
ON HAMILTONIAN CYCLES IN HYPERGRAPHS WITH DENSE
LINK GRAPHS

JOANNA POLCYN, CHRISTIAN REIHER, VOJTĚCH RÖDL, AND BJARNE SCHÜLKE

Dedicated to Endre Szemerédi on the occasion of his 80th birthday

Abstract. We show that every k-uniform hypergraph on n vertices whose minimum
pk ´ 2q-degree is at least p5{9` op1qqn2{2 contains a Hamiltonian cycle. A construction
due to Han and Zhao shows that this minimum degree condition is optimal. The same
result was proved independently by Lang and Sahueza-Matamala.

§1. Introduction

Hamiltonian cycles are a central theme in graph theory and extremal combinatorics.
Dirac’s classic result [55] states that every graph on n ě 3 vertices whose minimum degree
is at least n

2 contains a Hamiltonian cycle. The present work continues the investigation
of hypergraph generalisations of Dirac’s theorem – an area of research owing many deep
insights to Endre Szemerédi.

1.1. Hypergraphs and Hamiltonian cycles. For k ě 2 a k-uniform hypergraph is
defined to be a pair H “ pV,Eq consisting of a (finite) set of vertices V and a set

E Ď V pkq “ tU Ď V : |U | “ ku

of edges. A k-uniform hypergraph H “ pV,Eq with n vertices is said to contain a
Hamiltonian cycle if its vertex set admits a cyclic enumeration V “ txi : i P Z{nZu
such that txi, xi`1, . . . , xi`k´1u P E holds for all i P Z{nZ. Observe that this naturally
generalises the familiar notion of Hamiltonian cycles in graphs.

In contrast to the graph case, there are several interesting minimum degree notions for
hypergraphs. For a k-uniform hypergraph H “ pV,Eq and a set S Ď V the degree of S
in H is defined by

dHpSq “ |te P E : S Ď eu| .
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Moreover, for an integer i with 1 ď i ă k the number

δipHq “ min
 

dHpSq : S P V piq
(

is called the minimum i-degree of H.
The research on minimum i-degree conditions guaranteeing the existence of Hamiltonian

cycles in hypergraphs was initiated by Katona and Kierstead [1212]. The main problem is to
determine, for any two given integers k ě 2 and i P rk ´ 1s, the optimal minimum i-degree
condition which for k-uniform hypergraphs ensures the existence of a Hamiltonian cycle.
Notice that Dirac’s aforementioned theorem solves the case pk, iq “ p2, 1q.

In general, if i ă j, then a minimum j-degree condition seems to reveal more structural
information about a hypergraph than a minimum i-degree condition. For this reason, it
is reasonable to suspect that the difficulty of the problem we are interested in increases
with k´ i. The first case, i “ k´ 1, was solved more than a decade ago by Rödl, Ruciński,
and Szemerédi [1818].

Theorem 1.1. For every integer k ě 2 and every α ą 0 there exists an integer n0 such
that every k-uniform hypergraph H on n ě n0 vertices with δk´1pHq ě

`1
2 ` α

˘

n contains
a Hamiltonian cycle.

Similarly as for Dirac’s theorem, slightly unbalanced bipartite hypergraphs show that this
result is asymptotically best possible. Our main result addresses the next case, i “ k ´ 2.

Theorem 1.2. For every integer k ě 3 and every α ą 0, there exists an integer n0 such
that every k-uniform hypergraph H on n ě n0 vertices with δk´2pHq ě

`5
9 ` α

˘

n2

2 contains
a Hamiltonian cycle.

In previous articles written in collaboration with Ruciński, Schacht, and Szemerédi [1515,1717]
we solved the cases k “ 3 and k “ 4. The general case was also obtained by Lang and
Sanhueza-Matamala [1313] in independent research. A construction due to Han and Zhao [1111]
reproduced in the introduction of [1515] shows that the number 5

9 appearing in Theorem 1.21.2
is optimal.

We would like to conclude this subsection by pointing to some problems for future
investigations. First and foremost, it remains an intriguing question whether for k ě 4
the minimum pk ´ 3q-degree condition δk´3pHq ě

`5
8 ` op1q

˘

n3

6 enforces the existence of a
Hamiltonian cycle. Here the number 5

8 would again match the construction of Han and
Zhao [1111].

Another possible area of research would be to extend the work of Pósa [1616] and Chvátal [44],
who in the graph case studied which conditions on the degree sequence (rather than just
on the minimum degree) guarantee the existence of Hamiltonian cycles. Such degree
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sequence versions have recently been obtained for the Hajnal-Szemerédi theorem [1010] by
Treglown [2424] and for Pósa’s conjecture (see [88, Problem 9]) by Staden and Treglown [2222].
It would be very interesting to find similar theorems for Hamiltonian cycles in hypergraphs.
For first results in this direction we refer to [1919].

1.2. Organisation and Overview. We use the absorption method developed by Rödl,
Ruciński, and Szemerédi and surveyed by Szemerédi himself in [2323]. Therefore, the proof
decomposes in the usual way into a Connecting Lemma, an Absorbing Path Lemma, and a
Covering Lemma.

Very roughly speaking, the Absorbing Path Lemma reduces the task of proving The-
orem 1.21.2 to the much easier problem of finding ‘almost spanning’ cycles in k-uniform
hypergraphs H satisfying δk´2pHq ě

`5
9 ` α

˘

|V pHq|2

2 . Such an almost spanning cycle is
build in two main steps: First, the covering lemma asserts that we can cover almost all
vertices by means of long paths. Second, the Connecting Lemma allows us to connect these
‘pieces’ into one long cycle.

In our earlier articles we stored all information about H that became relevant in the
course of the proof in various ‘setups’ and the complexity of these setups got somewhat
out of control. To avoid this in the present work, we abandon the setups and replace them
by the much more flexible notion of a constellation (see Definition 2.102.10 below).

Section 22 lays out a systematic treatment of these constellations and contains several
auxiliary results that will assist us later. The subsequent Sections 33 – 66 deal with the main
lemmata enumerated above: connecting, absorbing, and covering. Lastly, in Section 77 we
derive Theorem 1.21.2 from these results.

§2. Preliminaries

2.1. Graphs. In our earlier articles [1515, 1717] dealing with the 3- and 4-uniform case of
Theorem 1.21.2 we inductively reduced connectability properties of the hypergraphs under
discussion to connectability properties of their 2-uniform link graphs. Here we pursue
the same strategy and the present subsection contains the graph theoretic preliminaries
that we require for this purpose. The central notion we work with in this context is taken
from [1717, Definition 2.2] and reappeared as [1515, Definition 2.1].

Definition 2.1. Given β ą 0 and ` P N a graph R is said to be pβ, `q-robust if for any two
distinct vertices x and y of R the number of x-y-paths of length ` is at least β|V pRq|`´1.

It turns out that every graph whose edge density is larger than 5{9 possesses a robust
subgraph containing more than two thirds of its vertices that is quite disconnected from the
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rest of the graph. The following statement to this effect was proved in [1515, Proposition 2.2]
(marginally strengthening [1717, Proposition 2.3]).

Proposition 2.2. Given α, µ ą 0, there exist β ą 0 and an odd integer ` ě 3 such that
for sufficiently large n, every n-vertex graph G “ pV,Eq with |E| ě

`5
9 ` α

˘

n2

2 contains a
pβ, `q-robust induced subgraph R Ď G satisfying

(i ) |V pRq| ě
`2

3 `
α
2

˘

n,
(ii ) and eG

`

V pRq, V r V pRq
˘

ď µn2.

Remark 2.3. We shall usually apply Proposition 2.22.2 with µ ď α
4 . In this case, clause (ii )(ii )

yields

epRq ě
´5

9 `
α

2

¯n2

2 ´
pn´ |V pRq|q2

2
(i )(i )
ě

´4
9 `

2
3α

¯n2

2 .

Originally, this estimate was included as a third clause into [1515, Proposition 2.2], but it
seems preferable to omit this part.

In Section 55 below we need to render our absorbers connectable. To this end we shall
utilise a consequence of the following graph theoretic lemma.

Lemma 2.4. Let α ą 0 and let G be a graph with n vertices and at least
`5

9 ` α
˘

n2

2 edges.
If

A “
 

x P V pGq : dpxq ă n{3
(

and
B “

 

x P V pGq : |Npxqr A| ď αn{3
(

,

then
epAYBq ď

n2

18 .

Proof. In the special case that |A| ă p1
3 ´

α
3 qn, every vertex x P B satisfies

dpxq ď |Npxqr A| ` |A| ă
n

3 ,

which yields B Ď A and the desired inequality

epAYBq “ epAq ď
1
2 |A|

2
ď

1
18n

2 .

So henceforth we may suppose that

|A| ě
´1

3 ´
α

3

¯

n . (2.1)

Now the definition of A implies
5
9n

2
ď 2epGq “

ÿ

xPV pGq

dpxq ď
1
3 |A|n` pn´ |A|qn “ n2

´
2
3 |A|n ,
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i.e.,
|A| ď

2
3n , (2.2)

and
epG´ Aq ě

´5
9 ` α

¯n2

2 ´
1
3 |A|n . (2.3)

Setting X “ V pGqr pAYBq we conclude from the definition of B that

2epB r Aq ` epB r A,Xq “
ÿ

xPBrA
|Npxqr A| ď |B r A| ¨

α

3n ď
α

3n
2 , (2.4)

which together with (2.32.3) yields

|X|2 ě 2epXq “ 2epG´ Aq ´ 2epB r Aq ´ 2epB r A,Xq

ě

´5
9 ` α

¯

n2
´

2
3 |A|n´

2
3αn

2
ě

5
9n

2
´

2
3 |A|n .

In view of (2.22.2) this entails

|X|2 ě
4
9n

2
´

2
3 |A|n`

1
4 |A|

2
“

´2
3n´

1
2 |A|

¯2
,

wherefore
|X| ě

2
3n´

1
2 |A| . (2.5)

Next, we claim that
1
3 |A|n` |B r A||A| `

1
2 |X|

2
ď

´1
3 `

α

6

¯

n2 . (2.6)

In view of |A| ` |B r A| ` |X| “ n the left side of this estimate rewrites as
1
3 |A|n` pn´ |A| ´ |X|q|A| `

1
2 |X|

2
“

4
3 |A|n´

3
2 |A|

2
`

1
2p|A| ´ |X|q

2 .

By (2.52.5) and X Ď V pGqr A we have
2
3n´

3
2 |A| ď |X| ´ |A| ď n´ 2|A|

and, hence,
p|A| ´ |X|q2 ď max

!

pn´ 2|A|q2,
´2

3n´
3
2 |A|

¯2)
.

So to conclude the proof of (2.62.6) it suffices to observe that
4
3 |A|n´

3
2 |A|

2
`

1
2pn´ 2|A|q2 “ n2

3 `
1
6pn´ |A|qpn´ 3|A|q

(2.12.1)
ď

´1
3 `

α

6

¯

n2

and, similarly,
4
3 |A|n´

3
2 |A|

2
`

1
2

´2
3n´

3
2 |A|

¯2
“
n2

3 ´

´1
3n´

1
2 |A|

¯2
´

1
8 |A|

2
ď
n2

3 .

Having thus established (2.62.6) we appeal to the definition of A again and observe

epAq ` epGq “
ÿ

xPA

dpxq ` epG´ Aq ď
1
3 |A|n` epG´ Aq .
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Consequently,

epAYBq ` epGq ď
1
3 |A|n` epB r A,Aq ` epB r Aq ` epG´ Aq

and (2.42.4) leads to

epAYBq ` epGq ď
1
3 |A|n` |B r A||A| ` epXq `

α

3n
2 .

Owing to (2.62.6) we deduce

epAYBq ` epGq ď
´1

3 `
α

6

¯

n2
`
α

3n
2
“

´2
3 ` α

¯n2

2 ď
1
18n

2
` epGq ,

which implies the desired estimate epAYBq ď 1
18n

2. �

Remark 2.5. The set A already had an appearance in [1515] and Lemma 2.3 there is roughly
equivalent to the weaker estimate epAq ď n2

18 . Concerning the set B one can prove |B| ď n
3 ,

but this fact is not going to be exploited in the sequel.
The following consequence of Lemma 2.42.4 will later be generalised to k-uniform hyper-

graphs (see Lemma 2.72.7) and constitutes the base case of an induction on k.

Corollary 2.6. Let α ą 0, and let V be a set of n vertices. If G, G1 are two graphs with
V pGq, V pG1q Ď V and

epGq, epG1q ě
´5

9 ` α
¯n2

2 ,

then there are at least α2

3 n
3 triples px, y, zq P V 3 such that

‚ xyz is a walk in G,
‚ xy P EpG1q,
‚ and dGpyq, dGpzq ě n

3 .

Proof. By adding some isolated vertices to G and G1 if necessary, we may assume that
V pGq “ V pG1q “ V . The sieve formula yields

|EpGq X EpG1q| ě 2
´5

9 ` α
¯n2

2 ´
n2

2 “

´ 1
18 ` α

¯

n2 .

Define the sets A and B with respect to G as in Lemma 2.42.4. In view of that lemma itself,
there are at least αn2 unordered pairs xy P EpGq X EpG1q for which x, y P A Y B fails.
Consequently, there are at least αn2 ordered pairs px, yq P V 2 such that xy P EpGqXEpG1q
and y R AYB. For each of them there are, by the definition of B, at least α

3n vertices z
with yz P EpGq and z R A. Altogether, this yields at least α2

3 n
3 triples px, y, zq with the

desired properties. �
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2.2. Hypergraphs. In this subsection we introduce our terminology and some preliminary
results on hypergraphs. When there is no danger of confusion we shall omit several
parentheses, braces, and commas. For instance, we write x1 . . . xk for the edge tx1, . . . , xku

of a k-uniform hypergraph.

Walks, paths, and cycles. A k-uniform walk W of length ` ě 0 is a hypergraph whose
vertices can, possibly with repetitions, be enumerated as px1, . . . , x``k´1q in such a way
that e P EpW q if and only if e “ xi . . . xi`k´1 for some i P r`s. The ordered pk ´ 1q-tuples
px1, . . . , xk´1q and px``1, . . . , x``k´1q are called the end-tuples of W and we say that W
is a px1 . . . xk´1q-px``1 . . . x``k´1q-walk. This notion of end-tuples is not symmetric and
implicitly fixes a direction ofW . Sometimes we refer to px1, . . . , xk´1q and px``1, . . . , x``k´1q

as the starting pk´ 1q-tuple and ending pk´ 1q-tuple of W , respectively. We call xk, . . . , x`
the inner vertices of W . Counting them with their multiplicities we say for ` ě k ´ 1 that
a walk of length ` has `´ k ` 1 inner vertices. We often identify a walk with the sequence
of its vertices x1x2 . . . x``k´1. If the vertices x1, . . . , x``k´1 are distinct we call the walk W
a path. For ` ą k a cycle of length ` is a hypergraph C whose vertices and edges can be
represented as V pCq “ txi : i P Z{`Zu and EpCq “ txi . . . xi`k´1 : i P Z{`Zu.

Link hypergraphs. Given a k-uniform hypergraph H “ pV,Eq and a set S Ď V with
|S| ď k ´ 2 we define the pk ´ |S|q-uniform link hypergraph HS by V pHSq “ V pHq and

EpHSq “ ter S : S Ď e P Eu .

Clearly the vertices in S are isolated in HS and sometimes it is convenient to remove them.
In such cases, we write HS “ HS ´ S. For instance, we have H∅ “ H∅ “ H for every
hypergraph H. If S “ tvu consists of a single vertex, we abbreviate Htvu to Hv.

A lemma with two hypergraphs. Our next step is to generalise Corollary 2.62.6 to hypergraphs.

Lemma 2.7. Suppose that k ě 2, α ą 0, and that V is a set of n vertices. If H, H 1 are
two k-uniform hypergraphs satisfying

V pHq, V pH 1
q Ď V

and
δk´2pHq, δk´2pH

1
q ě

´5
9 ` α

¯n2

2 ,

then the number of p2k ´ 1q-tuples px1, . . . , x2k´1q P V
2k´1 such that

‚ x1 . . . x2k´1 is a walk in H,
‚ tx1, . . . , xku P EpH

1q,
‚ and dHpx2, . . . , xkq, dHpxk`1, . . . , x2k´1q ě

n
3

is at least
`

α
2

˘2k´1
n2k´1.
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Proof. For k “ 2 this follows from Corollary 2.62.6. Proceeding by induction on k, we assume
k ě 3 and that the assertion holds for k ´ 1 in place of k. Construct an auxiliary bipartite
graph Γ with vertex classes V and V 2k´3 by drawing an edge between x P V and

px1, . . . , xk´2, xk, . . . , x2k´2q P V
2k´3

if and only if

(a ) x1 . . . xk´2xk . . . x2k´2 is a walk in Hx,
(b ) tx1, . . . , xk´2, xku P EpH

1
xq,

(c ) dHx
px2, . . . , xk´2, xkq ě

n
3 and dHx

pxk`1, . . . , x2k´2q ě
n
3 .

The induction hypothesis, applied to the hypergraphs Hx and H 1
x, reveals that every vertex

x P V has at least degree
`

α
2

˘2k´2
n2k´3 in Γ. Thus

epΓq ě
´α

2

¯2k´2

n2k´2

and the Cauchy-Schwarz inequality implies
ÿ

áxPV 2k´3

|NΓp
áxq|2 ě

epΓq2
n2k´3 ě

´α

2

¯2k´1

n2k´1 ,

where NΓp
áxq denotes the neighbourhood of the vertex áx in Γ. Now if
áx “ px1, . . . , xk´2, xk, . . . , x2k´2q P V

2k´3 and xk´1, x2k´1 P NΓp
áxq

are arbitrary, then px1, . . . , x2k´1q has the desired properties. �

Walks in dense hypergraphs. For later use we now quote a lower bound on the number of
walks of given length in a given dense hypergraph, that is somewhat related to Sidorenko’s
conjecture [2020,2121]. It is well known that this conjecture holds for paths in graphs, i.e., that
for d P r0, 1s and ` P N every graph G “ pV,Eq satisfying |E| ě d|V |2{2 contains at least
d`|V |``1 walks of length ` (see [33] for a proof based on linear algebra and [11, Lemma 3.8] for
a different approach using vertex deletions and the tensor power trick). The latter argument
generalises in a straightforward manner to partite hypergraphs (see Lemma 2.82.8 below). An
alternative proof based on the entropy method was worked out by Fitch [99, Lemma 7] and
by Lee [1414, Theorems 2.6 and 2.7].

Lemma 2.8. Suppose k ě 2, d P r0, 1s, and that H is a k-partite k-uniform hypergraph
with vertex partition tVi : i P Z{kZu. If H has d

ś

iPZ{kZ |Vi| edges, then for every r ě k

there are at least
dr´k`1

ź

iPrrs

|Vi|

walks px1, . . . , xrq in H with x1 P V1, . . . , xk P Vk. �
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By identifying the vertex classes one obtains the following, more standard, non-partite
version of this lemma.

Corollary 2.9. For k ě 2 and d P r0, 1s let H “ pV,Eq be a k-uniform hypergraph. If
|E| ě d|V |k{k!, then for every integer r ě k there are at least dr´k`1|V |r walks px1, . . . , xrq

in H. �

2.3. Abstract connectability. Our intended way of using Proposition 2.22.2 is that given
a k-uniform hypergraph H satisfying δk´2pHq ě

`5
9 ` α

˘

|V pHq|2{2 we can choose robust
subgraphs of all the

`

|V pHq|
k´2

˘

link graphs. It will be convenient to collect the data thus
arising into a single structure.

Definition 2.10. For k ě 2 a k-uniform constellation is a pair

Ψ “
`

H,
 

Rx : x P V pHqpk´2q(˘

consisting of a k-uniform hypergraph H and a family of induced subgraphs Rx Ď Hx

of the 2-uniform link hypergraphs that can be formed in H. We write HpΨq “ H for
the underlying hypergraph of a constellation Ψ and use the abbreviations V pΨq “ V pHq,
EpΨq “ EpHq for its vertex set and edge set, respectively. For a constellation Ψ and
x P V pΨqpk´2q we denote the subgraph associated with x by RΨ

x “ Rx.

Example 2.11. A 2-uniform constellation is determined by its underlying graph H and a
distinguished induced subgraph R∅ Ď H∅ “ H.

Notice that so far the induced subgraphs Rx Ď Hx are completely arbitrary and at this
moment there are no restrictions on their orders, sizes, and connectivity properties. This
allows us to study constellations “axiomatically”, adding further useful conditions in each
of the following subsections. The central connectability notions are definable without any
such assumptions and they will be introduced in the present subsection (see Definition 2.142.14
below). Of course one cannot prove a meaningful Connecting Lemma at this level of
generality, so our way of organising the material may appear somewhat peculiar on first
sight. When establishing the covering lemma in Section 66 however, we need to analyse
connectability in random subconstellations and for such situations the abstract approach
developed here turns out to be advantageous. Subconstellations themselves are defined in
the expected way.

Definition 2.12. Let
Ψ “

`

H,
 

Rx : x P V pHqpk´2q(˘

be a k-uniform constellation, where k ě 2. For X Ď V pΨq we call

ΨrXs “
`

HrXs,
 

RxrXs : x P Xpk´2q(˘
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the subconstellation of Ψ induced by X. Moreover, Ψ ´X “ ΨrV pΨq rXs denotes the
constellation obtained from Ψ by removing X.

We can also form link constellations in the obvious way.

Definition 2.13. Let k ě 2 and let

Ψ “
`

H,
 

Rx : x P V pHqpk´2q(˘

be a k-uniform constellation. If S Ď V pΨq and |S| ď k ´ 2, then the pk ´ |S|q-uniform link
constellation ΨS is defined to be

ΨS “
`

HS,
 

RxYS ´ S : x P pV pHqr Sqpk´2´|S|q(˘ .

Next we tell which pk ´ 1q-tuples of vertices of a k-uniform constellation are regarded
as being ζ-leftconnectable for a given real number ζ ą 0. The definition progresses by
recursion on k.

Definition 2.14. Let k ě 2, ζ ą 0, let

Ψ “
`

H,
 

Rx : x P V pHqpk´2q(˘

be a k-uniform constellation, and let áx “ px1, . . . , xk´1q P V pΨqk´1 be a pk ´ 1q-tuple of
distinct vertices.

(a ) If k “ 2 we say that áx “ px1q is ζ-leftconnectable in Ψ if x1 P V pR∅q.
(b ) If k ě 3 we say that áx is ζ-leftconnectable in Ψ if

|UΨ
áx | ě ζ|V pΨq| ,

where

UΨ
áx “

 

z P V pΨq : x1 . . . xk´1z P EpΨq and

px2, . . . , xk´1q is ζ-leftconnectable in Ψz

(

.

We remark that this is a “new” concept in the sense that in the earlier articles [1515,1717]
we managed to work with symmetric notions of connectability. For this reason, we need to
be careful when quoting the Connecting Lemma from [1717] later.
Example 2.15. Let px1, x2q be a pair of distinct vertices from a 3-uniform constellation Ψ
and let ζ ą 0. According to part (b )(b ) of Definition 2.142.14 the pair px1, x2q is ζ-leftconnectable
in Ψ if and only if |UΨ

px1,x2q
| ě ζ|V pΨq|. Due to part (a )(a ) the definition of this set unravels

to
UΨ
px1,x2q “

 

z P V pΨq : x1x2z P EpΨq and x2 P V pR
Ψ
z q
(

.

There is a dual notion of rightconnectability obtained by reversing the ordering of the
vertices.
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Definition 2.16. Let k ě 2, ζ ą 0, Ψ, and áx P V pΨqk´1 be as in Definition 2.142.14.

(a ) If the reverse tuple pxk´1, . . . , x1q is ζ-leftconnectable, then áx itself is said to
be ζ-rightconnectable.

(b ) Further, áx is called ζ-connectable if it is ζ-leftconnectable and ζ-rightconnectable.

Some readers may react negatively to our choice of the specifiers ‘left’ and ‘right’ in
these notions, arguing that the definition of leftconnectability of áx pivots on the right
end-segment of áx. The reason for our terminological choice is that the Connecting Lemma
(Proposition 3.13.1 below) will assert that under reasonable assumptions every leftconnectable
tuple can be connected to every rightconnectable tuple in such a way that the leftconnectable
tuple is ‘on the left side’ in the resulting path, while the rightconnectable tuple is ‘on the
right side’.

The following observation follows by a straightforward induction from Definition 2.142.14.
In later sections we will often use it either tacitly or by referring to ‘monotonicity’.

Fact 2.17. For a k-uniform constellation Ψ and ζ ą ζ 1 ą 0 every ζ-leftconnectable
pk ´ 1q-tuple is also ζ 1-leftconnectable. Similarly statements hold for rightconnectability
and connectability.

Proof. It suffices to display the argument for leftconnectability. We argue by induction
on k. In the base case k “ 2 the definition of ζ-leftconnectability does not depend on ζ and
there is nothing to prove. Now let k ě 3 and suppose that the assertion is true for k ´ 1
playing the rôle of k.

Let ζ ą ζ 1 ą 0, let Ψ “
`

H,
 

Rx : x P V pHqpk´2q(˘ be a k-uniform constellation, and let
áx “ px1, . . . , xk´1q P V pΨqk´1 be a ζ-leftconnectable pk ´ 1q-tuple. We are to prove that áx

is ζ 1-leftconnectable as well. To this end we consider the sets

U “ tz P V pΨq : x1 . . . xk´1z P EpΨq and px2, . . . , xk´1q is ζ-leftconnectable in Ψzu

and

W “ tz P V pΨq : x1 . . . xk´1z P EpΨq and px2, . . . , xk´1q is ζ 1-leftconnectable in Ψzu .

The induction hypothesis discloses U Ď W and the assumption that áx is ζ-leftconnectable
means that |U | ě ζ|V pΨq|. So altogether we have

|W | ě |U | ě ζ|V pΨq| ě ζ 1|V pΨq| ,

for which reason áx is indeed ζ 1-leftconnectable. �

Next, we study connectability in subconstellations.
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Fact 2.18. Suppose that Ψ is a k-uniform constellation, that Ψ1 “ ΨrXs is a subcon-
stellation induced by some X Ď V pΨq with |X| ě 1

2

`

|V pΨq| ` k ´ 2
˘

. If áx P V pΨ1qk´1 is
p2ζq-leftconnectable in Ψ1, then it is ζ-leftconnectable in Ψ as well. Similar statements hold
for ‘rightconnectability’ and ‘connectability’.

Proof. Again we only display the argument for leftconnectability and proceed by induction
on k. The base case k “ 2 is trivial. For the induction step from k ´ 1 to k we recall that
the assumption entails |U | ě 2ζ|V pΨ1q| ě ζ|V pΨq|, where

U “
 

z P V pΨ1
q : x1 . . . xk´1z P EpΨ1

q and px2, . . . , xk´1q is p2ζq-leftconnectable in Ψ1
z

(

.

Now consider an arbitrary vertex z P U . Since

|V pΨ1
zq| “ |V pΨ1

q| ´ 1 ě 1
2
`

|V pΨq| ` k ´ 4
˘

“
1
2
`

|V pΨzq| ` k ´ 3
˘

,

the induction hypothesis is applicable to the constellation Ψz, its subconstellation Ψ1z, and
to the p2ζq-leftconnectable pk ´ 2q-tuple px2, . . . , xk´1q. It follows that

U Ď
 

z P V pΨq : x1 . . . xk´1z P EpΨq and px2, . . . , xk´1q is ζ-leftconnectable in Ψz

(

and together with |U | ě ζ|V pΨq| this shows that áx is indeed ζ-leftconnectable in Ψ. �

We shall frequently have the situation that for some edge x1 . . . xk of a k-uniform
constellation Ψ we know xk P V pR

Ψ
x1...xk´2

q and we would like to conclude from this state
of affairs that px2, . . . , xkq is ζ-leftconnectable in Ψ. While such deductions are invalid in
general, it turns out that for small values of ζ there are only few exceptions to this rule of
inference. More precisely, we have the following result (cf. [1717, Fact 4.1] and [1515, Lemma 3.7]
for similar statements).

Lemma 2.19. Let k ě 2 and ζ ą 0 be given. If Ψ is a k-uniform constellation, then there
exist at most pk ´ 2qζ|V pΨq|k k-tuples px1, . . . , xkq P V pΨqk such that

(a ) tx1, . . . , xku P EpΨq,
(b ) xk P V pRΨ

x1...xk´2
q,

(c ) and px2, . . . , xkq fails to be ζ-leftconnectable in Ψ.

Proof. We argue by induction on k. In the base case k “ 2 the demands (b )(b ) and (c )(c )
contradict each other and, hence, there are indeed no such pairs. Now let k ě 3 and
suppose that the lemma is true for k ´ 1 in place of k. Define A Ď V pΨqk to be the set of
all k-tuples satisfying (a )(a ) – (c )(c ), set

A1 “
 

px1, . . . , xkq P A : x1 P U
Ψ
px2,...,xkq

(
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and define
A2x “

 

px2, . . . , xkq P V pΨqk´1 : px, x2, . . . , xkq P Ar A1
(

for every x P V pΨq. Since
|A| “ |A1| `

ÿ

xPV pΨq
|A2x| ,

it suffices to show

(1 ) |A1| ď ζ|V pΨq|k

(2 ) and |A2x| ď pk ´ 3qζ|V pΨxq|
k´1 for every x P V pΨq.

Now (1 )(1 ) follows from the fact that for px1, . . . , xkq P A
1 Ď A we have

ˇ

ˇUΨ
px2,...,xkq

ˇ

ˇ ă ζ|V pΨq|

by (c )(c ) and the definition of ζ-leftconnectability. For the proof of (2 )(2 ) we apply the induction
hypothesis to the link constellation Ψx. Notice that if px2, . . . , xkq P A

2
x, then

‚ tx2, . . . , xku P EpΨxq

‚ and xk P V pRΨx
x2...xk´2

q

follow from (a )(a ), (b )(b ), and the definition of Ψx. Moreover px, x2, . . . , xkq P A r A1 yields
x R UΨ

px2,...,xkq
, which together with tx, x2, . . . , xku P EpΨq reveals that

px3, . . . , xkq fails to be ζ-leftconnectable in Ψx .

So altogether the induction hypothesis leads to (2 )(2 ) and the induction step is complete. �

We proceed with a similar statement that will ultimately assist us in the construction of
the absorbing path.

Lemma 2.20. For k ě 2, ζ ą 0, and a k-uniform constellation Ψ, there are at most
pk ´ 2qζ|V pΨq|2k´3 walks x1 . . . x2k´3 in HpΨq such that

(a ) xk´1 P V pR
Ψ
xk...x2k´3

q

(b ) but px1, . . . , xk´1q fails to be ζ-leftconnectable.

Proof. Again we argue by induction on k. In the base case k “ 2 condition (a )(a ) reads
x1 P V pR

Ψ
∅q, whereas (b )(b ) demands that px1q fails to be ζ-leftconnectable in Ψ. As these

requirements contradict each other, there are indeed no 1-vertex walks with the required
properties.

Now let k ě 3 and assume that the lemma is true for k´1 instead of k. Let A Ď V pΨq2k´3

be the set of all walks x1 . . . x2k´3 satisfying (a )(a ) and (b )(b ), set

A1 “
 

px1, . . . , x2k´3q P A : xk P UΨ
px1,...,xk´1q

(
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and put

A2x,y “
 

px2, . . . , xk´1, xk`1, . . . , x2k´3q P V pΨq2k´5 :

px, x2, . . . , xk´1, y, xk`1, . . . , x2k´3q P Ar A1
(

for all x, y P V pΨq. In view of

|A| “ |A1| `
ÿ

px,yqPV pΨq2
|A2x,y|

it suffices to prove
(1 ) |A1| ď ζ|V pΨq|2k´3

(2 ) and |A2x,y| ď pk ´ 3qζ|V pΨyq|
2k´5 for all x, y P V pΨq.

The estimate (1 )(1 ) follows from the fact that due to (b )(b ) every px1, . . . , x2k´3q P A
1 Ď A

has the property
ˇ

ˇUΨ
px1,...,xk´1q

| ă ζ|V pΨq
ˇ

ˇ. For the proof of (2 )(2 ) we intend to apply the
induction hypothesis to Ψy. Consider any p2k ´ 5q-tuple

áx “ px2, . . . , xk´1, xk`1, . . . , x2k´3q P A
2
x,y .

Since px2, . . . , xk´1, y, xk`1, . . . , x2k´3q is a walk in HpΨq, we know that áx itself is a walk
in HpΨyq. Moreover, (a )(a ) rewrites as

xk´1 P V pR
Ψy
xk`1...x2k´3

q .

Finally, y R UΨ
px,x2,...,xk´1q

and tx, x2, . . . , xk´1, yu P EpΨq imply that

px2, . . . , xk´1q fails to be ζ-leftconnectable in Ψy .

Altogether, the p2k ´ 5q-tuples in A2x,y have the required properties for applying the
induction hypothesis to Ψy. This proves (2 )(2 ) and completes the induction step. �

We conclude this subsection by introducing one further notion.

Definition 2.21. Given k ě 2, ζ ą 0, and a k-uniform constellation

Ψ “
`

H,
 

Rx : x P V pHqpk´2q(˘ ,

a k-tuple px1, . . . , xkq P V pΨqk is said to be a ζ-bridge in Ψ if
(a ) tx1, . . . , xku P EpΨq,
(b ) px1, . . . , xk´1q is ζ-rightconnectable,
(c ) and px2, . . . , xkq is ζ-leftconnectable.

Such bridges will help us later to construct connecting paths between given pk´1q-tuples
of vertices. The fundamental existence result for such bridges (see Corollary 2.282.28 below)
asserts, roughly speaking, that under natural assumptions k-uniform constellations contain
many ζ-bridges for sufficiently small values of ζ.
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2.4. On pα, µq-constellations. In this subsection we study some properties of constella-
tions that can be deduced from the order and size restrictions (i )(i ) and (ii )(ii ) in Proposition 2.22.2
alone without taking the pβ, `q-robustness into account. We are thus led to the following
concept.

Definition 2.22. Let k ě 2 and α, µ ą 0. A k-uniform constellation Ψ is said to be an
pα, µq-constellation if

δk´2
`

HpΨq
˘

ě

´5
9 ` α

¯

|V pΨq|2
2

and every x P V pΨqpk´2q satisfies

(a ) |V pRΨ
x q| ě

`2
3 `

α
2

˘

|V pΨq|
(b ) as well as eHpΨxq

`

V pRΨ
x q, V pΨqr V pRΨ

x q
˘

ď µ|V pΨq|2.

It turns out that the level of generality provided by this concept is fully appropriate for
discussing the key parts of our absorbing mechanism and for constructing an important
building block entering the proof of the Connecting Lemma. Before reaching those results
we record a couple of easier observations.

Fact 2.23. If Ψ denotes a k-uniform pα, α9 q-constellation for some α ą 0, then

e
`

HpΨxq
˘

´ epRΨ
x q ď

|V pΨq|2
18

holds for every x P V pΨqpk´2q.

Proof. Using both parts of Definition 2.222.22 we obtain

e
`

HpΨxq
˘

´ epRΨ
x q “ eHpΨxq

`

V pΨqr V pRΨ
x q
˘

` eHpΨxq
`

V pRΨ
x q, V pΨqr V pRΨ

x q
˘

ď

´1
3 ´

α

2

¯2 |V pΨq|2
2 `

α

9 |V pΨq|
2
“

´ 1
18 `

α2

8 ´
α

18

¯

|V pΨq|2

and it remains to observe that the minimum pk ´ 2q-degree condition imposed on HpΨq is
only satisfiable for α ď 4

9 . �

Fact 2.24. Suppose that Ψ is a k-uniform pα, µq-constellation. If x P V pΨqpk´2q is arbitrary,
then there are at most 2µ

α
|V pΨq| vertices z P V pΨqrV pRΨ

x q with dHpΨxqpzq ą 1
3p|V pΨq|´2q.

Proof. Definition 2.222.22 (a )(a ) tells us that |V pΨqr V pRΨ
x q| ď p

1
3 ´

α
2 q|V pΨq|. Consequently,

the number of edges that every vertex z from the set

Z “
 

z P V pΨqr V pRΨ
x q : dHpΨxqpzq ą 1

3p|V pΨq| ´ 2q
(
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sends to V pRΨ
x q is at least

dHpΨxqpzq ´
ˇ

ˇV pΨqr
`

V pRΨ
x q Y tzu

˘
ˇ

ˇ ě
1
3
`

|V pΨq| ´ 2
˘

´

´1
3 ´

α

2

¯

|V pΨq| ` 1

ą
α

2 |V pΨq| .

In combination with Definition 2.222.22 (b )(b ) this yields
α

2 |V pΨq||Z| ď eHpΨxq
`

V pRΨ
x q, V pΨqr V pRΨ

x q
˘

ď µ|V pΨq|2

and the upper bound |Z| ď 2µ
α
|V pΨq| we are aiming for follows. �

Next, there is an obvious monotonicity statement.

Fact 2.25. For k ě 2, α ě α1 ą 0, and µ1 ě µ ą 0, every k-uniform pα, µq-constellation
is an pα1, µ1q-constellation as well. �

Link constellations ‘almost’ inherit being pα, µq-constellations, but since we are slightly
shrinking the vertex set we need to be careful with clause (b )(b ) of Definition 2.222.22.

Fact 2.26. Given k ě 2, α ą 0, and µ1 ą µ ą 0 there exists a natural number n0 with
the following property. If Ψ denotes a k-uniform pα, µq-constellation having at least n0

vertices and S Ď V pΨq with |S| ď k ´ 2 is arbitrary, then ΨS is a pk ´ |S|q-uniform
pα, µ1q-constellation. �

Now we estimate the number of walks of any short length in Ψ, whose starting pk ´ 1q-
tuple is rightconnectable and whose ending pk ´ 1q-tuple is leftconnectable. Later we will
use these walks in the proof of the Connecting Lemma thus gaining control over the length
of the connections modulo k.

Lemma 2.27. For k ě 2 and α ą 0 let Ψ be a k-uniform pα, α9 q-constellation. Provided
that |V pΨq| ě k2

α
, there are for every positive integer r at least 1

3r`1 |V pΨq|r`k´1 walks
x1x2 . . . xr`k´1 of length r in HpΨq starting with a 1

k3r`1 -rightconnectable pk ´ 1q-tuple
px1, . . . , xk´1q and ending with a 1

k3r`1 -leftconnectable pk ´ 1q-tuple pxr`1, . . . , xr`k´1q.

Proof. Consider the auxiliary k-partite k-uniform hypergraph A whose vertex classes
V1, . . . , Vk are copies of V pΨq and whose edges tx1, . . . , xku P EpA q with

x1 P V1, . . . , xk P Vk

signify that
(1 ) tx1, . . . , xku P EpΨq,
(2 ) x1x2 P EpR

Ψ
x3...xk

q,
(3 ) and xr`k´2xr`k´1 P EpR

Ψ
xr...xr`k´3

q,
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where the indices in (3 )(3 ) are to be read modulo k.
In view of |V pΨq| ě k2

α
and δk´2pHpΨqq ě

`5
9 ` α

˘

|V pΨq|2
2 there are at least

p|V pΨq| ´ kqk´2
¨

´5
9 ` α

¯

|V pΨq|2 ě 5
9 |V pΨq|

k

possibilities px1, . . . , xkq P V1ˆ¨ ¨ ¨ˆVk satisfying (1 )(1 ). Among them, there are by Fact 2.232.23
at most 1

9 |V pΨq|
k violating (2 )(2 ) and at most the same number violating (3 )(3 ). Consequently,

epA q ě 1
3 |V pΨq|

k and Lemma 2.82.8 applied to A and d “ 1
3 shows that there are at least

1
3r |V pΨq|

r`k´1 walks

x1x2 . . . xr`k´1

of length r in A with x1 P V1, . . . , xk P Vk. Among them, there are by (2 )(2 ) and Lemma 2.192.19
applied to ζ “ 1

k3r`1 at most

k ´ 2
k3r`1 |V pΨq|

r`k´1
ă

1
3r`1 |V pΨq|

r`k´1

walks for which px1, . . . , xk´1q fails to be 1
k3r`1 -rightconnectable. Similarly (3 )(3 ) and

Lemma 2.192.19 ensure that at most 1
3r`1 |V pΨq|r`k´1 of our walks have the defect that

pxr`1, . . . , xr`k´1q fails to be 1
k3r`1 -leftconnectable. This leaves us with at least

´ 1
3r ´

2
3r`1

¯

|V pΨq|r`k´1
“
|V pΨq|r`k´1

3r`1

walks of the desired form. �

Corollary 2.28. Given k ě 2 and α ą 0 let Ψ be a k-uniform pα, α9 q-constellation. If Ψ
has at least k2

α
vertices, then the number of its 1

9k -bridges is at least
1
9 |V pΨq|

k.

Proof. Plug r “ 1 into Lemma 2.272.27. �

The following lemma builds a device that will assist us in the inductive proof of the
Connecting Lemma in the next section.

Lemma 2.29. Given k ě 4, α ą 0, and ζ P
`

0, 1
3k`2

‰

, there exists an integer n0 such that
the following holds for every k-uniform pα, α10q-constellation Ψ on n ě n0 vertices.

If two subsets U,W Ď V pΨq satisfy |U |, |W | ě ζn, then there are at least ζ3n2k´2

p2k ´ 2q-tuples pu, q1, . . . , q2k´4, wq P V pΨq2k´2 such that

(i ) u P U and w P W are distinct,
(ii ) q1 . . . q2k´4 is a walk in HpΨuwq,
(iii ) pq1, . . . , qk´2q is ζ3-rightconnectable in Ψu,
(iv ) and pqk´1, . . . , q2k´4q is ζ3-leftconnectable in Ψw.
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Proof. Assuming that n0 has been chosen sufficiently large for the subsequent arguments,
we commence by considering the p2k ´ 2q-tuples pu, q1, . . . , q2k´4, wq P V pΨq2k´2 satisfy-
ing (i )(i ), (ii )(ii ) as well as the conditions

(v ) pq1, . . . , qk´3q is ζ3-rightconnectable in Ψuw,
(vi ) pqk, . . . , q2k´4q is ζ3-leftconnectable in Ψuw.

First of all, by |U |, |W | ě ζn and n ě n0 ě 2{ζ there are at least 1
2ζ

2n2 pairs pu,wq in
U ˆW with u ‰ w. For each of these pairs Fact 2.262.26 tells us that Ψuw is a pk´ 2q-uniform
pα, α9 q-constellation. Applying the case r “ k ´ 1 of Lemma 2.272.27 to this constellation we
learn that the number of p2k ´ 4q-tuples pq1, . . . , q2k´4q P V pΨuwq

2k´4 obeying (ii )(ii ), (v )(v ),
and (vi )(vi ) is at least 1

3k pn´ 2q2k´4 ě 6
3k`2n

2k´4 ě 6ζn2k´4.
Summarising, the number of p2k ´ 2q-tuples pu, q1, . . . , q2k´4, wq satisfying (i )(i ), (ii )(ii ), (v )(v ),

and (vi )(vi ) is at least 1
2ζ

2n2 ¨ 6ζn2k´4 “ 3ζ3n2k´2. So it suffices to prove that among all
p2k ´ 2q-tuples pu, q1, . . . , q2k´4, wq P V pΨq2k´2 there are

(1 ) at most ζ3n2k´2 with (ii )(ii ), (v )(v ),  (iii )(iii )
(2 ) and at most ζ3n2k´2 with (ii )(ii ), (vi )(vi ),  (iv )(iv ).

For reasons of symmetry we only need to establish (2 )(2 ). To this end it is enough to check
that for fixed vertices w, q1, . . . , q2k´4 P V pΨq the number of vertices u such that

‚ tu, qk´1, . . . , q2k´4u P EpΨwq ,
‚ (vi )(vi ), but  (iv )(iv ).

is at most ζ3n. Now by Definition 2.142.14, the first bullet, and (vi )(vi ) these vertices satisfy
u P UΨw

pqk´1,...,q2k´4q
and by  (iv )(iv ) the latter set has size at most ζ3|V pΨwq|. �

The last lemma of this subsection will help us to exchange arbitrary vertices by ‘ab-
sorbable’ ones in Section 55. Roughly speaking it asserts that for µ ! α, k´1, with few
exceptions, the links of two vertices in a k-uniform pα, µq-constellation intersect in a
substantial number of connectable pk ´ 1q-tuples.

Lemma 2.30. Given k ě 3 and α ą 0 set µ “ 1
10k

`

α
2

˘2k´3`1. If Ψ denotes a k-uniform
pα, µq-constellation on n vertices and ζ ą 0 is arbitrary, then there is a set X Ď V pΨq of
size |X| ď ζ

µ
n such that for every a P V pΨq and every x P V pΨqr pX Ytauq the number of

ζ-connectable pk ´ 1q-tuples px1, . . . , xk´1q with tx1, . . . , xk´1u P EpΨaq XEpΨxq is at least
µ|V pΨq|k´1 .

Proof. Set

η “
1
10

´α

2

¯2k´3

(2.7)
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and V “ V pΨq. Since µ “ αη
2k , we have

max
!2µ
α
, 2kµ

)

ď η . (2.8)

The choice of X. With every x P V we shall associate two exceptional sets, the idea
being that on average these sets can be proved to be small. So there will only be few
vertices for which one of the exceptional sets is very large and these ‘unpleasant vertices’
will form the set X. For every vertex not belonging to X, we will then be able to show that
its link constellation intersect the link constellations of all other vertices in the desired way.

For an arbitrary x P V the first of the exceptional sets Ax consists of all pk ´ 1q-tuples
px1, . . . , xk´1q P V

k´1 satisfying

‚ tx1, . . . , xk´1, xu P EpΨq
‚ and x1 P V pR

Ψ
x3...xk´1x

q

‚ that fail to be ζ-rightconnectable in Ψ.

We would like to point out that the second bullet does not involve the vertex x2. Moreover,
in the special case k “ 3 the condition just means that x1 P V pR

Ψ
x q.

The second exceptional set Bx comprises all p2k´4q-tuples px1, . . . , xk´1, xk`1, . . . , x2k´3q

in V 2k´4 such that

‚ x1 . . . xk´1xxk`1 . . . x2k´3 is a walk in HpΨq
‚ and xk´1 P V pR

Ψ
xxk`1...x2k´3

q,
‚ for which px1, . . . , xk´1q fails to be ζ-leftconnectable in Ψ.

Now we define

X 1
“
 

x P V : |Ax| ą 2kµ|V |k´1( ,

X2
“
 

x P V : |Bx| ą 2kµ|V |2k´4(,

and set X “ X 1 YX2. By Lemma 2.192.19 and double counting we have

2kµ|X 1
||V |k´1

ď
ÿ

xPX 1

|Ax| ď pk ´ 2qζ|V |k ,

whence |X 1| ď
ζ

2µ |V |. Similarly, Lemma 2.202.20 yields

2kµ|X2
||V |2k´4

ď
ÿ

xPX2

|Bx| ď pk ´ 2qζ|V |2k´3 ,

which shows that |X2| ď
ζ

2µ |V | holds as well. Altogether we arrive at the desired estimate

|X| ď |X 1
| ` |X2

| ď
ζ

µ
|V | .
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For the rest of the proof we fix two distinct vertices a, x P V with x R X. We are to
show that the number of ζ-connectable pk ´ 1q-tuples px1, . . . , xk´1q such that

tx1, . . . , xk´1u P EpΨaq X EpΨxq

is at least µ|V |k´1. The smallest case k “ 3 receives a separate treatment.

The special case k “ 3. We know that both of the graphs HpΨaq and HpΨxq have at
least

`5
9 ` α

˘

n2

2 edges and thus they have at least
`1

9 ` 2α
˘

n2

2 edges in common. Owing to
Fact 2.232.23 this shows that HpΨaq and RΨ

x have at least αn2 common edges or, in other words,
that there are at least 2αn2 ordered pairs px1, x2q such that x1x2 P EpΨaq X EpR

Ψ
x q. Due

to |Ax| ď 6µn2 at most 6µn2 of these pairs fail to be ζ-rightconnectable. By symmetry, at
most the same number of pairs under consideration fails to be ζ-leftconnectable. Altogether,
this demonstrates that among the ordered pairs px1, x2q with x1x2 P EpΨaq X EpΨxq there
are at least p2α ´ 12µqn2 which are ζ-connectable. Because of µ “ α2

120 ă
α
7 this is more

than what we need.

The general case k ě 4. Our first goal is to count ζ-leftconnectable pk´ 1q-tuples in the
intersection of HpΨaq and HpΨxq that satisfy a certain minimum degree condition.

Claim 2.31. The number of ζ-leftconnectable pk ´ 1q-tuples px1, . . . , xk´1q such that
(1 ) tx1, . . . , xk´1u P EpΨaq X EpΨxq

(2 ) and dpx2, . . . , xk´1, xq ě
n´2

3

is at least 3ηnk´1.

Proof. For every vertex xk´1 P V r ta, xu we apply Lemma 2.72.7 to the pk ´ 2q-uniform
hypergraphs HpΨxxk´1q and HpΨaxk´1q. This yields a lower bound on the number of
p2k ´ 4q-tuples

px1, . . . , xk´1, xk`1, . . . , x2k´3q P V
2k´4

such that
(a ) x1 . . . xk´1xxk`1 . . . x2k´3 is a walk in HpΨq
(b ) tx1, . . . , xk´1u P EpΨaq

(c ) dpx2, . . . , xk´1, xq ě
n´2

3

(d ) and dpxk´1, x, xk`1, . . . , x2k´3q ě
n´2

3 .
Notably, there are n´ 2 possibilities for xk´1 and for each of them Lemma 2.72.7 yields

´α

2

¯2pk´2q´1

n2pk´2q´1 (2.72.7)
“ 10ηn2k´5

possibilities for remaining 2k ´ 5 vertices. Therefore the number of p2k ´ 4q-tuples

px1, . . . , xk´1, xk`1, . . . , x2k´3q P V
2k´4

satisfying (a )(a ) – (d )(d ) is at least 10ηpn´ 2qn2k´5.
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Because of the minimum pk ´ 2q-degree condition Ψ needs to have at least one edge,
whence n ě k ě 4. As this implies n ´ 2 ě 1

2n, the total number of p2k ´ 4q-tuples
satisfying (a )(a ) – (d )(d ) is at least 5ηn2k´4.

In view of (d )(d ) and Fact 2.242.24 applied to tx, xk`1, . . . , x2k´3u here in place of x there we
know that all but at most 2µ

α
n2k´4 of these p2k ´ 4q-tuples satisfy

(e ) xk´1 P V pR
Ψ
xxk`1...x2k´3

q.

Now x R X2 yields |Bx| ď 2kµn2k´4. So at most 2kµn2k´4 of the p2k ´ 4q-tuples
satisfying (a )(a ) and (e )(e ) violate

(f ) px1, . . . , xk´1q is ζ-leftconnecctable.

Summarising, the number of p2k ´ 4q-tuples satisfying (a )(a ) – (f )(f ) is at least

p5η ´ 2µ
α
´ 2kµqn2k´4 (2.82.8)

ě 3ηn2k´4 .

Ignoring the vertices xk`1, . . . , x2k´3 as well as the conditions (d )(d ), (e )(e ) we arrive at the
desired conclusion. �

Now we keep working with the ζ-leftconnectable pk ´ 1q-tuples satisfying (1 )(1 ) and (2 )(2 )
obtained in Claim 2.312.31. According to (2 )(2 ) and Fact 2.242.24 applied tx3, . . . , xk´1, xu here in
place of x there all but at most 2µ

α
nk´1 of them have the property

(3 ) x2 P V pR
Ψ
x3...xk´1x

q.

Moreover, by Definition 2.222.22 (b )(b ) applied to the pk ´ 2q-set tx3, . . . , xk´1, xu at most µnk´1

tuples of length k ´ 1 satisfy (1 )(1 ) and (3 )(3 ) but not

(4 ) x1 P V pR
Ψ
x3...xk´1x

q.

Finally, x R X 1 implies |Ax| ď 2kµnk´1, so among the ζ-leftconnectable pk ´ 1q-tuples
satisfying (1 )(1 ) – (4 )(4 ) there are at most 2kµnk´1 for which

(5 ) px1, . . . , xk´1q is ζ-rightconnectable

fails. In particular, the number of ζ-leftconnectable pk ´ 1q-tuples px1, . . . , xk´1q with (1 )(1 )
and (5 )(5 ) is at least

ˆ

3η ´ 2µ
α
´ µ´ 2kµ

˙

nk´1 (2.82.8)
ě µnk´1 .

Altogether this shows that the number of pk´1q-tuples px1, . . . , xk´1q that are ζ-leftconnect-
able, ζ-rightconnectable, and satisfy tx1, . . . , xk´1u P EpΨaq X EpΨxq is at least µnk´1. In
view of Definition 2.162.16(b )(b ) this concludes the proof of Lemma 2.302.30. �

The ‘connectable’ edges in EpΨaq X EpΨxq considered in the previous lemma can be
used to build paths.
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Corollary 2.32. For given k ě 3 and α ą 0 there exists a natural number n0 such that
if µ “ 1

10k

`

α
2

˘2k´3`1, Ψ is a k-uniform pα, µq-constellation on n ě n0 vertices, and ζ ą 0
then there exists a set X Ď V pΨq with |X| ď ζ

µ
n such that the following holds. For every

a P V pΨq and every x P V pΨqr pXYtauq the number of pk´1q-uniform paths b1b2 . . . b2k´2

in HpΨaq XHpΨxq such that pb1, . . . , bk´1q and pbk, . . . , b2k´2q are ζ-connectable in Ψ is at
least 1

2µ
kn2k´2.

Proof. LetX be the set produced by Lemma 2.302.30. Consider two distinct vertices a, x P V pΨq
with x R X. Form an auxiliary pk ´ 1q-partite pk ´ 1q-uniform hypergraph

B “ pV1 Ÿ . . . Ÿ Vk´1, EBq

whose vertex classes are k´ 1 disjoint copies of V pΨq and whose edges tv1, . . . , vk´1u P EB

with vi P Vi for i P rk ´ 1s correspond to ζ-connectable pk ´ 1q-tuples pv1, . . . , vk´1q such
that tv1, . . . , vk´1u P EpΨaq X EpΨxq.

Lemma 2.302.30 tells us that
|EB| ě µnk´1 .

Thus Lemma 2.82.8 applied to B with pk ´ 1, µ, 2k ´ 2q here in place of pk, d, rq there yields
at least µkn2k´2 walks pb1, . . . , b2k´2q in B with b1 P V1, . . . , bk´1 P Vk´1. By the definition
of B each of these walks corresponds to a walk in HpΨaq XHpΨxq whose first and last
k ´ 1 vertices form a ζ-connectable pk ´ 1q-tuple in Ψ. At most Opn2k´3q of these walks
can have repeated vertices and, hence, there are at least

µkn2k´2
´Opn2k´3

q ě
µk

2 n
2k´2

paths of the desired from. �

2.5. On pα, β, `, µq-constellations. This subsection is dedicated to pα, µq-constellations Ψ
whose distinguished graphs RΨ

x have the robustness property delivered by Proposition 2.22.2.

Definition 2.33. Let k ě 2, α, β, µ ą 0 and let ` ě 3 be odd. A k-uniform constellation Ψ
is said to be an pα, β, `, µq-constellation if

(a ) it is an pα, µq-constellation,
(b ) and for all x P V pΨqpk´2q and all distinct y, z P V pRΨ

x q the number of y-z-paths
in RΨ

x of length ` is at least β|V pΨq|`´1.

The main result of this subsection shows how to expand sufficiently large k-uniform
hypergraphs whose minimum pk´ 2q-degree is at least

`5
9 `α

˘

n2

2 for appropriate choices of
the parameters to such pα, β, `, µq-constellations. Essentially, the proof of this observation
proceeds by applying Proposition 2.22.2 to all link graphs.
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Fact 2.34. For all k ě 2 and α, µ ą 0 there exist β “ βpα, µq ą 0 and an odd integer
` “ `pα, µq ě 3 such that for sufficiently large n every k-uniform n-vertex hypergraph H
with δk´2pHq ě

`5
9 ` α

˘

n2

2 expands to an pα, β, `, µq-constellation.

Notice that this result is the reason why the study of pα, β, `, µq-constellations conducted
in the subsequent sections sheds light on Theorem 1.21.2.

Proof of Fact 2.342.34. For α and µ Proposition 2.22.2 delivers some constant β1 ą 0 and an odd
integer ` ě 3. We contend that β “ p2{3q`´1β1 and ` have the desired property.

To see this, we consider a sufficiently large k-uniform hypergraph H on n vertices
satisfying δk´2pHq ě

`5
9 ` α

˘

n2

2 . For every x P V pHqpk´2q Proposition 2.22.2 applies to the
link graph Hx and yields a pβ1, `q-robust induced subgraph Rx Ď Hx satisfying

(i ) |V pRxq| ě
`2

3 `
α
2

˘

n

(ii ) and eHxpV pRxq, V pHqr V pRxqq ď µn2.

We shall show that

Ψ “
`

H,
 

Rx : x P V pHqpk´2q(˘

is the desired pα, β, `, µq-constellation. By Definition 2.222.22 and (i )(i ), (ii )(ii ) above, Ψ is an
pα, µq-constellation, meaning that part (a )(a ) of Definition 2.332.33 holds.

Moving on to the second part we fix an arbitrary pk ´ 2q-set x Ď V pHq as well as two
distinct vertices y, z of Rx. Since Rx is pβ1, `q-robust, the number of y-z-paths in Rx of
length ` is indeed at least

β1|V pRxq|
`´1

(i )(i )
ě

´3
2

¯`´1
β ¨

´2
3 `

α

2

¯`´1
n`´1

ě βn`´1 . �

The remainder of this subsection deals with the question to what extent being an
pα, β, `, µq-constellation is preserved under taking link constellations and removing a small
proportion of the vertices. Let us observe that if Ψ denotes a k-uniform pα, β, `, µq-
constellation, then for each x P V pΨqpk´2q the vertices in x are isolated in Hx, which by
Definition 2.332.33 (b )(b ) implies that they cannot be vertices of RΨ

x . Thus we have V pRΨ
x qXx “ ∅

for each x P V pΨqpk´2q.
Let us now consider for some S Ď V pΨq of size |S| ď k ´ 2 the pk ´ |S|q-uniform

link constellation ΨS. For every x P V pΨSq
pk´2´|S|q we have RΨS

x “ RΨ
SYx r S “ RΨ

SYx.
Therefore, ΨS inherits the property in Definition 2.332.33 (b )(b ) from Ψ and together with
Fact 2.262.26 this leads to the following conclusion.

Fact 2.35. Given k ě 2, α, β ą 0, µ1 ą µ ą 0 and an odd integer ` ě 3, there exists a
natural number n0 such that the following holds.
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If Ψ is a k-uniform pα, β, `, µq-constellation with at least n0 vertices and S Ď V pΨq
consists of at most k ´ 2 vertices, then the pk ´ |S|q-uniform link constellation ΨS is an
pα, β, `, µ1q-constellation. �

Next we deal with a similar result allowing vertex deletions as well.

Lemma 2.36. Given k ě 2, α, β, µ ą 0 and an odd integer ` ě 3 set

ϑ “ min
!α

4 ,
β

2`

)

,

and let Ψ be a k-uniform pα, β, `, µq-constellation on n ě 6k vertices. If S,X Ď V pΨq are
disjoint, |S| ď k ´ 2, and |X| ď ϑn, then ΨS ´X is an

`

α
2 ,

β
2 , `, 2µ

˘

-constellation.

Proof. Let Ψ “
`

H,
 

Rx : x P V pHqpk´2q(˘ be a k-uniform pα, β, `, µq-constellation on
n ě 6k vertices. Recall that this means

δk´2pHq ě
´5

9 ` α
¯n2

2 , (2.9)

and that for every x P V pΨqpk´2q the graph Rx Ď Hx has the following properties:

(i ) |V pRxq| ě
`2

3 `
α
2

˘

n,
(ii ) eHx

`

V pRxq, V pΨqr V pRxq
˘

ď µn2,
(iii ) and for all distinct y, z P V pRxq the number of y-z-paths in Rx of length ` is at

least βn`´1.

Further, let S,X Ď V pΨq be any disjoint sets such that |S| ď k ´ 2 and |X| ď ϑn. We
are to prove that

Ψ‹ “ ΨS ´X “
`

HS ´X,
 

RxYS ´X : x P
`

V pHqr pS YXq
˘pk´2´|S|q(˘

is a pk´ |S|q-uniform
`

α
2 ,

β
2 , `2µ

˘

-constellation, i.e., that its underlying hypergraph satisfies
an appropriate minimum degree conditions and that the distinguished subgraphs of its
link graphs have properties analogous to (i )(i ) – (iii )(iii ).

Because of

δk´|S|´2pHS ´Xq ě δk´2pH ´Xq ě
´5

9 ` α
¯n2

2 ´ |X|n

ě

´5
9 ` α

¯n2

2 ´ ϑn2
ě

´5
9 `

α

2

¯n2

2 ě

´5
9 `

α

2

¯

|V pΨ‹q|
2

2 ,

where we utilised ϑ ď α
4 in the penultimate step, the minimum degree of the hypergraph

HpΨ‹q “ HS ´X is indeed as large as we need it to be.
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Now let x P
`

V pΨ‹q
˘pk´2´|S|q be arbitrary. Since x Ÿ S P

`

V pΨq rX
˘pk´2q, the above

statement (i )(i ) entails

|V pRΨ‹
x q| “ |V pRxYS ´Xq| ě

´2
3 `

α

2

¯

n´ |X|

ě

´2
3 `

α

2

¯

n´ ϑn ě
´2

3 `
α

4

¯

n ě
´2

3 `
α

4

¯

|V pΨ‹q| ,

which shows that the required variant of (i )(i ) holds for Ψ‹.
Next, the graph HpΨ‹qx “ pHS ´Xqx is a subgraph of HxYS, so (ii )(ii ) tells us that

eHpΨ‹qx
`

V pRΨ‹
x q, V pΨ‹qr V pRΨ‹

x q
˘

ď eHxYS
`

V pRxYSq, V pΨqr V pRxYSq
˘

ď µn2 .

From ϑ ď α
4 ď

1
9 and n ě 6k we conclude

|V pΨ‹q| “ n´ |X| ´ |S| ě
´

1´ 1
9 ´

1
6

¯

n “
13
18n ą

n
?

2
and thus we arrive indeed at

eHpΨ‹qx
`

V pRΨ‹
x q, V pΨ‹qr V pRΨ‹

x q
˘

ď 2µ|V pΨ‹q|
2 ,

which concludes the proof that the appropriate modification of (ii )(ii ) holds for Ψ‹. Altogether,
we have thereby shown that Ψ‹ is an

`

α
2 , 2µ

˘

-constellation.
Finally we consider distinct vertices y, z P V pRxYS ´Xq and recall that by (iii )(iii ) above

the number of y-z-paths in RxYS is at least βn`´1. At most p`´1q|X|n`´2 ď β
2n

`´1 of these
paths can have an inner vertex in X and, consequently, RxYS ´X contains at least β

2n
`´1

such paths. Therefore Ψ‹ is indeed an
`

α
2 ,

β
2 , `, 2µ

˘

-constellation. �

§3. The Connecting Lemma

In this section we establish the Connecting Lemma (Proposition 3.33.3). Given an pα, β, `, µq-
constellation with appropriate parameters this result allows us to connect every leftcon-
nectable pk ´ 1q-tuple to every rightconnectable pk ´ 1q-tuple by means of a short path.
In the course of proving Theorem 1.21.2 the Connecting Lemma gets used Ωpnq times and,
essentially, it allows us to convert an almost spanning path cover into an almost spanning
cycle. For some reasons related to our way of employing the absorption method, it will turn
out to be enormously helpful later if we can guarantee that the number of left-over vertices
outside this almost spanning cycle is a multiple of k. There are several possibilities how
one might try to accomplish this and our approach is to prove a version of the Connecting
Lemma with absolute control over the length of the connecting path modulo k. When
closing the almost spanning cycle by means of a final application of the Connecting Lemma,
we will then be able to prescribe in which residue class modulo k the number of left-over
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vertices is going to be. (For a different way to handle such a situation we refer to recent
work of Schacht and his students [22]).

The following result is implicit in [1717, Proposition 2.6] and after stating it we shall briefly
explain how it can be derived from the argument presented there.
Proposition 3.1. Depending on α, β, ζ‹ ą 0 and an odd integer ` ě 3 there exist a constant
ϑ‹ “ ϑ‹pα, β, `, ζ‹q ą 0 and a natural number n0 with the following property.
If Ψ is a 3-uniform pα, β, `, α4 q-constellation on n ě n0 vertices, áa,

á

b P V pΨq2 are two
disjoint pairs of vertices such that áa is ζ‹-leftconnectable and

á

b is ζ‹-rightconnectable, then
the number of áa-

á

b -paths in HpΨq with 3`` 1 inner vertices is at least ϑ‹n3``1. �

Observe that the Setup 2.4 we are assuming in [1717, Proposition 2.6] is tantamount to
an pα, β, `, α4 q-constellation. The connectabilty assumptions in [1717] are slightly different.
Writing áa “ px, yq we were using in the proof of [1717, Proposition 2.6] that a set called Uxy
there, and defined to consist of all vertices u with xy P EpRΨ

u q, has at least the size ζ|V pΨq|.
When working with vertices u P Uxy, however, we were only using y P V pRΨ

u q and
xyu P EpΨq. For this reason, the entire proof can also be carried out with the set
called UΨ

px,yq here, or in other words it suffices to suppose that áa is ζ-leftconnectable.
Similarly, we may assume that á

b is ζ-rightconnectable rather than being ζ-connectable in
the sense of [1717]. Now we introduce the function giving the number of inner vertices in our
connections.

Definition 3.2. Given integers k ě 3, 0 ď i ă k, and ` ě 3 we set

fpk, i, `q “ r4k´3
p2`` 4q ´ 2sk ` i .

We are now ready to state the k-uniform Connecting Lemma.

Proposition 3.3 (Connecting Lemma). For all k ě 3, α, β, ζ ą 0, and odd integers ` ě 3
there exist ϑ ą 0 and n0 P N with the following property.

If Ψ is a k-uniform pα, β, `, α
k`6q-constellation on n ě n0 vertices, áa,

á

b P V pΨqk´1 are
two disjoint pk ´ 1q-tuples such that áa is ζ-leftconnectable and

á

b is ζ-rightconnectable, and
0 ď i ă k, then the number of áa-

á

b-paths in HpΨq with f “ fpk, i, `q inner vertices is at
least ϑnf .

The proof of this result occupies the remainder of this section and before we begin
we provide a short overview over the main ideas. The plan is to proceed by induction
on k. When we reach a certain value of k, most of the work is devoted to showing the
weaker assertion pΦkq that there exists at least one number f‹ “ f‹pk, `q such that the
statement of the Connecting Lemma holds for connections with f‹ inner vertices. Once
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we know pΦkq the induction can be completed by putting short ‘connectable’ walks as
obtained by Lemma 2.272.27 in the middle and connecting them with two applications of pΦkq

to áa and á

b .
The proof of pΦkq itself is more complicated and starts by applying Lemma 2.292.29 to UΨ

áa

and UΨ
à

b
here in place of U andW there. This yields many p2k´2q-tuples pu, q1, . . . , q2k´4, wq

in V pΨq2k´2 which, after some reordering, have good chances to end up being middle
segments of the desired connections. Applying the induction hypothesis to Ψu and Ψw

we can connect áa and á

b by many pk ´ 1q-uniform paths to these middle segments and it
remains to ‘augment’ these connections to k-uniform paths, which can be done by averaging
over many possibilities for u and w, respectively (see Figure 3.13.1).

Proof of Proposition 3.33.3. We proceed by induction on k, keeping α, β, and ` fixed.

Choice of constants. Due to monotonicity (see Fact 2.172.17) we may suppose that ζ ď 1
k32k .

By recursion on k ě 3 we define for every ζ P
`

0, 1
k32k

‰

a positive real number ϑpk, ζq.
Starting with k “ 3 we set

ϑp3, ζq “ ζ
`

ϑ‹pα, β, `, ζq
˘2 for ζ P

`

0, 3´7‰ ,

where ϑ‹pα, β, `, ζq is given by Proposition 3.13.1. For k ě 4 and ζ P
`

0, 1
k32k

‰

we stipulate

ϑpk, ζq “ ζ6s`1`ϑpk ´ 1, ζ3
q
˘4s

, where s “ 4k´4
p2`` 4q . (3.1)

Our goal is to prove the Connecting Lemma with 2ϑpk, ζq playing the rôle of ϑ.

The base case k “ 3. Suppose that Ψ is a sufficiently large 3-uniform pα, β, `, α9 q-
constellation, i P t0, 1, 2u, the pair áa “ pa1, a2q P V pΨq2 is ζ-leftconnectable, áb “ pb1, b2q is
ζ-rightconnectable, the four vertices a1, a2, b1, and b2 are distinct, and ζ ď 1

37 . Lemma 2.272.27
applied to p3, i ` 2q here in place of pk, rq there tells us that there are at least 1

3i`3n
i`4

walks x1 . . . xi`4 of length i` 2 in HpΨq whose starting pair px1, x2q is ζ-rightconnectable
and whose ending pair pxi`3, xi`4q is ζ-leftconnectable. Among these walks at least

´ 1
3i`3 ´

4pi` 4q
n

¯

ni`4
ą
ni`4

3i`4 ě
ni`4

36 ě 3ζni`4

avoid ta1, a2, b1, b2u.
Now for each of them two applications of Proposition 3.13.1 to the pα, β, `, α9 q-constellation Ψ

enable us to find in HpΨq at least ϑ‹n3``1 paths a1a2p1 . . . p3``1x1x2 and at least ϑ‹n3``1

paths xi`3xi`4r1 . . . r3``1b1b2 where ϑ‹ “ ϑ‹pα, β, `, ζq. Altogether, this reasoning leads to
at least 3ζϑ2

‹n
f walks

a1a2p1 . . . p3``1x1x2 . . . xi`3xi`4r1 . . . r3``1b1b2
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with f inner vertices, where

f “ 2p3`` 1q ` pi` 4q “ 6`` 6` i “ fp3, i, `q .

At most f 2nf´1 “ opnf q of these walks fail to be paths and thus the assertion follows.

Induction Step. Suppose k ě 4 and that the Connecting Lemma is already known
for k ´ 1 instead of k. Set

t “ 2kps´ 1q ` 2 and η “ ζ3s`ϑpk ´ 1, ζ3
q
˘2s

, (3.2)

where, let us recall, s “ 4k´4p2`` 4q was introduced in (3.13.1) while we chose our constants.
Following the plan outlined above, our first step is to prove a Connecting Lemma for
connections with t inner vertices.

Claim 3.4. For any two disjoint pk ´ 1q-tuples áa “ pa1, . . . , ak´1q and
á

b “ pb1, . . . , bk´1q

such that áa is ζ-leftconnectable and
á

b is ζ-rightconnectable, the number of áa-
á

b -walks with t
inner vertices in HpΨq is at least 2ηnt.

Proof. The connectability assumptions mean that the sets

U “ tu P V pΨq : a1 . . . ak´1u P EpΨq and pa2, . . . , ak´1q is ζ-leftconnectable in Ψuu

and

W “ tw P V pΨq : wb1 . . . bk´1 P EpΨq and pb1, . . . , bk´2q is ζ-rightconnectable in Ψwu

satisfy |U |, |W | ě ζn. Now by α
k`6 ď

α
10 and Fact 2.252.25 Ψ is an pα, α10q-constellation.

Combined with ζ ď 1
3k`2 and Lemma 2.292.29 this shows that the number of p2k ´ 2q-tuples

pu, áq , wq “ pu, q1, . . . , q2k´4, wq P U ˆ V pΨq2k´4
ˆW

such that

(a ) u ‰ w,
(b ) q1 . . . q2k´4 is a walk in HpΨuwq,
(c ) pq1, . . . , qk´2q is ζ3-rightconnectable in Ψu,
(d ) and pqk´1, . . . , q2k´4q is ζ3-leftconnectable in Ψw.

is at least ζ3n2k´2. For later reference we recall that u P U and w P W mean

(e ) pa2, . . . , ak´1q is ζ-leftconnectable in Ψu,
(f ) ta1, . . . , ak´1, uu P EpΨq,
(g ) pb1, . . . , bk´2q is ζ-rightconnectable in Ψw,
(h ) and tw, b1, . . . , bk´1u P EpΨq.
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Notice that by Fact 2.352.35 the link constellation of every vertex is a pk ´ 1q-uniform
pα, β, `, α

k`5q-constellation and that fpk ´ 1, 1, `q “ pk ´ 1qps ´ 2q ` 1. Now for every
p2k ´ 2q-tuple pu, áq , wq satisfying (a )(a ) – (h )(h ) we apply the induction hypothesis twice with
pζ3, 1q here in place of pζ, iq there. First, by (c )(c ) and (e )(e ) we can connect pa2, . . . , ak´1q to
pq1, . . . , qk´2q in Ψu, thus getting at least 2ϑpk ´ 1, ζ3qpn´ 1qpk´1qps´2q`1

(i ) walks a2 . . . ak´1p1 . . . ppk´1qps´2q`1q1 . . . qk´2 in Ψu

with fpk ´ 1, 1, `q inner vertices. Second, (d )(d ) and (g )(g ) allow us to connect pqk´1, . . . , q2k´4q

to pb1, . . . , bk´2q in Ψw by at least 2ϑpk ´ 1, ζ3qpn´ 1qpk´1qps´2q`1

(j ) walks qk´1 . . . q2k´4rpk´1qps´2q`1 . . . r1b1 . . . bk´2 in Ψw.
Altogether, the number of

`

pk ´ 1qp2s´ 2q ` 2
˘

-tuples

pu, áp, áq , ár , wq P U ˆ V pΨqpk´1qps´2q`1
ˆ V pΨq2k´4

ˆ V pΨqpk´1qps´2q`1
ˆW

with (a )(a ) – (j )(j ), where
áp “ pp1, . . . , ppk´1qps´2q`1q and ár “ prpk´1qps´2q`1, . . . , r1q ,

is at least 4ζ3`ϑpk ´ 1, ζ3q
˘2
pn´ 1qpk´1qp2s´4q`2n2k´2 ě 2ζ3`ϑpk ´ 1, ζ3q

˘2
npk´1qp2s´2q`2.

Roughly speaking, we plan to derive the áa-áb -paths we are supposed to construct from
these

`

pk ´ 1qp2s´ 2q ` 2
˘

-tuples by taking many copies of u and w and inserting them
in appropriate positions into páa, áp, áq , ár , ábq. To analyse the number of ways of doing this,
we consider the auxiliary 3-partite 3-uniform hypergraph A with vertex classes U‹, M ,
and W ‹, where U‹ and W ‹ are two disjoint copies of V pΨq, while M “ V pΨqpk´1qp2s´2q.

We represent the vertices in M as sequences
Ýám “ p

áp, áq , árq “ pp1, . . . , ppk´1qps´2q`1, q1, . . . , q2k´4, rpk´1qps´2q`1, . . . , r1q .

The edges of A are defined to be the triples tu, Ýám,wu with u P U Ď U‹, Ýám P M , and
w P W Ď W ‹, for which the

`

pk ´ 1qp2s ´ 2q ` 2
˘

-tuple pu, Ýám,wq satisfies (a )(a ) – (j )(j ). We
have just proved that

epA q ě 2ζ3`ϑpk ´ 1, ζ3
q
˘2
npk´1qp2s´2q`2

“ 2ζ3`ϑpk ´ 1, ζ3
q
˘2
|U‹||M ||W ‹

| . (3.3)

By the (ordered) bipartite link graph of a vertex Ýám PM we mean the set of pairs

AÝÝám “
 

pu,wq P U ˆW : uÝámw P EpA q
(

.

The convexity of the function x ÞÝÑ xs on Rě0 yields
ÿ

ÝÝámPM

|AÝÝám|
s
ě |M |

ˆ

epA q

|M |

˙s (3.33.3)
ě npk´1qp2s´2q`2ζ3`ϑpk ´ 1, ζ3

q
˘2
n2˘s

ě 2ζ3s`ϑpk ´ 1, ζ3
q
˘2s
nkp2s´2q`2 (3.23.2)

“ 2ηnt . (3.4)
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In other words, the number of t-tuples

p
áu, áp, áq , ár , áwq P U s

ˆ V pΨqpk´1qps´2q`1
ˆ V pΨq2k´4

ˆ V pΨqpk´1qps´2q`1
ˆW s

with
pu1, w1q, . . . , pus, wsq P AÝÝám ,

where
áu “ pu1, . . . , usq ,

áw “ pw1, . . . , wsq , and Ýám “ p
áp, áq , árq PM ,

is at least 2ηnt. So to conclude the proof of Claim 3.43.4 it suffices to show that for every
such t-tuple the sequence

a1 . . . ak´1u1p1 . . . pk´1u2pk . . . p2k´2u3 . . . us´2ppk´1qps´3q`1 . . . ppk´1qps´2qus´1ppk´1qps´2q`1

q1 . . . qk´2uswsqk´1 . . . q2k´4

rpk´1qps´2q`1ws´1rpk´1qps´2q . . . rpk´1qps´3q`1ws´2 . . . w3r2k´2 . . . rkw2rk´1 . . . r1w1b1 . . . bk´1

indicated in Figure 3.13.1 is an áa-áb -walk in HpΨq.

a1

b1

a2

b2

a3

b3

a4

b4

. . .

. . .
p1 p2 p3 p4 p5 p6 p7 p4s´8

r1 r2 r3 r4s´12 r4s´11 r4s´10 r4s´9 r4s´8 r4s´7

p4s´7

q5

q4

q6

ws

us

q3

q2

q1

w1 ws´2 ws´1

u1 u2 us´1

Figure 3.1. Connecting pa1, a2, a3, a4q and pb1, b2, b3, b4q in a 5-uniform
constellation.

We shall now argue that this follows from the fact that for each j P rss the condi-
tions (a )(a ) – (j )(j ) hold for uj and wj here in place of u and w there.

The first of the required edges is provided by the case u “ u1 of (f )(f ). Together with (i )(i )
this shows that the initial segment

a1a2 . . . ak´1u1p1 . . . pk´1u2pk . . . p2k´2u3 . . . us´2ppk´1qps´3q`1 . . . ppk´1qps´2q

us´1ppk´1qps´2q`1q1 . . . qk´2us
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is a walk in HpΨq. Similarly, by (h )(h ) and (j )(j ) the terminal segment

wsqk´1 . . . q2k´4rpk´1qps´2q`1ws´1rpk´1qps´2q . . . rpk´1qps´3q`1ws´2 . . . w3

r2k´2 . . . rkw2rk´1 . . . r1w1b1 . . . bk´2bk´1

is a walk in HpΨq. Finally, the middle part

q1 . . . qk´2uswsqk´1 . . . q2k´4

is a walk in HpΨq, because by (b )(b ) we know that q1 . . . q2k´4 is a walk in HpΨuswsq. �

Returning to the induction step, we consider i P t0, 1, . . . , k ´ 1u, a ζ-leftconnectable
pk ´ 1q-tuple áa P V pΨqk´1, and a ζ-rightconnectable pk ´ 1q-tuple á

b such that áa and á

b

have no vertices in common. Plugging r “ i ` k ´ 3 into Lemma 2.272.27 we obtain at
least 1

3i`k´2n
i`2k´4 walks x1 . . . xi`2k´4 of length i ` k ´ 3 in HpΨq that start with a

ζ-rightconnectable pk ´ 1q-tuple and end with a ζ-leftconnectable pk ´ 1q-tuple. Of these
walks, at least

´ 1
3i`k´2 ´

2pk ´ 1qpi` 2k ´ 4q
n

¯

ni`2k´4
ą
ni`2k´4

3i`k´1 ą
ni`2k´4

32k ą ζni`2k´4

have no common vertices with áa and á

b . For each such walk, Claim 3.43.4 tells us that we can
connect áa to px1, . . . , xk´1q in at least 2ηnt ways by a walk with t inner vertices, and the
same applies to connections from pxi`k´2, . . . , xi`2k´4q to

á

b .
Altogether this reasoning leads to 4ζη2nf “ 4ϑpk, ζqnf walks in HpΨq from áa to á

b

with f inner vertices, where

f “ 2t` pi` 2k ´ 4q “ 2p2ks´ 2k ` 2q ` pi` 2k ´ 4q

“ p4s´ 2qk ` i “ r4k´3
p2`` 4q ´ 2sk ` i “ fpk, i, `q .

As usual, at most Opnf´1q of these walks can fail to be paths. So, in particular, there
exist at least 2ϑpk, ζqnf paths from áa to á

b possessing f inner vertices. This completes the
induction step and, hence, the proof of the Connecting Lemma. �

§4. Reservoir Lemma

In this section we discuss a standard device occurring in many applications of the
absorption method: the reservoir. The problem addressed by the Reservoir Lemma is that
while the Connecting Lemma delivers many connections for any two disjoint connectable
pk´ 1q-tuples, it gives us no control where the inner vertices of these connections are. Thus
it might happen that each of these connections has an inner vertex which is ‘unavailable’
to us, because we already assigned a different rôle to it in the Hamiltonian cycle we are
about to construct. To avoid this problem, one fixes a small random subset of the vertex
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set, called the reservoir, and decides that the vertices in the reservoir will only be used for
the purpose of connecting pairs of pk ´ 1q-tuples by means of short paths.

Proposition 4.1 (Reservoir Lemma). Suppose that k ě 3, α, β, ξ, ζ‹‹ ą 0, and that ` ě 3
is an odd integer. If ϑ‹‹ “ ϑpk, α, β, `, ζ‹‹q is provided by Proposition 3.33.3, then there exists
some n0 P N such that for every k-uniform pα, β, `, α

k`6q-constellation Ψ on n ě n0 vertices
there exists a subset R Ď V pΨq with the following properties.

(i ) We have 1
2ξn ď |R| ď ξn.

(ii ) For all pairs of disjoint pk´ 1q-tuples áa,
á

b P V pΨqk´1 such that áa is ζ‹‹-leftconnect-
able and

á

b is ζ‹‹-rightconnectable in Ψ, and for every i P r0, kq, the number of
áa-

á

b -paths in HpΨq with f “ fpk, i, `q inner vertices all of which belong to R is at
least 1

2ϑ‹‹|R|
f .

Since the proof of this result is quite standard, we will only provide a brief sketch here.
It suffices to prove that the binomial random subset R Ď V pΨq including every vertex
independently with probability 3

4ξ a.a.s. has the properties (i )(i ) and (ii )(ii ). Now (i )(i ) is a
straightforward consequence of Chernoff’s inequality. As there are only polynomially many
possibilities for páa, áb , iq in (ii )(ii ), it suffices to show that for each of them the probability
that there are fewer than 1

2ϑ‹‹|R|
f paths of the desired form is at most exp

`

´Ωpnq
˘

.
This can in turn be established by applying the Azuma-Hoeffding inequality to the at
least ϑ‹‹nf such paths in V pΨqf delivered by Proposition 3.33.3. For further details we refer
to [1515, Proposition 4.1], where we gave a full account of the argument for k “ 4.

Let us emphasise again that the set R provided by Proposition 4.14.1 is called the reservoir.
The connections in (ii )(ii ) whose inner vertices belong to R are called paths through R.

In the proof of Theorem 1.21.2 we shall repeatedly connect suitable tuples through the
reservoir. Whenever such a connection is made, some of the vertices of the reservoir are
used and the part of R still available for further connections shrinks. Although the reservoir
gets used Ωp|V pΨq|q times, we shall be able to keep an appropriate version of property (ii )(ii )
of the reservoir intact throughout this process.

Corollary 4.2. Let a sufficiently large k-uniform pα, β, `, α
k`6q-constellation Ψ as well

as a reservoir R Ď V pΨq as in Proposition 4.14.1 be given. Moreover, let R1 Ď R be an
arbitrary set with |R1| ď

ξϑ‹‹
4kk`n. If áa,

á

b P V pΨqk´1 are two disjoint pk ´ 1q-tuples such
that áa is ζ‹‹-leftconnectable and

á

b is ζ‹‹-rightconnectable, then for every i P r0, kq there is
an áa-

á

b -path through R r R1 with fpk, i, `q inner vertices.



ON HAMILTONIAN CYCLES IN HYPERGRAPHS WITH DENSE LINK GRAPHS 33

Proof. Set f “ fpk, i, `q and recall that fpk, i, `q “ p4k´3p2` ` 4q ´ 2qk ` i ă 4k´2k`. So
the lower bound in Proposition 4.14.1 (i )(i ) together with the bound on |R1| yields

|R1
| ď

ϑ‹‹|R|
4k´1k`

ď
ϑ‹‹|R|

4f .

Consider all áa-áb -paths through R with f inner vertices. On the one hand, there are at
least ϑ‹‹

2 |R|
f of them due to Proposition 4.14.1 (ii )(ii ). On the other hand, there are at most

f |R1
||R|f´1

ď
ϑ‹‹
4 |R|

f

such paths having an inner vertex in R1. Consequently, at least ϑ‹‹
2 |R|

f ´ ϑ‹‹
4 |R|

f ą 0 of
our paths have all their inner vertices in R r R1. �

§5. The absorbing path

5.1. Overview. In this section we establish that for µ ! α every sufficiently large
pα, β, `, µq-constellation contains an absorbing path PA, whose main property is that it can
‘absorb’ an arbitrary but not too large set of vertices whose cardinality is a multiple of k.
Thus the problem of proving Theorem 1.21.2 gets reduced to the simpler task of finding an
almost spanning cycle containing the absorbing path and missing a number of vertices
that is divisible by k. In order to have a realistic chance to include the absorbing path into
such a cycle we make sure that its first and last pk ´ 1q-tuple is connectable. Moreover, we
will need to be able to work outside a forbidden ‘reservoir set’ that later will have been
selected in advance.

Proposition 5.1 (Absorbing Path Lemma). Given k ě 3, α ą 0, β ą 0, and an odd
integer ` ě 3 there exist constants ζ “ ζpα, kq, ϑ‹ “ ϑ‹pk, α, β, `, ζq ą 0 and an integer n0

with the following property.
Suppose that Ψ is a k-uniform pα, β, `, µq-constellation with µ “ 1

10k

`

α
2

˘2k´3`1 on n ě n0

vertices. If R Ď V pΨq with |R| ď ϑ2
‹n is arbitrary, then there exists a path PA Ď HpΨq´R

such that

(i ) |V pPAq| ď ϑ‹n,
(ii ) the starting and ending pk ´ 1q-tuple of PA are ζ-connectable,
(iii ) and for every subset Z Ď V pΨqrV pPAq with |Z| ď 2ϑ2

‹n and |Z| ” 0 pmod kq, there
exists a path Q Ď HpΨq with V pQq “ V pPAqYZ having the same end-pk´1q-tuples
as PA.

Our absorbers will be analogous to those in [1515] and we refer to [1515, Section 5.1] for
further motivation. Here we will only recall that the absorbers have two kinds of main
components reflecting the following observations.
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‚ A complete k-partite subhypergraph S of HpΨq whose vertex classes txi, xi`k, xi`2ku

are of size 3 (where i P rks) contains a spanning path P “ x1 . . . x3k. Moreover, S
also contains the path P 1 “ x1 . . . xkx2k`1 . . . x3k, which has the same first and last
pk ´ 1q-tuple as P . Thus if the absorbing path contains P 1 as a subpath but avoids
the vertices xk`1, . . . , x2k, then it can absorb these vertices simultaneously (see
Figure 5.1a5.1a). However, not every k-element subset of V pΨq is absorbable in this
manner.

‚ If the links of two vertices a and x intersect in a pk ´ 1q-uniform path b1 . . . b2k´2,
then we can form two k-uniform paths in HpΨq, namely Pa “ b1 . . . bk´1abk . . . b2k´1

and Px “ b1 . . . bk´1xbk . . . b2k´1 (see Figure 5.1b5.1b). Now if the absorbing path
contains Px, then we can remove x and insert a instead. We call such a structure
an pa, xq-exchanger.

Now the plan for absorbing an arbitrary set ta1, . . . , aku of k vertices is that we will find
an ‘absorbable’ set tx1, . . . , xku such that for every i P rks there is an pai, xiq-exchanger.
The main difficulty in executing this strategy is that we need to pay a lot of attention to
connectability issues, because ultimately we need to connect all parts of the absorbers we
are about to construct to the rest of the Hamiltonian cycle we intend to exhibit. For this
reason, the definition of absorbers reads as follows.

Definition 5.2. Suppose that k ě 3, α, µ, ζ ą 0, that Ψ is a k-uniform pα, µq-constellation,
and that áa “ pa1, . . . , akq P V pΨqk is a k-tuple consisting of distinct vertices. We say that

á

A “ páu, áx, áw,
á

b1, . . . ,
á

bkq P V pΨq2k
2`k

with áu “ pu1, . . . , ukq, áx “ px1, . . . , xkq, áw “ pw1, . . . , wkq, and
á

b i “ pbi1, . . . , bip2k´2qq for
i P rks is an páa, ζq-absorber in Ψ, if

(a ) all 2k2 ` k vertices of á

A are distinct and different from those in áa,
(b ) áuáx áw and áu áw are paths in HpΨq,
(c ) pu1, . . . , uk´1q is ζ-rightconnectable and pw2, . . . , wkq is ζ-leftconnectable in Ψ,
(d ) and for every i P rks the p2k´ 2q-tuple á

b i is a path in HpΨaiq XHpΨxiq whose first
and last pk ´ 1q-tuple is ζ-connectable in Ψ.

We conclude this subsection with an explicit description how these absorbers are going
to be utilised (see Figure 5.25.2). Suppose to this end that for some k-tuple áa “ pa1, . . . , akq

consisting of k distinct vertices and some páa, ζq-absorber páu, áx, áw, áb1, . . . ,
á

bkq it turns out
that the paths

áu áw and bi1 . . . bipk´1qxibik . . . bip2k´2q for i P rks (5.1)
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V1

V2

Vk´1

Vk

x1

x2

xk´1

xk

u1

u2

uk´1

uk

w1

w2

wk´1

wk

(a) The K
pkq
k p3q with two paths

a

x

(b) A 5-uniform pa, xq-exchanger

Figure 5.1. The building blocks of an absorber.

b11 . . . . . . b1p2k´2q b21 . . . . . . b2p2k´2q bk1 . . . . . . bkp2k´2q

x1 x2 xk

w1 w2 wk. . .

a1

u1

a2

u2

ak

uk

. . .

. . .
. . .

b11. . .
b1pk´1q b1k. . .

b1p2k´2q b21. . .
b2pk´1q b2k. . .

b2p2k´2q bk1. . .
bkpk´1q bkk. . .

bkp2k´2q

u1

a1

u2

a2

uk

ak

. . .

. . .

x1 xkx2. . .

w1 w2 . . . wk

Figure 5.2. Absorber for pa1, . . . , akq before and after absorption.

end up being subpaths of the absorbing path PA we are about to construct, while a1, . . . , ak

are not in V pPAq. We may then replace for each i P rks the path

bi1 . . . bipk´1qxibik . . . bip2k´2q by the path bi1 . . . bipk´1qaibik . . . bip2k´2q ,
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and then
áu áw by áuáx áw .

In this manner we transform PA into a new path Q with V pQq “ V pPAq Y ta1, . . . , aku

having the same first and last pk ´ 1q-tuple as PA. We say in this situation that Q arises
from PA by absorbing ta1, . . . , aku. The k ` 1 paths enumerated in (5.15.1) are called the
pre-absorption paths of the absorber páu, áx, áw, áb1, . . . ,

á

bkq. So there is one pre-absorption
path with 2k vertices, namely áu áw, and there are k pre-absorption paths with 2k´1 vertices
having a vertex xi in the middle.

5.2. Construction of the building blocks. We commence with the first part páu, áx, áwq
of our absorbers consisting of 3k vertices. As we have already indicated, we shall find
p3kq-tuples satisfying clause (b )(b ) of Definition 5.25.2 by looking for complete k-partite subhy-
pergraphs of HpΨq whose vertex classes are of size three.

Let us recall for this purpose that by a classic result of Erdős [66] the Turán density of every
k-partite k-uniform hypergraph vanishes. This means that, given a k-partite k-uniform
hypergraph F and a constant ε ą 0, every sufficiently large k-uniform hypergraph H

satisfying |EpHq| ě ε|V pHq|k contains a copy of F . Due to the so-called ‘supersaturation’
phenomenon later discovered by Erdős and Simonovits [77], the same assumption actually
implies that H contains Ω

`

|V pHq||V pF q|
˘

copies of F . For later reference, we record this
fact as follows.

Lemma 5.3. Given a k-partite k-uniform hypergraph F and ε ą 0, there are a constant
ξ ą 0 and a natural number n0 such that every k-uniform hypergraph H on n ě n0 vertices
with at least εnk edges contains at least ξn|V pF q| copies of F . �

We shall now apply this result to F “ K
pkq
k p3q, the complete k-partite hypergraph with

vertex classes of size 3, and to an auxiliary hypergraph whose edges are derived from
bridges. This will establish the following statement, whose conditions (i )(i ) and (ii )(ii ) coincide
with (b )(b ) and (c )(c ) from Definition 5.25.2.

Lemma 5.4. For every k ě 2 there exists ξ “ ξpkq ą 0 such that for every α ą 0 there is
an integer n0 with the following property.

For every k-uniform pα, α9 q-constellation Ψ on n ě n0 vertices the number of p3kq-tuples
p
áu, áx, áwq P V pΨqk ˆ V pΨqk ˆ V pΨqk such that writing áu “ pu1, . . . , ukq, áx “ px1, . . . , xkq,

and áw “ pw1, . . . , wkq

(i ) both áuáx áw and áu áw are k-uniform paths in Ψ,
(ii ) pu1, . . . , uk´1q is 1

9k -rightconnectable and pw2, . . . , wkq is 1
9k -leftconnectable in Ψ

is at least ξn3k.
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Proof. Throughout the argument we assume that ξ ! k´1 is sufficiently small and that
n0 " α´1, ξ´1 is sufficiently large. Let Ψ be a k-uniform pα, α9 q-constellation on n ě n0

vertices. Construct an auxiliary k-partite k-uniform hypergraph B “ pV1 Ÿ . . . Ÿ Vk, EBq

whose vertex classes are k disjoint copies of V pΨq and whose edges tv1, . . . , vku P EB with
vi P Vi for i P rks correspond to the 1

9k -bridges pv1, . . . , vkq of Ψ. Corollary 2.282.28 tells us
that

|EB| ě
1
9n

k
“

1
9kk |V pBq|

k .

So Lemma 5.35.3 applied to B and F “ K
pkq
k p3q leads to Ωpn3kq copies of Kpkq

k p3q in B,
where the implied constant only depends on k. In other words, for some constant ξ “ ξpkq

depending only on k there are at least ξn3k tuples páu, áx, áwq P V pΨqk ˆ V pΨqk ˆ V pΨqk

such that, writing áu “ pu1, . . . , ukq, áx “ px1, . . . , xkq, and áw “ pw1, . . . , wkq, we have a
copy of Kpkq

k p3q in B with ui, xi, wi P Vi for all i P rks. Clearly, these p3kq-tuples satisfy
the demand (i )(i ) of the lemma and, since áu and áw are 1

9k -bridges, they have property (ii )(ii )
as well (cf. Definition 2.212.21). �

Armed with this result and with Corollary 2.322.32 we can now prove that if ζ, µ ! α, k´1,
then for every k-tuple áa of distinct vertices from a sufficiently large pα, µq-constellation
the number of páa, ζq-absorbers is at least Ωpn2k2`kq.

Lemma 5.5. For every k ě 3 and α ą 0 there exist constants ζ “ ζpα, kq and ξ “ ξpα, kq

as well as an integer n0 with the following property.
If Ψ is a k-uniform pα, µq-constellation on n ě n0 vertices, where µ “ 1

10k

`

α
2

˘2k´3`1, and
áa P V pΨqk is an arbitrary k-tuple of distinct vertices, then the number of páa, ζq-absorbers
in Ψ is at least ξn2k2`k.

Proof. Starting with the constant ξ2 “ ξ2pkq ą 0 provided by Lemma 5.45.4 we set

ξ1 “
µk

2 , ζ “
ξ2µ

7k , and ξ “
1
4pξ

1
q
kξ2 (5.2)

and we suppose that n0 is sufficiently large.
In order to show that ζ and ξ have the desired property, we consider a k-uniform

pα, µq-constellation Ψ on n ě n0 vertices as well as a k-tuple áa “ pa1, . . . , akq P V pΨqk

consisting of distinct vertices. The set X Ď V pΨq delivered by Corollary 2.322.32 (with the
same meaning of Ψ, α, µ, and ζ as here) satisfies

|X| ď
ζ

µ
n

(5.25.2)
“

ξ2

7kn . (5.3)

By µ ď α
9 , ζ ď

1
9k , and monotonicity, Lemma 5.45.4 yields at least ξ2n3k paths páu, áx, áwq in

V pΨq3k with the properties (i )(i ) and (ii )(ii ) of that lemma. Since the number of these paths
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sharing a vertex with X Y ta1, . . . , aku can be bounded from above by

3kp|X| ` kqn3k´1 (5.35.3)
ď 3k ξ

2

7kn
3k
` 3k2n3k´1

ă
ξ2

2 n
3k ,

there are at least ξ2

2 n
3k such paths avoiding both X and áa. Now it suffices to establish

that each of them participates in at least 1
2pξ

1qkn2k2´2k absorbers.
For the rest of the proof we fix some such path páu, áx, áwq P V pΨq3k and, as usual, we write

áx “ px1, . . . , xkq. Now we apply Corollary 2.322.32 for every i P rks to the vertices ai and xi,
thus obtaining ξ1n2k´2 paths á

b i “ pbi1, . . . , bip2k´2qq P V pΨq2k´2 in HpΨaiq XHpΨxiq whose
first and last pk ´ 1q-tuples are ζ-connectable in Ψ. Altogether, this yields pξ1qkn2k2´2k

possibilities for páb1, . . . ,
á

bkq and for most of them p
áu, áx, áw,

á

b1, . . . ,
á

bkq is an páa, ζq-absorber.
The only exceptions occur when some of these 2k2 ` k vertices coincide, but this can
happen in at most p2k2 ` kqp2k2 ´ 2kqnp2k´2qk´1 ă 1

2pξ
1qkn2k2´2k ways. Thus páu, áx, áwq is

indeed extendable in at least 1
2pξ

1qkn2k2´2k distinct ways to an páa, ζq-absorber. �

5.3. Construction of the absorbing path. After these preparations the Absorbing
Path Lemma can be shown in a rather standard fashion. The argument starts by observing
that a random selection of p2k2 ` kq-tuples contains, with high probability, for every
k-tuple áa a positive proportion of páa, ζq-absorbers. Moreover, if we generate Θpnq such
random tuples with a small implied constant, then most of them will be disjoint to all
others and it remains to connect the paths they consist of by means of the Connecting
Lemma.

Proof of Proposition 5.15.1. Given to us are k ě 3, α, β ą 0, an odd integer ` ě 3, and
µ “ 1

10k

`

α
2

˘2k´3`1. Let ζ “ ζpα, kq ą 0 and ξ “ ξpα, kq ą 0 be the constants supplied by
Lemma 5.55.5, let ϑ “ ϑpk, α, β, `, ζq be provided by Proposition 3.33.3, define an auxiliary
constant by

γ “ min
! ξ

48k2M2 ,
ϑ

8kM2

)

, where M “ 4k´2k` ě 12k , (5.4)

and finally set
ϑ‹ “ 4kMγ .

We contend that ζ and ϑ‹ have the desired properties.
To verify this we consider a k-uniform pα, β, `, µq-constellation Ψ on n vertices, where n

is sufficiently large, as well as an arbitrary subset R Ď V pΨq whose size is at most ϑ2
‹n. Let

t “ 2k2
` k ă 3k2

be the length of our absorbers. Since the desired absorbing path needs to be disjoint to R,
only the absorbers avoiding R are relevant in the sequel. For every k-tuple áa P V pΨqk



ON HAMILTONIAN CYCLES IN HYPERGRAPHS WITH DENSE LINK GRAPHS 39

consisting of distinct vertices we denote the collection of appropriate absorbers by

A páaq “
 á

A P pV pΨqr Rqt : á

A is an páa, ζq-absorber
(

.

Lemma 5.55.5 tells us that the total number of páa, ζq-absorbers is at least ξnt and by
subtracting those which meet R we obtain

|A páaq| ě ξnt ´ t|R|nt´1
ě pξ ´ tϑ2

‹qn
t
ě
ξ

2n
t . (5.5)

Let

A “
ď

 

A páaq : áa P V pΨqk consists of k distinct vertices
(

Ď
`

V pΨqr R
˘t

be the set of all relevant absorbers. The probabilistic argument we have been alluding to
earlier leads to the following result.

Claim 5.6. There is a set B Ď A of mutually disjoint absorbers of size |B| ď 2γn
satisfying |A páaq XB| ě ϑ2

‹n for every k-tuple áa P V pΨqk consisting of distinct vertices.

Proof. Let Ap Ď A be a random subset including every absorber in A independently with
probability p “ γn1´t. As |Ap| is binomially distributed with expectation p|A | ď pnt “ γn,
Markov’s inequality yields

P
`

|Ap| ě 2γn
˘

ď P
`

|Ap| ě 2p|A |
˘

ď
1
2 . (5.6)

Next we observe that the set
 

t
á

A,
Ýá

A1u P A p2q : á

A and
Ýá

A1 share a vertex
(

of overlapping pairs of absorbers has at most the cardinality t2n2t´1. So the expected size
of its intersection with A p2q

p is at most p2t2n2t´1 “ γ2t2n. Since

γt ď 3k2γ ď 1
4ϑ‹ ,

a further application of Markov’s inequality reveals

P
´

ˇ

ˇ

 

t
á

A,
Ýá

A1u P A p2q
p : á

A and
Ýá

A1 share a vertex
(
ˇ

ˇ ě 1
4ϑ

2
‹n
¯

ď
1
4 . (5.7)

Finally, for every k-tuple áa P V pΨqk of distinct vertices the random variable |ApXA páaq|

is binomially distributed with expectation p|A páaq|. By (5.55.5) we know that

p|A páaq| ě
1
2γξn ě 24k2M2γ2n “ 3

2ϑ
2
‹n

and, therefore, Chernoff’s inequality yields

P
`

|Ap XA páaq| ď 5
4ϑ

2
‹n
˘

ď e´Ωpnq
ă

1
4nk .
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As there are at most nk possibilities for áa, the union bound leads to

P
`

|Ap XA páaq| ď 5
4ϑ

2
‹n holds for some áa

˘

ă
1
4 . (5.8)

Taken together, the probabilities estimated in (5.65.6) – (5.85.8) amount to less than 1. Thus
there exists a deterministic set B‹ Ď A of size |B‹| ď 2γn containing at most 1

4ϑ
2
‹n pairs

of overlapping absorbers and satisfying |B‹ XA páaq| ě 5
4ϑ

2
‹n for all k-tuples áa P V pΨqk of

distinct vertices.
Now it suffices to check that a maximal subcollection B Ď B‹ of mutually disjoint

absorbers has the desired properties. The upper bound |B| ď |B‹| ď 2γn is clear and due
to |B‹ r B| ď 1

4ϑ
2
‹n we have

|B XA páaq| ě 5
4ϑ

2
‹n´

1
4ϑ

2
‹n “ ϑ2

‹n

for every áa. �

It remains to connect the absorbers we have just selected into a path. Recall that every
member of B possesses k ` 1 pre-absorptions paths introduced in the last paragraph of
Subsection 5.15.1. Each of these paths has at most 2k vertices, starts with a ζ-rightconnectable
pk ´ 1q-tuple, and ends with a ζ-leftconnectable pk ´ 1q-tuple. In fact, most of the pre-
absorptions paths even have ζ-connectable end-tuples (see Definition 5.25.2 (d )(d )).

Setting r “ pk`1q|B| ď 4kγn, let P1, . . . , Pr be the pre-absorption paths of the absorbers
in B enumerated in such a way that the end-tuples of P1 and Pr are ζ-connectable. We
shall construct our absorbing path PA to be of the form

PA “ P1C1P2C2 . . . Pr´1Cr´1Pr ,

where C1, . . . , Cr´1 are connections that will be provided by Proposition 3.33.3. Since we
intend to use the Connecting Lemma with i “ 0, each of these connections is going to have

f “ fpk, 0, `q “ r4k´3
p2`` 4q ´ 2sk ďM ´ 2k

vertices, which will yield

|V pPAq| ď r
`

2k ` pM ´ 2kq
˘

“ rM ď 4kMγn . (5.9)

We will determine the connections C1, . . . , Cr´1 one by one. When choosing Cj for some
j P rr ´ 1s, the Connecting Lemma (Proposition 3.33.3) offers us at least ϑnf possible ways
to connect Pj with Pj`1 by means of a path with f inner vertices. As we need to avoid
both the already constructed parts of PA and the set R, there are at most

fp|R| ` 4kMγnqnf´1
ă pMϑ2

‹ ` 4kM2γqnf
(5.45.4)
ă 8kM2γnf

(5.45.4)
ď ϑnf
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potential connections we cannot use, and thus the choice of Cj is indeed possible. This
concludes the description of the construction of PA and it remains to check that the path
we just defined has all required properties.

Condition (i )(i ) follows from (5.95.9) and (ii )(ii ) is guaranteed by our choice of the enumeration
P1, . . . , Pr. For the proof of (iii )(iii ) we consider any set Z Ď V pΨq r V pPAq satisfying
|Z| ď 2ϑ2

‹n and |Z| ” 0 pmod kq. Let áa1, . . . ,
áaz P V pΨqk with z “ |Z|

k
ď ϑ2

‹n be disjoint
k-tuples with the property that every vertex from Z occurs in exactly one of them. By
Claim 5.65.6 we can find distinct absorbers á

A1, . . . ,
á

Az P B such that á

Aj is a páaj, ζq-absorber
for every j P rzs. It remains to utilise these absorbers one by one. �

§6. Covering

The aim of this section is to prove that under natural assumptions on the parameters
almost all vertices of every large k-uniform pα, β, `, µq-constellation can be covered by long
paths whose first and last pk ´ 1q-tuples are connectable. Before formulating the precise
statements let us give an overview of the argument, which will proceed by induction on k.

In the induction step from k´ 1 to k we study a largest possible collection C of mutually
vertex-disjoint M -vertex paths with connectable end-tuples and we denote the set of
currently uncovered vertices by U . If U is not small enough already, i.e., if |U | “ Ωp|V pΨq|q,
then we partition V pΨq into sets of size M , the so-called blocks, such that the vertex set of
each path in C is one such block. Next, we show by probabilistic arguments that there is
a special selection of M blocks, called a useful society below, such that their union S has
the property that for ‘many’ vertices u P U the induction hypothesis applies to ΨurSs. For
such vertices u we can then find M ` 1 (actually even more) long disjoint pk ´ 1q-uniform
paths in ΨurSs starting and ending with connectable pk ´ 2q-tuples.

In fact, for some still not too small set U2 Ď U 1 these paths will coincide for all u P U2,
meaning that inserting vertices from U2 at every kth position will yield M ` 1 paths in Ψ
with connectable end-tuples (see Figure 6.26.2). This allows us to take the original paths
contained in S out of C and to add the newly constructed paths instead, thus increasing
the size of C . The following covering principle lies at the heart of this inductive argument.

Definition 6.1. For k ě 3 the statement ♥k asserts that given α, β, ϑ‹ ą 0 and an odd
integer ` ě 3 there exists a constant ζ‹‹ ą 0 such that for every M0 P N there exist a
natural number M ěM0 with M ” ´1 pmod kq and the following property:

For every sufficiently large k-uniform pα, β, `, 4α
17k q-constellation Ψ we can cover all but

at most ϑ2
‹|V pΨq| vertices by mutually vertex-disjoint M -vertex paths whose first and

last pk ´ 1q-tuples are ζ‹‹-connectable.
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For the base case k “ 3 we quote [1515, Lemma 2.14]. One needs to be a little bit
careful here, because [1515] uses a slightly different notion of ζ‹‹-connectable pairs in
3-uniform hypergraphs. However, every pair that is ζ‹‹-connectable in the sense of [1515] is
ζ‹‹-connectable in the sense of Definition 2.162.16 as well and, therefore, [1515, Lemma 2.14] is
strictly stronger than ♥3.

Fact 6.2. The assertion ♥3 holds. �

There is one issue with the inductive proof of ♥k sketched above: when applying the
induction hypothesis to a pk ´ 1q-uniform constellation of the form ΨurSs, where S is the
vertex set of a useful society, we would prefer to get a covering of almost all vertices in S by
paths of length Ωp

a

|S|q rather than Ωp1q, but prima facie ♥k´1 does not seem to deliver
this. For this reason we also have to deal with the following statement capable of providing
coverings by very long paths.

Definition 6.3. For k ě 3 the covering principle ♠k asserts that given α, β, ξ ą 0 and an
odd integer ` ě 3, there exists an infinite arithmetic progression P Ď kN with the following
property.

If Ψ is a k-uniform pα, β, `, α
17k q-constellation, M P P , and B Ď V pΨqk is a collection

of ξ-bridges in Ψ with |B| ě ξ|V pΨq|k, then all but at most
X

ξ|V pΨq|
\

`M vertices of Ψ
can be covered with mutually disjoint M -vertex paths starting and ending with bridges
from B.

Observe that for a fixed k-uniform pα, β, `, α
17k q-constellation Ψ we can apply ♠k with

every M P P . For a larger value of M we have to cover fewer vertices, but, on the other
hand, we need to cover them with longer paths. Thus there is no obvious monotonicity
in M .

Now we plan to establish the implication ♥k´1 ñ ♠k´1 ñ ♥k, thus decomposing the
induction step of the proof of ♥k into two simpler tasks. They will be treated in Lemma 6.46.4
and Lemma 6.96.9, respectively.

Lemma 6.4. If k ě 3 and ♥k holds, then so does ♠k.

The idea behind the proof of this implication is the following (see Figure 6.16.1). Given
an appropriate constellation Ψ, our first step is to take out a reservoir set R. Next we
decide which bridges from B are going to appear at the ends of the paths we are supposed
to construct. After these choices are made, we apply ♥k to the constellation obtained
from Ψ by removing R and the vertices reserved for the bridges, thus getting a covering of
almost all remaining vertices with ‘short’ paths. Now we partition the set of these paths
into groups of size p, where p denotes an arbitrary natural number. For each group we
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..
.

X

R

Cλ`1

C2

C1 V

Figure 6.1. The case k “ 3 of Lemma 6.46.4. The set X of vertices is reserved
for bridges.

connect all its paths through the reservoir. Moreover, we connect the ends of the resulting
paths to some of the bridges that have been put aside. In this manner we obtain a covering
of almost all vertices of Ψ with longer paths, whose precise length depends linearly on p.
Thus by varying p we can reach an arithmetic progression of possible lengths for the paths
in the new covering.

Proof of Lemma 6.46.4. Let α, β, ξ ą 0 and an odd integer ` ě 3 be given. Choose some
auxiliary constants obeying the hierarchy

α, β, ξ, k´1, `´1
" ϑ‹ " ζ‹‹ " ϑ‹‹ "M´1

" n´1
0 ,

where M is an integer with M ” ´1 pmod kq.
We contend that

P “
 

M 1
P kN : M 1

ą n0 and M 1
” fpk, 0, `q ` 2k pmod M ` fpk, 0, `qq

(

has the property demanded by ♠k.
By Definition 3.23.2 the number fpk, 0, `q is divisible by k and, consequently, P is indeed

an infinite arithmetic progression. Now let Ψ be a k-uniform pα, β, `, α
17k q-constellation

with n vertices, let M 1 P P be arbitrary, and let B Ď V pΨqk be a set of ξ-bridges in Ψ
with |B| ě ξ|V pΨq|k. We are to cover all but at most ξ|V pΨq|`M 1 vertices of Ψ by mutually
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disjoint M 1-vertex paths starting and ending with bridges from B. If |V pΨq| ďM 1, then
the empty set is such a collection of paths. Thus, we may assume that |V pΨq| ąM 1 ą n0.

Let R Ď V pΨq with |R| ď ϑ‹n be a the reservoir set provided by Proposition 4.14.1
with ϑ‹, ζ‹‹2 here in place of ξ, ζ‹‹ there. For later use we record that due to ϑ‹‹ ! ϑ‹, k

´1, `´1

the case i “ 0 of Corollary 4.24.2 yields:

p‹q If R1 Ď R is an arbitrary set with |R1| ď ϑ2
‹‹|V pΨq|, the pk ´ 1q-tuple áa P V pΨqk´1

is ζ‹‹
2 -leftconnectable, and á

b P V pΨqk´1 is ζ‹‹
2 -rightconnectable and disjoint to áa,

then there is an áa-áb -path through R r R1 with fpk, 0, `q inner vertices.

Let b1, . . . , br be a maximal sequence of bridges from B that are mutually disjoint and
disjoint to R. Since the selected bridges and R together involve kr ` |R| vertices, the
maximality implies

kpkr ` |R|q|V pΨq|k´1
ě |B| ě ξ|V pΨq|k ,

whence

r ě
pξ ´ kϑ‹q|V pΨq|

k2 ě ϑ‹|V pΨq| . (6.1)

Set x “ tϑ‹|V pΨq|u and let X be the set of vertices constituting b1, . . . , bx. Lemma 2.362.36
reveals that Ψ1 “ Ψ ´ pX Y Rq is an

`

α
2 ,

β
2 , `,

2α
17k

˘

-constellation. Therefore, the princi-
ple ♥k yields a family C of disjoint M -vertex paths in Ψ1 which together cover all but at
most ϑ2

‹|V pΨ1q| vertices of Ψ1 and whose end-tuples are ζ‹‹-connectable in Ψ1. For later use
we remark that owing to Fact 2.182.18 the end-tuples of the paths in C are ζ‹‹

2 -connectable
in Ψ.

By the definition of P there is a natural number p such that

M 1
“
`

M ` fpk, 0, `q
˘

p` fpk, 0, `q ` 2k .

Fix an arbitrary partition C “ C1 Ÿ . . . Ÿ Cλ`1 with |C1| “ ¨ ¨ ¨ “ |Cλ| “ p ą |Cλ`1|.
Now we declare our strategy for constructing vertex-disjoint paths P1, . . . , Pλ Ď HpΨq

witnessing the conclusion of ♠k. For every j P rλs we first intend to form a path P 1j by
connecting the p paths in Cj through the reservoir R. Subsequently, we plan to derive Pj
from P 1j by connecting its ends with two bridges from the list b1, . . . , bx, say with b2j´1

and b2j. For all p` 1 connections required for this construction of Pj, we want to appeal
to p‹q. Clearly, if the paths P1, . . . , Pλ can be constructed, then each of them will consist
of M 1 vertices.

Altogether, we are aiming for pp` 1qλ connections that require a total number of

pp` 1qfpk, 0, `qλ
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vertices from the reservoir. If this number is less than ϑ2
‹‹n, then repeated applications

of p‹q allow us to choose our connections disjointly. Since M " ϑ´1
‹‹ " k, `, we have indeed

pp` 1qfpk, 0, `qλ ď 2p ¨ 4kk` ¨ |V pΨq|
Mp

“
2 ¨ 4kk`|V pΨq|

M
ă ϑ2

‹‹|V pΨq| .

Similarly,

2λ ď 2|V pΨq|
Mp

ď
2|V pΨq|
M

ď ϑ‹|V pΨq|

proves that we have sufficiently many bridges at our disposal.
Altogether, the vertex-disjoint paths P1, . . . , Pλ Ď HpΨq can indeed be constructed. The

number of vertices of Ψ they fail to cover can be bounded from above by

|X| ` |R| `
ˇ

ˇ

ˇ
V pΨ1

qr
ď

PPC

V pP q
ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

ď

PPCλ`1

V pP q
ˇ

ˇ

ˇ
ď kx` ϑ‹|V pΨq| ` ϑ2

‹|V pΨq| `Mp

ďMp`
`

pk ` 1qϑ‹ ` ϑ2
‹

˘

|V pΨq|

ďM 1
` ξ|V pΨq| ,

which concludes the proof of ♠k. �

The proof of our next result involves some probabilistic arguments based on the following
consequence of Janson’s inequality (see [1515, Corollary A.3]).

Lemma 6.5. Let m ě k and M be positive integers, and let η P p0, 1
2k q. Suppose that V is

a finite set and that

V “ B1 Ÿ . . . ŸBν Ÿ Z

is a partition with |B1| “ . . . “ |Bν | “ M ă η|V |, |Z| ă η|V |, and ν ě m. Let
S Ď tB1, . . . , Bνu be an m-element subset chosen uniformly at random and set S “

Ť

S .
Further, let ξ be a real number with maxp8k2η, 16k2{mq ă ξ ă 1.

(a ) If Q Ď V k has size |Q| “ d|V |k, then

P
`
ˇ

ˇ|QX Sk| ´ dpMmqk
ˇ

ˇ ě ξpMmqk
˘

ď 12
?
m exp

ˆ

´
ξ2m

48k2k`2

˙

.

(b ) Similarly, if G denotes a k-uniform hypergraph with vertex set V and d|V |k{k!
edges, then

P
`
ˇ

ˇeGpSq ´ dpMmqk{k!
ˇ

ˇ ě ξpMmqk{k!
˘

ď 12
?
m exp

ˆ

´
ξ2m

48k2k`2

˙

. �

This has the following consequence on random subconstellations.



46 J. POLCYN, CHR. REIHER, V. RÖDL, AND B. SCHÜLKE

Lemma 6.6. Given k ě 2, α, β, µ, ξ ą 0, and an odd integer ` ě 3 there exists a natural
number M0 such that the following holds for every M ě M0. If Ψ is a sufficiently large
k-uniform pα, β, `, µq-constellation,

V pΨq “ B1 Ÿ . . . ŸBν ŸB
1

is a partition with |B1| “ . . . “ |Bν | “ M and |B1| ă 2M , and B Ď V pΨqk is a set of
ξ-bridges in Ψ of size |B| ě ξ|V pΨq|k, then there are at least 3

4

`

ν
M

˘

sets S Ď tB1, . . . , Bνu

of size M such that their union S “
Ť

S has the properties that ΨrSs is a pα2 ,
β
2 , `, 2µq-

constellation and
B‹ “

 

áx P BX Sk : áx is a ξ
2-bridge in ΨrSs

(

has at least the size |B‹| ě
ξ
2 |S|

k.

Proof. Let M0 " α´1, β´1, µ´1, ξ´1, k, ` be sufficiently large. We call the sets B1, . . . , Bν

blocks. Choose a set S Ď tB1, . . . , Bνu of M blocks uniformly at random among all
`

ν
M

˘

possibilities. We shall prove that the probability that S “
Ť

S fails to have the desired
properties is at most exp

`

´ΩpMq
˘

, where the implied constant only depends on α, β, µ, ξ, k,
and `. Hence, by choosing M0 sufficiently large, this probability can be pushed below 1

4 , as
desired. It will be convenient to set V 1 “ V rB1. For y P V 1 we denote the unique block
containing y by By.

Claim 6.7. The event that ΨrSs fails to be a pα2 ,
β
2 , `, 2µq-constellation has at most the

probability exp
`

´ΩpMq
˘

.

Proof. We begin by estimating the probability of the unfortunate event U that ΨrSs fails
to be a pα2 , 2µq-constellation. For an arbitrary set x P pV 1qpk´2q we define

Zx “ tBy : y P xu , tx “ |Zx| P rk ´ 2s , and Zx “
ď

Zx .

Further, we consider the conditional probabilities

P1pxq “ P

ˆ

eΨxpS r Zxq ă

ˆ

5
9 `

2α
3

˙

pM ´ txq
2M2

2

ˇ

ˇ

ˇ

ˇ

x P Spk´2q
˙

,

P2pxq “ P

ˆ

ˇ

ˇV pRΨ
x rSsq

ˇ

ˇ ă

ˆ

2
3 `

α

3

˙

pM ´ txqM

ˇ

ˇ

ˇ

ˇ

x P Spk´2q
˙

,

and

P3pxq “ P
`

eΨxrSs
`

V pRΨ
x rSsq, S r V pRΨ

x rSsq
˘

ą 2µpM ´ txq
2M2 ˇ

ˇ x P Spk´2q˘

and observe that

PpUq ď
ÿ

xPpV 1qpk´2q

Ppx P Spk´2q
q
`

P1pxq ` P2pxq ` P3pxq
˘

. (6.2)
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So if we manage to prove

P1pxq, P2pxq, P3pxq ď exp
`

´ΩpMq
˘

, (6.3)

then
PpUq ď pM2

q
k´2 exp

`

´ΩpMq
˘

ď exp
`

´ΩpMq
˘

(6.4)

will follow. Thus our next goal is to establish (6.36.3).
To this end, we will repeatedly apply Lemma 6.56.5 with

M ´ tx ,
kM

n
,B1 Y Zx , ν ´ tx , and min

 

α
6 , µ

(

here in place of
m, η , Z , ν , and ξ

there and relocating the elements of Zx to the exceptional set of the partition.
First, the minimum degree condition imposed on HpΨq implies that the graph HpΨxq

has at least
`5

9 ` α
˘

|V pΨq|2
2 edges. So Lemma 6.56.5 (b )(b ) applied with 2 and HpΨxq here in

place of k and G there yields P1pxq ď exp
`

´ΩpMq
˘

.
Second, we know that |V pRΨ

x q| ě
`2

3 `
α
2

˘

|V pΨq|, since Ψ is an pα, µq-constellation.
Hence, applying Lemma 6.56.5 (a )(a ) with 1 and V pRΨ

x q here instead of k and Q there entails
P2pxq ď exp

`

´ΩpMq
˘

.
Lastly, from Ψ being a pα, µq-constellation it also follows that

eΨx
`

V pRΨ
x q, V r V pRΨ

x q
˘

ď µ|V pΨq|2 .

Hence, Lemma 6.56.5 (b )(b ) applied to the bipartite subgraph of HpΨxq between V pRΨ
x q and

its complement tells us that P3pxq ď exp
`

´ΩpMq
˘

. This concludes the proof of (6.36.3) and,
hence, of (6.46.4). An analogous proof allows us to transfer part (b )(b ) of Definition 2.332.33 from Ψ
to ΨrSs and we omit the details. �

It remains to prove that the event |B‹| ě
ξ
2 |S|

k has high probability as well. Here we
start with the estimate

P
`

|B‹| ď
ξ
2 |S|

k
˘

ď P
`

|BX Sk| ď ξ
2 |S|

k
˘

` Pp Eq ,

where E denotes the event that every ξ-bridge áx P BX Sk is a ξ
2 -bridge in ΨrSs. Another

application of Lemma 6.56.5 (a )(a ) tells us that the first summand is at most exp
`

´ΩpMq
˘

and
thus it remains to prove that

Pp Eq ď exp
`

´ΩpMq
˘

. (6.5)

Towards this goal we analyse how connectability transfers to ΨrSs.
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Claim 6.8. If k1 P rk´1s, z, z1 P pV 1qpk´1´k1q, and áx P
`

V 1rpzYz1q
˘k1 is a ξ-leftconnectable

tuple in Ψz, then

P
`

áx fails to be ξ
2-leftconnectable in ΨzrSs |

áx P Sk
1 and z1 Ď S

˘

ď exp
`

´ΩpMq
˘

.

Proof. We argue by induction on k1. In the base case k1 “ 1 the probability under
consideration vanishes. This is because a 1-tuple áx “ pxq is ξ-leftconnectable in Ψz if and
only if x P V pRΨ

z q. Moreover, if x P S r z, then pxq is ξ
2 -leftconnectable in ΨzrSs if and

only if x P RΨrSs
z . Due to RΨrSs

z “ RΨ
z rSs these two statements are equivalent to each other.

For the induction step from k1 ´ 1 to k1 we write áx “ px1, . . . , xk1q and recall that the
ξ-leftconnectability of áx in Ψz means that |U | ě ξ|V pΨzq|, where

U “
 

u P V pΨzq : x1 . . . xk1u P EpΨzq and px2, . . . , xk1q is ξ-leftconnectable in Ψzu

(

.

Assuming áx P Sk
1 the analogous set whose size decides whether áx is ξ

2 -leftconnectable
in ΨzrSs either contains U X S as a subset, or it does not. Accordingly, if áx fails to be
ξ
2 -leftconnectable in ΨzrSs, then either |U XS| ď ξ

2 |V pΨzrSsq| or the event A that for some
u P SXU the pk1´ 1q-tuple px2, . . . , xk1q fails to be ξ

2 -leftconnectable in ΨzurSs occurs. For
this reason, it suffices to prove

P
`

|U X S| ď ξ
2 |S| |

áx P Sk
1 and z1 Ď S

˘

ď exp
`

´ΩpMq
˘

(6.6)

and P
`

A | áx P Sk
1 and z1 Ď S

˘

ď exp
`

´ΩpMq
˘

. (6.7)

Now (6.66.6) follows in the usual way from Lemma 6.56.5 (a )(a ). To prove (6.76.7) we observe that
the induction hypothesis yields

P
`

px2, . . . , xk1q fails to be ξ
2 -leftconnectable in ΨzurSs | px2, . . . , xk1q P S

k1´1 ,

and pz1 Y tx1uq Ď S
˘

ď exp
`

´ΩpMq
˘

for every u P U , whence

PpA | áx P Sk
1 and z1 Ď Sq ď

ÿ

uPU

Ppu P Sq exp
`

´ΩpMq
˘

ďM2 exp
`

´ΩpMq
˘

ď exp
`

´ΩpMq
˘

. �

By applying the case k1 “ k ´ 1 of Claim 6.86.8 to all ξ-leftconnectable pk ´ 1q-tuples in Ψ
we obtain

P
`

Some áx P Sk´1 that is ξ-leftconnectable in Ψ

fails to be ξ
2 -leftconnectable in ΨrSs

˘

ď exp
`

´ΩpMq
˘

.
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By symmetry the same holds for rightconnectability as well and, therefore,

P
`

Some ξ-bridge áx P Sk fails to be a ξ
2 -bridge in ΨrSs

˘

ď exp
`

´ΩpMq
˘

.

In other words, we have thereby proved (6.56.5) and, hence, Lemma 6.66.6. �

The next lemma shows how to ascend from pk ´ 1q-uniform coverings to k-uniform
coverings.

Lemma 6.9. For every k ě 4 the covering principle ♠k´1 implies ♥k.

Proof. Let α, β, ϑ‹ ą 0, and an odd integer ` ě 3 be given. Without loss of generality we
may assume that ϑ‹ ! α, β, k´1, `´1. Pick a sufficiently small constant

ζ‹‹ ! ϑ‹ . (6.8)

The statement ♠k´1 applied to α
2 ,

β
2 , `,

ζ‹‹
2 here in place of α, β, `, ξ there delivers an

infinite arithmetic progression P Ď pk ´ 1qN. Choose M " ζ´1
‹‹ such that k´1

k
pM ` 1q P P

and notice that M ” ´1 pmod kq is clear.
Now let Ψ be a pα, β, `, 4α

17k q-constellation on n vertices, where n is sufficiently large. We
are to prove that all but at most ϑ2

‹|V pΨq| vertices of Ψ can be covered by vertex-disjoint
M -vertex paths starting end ending with ζ‹‹-connectable pk ´ 1q-tuples. Let

P “
 

P Ď HpΨq : P is a k-uniform M -vertex path

whose first and last pk ´ 1q-tuple is ζ‹‹-connectable
(

be the collection of all paths that might occur in such a covering, and let C Ď P be a
maximal subcollection of vertex-disjoint paths from P. Further, let

U “ V pΨqr
ď

PPC

V pP q

be the set of uncovered vertices. We may assume that

|U | ą ϑ2
‹|V pΨq| , (6.9)

since otherwise nothing is left to show. Now roughly speaking the strategy is to find
a set S Ď V pΨq of size M2 meeting at most M paths from C such that for ‘many’
vertices u P U we can apply ♠k´1 to the pk ´ 1q-uniform constellation ΨurSs, thus getting
at least M ` 1 vertex-disjoint paths with k´1

k
pM ` 1q vertices. These paths will agree

for many vertices u P U and can then be augmented to k-uniform paths engendering a
contradiction to the maximality of C . In the intended application of ♠k´1 we are allowed
to specify a set of bridges B that we potentially would like to see at the ends of the paths
we obtain. Since we ultimately aim at generating paths in P and, hence, paths starting
and ending with ζ‹‹-connectable pk ´ 1q-tuples, it seems advisable to let B be the set of
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ζ‹‹
2 -bridges in ΨurSs that are ζ‹‹-connectable in Ψ. This choice of B is only permissible
if |B| is sufficiently large (i.e., at least ζ‹‹

2 |S|
k´1). Our way of ensuring this in sufficiently

many cases exploits that for fixed u P U and a random choice of S Ď V pΨq Lemma 6.66.6
tells us that the ζ‹‹-bridges in Ψu are likely to be ζ‹‹

2 -bridges in ΨurSs. Thus it suffices to
focus on vertices u P U which are not in the set

Ubad “
 

u P U : at most 1
20n

k´1 of the ζ‹‹-bridges in Ψu are ζ‹‹-connectable in Ψ
(

.

The next claim states that this set is indeed small.

Claim 6.10. We have |Ubad| ď 40ζ‹‹n.

Proof. Set

Π “
 

px1, . . . , xk´1, uq P V pΨqk´1
ˆ Ubad : px1, . . . , xk´1q is a ζ‹‹-bridge in Ψu

but not ζ‹‹-connectable in Ψ
(

.

For every u P Ubad Corollary 2.282.28 tells us that the number of ζ‹‹-bridges px1, . . . , xk´1q

in Ψu is at least 1
9pn´ 1qk´1 ą 1

10n
k´1 and by the definition of Ubad at least 1

20n
k´1 among

them fail to be ζ‹‹-connectable in Ψ. This proves that

|Π| ě 1
20n

k´1
|Ubad| .

On the other hand, an upper bound on |Π| can be obtained as follows. Let Πleft

be the set of k-tuples in Π for which px1, . . . , xk´1q fails to be ζ‹‹-leftconnectable and
define Πright similarly with respect to rightconnectability. As a pk ´ 1q-tuple that is
not ζ‹‹-leftconnectable in Ψ can only be a ζ‹‹-bridge in Ψu for less than ζ‹‹n vertices u,
we have |Πleft| ď ζ‹‹n

k. The same upper bound can be proved for |Πright| and because
of Π “ Πleft Y Πright this yields |Π| ď 2ζ‹‹nk. Combining the two bounds on |Π| we obtain
indeed |Ubad| ď 40ζ‹‹n. �

Because of our choice of ζ‹‹ in (6.86.8) this yields |Ubad| ď
1
2ϑ

2
‹n, which combined with (6.96.9)

implies

|U r Ubad| ě
1
2ϑ

2
‹n . (6.10)

Next we will partition the vertex set into blocks some of which will later be selected
randomly for hosting the augmentation of C . Form a partition

V pΨq “ B1 Ÿ . . . ŸBν ŸB
1 , (6.11)

with |B1| “ ¨ ¨ ¨ “ |Bν | “M ą |B1|, where the first |C | classes B1, . . . , B|C | are the vertex
sets of the paths in the collection C , and B|C |`1, . . . , Bν are arbitrary disjoint M -sets
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making (6.116.11) true. The sets B1, . . . , Bν are called blocks. A society is a set of M blocks.
We point out that

if S is a society and S “
ď

S , then |S| “M2. (6.12)

Definition 6.11. A society S with S “
Ť

S is called useful for a vertex u P U if

(1 ) u R S,
(2 ) ΨurSs is a pk ´ 1q-uniform pα2 ,

β
2 , `,

α{2
17k´1 q-constellation.

(3 ) The number of pk´1q-tuples in Sk´1 that are ζ‹‹
2 -bridges in ΨurSs and ζ‹‹-connectable

in Ψ is at least ζ‹‹
2 |S|

k´1.

The next claim explains the naming of useful societies: ΨurSs contains M ` 1 “suitable”
paths.

Claim 6.12. If a society S is useful for u P U and S “
Ť

S , then there is a collection W

of mutually disjoint pk ´ 1q-uniform paths in ΨurSs with the following properties.

(i ) Every path in W has k´1
k
pM ` 1q vertices.

(ii ) Every path in W starts and ends with a pk ´ 1q-tuple that is ζ‹‹-connectable in Ψ.
(iii ) |W | ěM ` 1.

Proof. By Definition 6.116.11 (3 )(3 ) and (6.126.12) the set

Ξ “
 

áe P Sk´1 : áe is ζ‹‹-connectable in Ψ and a ζ‹‹
2 -bridge in ΨurSs

(

satisfies |Ξ| ě ζ‹‹
2 pM

2qk´1. Now we apply ♠k´1 to ΨurSs, Ξ, ζ‹‹2 , and k´1
k
pM ` 1q here in

place of Ψ, B, ξ, and M there – which is permissible due to the selection of parameters in
the beginning of the proof of Lemma 6.96.9.

This application of ♠k´1 yields a collection W of mutually disjoint pk´ 1q-uniform paths
in ΨurSs that covers all but at most ζ‹‹

2 |S| `
k´1
k
pM ` 1q vertices of S such that each path

starts and ends with a bridge from Ξ. Since each bridge in Ξ is a ζ‹‹-connectable tuple
in Ψ, it remains to check that |W | ěM ` 1. Because of M " ζ´1

‹‹ " k we have indeed

|W | ě
p1´ ζ‹‹{2qM2 ´ k´1

k
pM ` 1q

k´1
k
pM ` 1q

ě
p1´ ζ‹‹qMpM ` 1q

p1´ ζ‹‹qM
“M ` 1 . �

Lemma 6.66.6 implies that some society is useful for many vertices.

Claim 6.13. There exists a society S that is useful for 2
3 |U r Ubad| vertices in U r Ubad.

Proof. By double counting it suffices to establish that for every vertex u P U r Ubad

at least 2
3 of all societies are useful. Fix an arbitrary such vertex u and suppose first

that u R B1. Without loss of generality we may assume that u P Bν . We plan to apply



52 J. POLCYN, CHR. REIHER, V. RÖDL, AND B. SCHÜLKE

Lemma 6.66.6 with pk ´ 1, α
4¨17k´1 , ζ‹‹q here in place of pk, µ, ξq there to the pk ´ 1q-uniform

constellation Ψu, the partition

V pΨuq “ B1 Ÿ . . . ŸBν´1 Ÿ pBν YB
1 r tuuq ,

and the set

Bu “
 

áx P V pΨuq
k´1 : áx is ζ‹‹-connectable in Ψ and a ζ‹‹-bridge in Ψu

(

.

Notice that Fact 2.352.35 tell us that Ψu is indeed an pα, β, `, α
4¨17k´1 q-constellation. Moreover,

u R Ubad implies |Bu| ě
1
20n

k´1 ą ζ‹‹|V pΨuq|
k´1. So all assumptions of Lemma 6.66.6 hold

and we conclude that at least 3
4

`

ν´1
M

˘

ą 2
3

`

ν
M

˘

societies are useful for u. The case u P B1 is
similar. �

For the remainder of this proof we fix a society S that is useful for at least 2
3 |U r Ubad|

vertices in U r Ubad and set S “
Ť

S . Claim 6.126.12 informs us that for every u P U , for
which S is useful, there is a collection Wu of M ` 1 mutually vertex disjoint pk ´ 1q-
uniform paths in ΨurSs consisting of k´1

k
pM ` 1q vertices each, which start and end

with ζ‹‹-connectable pk ´ 1q-tuples.
Since there are at most pM2q! possibilities to order the vertices in S, there has to exist a

subset U 1 Ď U r Ubad such that Wu “ W is the same for every u P U 1 and

|U 1| ě
2
3 |U r Ubad|

pM2q!
(6.106.10)
ě

ϑ2
‹n

3pM2q! ě
pM ´ pk ´ 1qqpM ` 1q

k
.

Now, for every path in W put M´pk´1q
k

distinct vertices from U 1 aside and insert them at
every k-th position into the path from W (see Figure 6.26.2).

U 1

Figure 6.2. Augmenting a yellow 4
5pM ` 1q-vertex path to a lila M -vertex

path.

Since the starting and ending pk´ 1q-tuples of every path in W are ζ‹‹-connectable in Ψ
and the insertion of the additional vertices increases their length to k´1

k
pM`1q`M´pk´1q

k
“

M , the resultingM`1 paths are elements of P . Hence, the collection C can be augmented
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by removing the at most M paths whose blocks lie in S and adding the M ` 1 newly
constructed paths instead. As this contradicts the maximality of C , the assumption (6.96.9)
must have been false. This concludes the proof of Lemma 6.96.9. �

Finally, we arrive at the main result of this section.

Proposition 6.14. For every k ě 3 the statement ♥k holds.

Proof. We argue by induction on k, the base case being provided by Fact 6.26.2. The
Lemmata 6.46.4 and 6.96.9 show that ♥k´1 ñ ♠k´1 ñ ♥k, which is the induction step. �

§7. The proof of Theorem 1.21.2

The results in the foregoing sections routinely imply Theorem 1.21.2, but for the sake of
completeness we provide the details.

Proof of Theorem 1.21.2. Given k ě 3 and α ą 0 we choose some auxiliary constants fitting
into the hierarchy

α, k´1
" µ " β, `´1

" ζ‹ " ϑ‹ " ζ‹‹ " ϑ‹‹ "M´1
" n´1

0 , (7.1)

where ` ě 3 is an odd integer and M ” ´1 pmod kq.
Now let H “ pV,Eq be a k-uniform hypergraph on n ě n0 vertices satisfying the

minimum pk ´ 2q-degree condition δk´2pHq ě p
5
9 ` αq

n2

2 . By Fact 2.342.34 and α " µ " β, `´1

there exists an pα, β, `, µq-constellation Ψ with underlying hypergraph H.
Stage A. We set aside a reservoir set R of size |R| ď ϑ2

‹n provided by Proposition 4.14.1.
Let us recall that by Corollary 4.24.2 and ϑ‹‹ ! ϑ‹, k

´1, `´1

(1 ) for every set R1 Ď R of at most ϑ2
‹‹n “forbidden” vertices, every ζ‹‹-leftconnectable

pk´ 1q-tuple áa, every ζ‹‹-rightconnectable pk´ 1q-tuple á

b that is disjoint to áa, and
every i P r0, kq, there is an áa-áb -path through R r R1 with fpk, i, `q inner vertices.

Stage B. Next, we choose an absorbing path avoiding R. More precisely, Proposition 5.15.1
yields a path PA Ď H ´R with the properties that

(2 ) |V pPAq| ď ϑ‹n,
(3 ) the starting and ending pk ´ 1q-tuple of PA are ζ‹‹-connectable,
(4 ) and for every subset Z Ď V r V pPAq with |Z| ď 2ϑ2

‹n and |Z| ” 0 pmod kq, there
is a path Q Ď H with V pQq “ V pPAqYZ having the same end-pk´1q-tuples as PA.

Stage C. We proceed by covering almost all vertices belonging neither to R nor to PA by
long paths. To this end we set X “ RY V pPAq and consider the constellation Ψ1 “ Ψ´X.
Since |X| ď ϑ2

‹n`ϑ‹n ď 2ϑ‹n, Lemma 2.362.36 tells us that Ψ1 is an
`

α
2 ,

β
2 , `, 2µ

˘

-constellation.
So the covering principle ♥k defined in Definition 6.16.1 and proved in Proposition 6.146.14 applies
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to Ψ1, 2ζ‹‹ here in place of Ψ, ζ‹‹ there. In other words, in Ψ1 there exists a collection C of
mutually disjoint M -vertex paths whose end-tuples are p2ζ‹‹q-connectable in Ψ1 such that

ˇ

ˇ

ˇ
V pΨ1

qr
ď

PPC

V pP q
ˇ

ˇ

ˇ
ď ϑ2

‹n .

Due to Fact 2.182.18, the end-tuples of the paths in C are ζ‹‹-connectable in Ψ.
Stage D. Now we want to connect the paths in C and PA, thus obtaining one long path T
with ζ‹‹-connectable end-tuples. This is to be done by means of |C | connections through
the reservoir, iteratively using (1 )(1 ) with i “ 0. Altogether these connections require

|C |fpk, 0, `q ď 4k`kn
M

ď ϑ2
‹‹n

vertices from the reservoir. So |C | successive applications of (1 )(1 ) indeed allow us to construct
this long path T (see Figure 7.17.1).

T
C

R

PA

Figure 7.1. The situation after Stage D.

Stage E. Moreover, we can still use (1 )(1 ) one more time in order to connect the end-tuples
of T , thus creating one long cycle C. For this last connection we use fpk, i, `q inner vertices,
where i P r0, kq is determined by the congruence i ” n ´ |V pT q| pmod kq. The current
situation is depicted in Figure 7.27.2.

Our choice of i guarantees that the set Z “ V pΨqr V pCq satisfies

|Z| ” n´ |V pT q| ´ fpk, i, `q ” 0 pmod kq .

Furthermore, Z has at most the size

|Z| ď |R| `
ˇ

ˇ

ˇ
V pΨ1

qr
ď

PPC

V pP q
ˇ

ˇ

ˇ
ď 2ϑ2

‹n .

Stage F. Taken together, the last two displayed formulae and (4 )(4 ) show that Z can be
absorbed by PA, i.e., that there exists a path Q with V pQq “ V pPAq Y Z having the
same end-tuples as PA. Upon replacing the subpath PA of C by Q we obtain the desired
Hamiltonian cycle in H (see Figure 7.37.3). �
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Z

fpk, i, `q

C
C

R

PA

Figure 7.2. The situation after Stage E. The dots in Z represent sets of k
vertices each.

Q

R

Figure 7.3. The situation after Stage F.
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