varepsilon) \alpha(G)$, for any graph G.

Bal and DeBiasio [2] initiated the study of covering and partitioning random graphs by monochromatic trees. They proved that if $p \ll\left(\frac{\ln n}{n}\right)^{1 / r}$, then with high probability ${ }^{1}$ we have $\operatorname{tc}_{r}(G(n, p)) \rightarrow \infty$. They conjectured that for any $r \geqslant 2$, this was the correct threshold for the event $\operatorname{tp}_{r}(G(n, p)) \leqslant r$. Kohayakawa, Mota and Schacht [14] proved that this conjecture holds for $r=2$, while Ebsen, Mota and Schnitzer ${ }^{2}$ showed that it does not hold for more than two colours.

Bucić, Korándi and Sudakov [6] proved that if $p \ll\left(\frac{\ln n}{n}\right)^{\sqrt{r} / 2^{r-2}}$, then w.h.p. we have $\operatorname{tc}_{r}(G(n, p)) \geqslant r+1$, which implies that the threshold for the event $\mathrm{tc}_{r}(G) \leqslant r$ is in fact significantly larger than the one conjectured by Bal and DeBiasio when r is large. Bucić, Korándi and Sudakov also proved that w.h.p. we have $\operatorname{tc}_{r}(G(n, p)) \leqslant r$ for $p \gg\left(\frac{\ln n}{n}\right)^{1 / 2^{r}}$. They were also able to roughly determine the typical behaviour of $\operatorname{tc}_{r}(G(n, p))$ in terms of the range where p lies in (see [6, Theorem 1.3 and Theorem 1.4]).

Considering colourings with three colours, the results from [6] imply that if $p \gg\left(\frac{\ln n}{n}\right)^{1 / 8}$, then w.h.p. we have $\operatorname{tc}_{3}(G(n, p)) \leqslant 3$, and if $\left(\frac{\ln n}{n}\right)^{1 / 6} \ll p \ll\left(\frac{\ln n}{n}\right)^{1 / 7}$, then w.h.p. $\operatorname{tc}_{3}(G(n, p)) \leqslant 88$. Our main result improves these bounds for three colours.

Theorem 1.1. If $p=p(n)$ satisfies $p \gg\left(\frac{\ln n}{n}\right)^{1 / 6}$, then with high probability we have

$$
\operatorname{tc}_{3}(G(n, p)) \leqslant 3
$$

It is easy to see that if $p=1-\omega\left(n^{-1}\right)$, then w.h.p. there is a 3 -edge-colouring of $G(n, p)$ for which three monochromatic trees are needed to cover all vertices - it suffices to consider three non-adjacent vertices x_{1}, x_{2} and x_{3}, and colour the edges incident to x_{i} with colour i and colour all the remaining edges with any colour. Therefore, the bound for $t c_{3}(G(n, p))$ in Theorem 1.1 is the best possible as long as p is not too close to 1 .

We remark that, from the example described in [14], we know that for $p \ll\left(\frac{\ln n}{n}\right)^{1 / 4}$, we have w.h.p. $\operatorname{tc}_{3}(G(n, p)) \geqslant 4$. It would be very interesting to describe the behaviour of $\operatorname{tc}_{3}(G(n, p))$ when $\left(\frac{\ln n}{n}\right)^{1 / 4} \ll p \ll\left(\frac{\ln n}{n}\right)^{1 / 6}$.

This paper is organized as follows. In Section 2 we present some definitions and auxiliary results that we will use in the proof of Theorem 1.1, which is outlined in Section 3. The details of the proof of Theorem 1.1 are given in Section 4.

[^0]
§2. Preliminaries

Most of our notation is standard (see $[3,5,7]$ and $[4,13]$). However, we will mention in the following few definitions regarding hypergraphs that will play a major role in our proofs just for completeness.

We say that a set A of vertices in a hypergraph \mathcal{H} is a vertex cover if every hyperedge of \mathcal{H} contains at least one element of A. The covering number of \mathcal{H}, denoted by $\tau(\mathcal{H})$, is the smallest size of a vertex cover in \mathcal{H}. A matching in \mathcal{H} is a collection of disjoint hyperedges in \mathcal{H}. The matching number of \mathcal{H}, denoted by $\nu(\mathcal{H})$, is the largest size of a matching in \mathcal{H}. An immediate relationship between $\tau(\mathcal{H})$ and $\nu(\mathcal{H})$ is the inequality $\nu(\mathcal{H}) \leqslant \tau(\mathcal{H})$. If additionally \mathcal{H} is r-uniform, then we have $\tau(\mathcal{H}) \leqslant r \nu(\mathcal{H})$. A conjecture due to Ryser (which first appeared in the thesis of his Ph.D. student, Henderson [12]) states that for every r-uniform r-partite hypergraph \mathcal{H}, we have $\tau(\mathcal{H}) \leqslant(r-1) \nu(\mathcal{H})$. Note that KönigEgerváry theorem corresponds to Ryser's conjecture for $r=2$. Aharoni [1] proved that Ryser's conjecture holds for $r=3$, but the conjecture remains open for $r \geqslant 4$.

Given a vertex v in a 3 -uniform hypergraph \mathcal{H}, the link graph of \mathcal{H} with respect to v is the graph $L_{v}=(V, E)$ with vertex set $V=V(\mathcal{H})$ and edge set $E=\{x y:\{x, y, v\} \subseteq \mathcal{H}\}$.

We will use the following theorem due to Erdős, Gyárfás and Pyber [8] in the proof of our main result.

Theorem 2.1 (Erdős, Gyárfás and Pyber). For any 3 -edge-colouring of a complete graph K_{n}, there exists a partition of $V\left(K_{n}\right)$ into 2 monochromatic trees.

We will also use the following lemma, which is a simple application of Chernoff's inequality. For a proof of the first item see [15, Lemma 3.8]. The second item is an immediate corollary of [15, Lemma 3.10].

Lemma 2.2. Let $\varepsilon>0$. If $p=p(n) \gg\left(\frac{\ln n}{n}\right)^{1 / 6}$, then w.h.p. $G \in G(n, p)$ has the following properties.
(i) For any disjoint sets $X, Y \subseteq V(G)$ with $|X|,|Y| \gg \frac{\ln n}{p}$, we have

$$
\left|E_{G}(X, Y)\right|=(1 \pm \varepsilon) p|X||Y| .
$$

(ii) Every vertex $v \in V(G)$ has degree $d_{G}(v)=(1 \pm \varepsilon) p n$ and every set of $i \leqslant 6$ vertices has $(1 \pm \varepsilon) p^{i} n$ common neighbours.

§3. A sketch of the proof

In this section we will give an overview of the proof of Theorem 1.1. Let $G=G(n, p)$, with $p \gg\left(\frac{\ln n}{n}\right)^{1 / 6}$, and let $\varphi: E(G) \rightarrow\{$ red, green, blue $\}$ be any 3 -edge-colouring of G. We consider an auxiliary graph F, with $V(F)=V(G)$ and $i j \in E(F)$ if and only if there is, in the colouring φ, a monochromatic path in G connecting i and j. Then we define a 3-edge-colouring φ^{\prime} of F with $\varphi^{\prime}(i j)$ being the color of any monochromatic path in G
connecting i and j. Note that any covering of F with monochromatic trees with respect to the colouring φ^{\prime} corresponds to a covering of G with monochromatic trees with respect to the colouring φ with the same number of trees.

Next, we consider different cases depending on the value of $\alpha(F)$. If $\alpha(F)=1$, then F is a complete 3 -edge-coloured graph and by a theorem of Erdős, Gyárfás and Pyber (see Theorem 2.1), there exists a partition of $V(F)$ into 2 monochromatic trees. The remaining proof now is divided into the cases $\alpha(F) \geqslant 3$ and $\alpha(F)=2$.

Case $\alpha(F) \geqslant 3$. From the condition on the independence number of G, there exist three vertices $r, b, g \in V(G)$ that pairwise do not have any monochromatic path connecting them. With high probability, they have a common neighbourhood in G of size at least $n p^{3} / 2$. Let $X_{r b g}$ be the largest subset of this common neighbourhood such that for each $i \in\{r, b, g\}$, the edges from i to $X_{r b g}$ in G are all coloured with one colour. Then, since there are no monochromatic paths between any two of r, b, g, we have $\left|X_{r b g}\right| \geqslant n p^{3} / 12$ and moreover we may assume that all edges between r and $X_{r b g}$ are red, all between b and $X_{r b g}$ are blue and those between g and $X_{r b g}$ are green. Now we notice that all vertices that have a neighbour in $X_{r b g}$ are covered by the union of the spanning trees of the red component of r, the blue component of b and the green component of g.

We are done in the case where every vertex has a neighbour in $X_{r b g}$, as the vertices in $X_{r b g} \cup N_{G}\left(X_{r b g}\right)$ are covered by the red, blue and green component containing r, b and g, respectively. Otherwise, w.h.p. any vertex $y \in V \backslash\left(X_{r b g} \cup N_{G}\left(X_{r b g}\right)\right)$ has many common neighbours with r, g and b in G that are also neighbours of some vertex in $X_{r b g}$. An analysis of the possible colourings of the edges between $X_{r b g}$ and the common neighbourhood of the vertices r, b, g and y yields the following: for some $i \in\{r, g, b\}$, let us say $i=r$, every vertex $y \in X_{r b g}$ can be connected to r by a monochromatic path in colour red or either to g or b by a monochromatic path in the colour blue or green, respectively.

This already gives us that all vertices in G can be covered by 5 monochromatic trees, since all the vertices in $N_{G}\left(X_{r b g}\right)$ lie in the red component of r, or the green component of g, or in the blue component of b and every vertex in $V \backslash N_{G}\left(X_{r b g}\right)$ lies in the red component of r, in the blue component of g or in the green component of b. By analysing the colours of edges to the common neighbourhood of carefully chosen vertices, we are able to show that actually three of those five trees already cover all the vertices of G.

Case $\alpha(F)=2$. Let us consider a 3-uniform hypergraph \mathcal{H} defined as follows (this definition is inspired by a construction of Gyárfás [9]). The vertices of \mathcal{H} are the monochromatic components of F and three vertices form a hyperedge if the corresponding three components have a vertex in common (in particular, those three monochromatic components must be of different colours). Hence \mathcal{H} is an 3-uniform 3-partite hypergraph.

We observe that if A is a vertex cover of \mathcal{H}, then the monochromatic components associated with the vertices in A cover all the vertices of G. This implies that $\operatorname{tc}_{3}(G) \leqslant$ $\tau(\mathcal{H})$. Also, it is easy to see that $\nu(\mathcal{H}) \leqslant \alpha(F)=2$. Now, recall that Aharoni's result [1] (which corresponds to Ryser's conjecture for $r=3$) states that for every 3-uniform 3partite hypergraph \mathcal{H} we have $\tau(\mathcal{H}) \leqslant 2 \nu(\mathcal{H})$. Together with the previous observation, this implies $\operatorname{tc}_{3}(G) \leqslant 4$. But our goal is to prove that $\operatorname{tc}_{3}(G) \leqslant 3$. To this aim, we analyze the hypergraph \mathcal{H} more carefully, reducing the situation to a few possible settings of components covering all vertices. In each of those cases, we can again analyse the possible colouring of edges of common neighbours of specific vertices, inferring that indeed there are 3 monochromatic components cover all vertices.

§4. Proof of Theorem 1.1

Instead of analysing the colouring of the graph $G=G(n, p)$, it will be helpful to analyse the following auxiliary graph.

Definition 4.1 (Shortcut graph). Let G be a graph and φ be a 3-edge-colouring of G. The shortcut graph of G (with respect to φ) is the graph $F=F(G, \varphi)$ that has $V(G)$ as the vertex set and the following edge set:
$\{u v: u, v \in V(G)$ and u and v are connected in G by a path monochromatic under φ \}.
We can consider a natural edge colouring φ^{\prime} of $F(G, \varphi)$ by assigning to an edge $u v \in$ $E(F(G, \varphi))$ the colour of any monochromatic path connecting u and v in G under the colouring φ. We will say that φ^{\prime} is an inherited colouring of $F(G, \varphi)$. Let $\operatorname{tc}\left(F, \varphi^{\prime}\right)$ be the minimum number of monochromatic components (under the colouring φ^{\prime}) covering all the vertices of F. Note that any covering of $F(G, \varphi)$ with monochromatic trees under φ^{\prime} corresponds to a covering of G with monochromatic trees under the colouring φ. In particular, if we show that for every 3-edge-colouring φ of G, we have $\operatorname{tc}\left(F, \varphi^{\prime}\right) \leqslant 3$, for every ineherited colouring φ^{\prime}, then we have shown that $\operatorname{tc}_{3}(G) \leqslant 3$. Therefore, Theorem 1.1 follows from the following lemma.

Lemma 4.2. Let $p \gg\left(\frac{\ln n}{n}\right)^{1 / 6}$ and let $G=G(n, p)$. The following holds with high probability. For any 3-edge-colouring φ of G and any inherited colouring φ^{\prime} of the shortcut graph $F=F(G, \varphi)$, we have $\operatorname{tc}\left(F, \varphi^{\prime}\right) \leqslant 3$.

The proof of Lemma 4.2 is divided into two different cases, depending on the independence number of F. Subsections 4.1 and 4.2 are devoted, respectively, to the proof of Lemma 4.2 when $\alpha(F) \geqslant 3$ and $\alpha(F) \leqslant 2$.

From now on, we fix $\varepsilon>0$ and assume that $p \gg\left(\frac{\ln n}{n}\right)^{1 / 6}$ and n is sufficiently large. Then, by Lemma 2.2, we may assume that the following holds w.h.p.:
(1) There is an edge between any two sets of size $\omega((\ln n) / p)$.
(2) Every vertex $v \in V(G)$ has degree $d_{G}(v)=(1 \pm \varepsilon) p n$.
(3) Every set of $i \leqslant 6$ vertices has $(1 \pm \varepsilon) p^{i} n$ common neighbours.

4.1. Shortcut graphs with independence number at least three.

Proof of Lemma 4.2 for $\alpha(F) \geqslant 3$. Since $\alpha(F) \geqslant 3$, there exist three vertices $r, b, g \in$ $V(G)$ that pairwise do not have any monochromatic path connecting them in G. In particular, if v is a common neighbour of r, b and g in G, then the edges $v r, v b$ and $v g$ have all different colours. The common neighbourhood of r, b and g in G has size at least $n p^{3} / 2$. Let $X_{r b g}$ be the largest subset of this common neighbourhood such that for each $i \in\{r, b, g\}$, the edges between i and the vertices of $X_{r b g}$ are all coloured with the same colour in G. Then $\left|X_{r b g}\right| \geqslant n p^{3} / 12$. Without loss of generality, assume that all edges between r and the vertices of $X_{r b g}$ are red, between b and the vertices of $X_{r b g}$ are blue and those between g and the vertices of $X_{r b g}$ are green. Let $C_{\text {red }}(r), C_{\text {blue }}(b)$ and $C_{\text {green }}(g)$ be respectively the red, blue and green components in G containing r, g and b.

Notice that all vertices of F that have a neighbour in $X_{r b g}$ are covered by $C_{\text {red }}(r), C_{\text {blue }}(b)$ or $C_{\text {green }}(g)$. Therefore, the proof would be finished if every vertex had a neighbour in $X_{r b g}$. If this is not the case, we fix an arbitrary vertex $y \in V \backslash\left(X_{r b g} \cup N_{G}\left(X_{r b g}\right)\right)$. By our choice of p, there are at least $n p^{4} / 2$ common neighbours of y, r, b and g. Let $X_{y r b g}$ be the largest subset of the common neighbourhood of y, r, b and g such that for each $i \in\{r, b, g\}$, the edges between i and $X_{y r b g}$ are all coloured the same. Then $\left|X_{y r b g}\right| \geqslant$ $n p^{4} / 12$. Note that since $y \notin N_{G}\left(X_{r b g}\right)$, the sets $X_{y r b g}$ and $X_{r b g}$ are disjoint. Furthermore, since $\left|X_{y r b g}\right|,\left|X_{r b g}\right| \gg \frac{\ln n}{p}$, we have

$$
\left|E_{G}\left(X_{y r b g}, X_{r b g}\right)\right| \geqslant 1
$$

We now analyse the colours between r, b, g and the set $X_{y r b g}$. Again, since there is no monochromatic path connecting any two of r, b and g, all $i \in\{r, b, g\}$ have to connect to $X_{y r b g}$ in different colours. Since $X_{y r b g}$ is disjoint of $X_{r b g}$, we cannot have r, b and g being simultaneously connected to $X_{y r b g}$ by red, blue and green edges, respectively. Assume first that for each $i \in\{r, b, g\}$, the edges between i and $X_{y r b g}$ have different colours from the edges between i and $X_{r b g}$. Then let $u v$ be an edge between $X_{y r b g}$ and $X_{r b g}$ and notice that whatever the colour of $u v$ is, we will have a monochromatic path connecting two of the vertices in $\{r, g, b\}$. Therefore, we can assume that for some $i \in\{r, g, b\}$, we have that all the edges between i and $X_{\text {rbg }}$ and all the edges between i and $X_{y r b g}$ coloured the same. Without loss of generality, we may say that such i is r. In this case, the edges between b and $X_{y r b g}$ are green and the edges between g and $X_{y r b g}$ are blue. Finally, all the edges between $X_{y r b g}$ and $X_{r b g}$ are red, otherwise we would be able to connect b and g by some monochromatic path. Figure 4.1 shows the colouring of the edges that we have analysed so far.

Let us now consider any further vertex $x \in V \backslash\left(X_{r b g} \cup N_{G}\left(X_{r b g}\right)\right)$ with $x \neq y$, if such a vertex exists. We define $X_{x r b g}$ analogously to $X_{y r b g}$ and observe that the colour pattern

Figure 4.1. Analysis of the colouring of the edges incident on $X_{r b g}$ and on $X_{y r b g}$.

Figure 4.2. Analysis of the color of the edges incident on $X_{y r b g}$ and on $X_{x r b g}$.
from r, b, g to $X_{x r b g}$ must be the same as the one to $X_{y r b g}$. Indeed, if this is not the case, then a similar analysis of the colours of the edges between $\{r, b, g\}$ and $X_{x r b g}$ yields that for some $i \in\{b, g\}$, we know that the edges connecting i to $X_{x r b g}$ are of the same colour as the edges connecting i to $X_{\text {rbg }}$. Without loss of generality, let us say that i is g. Then the edges between b and $X_{x r b g}$ are red and the edges between r and $X_{x r b g}$ are green, otherwise $X_{\text {xrbg }}$ and $X_{\text {rbg }}$ would not be disjoints sets. Figure 4.2 shows the colouring of the edges incident to $X_{y r b g}$ and $X_{x r b g}$. Since $\left|X_{y r b g}\right|,\left|X_{x r b g}\right| \gg \frac{\ln n}{p}$, we have that there is some edge $u v$ between $X_{y r b g}$ and $X_{x r b g}$. But then however we colour $u v$, we will get an monochromatic path connecting two vertices in $\{r, b, g\}$, which is a contradiction. Thus, the colour pattern of edges between $\{r, b, g\}$ and $X_{x r b g}$ is the same as the colour pattern of the edges between $\{r, b, g\}$ and $X_{y r b g}$.

Therefore, we have that each vertex in $X_{r b g} \cup N_{G}\left(X_{r b g}\right)$ belongs to one of the monochromatic components $C_{\mathrm{red}}(r), C_{\mathrm{blue}}(b)$ or $C_{\text {green }}(g)$, while a vertex in $V(G) \backslash\left(X_{r b g} \cup N_{G}\left(X_{r b g}\right)\right)$ belongs to one of the monochromatic components $C_{\text {red }}(r), C_{\text {green }}(b)$ or $C_{\text {blue }}(g)$ where the latter two are the green component containing b and the blue component containing g, respectively. This gives a covering of G with five monochromatic trees. Next we will show that actually three of those trees already cover all the vertices.

Suppose that at least 4 among the components $C_{\text {red }}(r), C_{\text {blue }}(b), C_{\text {green }}(b), C_{\text {green }}(g)$, and $C_{\mathrm{blue}}(g)$ are needed to cover all vertices. Since there does not exist any monochromatic path between any two of r, b, g, we know that for each $i \in\{r, b, g\}$, any monochromatic component containing i does not intersect $\{r, g, b\} \backslash\{i\}$. Hence, among those at least 4 components, we have for each $i \in\{r, b, g\}$ one component containing it and, without loss of generality, two containing b. That is, three components of those at least 4 components needed to cover all the vertices are $C_{\text {red }}(r), C_{\text {blue }}(b)$ and $C_{\text {green }}(b)$. Now there are two cases regarding the fourth component: we need $C_{\text {green }}(g)$ as the fourth component or we need $C_{\text {blue }}(g)$ (those two cases might intersect).

We begin with the first case, where we need the components $C_{\text {red }}(r), C_{\text {blue }}(b), C_{\text {green }}(b)$ and $C_{\text {green }}(g)$ to cover all the vertices of G. Let

$$
\tilde{b} \in C_{\text {blue }}(b) \backslash\left(C_{\text {red }}(r) \cup C_{\text {green }}(b) \cup C_{\text {green }}(g)\right)
$$

and let

$$
\tilde{g} \in C_{\text {green }}(b) \backslash\left(C_{\text {red }}(r) \cup C_{\text {blue }}(b) \cup C_{\text {green }}(g)\right) .
$$

Then let $X_{\tilde{b} \tilde{g} r b g}$ be the maximum set of common neighbours of $\tilde{b}, \tilde{g}, r, g, b$ such that for each $i \in\{\tilde{b}, \tilde{g}, r, b, g\}$, the edges from i to $X_{\tilde{b} \tilde{r} r b g}$ are all coloured the same. Since $\left|X_{\tilde{b} \tilde{g} r b g}\right| \geqslant$ $n p^{5} / 240 \gg \frac{\ln n}{p}$, we have

$$
\left|E_{G}\left(X_{\tilde{b} \tilde{g} r b g}, X_{y r b g}\right)\right| \geqslant 1 \quad \text { and } \quad\left|E_{G}\left(X_{\tilde{b} \tilde{g} r b g}, X_{r b g}\right)\right| \geqslant 1 .
$$

We will analyse the possible colours of the edges between the specified vertices and $X_{\tilde{b} \tilde{g} r b g}$. If for each of r, b, g, the colour it sends to $X_{\tilde{b} \tilde{g} r b g}$ is different from the colour it sends to $X_{r b g}$, then any edge between $X_{\tilde{\partial} \tilde{g} r b g}$ and $X_{r b g}$ ensures a monochromatic path between two of r, b, g (in the colour of that edge). Similarly, it cannot happen that for each of r, b, g, the colour it sends to $X_{\tilde{b} \tilde{g} r b g}$ is different from the colour it sends to $X_{y r b g}$. Thus, since r sends red to both $X_{r b g}$ and $X_{y r b g}$ while the colours from b (and g) to $X_{r b g}$ and $X_{y r b g}$ are switched, the colour of the edges between r and $X_{\tilde{b} \tilde{g} r b g}$ is red.

Now note that, by the choice of \tilde{b} and \tilde{g}, the edges between each of them and $X_{\tilde{b} \tilde{g} r b g}$ can not be red. Further, the choice implies that an edge between \tilde{b} and $X_{\tilde{b} \tilde{g} r b g}$ can not be of the same colour (green or blue) as an edge between \tilde{g} and $X_{\tilde{b} \tilde{g} r b g}$. If g would send blue (and hence b would send green) edges to $X_{\tilde{b} \tilde{g} r b g}$, there would either be a blue path between b and g (if the edges between \tilde{b} and $X_{\tilde{b} \tilde{g} r b g}$ are blue) or \tilde{b} would lie in $C_{\text {green }}(b)$ (if the edges between \tilde{b} and $X_{\tilde{b} \tilde{g} r b g}$ are green). Since both those situations would mean a contradiction, we may assume that each of r, b, g sends edges with that colour to $X_{\tilde{b} \tilde{g} r b g}$ as it does to $X_{r b g}$. But then $X_{\tilde{b} \tilde{g} r b g}$ is actually a subset of $X_{r b g}$ and therefore \tilde{g}, having an edge to $X_{r b g}$, lies in one of $C_{\mathrm{red}}(r), C_{\text {blue }}(b)$, or $C_{\text {green }}(g)$, a contradiction.

In the case where the forth component that we need is $C_{\text {blue }}(g)$, we repeat the construction of $X_{\tilde{b} \tilde{g} r b g}$ similarly as before by letting

$$
\tilde{b} \in C_{\text {blue }}(b) \backslash\left(C_{\text {red }}(r) \cup C_{\text {green }}(b) \cup C_{\text {blue }}(g)\right)
$$

and

$$
\tilde{g} \in C_{\text {green }}(b) \backslash\left(C_{\text {red }}(r) \cup C_{\text {blue }}(b) \cup C_{\text {blue }}(g)\right) .
$$

Also as before, we end up with $X_{\tilde{b} \tilde{g} r b g}$ being part of $X_{r b g}$. From the choice of \tilde{g}, the edges it sends to $X_{\tilde{b} \tilde{g} r b g}$ have to be green, since otherwise it would be in $C_{\text {red }}(r)$ or $C_{\mathrm{blue}}(b)$. But that gives a green path between b and g, a contradiction.

Summarising, we infer that three components among $C_{\text {red }}(r), C_{\text {blue }}(b), C_{\text {green }}(b), C_{\text {green }}(g)$ and $C_{\text {blue }}(g)$ cover the vertex set of G.

4.2. Shortcut graphs with independence number at most two.

Proof of Lemma 4.2 for $\alpha(F) \leqslant 2$. We start by noticing that if $\alpha(F)=1$, then the graph F together with the colouring φ^{\prime} is a complete 3 -coloured graph and therefore, by Theorem 2.1, there exists a partition of $V(F)$ into 2 monochromatic trees. Thus, we may assume that $\alpha(F)=2$.

Let \mathcal{H} be the 3-uniform hypergraph with $V(\mathcal{H})$ being the collection of all the monochromatic components of F under the colouring φ^{\prime} and three monochromatic components form a hyperedge in \mathcal{H} if they share a vertex. Notice that \mathcal{H} is 3 -partite, since distinct monochromatic components of the same colour do not have a common vertex and therefore they can not belong to the same hyperedge. In other words, the colour of each component give us a 3-partition of the vertex set of \mathcal{H}. We denote by $V_{\text {red }}, V_{\text {blue }}$ and $V_{\text {green }}$ the set of vertices of $V(\mathcal{H})$ that correspond to, respectively, red, blue and green components. Such construction was inspired by a construction due to Gyárfás [9].

Note that every vertex v of F is contained in a monochromatic component for each one of the colours (a monochromatic component could consist only of v). Therefore, any vertex cover of \mathcal{H} corresponds to a covering of the vertices of F with monochromatic trees. Indeed, if A is a vertex cover of \mathcal{H}, then consider the monochromatic components corresponding to each vertex in A. If any vertex v of F is not covered by those components, then the vertices in \mathcal{H} corresponding to the red, green and blue components in F containing v do not belong to A and they form an hyperedge. But this contradicts the fact that A is a vertex cover of \mathcal{H}. Therefore,

$$
\begin{equation*}
\operatorname{tc}\left(F, \varphi^{\prime}\right) \leqslant \tau(\mathcal{H}) \tag{4.1}
\end{equation*}
$$

Let $L=\bigcup_{s \in V_{\text {red }}} L_{s}$ be the union of the link graphs L_{s} of all vertices $s \in V_{\text {red }}$. Any vertex cover of this bipartite graph L corresponds to a vertex cover of \mathcal{H} of the same size. Therefore,

$$
\begin{equation*}
\tau(\mathcal{H}) \leqslant \tau(L) \tag{4.2}
\end{equation*}
$$

Furthermore, by König's theorem we know that $\tau(L)=\nu(L)$. Thus, if $\nu(L) \leqslant 3$, then by (4.1) and (4.2), we have

$$
\operatorname{tc}\left(F, \varphi^{\prime}\right) \leqslant \tau(\mathcal{H}) \leqslant \tau(L)=\nu(L) \leqslant 3
$$

Therefore, we may assume that $\nu(L) \geqslant 4$, and fix a matching M_{L} of size at least 4 in L. Let us say that M_{L} consists of the edges $G_{1} B_{1}, G_{2} B_{2}, G_{3} B_{3}$, and $G_{4} B_{4}$, where $\left\{G_{1}, G_{2}, G_{3}, G_{4}\right\} \subseteq V_{\text {green }}$ and $\left\{B_{1}, B_{2}, B_{3}, B_{4}\right\} \subseteq V_{\text {blue }}$.

Now we give an upper bound for $\nu(\mathcal{H})$. Note that any matching $M_{\mathcal{H}}$ in \mathcal{H} gives us an independent set I in F. Indeed, for each hyperedge $e \in M_{\mathcal{H}}$, let $v_{e} \in V(F)$ be any vertex in the intersection of those monochromatic components associated to the vertices in e and let $I=\left\{v_{e}: e \in M_{\mathcal{H}}\right\}$. We claim that I is an independent set in F. Indeed, if v_{e} and v_{f} were adjacent vertices in I, then e and f intersect, as the edge connecting v_{e} to v_{f} in F will connect the monochromatic components containing v_{e} and v_{f} of that colour that is given to the edge $v_{e} v_{f}$. Therefore, since $\alpha(F)=2$, we have

$$
\begin{equation*}
\nu(\mathcal{H}) \leqslant \alpha(F)=2 . \tag{4.3}
\end{equation*}
$$

Now, if there are three different edges in M_{L} that are edges in the link graphs of three different vertices of $V_{\text {red }}$, then there would be a matching of size 3 in \mathcal{H}, contradicting (4.3). Therefore, we may assume that M_{L} is contained in the union of at most two link graphs, say $L_{R_{1}}$ and $L_{R_{2}}$, of vertices $R_{1}, R_{2} \in V_{\text {red }}$. Now we are left with three cases: (Case 1) two edges of M_{L} belong to $L_{R_{1}}$ and two belong to $L_{R_{2}}$; (Case 2) three edges of M_{L} belong to $L_{R_{1}}$ and one to $L_{R_{2}}$; (Case 3) the four edges of M_{L} belong to $L_{R_{1}}$. Without loss of generality, we can describe each of those three cases as follows (see Figures 4.3, 4.4 and 4.5):

Case 1: The edges $G_{1} B_{1}$ and $G_{2} B_{2}$ belong to $L_{R_{1}}$ and the edges $G_{3} B_{3}$ and $G_{4} B_{4}$ belong to $L_{R_{2}}$. That means that all the following four sets are non-empty:

$$
\begin{aligned}
J_{1} & :=R_{1} \cap G_{1} \cap B_{1}, \\
J_{2} & :=R_{1} \cap G_{2} \cap B_{2}, \\
J_{3} & :=R_{2} \cap G_{3} \cap B_{3}, \\
J_{4} & :=R_{2} \cap G_{4} \cap B_{4} .
\end{aligned}
$$

Case 2: The edges $G_{1} B_{1}, G_{2} B_{2}$ and $G_{3} B_{3}$ belong to $L_{R_{1}}$ and the edge $G_{4} B_{4}$ belongs to $L_{R_{2}}$. That means that all the following four sets are non-empty:

$$
\begin{aligned}
& J_{1}:=R_{1} \cap G_{1} \cap B_{1}, \\
& J_{2}:=R_{1} \cap G_{2} \cap B_{2}, \\
& J_{3}:=R_{1} \cap G_{3} \cap B_{3}, \\
& J_{4}:=R_{2} \cap G_{4} \cap B_{4} .
\end{aligned}
$$

Figure 4.3. Case 1

Case 3: The edges $G_{1} B_{1}, G_{2} B_{2}, G_{3} B_{3}$ and $G_{4} B_{4}$ belong to $L_{R_{1}}$. That means that all the following four sets are non-empty:

$$
\begin{aligned}
J_{1} & :=R_{1} \cap G_{1} \cap B_{1}, \\
J_{2} & :=R_{1} \cap G_{2} \cap B_{2}, \\
J_{3} & :=R_{1} \cap G_{3} \cap B_{3}, \\
J_{4} & :=R_{1} \cap G_{4} \cap B_{4} .
\end{aligned}
$$

In this case, let R_{2} be any other red component different from R_{1} and let B and G be, respectively, a blue and a green component with $R_{2} \cap B \cap G \neq \varnothing$. Suppose that $G \notin\left\{G_{1}, G_{2}, G_{3}, G_{4}\right\}$. Then the three of the edges $G_{1}, B_{1}, G_{2}, B_{2}, G_{3}, B_{3}$ and G_{4}, B_{4} are not incident to $G B$ (because B must be different of at least three of the sets B_{1}, B_{2}, B_{3} and B_{4}) and those three edges together with $G B$ may be analysed just as in Case 2. Therefore, we may suppose that $G \in\left\{G_{1}, G_{2}, G_{3}, G_{4}\right\}$. Let us say, without loss of generality, that $G=G_{4}$. If $B \notin\left\{B_{1}, B_{2}, B_{3}\right\}$, then the edges $G_{1} B_{1}, G_{2} B_{2}$ and $G_{3} B_{3}$ belong to $L_{R_{1}}$, the edge $G B$ belongs to $L_{R_{2}}$ and this case may be analysed, again, just as in Case 2. Therefore, we may assume that $B \in\left\{B_{1}, B_{2}, B_{3}\right\}$. Let us say, without loss of generality that $B=B_{3}$. Then let J_{5} be the following non-empty set:

$$
\begin{equation*}
J_{5}:=R_{2} \cap G_{4} \cap B_{3} . \tag{4.4}
\end{equation*}
$$

Let us further remark that, since $\nu(\mathcal{H}) \leqslant 2$, in each of the three cases above, we have

$$
V(F)=R_{1} \cup R_{2} \cup G_{1} \cup G_{2} \cup G_{3} \cup G_{4} \cup B_{1} \cup B_{2} \cup B_{3} \cup B_{4} .
$$

Otherwise, for any uncovered vertex $v \in V(F)$, the hyperedge given by the red, blue and green components containing v together with the hyperedges $R_{1} B_{1} G_{1}$ and $R_{2} B_{3} G_{3}$ (in Cases 1 and 2) or $R_{2} B_{3} G_{4}$ (in Case 3) give a matching of size 3 in \mathcal{H}.

Let us start with Case 1 .
Proof in Case 1: We will prove that R_{1} and R_{2} together with possibly one further monochromatic component cover $V(F)$. For each $i \in\{1,2,3,4\}$, let $\tilde{B}_{i}=B_{i} \backslash\left(R_{1} \cup R_{2}\right)$ and $\tilde{G}_{i}=G_{i} \backslash\left(R_{1} \cup R_{2}\right)$.

Pick vertices $j_{i} \in J_{i}$, with $i \in\{1,2,3,4\}$, arbitrarily. Consider a vertex $o \in \tilde{B}_{1}$ (if such a vertex exists). Since $\alpha(F)=2$, there is an edge connecting two of o, j_{2}, j_{3}. Because j_{2} and j_{3} belong to different components of each colour, such an edge must be incident to o. So let us say that such edge is $o j_{i}$, for some $i \in\{2,3\}$. Since $o \notin R_{1} \cup R_{2}$, the edge $o j_{i}$ cannot be red. And since $o \in B_{1}, o j_{i}$ cannot be blue either, otherwise we would connect the blue components B_{1} and B_{i}. Now assume that o and j_{2} are not adjacent. Then $o j_{3}$ is a green edge in F. By analogously analysing the edge between o, j_{2} and j_{4} together with the supposition that $o j_{2}$ is not an edge in F, we get that $o j_{4}$ must be a green edge in F. But then we have a green path $j_{3} o j_{4}$ connecting j_{3} to j_{4}, a contradiction. Therefore $o j_{2}$ is an edge in F and it is green. That implies that $o \in G_{2}$. Therefore $\tilde{B}_{1} \subseteq G_{2}$. Analogously, we can conclude the following:

$$
\begin{array}{ll}
\tilde{B}_{1} \subseteq G_{2}, & \tilde{G}_{1} \subseteq B_{2} \\
\tilde{B}_{2} \subseteq G_{1}, & \tilde{G}_{2} \subseteq B_{1} \\
\tilde{B}_{3} \subseteq G_{4}, & \tilde{G}_{3} \subseteq B_{4}, \tag{4.5}\\
\tilde{B}_{4} \subseteq G_{3}, & \tilde{G}_{4} \subseteq B_{3} .
\end{array}
$$

Claim 4.3. We have $\tilde{B}_{1} \cup \tilde{G}_{1} \cup \tilde{B}_{2} \cup \tilde{G}_{2}=\varnothing$ or $\tilde{B}_{3} \cup \tilde{G}_{3} \cup \tilde{B}_{4} \cup \tilde{G}_{4}=\varnothing$.
Proof. Suppose for a contradiction that there exist $o_{1} \in \tilde{B}_{1} \cup \tilde{G}_{1} \cup \tilde{B}_{2} \cup \tilde{G}_{2}$ and $o_{2} \in$ $\tilde{B}_{3} \cup \tilde{G}_{3} \cup \tilde{B}_{4} \cup \tilde{G}_{4}$. Recall that from our choice of p, there is some $z \in N\left(j_{1}, j_{2}, j_{3}, j_{4}, o_{1}, o_{2}\right)$. Two of the edges $z j_{i}$, for $i \in\{1,2,3,4\}$, have the same colour. Since each j_{i} belongs to different green and blue components, those two edges are red. Since $\left\{j_{1}, j_{2}\right\} \in R_{1}$ and $\left\{j_{3}, j_{4}\right\} \in R_{2}$, those two red edges are either $z j_{1}$ and $z j_{2}$ or $z j_{3}$ and $z j_{4}$. Let us say that $z j_{1}$ and $z j_{2}$ are red (the other case is similar). Then one of the edges $z j_{3}$ and $z j_{4}$ has to be green and the other blue. Now, since $o_{1} \notin R_{1}$, the edge $z o_{1}$ is either green or blue. Then one of the paths $o_{1} z j_{3}$ or $o_{1} z j_{4}$ is green or blue. This implies that $o_{1} \in B_{3} \cup G_{3} \cup B_{4} \cup G_{4}$. On the other hand, (4.5) implies that $o_{1} \in\left(B_{1} \cup B_{2}\right) \cap\left(G_{1} \cup G_{2}\right)$. But then we reached a contradiction, since that would mean that o_{1} belongs to two different components of the same colour.

We may assume without loss of generality that $\tilde{B}_{3} \cup \tilde{G}_{3} \cup \tilde{B}_{4} \cup \tilde{G}_{4}$ is empty. Then, recalling that $\nu(\mathcal{H}) \leqslant 2$ and in view of (4.5), the union of the components R_{1}, B_{1}, G_{1} and R_{2} covers every vertex of F. If we show that $B_{1} \subseteq G_{1} \cup R_{1} \cup R_{2}$ or that $G_{1} \subseteq B_{1} \cup R_{1} \cup R_{2}$, then we get three monochromatic components covering the vertices of F. Our next claim states precisely that.

Claim 4.4. We have $\tilde{B}_{1} \backslash G_{1}=\varnothing$ or $\tilde{G}_{1} \backslash B_{1}=\varnothing$.
Proof. Suppose that there exist two distinct vertices $b \in \tilde{B}_{1} \backslash G_{1}$ and $g \in \tilde{G}_{1} \backslash B_{1}$. Let $z \in N\left(j_{1}, j_{2}, j_{3}, j_{4}, b, g\right)$. As before, either $z j_{1}$ and $z j_{2}$ or $z j_{3}$ and $z j_{4}$ are red edges. First assume that $z j_{1}$ and $z j_{2}$ are red. Then one of the edges $z j_{3}$ and $z j_{4}$ has to be green

Figure 4.4. Case 2
and the other blue. Now, since $b \notin R_{1}$, the edge $z b$ is either green or blue. Then one of the paths $b z j_{3}$ or $b z j_{4}$ is green or blue. This implies that $b \in B_{3} \cup G_{3} \cup B_{4} \cup G_{4}$. On the other hand, (4.5) implies that $b \in B_{1} \cap G_{2}$. Then we reached a contradiction, since that would mean that b belongs to two different components of the same colour.

Therefore, the edges $z j_{3}$ and $z j_{4}$ are red and one of the edges $z j_{1}$ and $z j_{2}$ is green and the other is blue. First let us say that $z j_{1}$ is green and $z j_{2}$ is blue. Since $b \notin\left(R_{1} \cup R_{2}\right)$, the edge $z b$ cannot be red. Also the edge $z b$ cannot be blue otherwise the path $b z j_{2}$ would connect the components B_{1} and B_{2}. Finally, $z b$ cannot be green, otherwise the path $b z j_{1}$ would gives us that $b \in G_{1}$. Therefore $z j_{1}$ is blue and $z j_{2}$ is green. But this case analogously leads to a contradiction (with g and G_{i} instead of b and B_{i} and green and blue switched).

We proceed to the proof of Case 2.
Proof in Case 2: As in Case 1, pick vertices $j_{i} \in J_{i}$, with $i \in\{1,2,3,4\}$ arbitrarily. We claim that $V(F) \subseteq R_{1} \cup R_{2} \cup B_{4} \cup G_{4}$. Indeed, let $o \in V(F) \backslash\left(R_{1} \cup R_{2}\right)$. Notice that since $\alpha(F)=$ 2 , there is an edge in each of the following sets of three vertices: $\left\{o, j_{4}, j_{1}\right\},\left\{o, j_{4}, j_{2}\right\}$, and $\left\{o, j_{4}, j_{3}\right\}$. We claim that $o j_{4}$ is an edge of F. Indeed, if this was not the case, then since there cannot be an edge between j_{4} and j_{i} for $i=1,2,3$, we would have the edges $o j_{1}, o j_{2}$ and $o j_{3}$ and all of them would be coloured green or blue. Thus, two of them would be coloured the same, connecting two distinct components of one colour in this colour, a contradiction. So $o j_{4} \in E(F)$ and since $o j_{4}$ cannot be red, we conclude that $o \in\left(B_{4} \cup G_{4}\right)$. Therefore, R_{1}, R_{2}, B_{4} and G_{4} cover all vertices of F.

If $B_{4} \backslash\left(R_{1} \cup R_{2} \cup G_{4}\right)=\varnothing$ or $G_{4} \backslash\left(R_{1} \cup R_{2} \cup B_{4}\right)=\varnothing$, then we get three monochromatic components covering $V(F)$. So let us assume that there exist $b \in B_{4} \backslash\left(R_{1} \cup R_{2} \cup G_{4}\right)$ and $g \in G_{4} \backslash\left(R_{1} \cup R_{2} \cup B_{4}\right)$. If b and g are not adjacent, then since each of the sets $\left\{b, g, j_{i}\right\}$, for $i=1,2,3$, has to induce at least one edge, there are two edges between b and $\left\{j_{1}, j_{2}, j_{3}\right\}$ or two edges between g and $\left\{j_{1}, j_{2}, j_{3}\right\}$. However, from the choice of b, we know that all the edges between b and $\left\{j_{1}, j_{2}, j_{3}\right\}$ are green, and therefore two of such edges would give us a green connection between two different green components, a contradiction. Similarly, from the choice of g, we know that all the edges between b and $\left\{j_{1}, j_{2}, j_{3}\right\}$ are blue, and

Figure 4.5. Case 3
two of such edges would give us a blue connection between two different blue components, again a contradiction.

Hence, we conclude that $b g \in F$ for any $b \in B_{4} \backslash\left(R_{1} \cup R_{2} \cup G_{4}\right)$ and any $g \in G_{4} \backslash$ $\left(R_{1} \cup R_{2} \cup B_{4}\right)$ and any such edge $b g$ is red. Therefore, there is a red component R_{3} covering $\left(B_{4} \triangle G_{4}\right) \backslash\left(R_{1} \cup R_{2}\right)$, where $B_{4} \triangle G_{4}$ denotes the symmetric difference. If ($B_{4} \cap$ $\left.G_{4}\right) \backslash\left(R_{1} \cup R_{2}\right)=\varnothing$, then R_{1}, R_{2} and R_{3} cover $V(F)$ and we are done. Therefore, suppose there is a vertex $x \in\left(B_{4} \cap G_{4}\right) \backslash\left(R_{1} \cup R_{2}\right)$. If $R_{2} \backslash\left(B_{4} \cup G_{4}\right)=\varnothing$, then R_{1}, B_{4}, G_{4} cover $V(F)$ and we are done. Therefore, suppose there is a vertex $y \in R_{2} \backslash\left(B_{4} \cup G_{4}\right)$. Note that $x y \notin E(F)$, since x and y belong to different components in each of the colours. Also, $x j_{i} \notin E(F)$, for $i \in\{1,2,3\}$, since otherwise two different components of the same colour would be connected in that colour by the edge $x j_{i}$. Now $\alpha(F)=2$ implies that $y j_{i} \in E(F)$, for $i \in\{1,2,3\}$ (otherwise, $\left\{x, y, j_{i}\right\}$ would be an independent set). But these edges must all be green or blue, hence two of them are of the same colour, connecting two different components of one colour in that colour, a contradiction.

We arrived at the last case, Case 3.
Proof in Case 3: Similarly to the previous cases, let us pick vertices $j_{i} \in J_{i}$, with $i \in$ $\{1,2,3,4,5\}$ arbitrarily. We will show first that we can cover all vertices of F with 4 monochromatic components. Let $o_{1}, o_{2} \in V(F) \backslash\left(R_{1} \cup B_{3} \cup G_{4}\right)$ and let $z \in N\left(j_{1}, j_{2}, j_{3}, o_{1}, o_{2}, j_{5}\right)$. At least one of the edges $z j_{1}, z j_{2}$ and $z j_{3}$ is red, as otherwise we would connect two distinct components of one colour in that colour. Therefore $z \in R_{1}$. Since $o_{1}, o_{2}, j_{5} \notin R_{1}$, the edges $z o_{1}, z o_{2}$ and $z j_{5}$ cannot be red. Furthermore, $o_{1} z$ and $o_{2} z$ are coloured with a colour different from the colour of the edge $j_{5} z$, as otherwise they would belong to B_{3} or G_{4}. Thus, o_{1} and o_{2} are connected by a monochromatic path in green or blue. Hence, we showed that any two vertices of $V(F) \backslash\left(R_{1} \cup B_{3} \cup G_{4}\right)$ are connected by a monochromatic path in green or blue. We infer that there is a green or blue component covering $V(F) \backslash\left(R_{1} \cup B_{3} \cup G_{4}\right)$. Therefore, R_{1}, B_{3}, G_{4} and one further blue or green component C cover all vertices of G. Let us assume that C is a green component; the case where C is a blue component is analogous.

We claim that $R_{1} \cup B_{3} \cup C$, or $R_{1} \cup G_{4} \cup C$, or $R_{1} \cup B_{3} \cup G_{4}$ covers $V(F)$. Indeed, suppose for the sake of contradiction that there exist vertices $g \in G_{4} \backslash\left(R_{1} \cup B_{3} \cup C\right), b \in$
$B_{3} \backslash\left(R_{1} \cup G_{4} \cup C\right)$ and $c \in C \backslash\left(R_{1} \cup B_{3} \cup G_{4}\right)$. Let $z \in N\left(j_{1}, j_{2}, j_{3}, g, b, c\right)$ and note that one of $z j_{1}, z j_{2}$ and $z j_{3}$ is red. Consequently $g z, c z$ and $b z$ are not red. Notice, however, that $g z$ and $b z$ can not be both green and neither both blue. Now let us say $c z$ is green. Since $c \notin G_{4}$ and $g \in G_{4}$, we would have $g z$ blue in this case. But then $b z$ must be green and since $c \in C$ and C is a green component, we have $b \in C$, which is a contradiction. Therefore $c z$ must be blue. Then, since $c \notin B_{3}$ and $b \in B_{3}$, the edge $b z$ should be green. Thus the edge $g z$ is blue. Since this argument holds for any $g \in G_{4} \backslash\left(R_{1} \cup B_{3} \cup C\right)$ and $c \in C \backslash\left(R_{1} \cup B_{3} \cup G_{4}\right)$, we conclude that $V(F) \backslash\left(R_{1} \cup B_{3}\right)$ can be covered by one blue tree. Hence, G can be covered by the three monochromatic trees. This finishes the last case and thereby the proof of Lemma 4.2.

References

[1] R. Aharoni, Ryser's conjecture for tripartite 3-graphs, Combinatorica 21 (2001), no. 1, 1-4. $\uparrow 1,2,3$
[2] D. Bal and L. DeBiasio, Partitioning random graphs into monochromatic components, Electron. J. Combin. 24 (2017), no. 1, Paper 1.18, 25. MR3609188 $\uparrow 1$
[3] B. Bollobás, Modern graph theory, Graduate Texts in Mathematics, vol. 184, Springer-Verlag, New York, 1998. MR1633290 $\uparrow 2$
[4] ___, Random graphs, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 73, Cambridge University Press, Cambridge, 2001. MR1864966 $\uparrow 2$
[5] J. A. Bondy and U. S. R. Murty, Graph theory, Graduate Texts in Mathematics, vol. 244, Springer, New York, 2008. MR2368647 $\uparrow 2$
[6] M. Bucić, D. Korándi, and B. Sudakov, Covering random graphs by monochromatic trees and Hellytype results for hypergraphs, arXiv (2019), available at arXiv:1902.05055. $\uparrow 1$
[7] R. Diestel, Graph theory, 4th ed., Graduate Texts in Mathematics, vol. 173, Springer, Heidelberg, 2010. MR2744811 $\uparrow 2$
[8] P. Erdős, A. Gyárfás, and L. Pyber, Vertex coverings by monochromatic cycles and trees, J. Combin. Theory Ser. B 51 (1991), no. 1, 90-95. $\uparrow 1,2$
[9] A. Gyárfás, Particiófedések és lefogóhalmazok hipergráfokban: Kandidátusi értekezés, MTA Számítástechnikai és Automatizálási Kutató Intézet, 1977. $\uparrow 1,3,4.2$
[10] P. E. Haxell and Y. Kohayakawa, Partitioning by monochromatic trees, J. Combin. Theory Ser. B 68 (1996), no. 2, 218-222. $\uparrow 1$
[11] P. E. Haxell and A. D. Scott, On Ryser's conjecture, Electron. J. Combin. 19 (2012), no. 1, 23. $\uparrow 1$
[12] J. R. Henderson, Permutation decomposition of (0,1)-matrices and decomposition transversals, Ph.D. Thesis, 1971. $\uparrow 2$
[13] S. Janson, T. Łuczak, and A. Ruciński, Random graphs, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience, New York, 2000. MR1782847 $\uparrow 2$
[14] Y. Kohayakawa, G. O. Mota, and M. Schacht, Monochromatic trees in random graphs, Math. Proc. Cambridge Philos. Soc. 166 (2019), no. 1, 191-208. MR3893310 $\uparrow 1,1,2$
[15] D. Korándi, F. Mousset, R. Nenadov, N. Škorić, and B. Sudakov, Monochromatic cycle covers in random graphs, Random Structures Algorithms 53 (2018), no. 4, 667-691. MR3875280 $\uparrow 2$

Instituto de Matemática e Estatística, Universidade de São Paulo, Brazil
E-mail address: yoshi@ime.usp.br

Instituto Nacional de Matemática Pura e Aplicada, Rio de Janeiro, Brazil
E-mail address: walner@impa.br

Instituto de Matemática e Estatística, Universidade de São Paulo, Brazil
E-mail address: mota@ime.usp.br

Fachbereich Mathematik, Universität Hamburg, Hamburg, Germany
E-mail address: bjarne.schuelke@uni-hamburg.de

[^0]: ${ }^{1}$ We will write shortly w.h.p. for with high probability.
 ${ }^{2}$ A description of this construction can be found in [14].

