
ON EXTREMAL PROBLEMS CONCERNING THE TRACES OF SETS

SIMÓN PIGA AND BJARNE SCHÜLKE

Abstract. Given two non-negative integers n and s, define mpn, sq to be the maximal
number such that in every hypergraph H on n vertices and with at most mpn, sq edges
there is a vertex x such that |Hx| ě |EpHq| ´ s, where Hx “ tH r txu : H P EpHqu. This
problem has been posed by Füredi and Pach and by Frankl and Tokushige. While the
first results were only for specific small values of s, Frankl determined mpn, 2d´1 ´ 1q
for all d P N with d | n. Subsequently, the goal became to determine mpn, 2d´1 ´ cq for
larger c. Frankl and Watanabe determined mpn, 2d´1 ´ cq for c P t0, 2u. Other general
results were not known so far.

Our main result sheds light on what happens further away from powers of two: We
prove that mpn, 2d´1 ´ cq “ n

d p2
d ´ cq for d ě 4c and d | n and give an example

showing that this equality does not hold for c “ d. The other line of research on this
problem is to determine mpn, sq for small values of s. In this line, our second result
determines mpn, 2d´1 ´ cq for c P t3, 4u. This solves more instances of the problem for
small s and in particular solves a conjecture by Frankl and Watanabe.

§1. Introduction

A hypergraph H is a pair pV,Fq where V is the set of vertices and F Ď 2V is the set of
edges. In the literature, the problems we consider in this article are often presented in the
context of families rather than hypergraphs. If not necessary, it is then not distinguished
between the family F Ď 2V and the hypergraph pV,Fq. We will follow this notational
path.

Let V be an n-element set and let F be a family of subsets of V . For a subset T of V
define the trace of F on T by F|T “ tF XT : F P Fu. For integers n, m, a, and b, we write

pn,mq Ñ pa, bq

if for every family F Ď 2V with |F | ě m and |V | “ n there is an a-element set T Ď V such
that |F|T | ě b (we also say that pn,mq arrows pa, bq).
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The first type of question that was asked for this arrowing notation is similar to the spirit
of the classic Turán problem: For a fixed number of vertices n, how many edges are needed
such that there is a subset of vertices such that all its subsets lie in the trace. The following
result on this question was conjectured by Erdős [5] and was proved independently by
Sauer [8], Shelah and Perles [9], and Vapnik and Červonenkis [10]. It states that for a large
family F on n vertices, there is an s-set of vertices such that all its subsets lie in the trace
of F . More precisely, they showed that pn,mq Ñ ps, 2sq whenever m ą

ř

0ďiăs

`

n
i

˘

.
Another fundamental question that was raised in the area is how large a family can

be at most so that there will still be a vertex v such that the trace on V r tvu is not
much smaller than the original family. More precisely, the following problem was posed by
Füredi and Pach [5] and, more recently, by Frankl and Tokushige as Problem 3.8 in their
monograph [3]1:

Problem 1.1. Given non-negative integers n and s, what is the maximum value mpn, sq
such that for every m ď mpn, sq we have

pn,mq Ñ pn´ 1,m´ sq.

As described in the abstract, this problem can also be formulated as finding the maximal
number mpn, sq such that the following holds. In every hypergraph H with some n-set V
as vertex set and with at most mpn, sq edges there is a vertex x such that |Hx| ě |H| ´ s,
where Hx “ H|V rtxu “ tH r txu : H P Hu.

A family F is hereditary if for every F 1 Ď F P F we have that F 1 P F . In [2] Frankl
proves that among families with a fixed number of edges and vertices, the trace is minimised
by hereditary families. Thus, the problems considered here, and in particular Problem 1.1,
can be reduced to hereditary families (see Lemma 2.1). Note that in hereditary families,
Problem 1.1 is asking for the maximum number of edges such that there is always a vertex
of small degree (as usual, we define the degree of a vertex v as the number of edges that
contain v).

The investigation of this problem started with Bondy [1] and Bollobás [6] determin-
ing mpn, 0q and mpn, 1q, respectively. Later Frankl [2] and Frankl and Watanabe [4] proved
part (1) and (2), respectively, of the following theorem.

Theorem 1.2. For d, n P N and d|n, we have

(1) mpn, 2d´1 ´ 1q “ n
d
p2d ´ 1q ,

(2) mpn, 2d´1 ´ 2q “ n
d
p2d ´ 2q .

1There have been slightly different versions in use for the arrowing notation and for what we denote
by mpn, sq. In this work, we follow the notation in [3].
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Consider a family consisting of a set of size d and all possible subsets, and take n{d
vertex disjoint copies of it. The resulting family has minimum degree 2d´1 and n

d
p2d´1q`1

edges. Thus, this family is an extremal construction for (1). By taking out all sets of size d,
we obtain an extremal construction for (2).

Our main result makes further progress on Problem 1.1, solving it for general s “ 2d´1´c

as long as c is linearly small in d.

Theorem 1.3 (Main theorem). Let d, c, n P N with d ě 4c and d|n. Then

mpn, 2d´1
´ cq “

n

d
p2d
´ cq.

Remark 1.4. In fact, our proof of Theorem 1.3 yields that for d ě 4c and m ď n
d
p2d ´ cq

we have pn,mq Ñ pn ´ 1,m ´ p2d´1 ´ cqq without any divisibility conditions on n. The
assumption d|n is only necessary for the extremal constructions showing the maximality
of n

d
p2d ´ cq. Analogous remarks hold for Theorem 1.2 above and Theorem 1.5 below. In

Section 5 we provide a construction showing that the equality in Theorem 1.3 does not
hold for d “ c (see Construction 5.2).

One might also try to solve Problem 1.1 for small values of s. Apart from the aforemen-
tioned results by Bondy and Bollobás, progress was made by Frankl [2], Watanabe [11, 12],
and by Frankl and Watanabe [4]. In [4] they conjectured that mpn, 12q “ p28{5` op1qqn.
Theorem 1.3 does not consider cases for which d is very small in terms of c. The following
results extend Theorem 1.2 to c “ 3 and 4 and every d ě 3 (for smaller d the respec-
tive mpn, sq is not defined). In particular, it proves the conjecture of Frankl and Watanabe
for s “ 12 in a strong sense.

Theorem 1.5. Let d, n P N with d ě 3 and d|n. Then

(1) mpn, 2d´1 ´ 3q “ n
d
p2d ´ 3q and

(2) mpn, 2d´1 ´ 4q “ n
d
p2d ´ 4q. In particular, mpn, 12q “ 28

5 n.

Note that for larger d, this theorem is of course a special case of Theorem 1.3.

1.1. Idea of the proof. To show the maximality of n
d
p2d ´ cq we give a construction

similar to the one presented after Theorem 1.2. As mentioned above, Lemma 2.1 reduces
the problem to a problem in hereditary families. We need to show that for every hereditary
hypergraph F on n vertices with minimum degree at least 2d´1 ´ c` 1 we have that

|F | ě n

d
p2d
´ cq ` 1.

In the proof of Theorem 1.2 [2, 4] the equality |F r t∅u| “
ř

vPV

ř

HPLv

1
|H|`1 , where Lv is

the link of the vertex v, was used, which comes from a simple double counting argument.
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Subsequently, they used a generalised form of the Kruskal-Katona Theorem (see Theo-
rem 2.2 below) to obtain a general lower bound for

ř

HPLv

1
|H|`1 for every v. Due to the

aforementioned double counting this in turn yields a lower bound on the number of edges.
For c ě 3 there exist extremal families which show that a general bound on

ř

HPLv

1
|H|`1

for every vertex v is not sufficient to provide the desired bound on the number of edges. To
overcome this difficulty first observe that the double counting argument can be generalised
by interpreting

ř

HPLv

1
|H|`1 as the weight wFpvq of a vertex v. We will refer to this weight

as uniform weight since it can be imagined as uniformly distributing the unit weight of an
edge to each of its vertices. In contrast, to prove Theorem 1.3 and Theorem 1.5, we will
use a non-uniform weight. Moreover, instead of bounding the weight of single vertices we
will bound the weight of sets of vertices.

To this aim take the maximum possible set of vertices with small uniform weight such
that their neighbourhoods are pairwise disjoint. Call these vertices together with their
neighbours clusters. Note that in this way the neighbourhood of every vertex with small
uniform weight needs to intersect some cluster. For bounding the weight of vertices whose
neighbourhood does not intersect any cluster (and therefore have a large uniform weight),
we introduce a “local” lemma (see Lemma 3.1) which is a close relative to a general form
of the Kruskal-Katona theorem. Given a vertex of fixed degree, it provides a lower bound
on the uniform weight and furthermore, the minimum weight surplus if its link deviates
enough from the minimising link. Since the link of vertices whose neighbourhood does not
intersect any cluster indeed deviates enough from the minimising link, the lemma then
gives that these will have a large weight.

The next step is to bound the average weight of the vertices in each such cluster. Even
if the number of edges inside a cluster is not large enough, F being hereditary and the
minimum degree of F still provide some lower bound for the number of edges in a cluster.
Then a second local lemma (Lemma 3.2) yields that there are several vertices within
that cluster whose degree (with respect to the cluster) is not the minimum degree in F .
Therefore, there exist several crossing edges, i.e., edges containing vertices from both the
inside and the outside of the cluster. If we use the uniform weight, these crossing edges
will contribute enough to the weight of the cluster, even more than needed.

At this point we still need to bound the weight of vertices with small uniform weight
lying outside of any cluster. As mentioned above, the neighbourhood of every such vertex
intersects some cluster, meaning every such vertex is contained in a crossing edge. Recall
that in fact, a uniform weight on crossing edges would contribute more weight than needed
for the inside of a cluster. Now the second idea comes into play: the unit weight of these
edges will be distributed non-uniformly among its vertices. Hence, when splitting the unit
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weight of such a crossing edge according to the above mentioned imbalance, both sides will
get a share that is big enough.

Note that this strategy is compatible with the extremal constructions in so far as that
those are composed of disjoint copies of locally optimal families.

§2. Preliminaries

In this work we consider the set of natural numbers N to start with 1 and the logarithms
considered are to the base 2. Further, for i P Z we set as usual ris “ t1, . . . , iu, and it is
also convenient to define ris0 “ t0, . . . , iu. Given a set F Ď N and some i P N, we denote
by F ` i the set tj ` i : j P F u. For our considerations isolated vertices, i.e., vertices that
are contained in the vertex set of a hypergraph but do not lie in any edges, usually do
not play an important rôle. This will lead to a few easy peculiarities in notation. For two
hypergraphs H and H1 we write H – H1 if they are isomorphic up to isolated vertices,
more precisely, if there are vertex sets V disjoint to V pHq and V 1 disjoint to V pH1q such
that the hypergraph pV pHq Ÿ V,EpHqq is isomorphic to pV pH1q Ÿ V 1, EpH1qq.

For a hypergraph H “ pV,Eq and v P V we define the link Lv of v to be the hypergraph
on V with edge set tF r tvu : F P Eu. Further, we write

Vv “ tw P V : there is an e with tv, wu Ď e P Eu ,

note that if v is not an isolated vertex, then v P Vv. This notation will be useful in the
proof of Theorem 1.3 when defining the clusters mentioned in the overview of the proof.

The following lemma due to Frankl [2] provides the aforementioned reduction of Prob-
lem 1.1 to hereditary families.

Lemma 2.1. For n,m, a, b P N the following statements are equivalent.

(1) For every n-set V and every hereditary family F Ď 2V with |F | ě m, there exists a
set T Ď V with |T | “ a such that |F|T | ě b.

(2) pn,mq Ñ pa, bq

In particular, this means that in the proof of our results we only need to consider
hereditary families.

Let n P N, for A,B P 2rns we say that A ăcol B or A precedes B in the colexicographic
order if maxpA M Bq P B. Let m P N with m ď 2n and define Rnpmq to be the family
on n vertices containing the first m sets of 2rns according to the colexicographic order. Note
that for n ď n1 and m ď 2n, we have Rnpmq – Rn1pmq and hence, we will not distinguish
between Rnpmq and Rn1pmq and we will omit the subscript. The following theorem due to
Katona [7] is a generalisation of the well-known Kruskal-Katona theorem.
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Theorem 2.2. Let f : N0 Ñ R be a monotone non-increasing function and let F be a
hereditary family with |F | “ m. Then

ÿ

FPF
fp|F |q ě

ÿ

RPRpmq

fp|R|q.

In the proofs of Theorems 1.3 and 1.5, normally Theorem 2.2 is applied with F being
the link of a vertex. Moreover, as we usually consider the uniform weight mentioned in
Section 1.1, the function f will often be fpkq “ 1

k`1 . The weight of Rpmq with respect
to this f will come up repeatedly and hence, for brevity we set W pmq :“

ř

RPRpmq
1

|R|`1 .
Note that we have W p2d´1q “ 2d´1

d
and further the following estimate2 for W p2d´1 ´ cq for

a c P r2d´2s:

W p2d´1
´ cq ě

2d ´ 1
d

´
c

d´ log c (2.1)

Indeed, if A P 2rd´1srRp2d´1´cq, then there are at least 2d´1´|A| sets in 2rd´1srRp2d´1´

cq. Thus, it follows that for every A P 2rd´1s r Rp2d´1 ´ cq we have |A| ě d ´ 1 ´ log c.
This gives that W p2d´1q ´W p2d´1 ´ cq ď c

d´log c
and thereby (2.1).

§3. Proof of Theorem 1.3

As mentioned in Section 1.1 for proving Theorem 1.3 we introduce two “local” lemmas.
The first lemma says that if a family deviates enough from Rpmq, the weight of this family
will have a surplus with respect to W pmq2.

Lemma 3.1. Let d ě 4 and c ď 2d be integers. For a hereditary family H, with |H| ě 2d´c

the following holds.

(1)
ř

HPH
1

|H|`1 ě W p2d ´ cq.
(2) If there are at least d` 1 non isolated vertices in H, then

ÿ

HPH

1
|H| ` 1 ě W p2d

´ cq `
1
6 .

(3) If c P t2, 3u and H fl Rp2d ´ cq, then we have
ÿ

HPH

1
|H| ` 1 ě W p2d

´ cq `min
ˆ

1
6 ,

1
d

˙

.

Proof. Let d, n, c, and H be given as in the statement. The first part follows by applying
Theorem 2.2 with fpkq “ 1

k`1 .

2To have a clearer presentation of our main results and their proofs, we refrained from striving for
optimal bounds.



ON EXTREMAL PROBLEMS CONCERNING THE TRACES OF SETS 7

In order to prove part (2) and (3) we need some preparation. Denote by hi and ri the
number of i-sets in H and Rp2d ´ cq, respectively. Given s P rds0 set gpkq “ 1 for k ď s

and gpkq “ 0 for k ą s. Then Theorem 2.2 applied with f “ g yields
ÿ

iPrss0

hi ě
ÿ

iPrss0

ri. (3.1)

Next, let H1, . . . , H|H| be an enumeration of the elements of H such that |Hj| ď |Hj`1|.
Given i P rd´ 1s let ϕpiq be the number of edges of size at most i in the family Rp2d ´ cq,
i.e., ϕpiq “

ř

jPris0
rj. Let H0 “ tH1u “ t∅u and for i P rd´ 1s consider the following set

of edges Hi “ tHϕpi´1q`1, . . . , Hϕpiqu and observe that its size is ri. Inequality (3.1) implies
that for H P Hi, where i P rd´ 1s0, we have |H| ď i. Thus,

ÿ

iPrd´1s0

ÿ

HPHi

1
|H| ` 1 ě

ÿ

iPrd´1s0

ri

i` 1 “ W p2d
´ cq . (3.2)

If now at least d` 1 vertices are contained in edges of H, then even for Hd`2 P H2 it holds
that |Hd`2| “ 1. Hence, (3.2) now becomes

ř

HPH
1

|H|`1 ě
1
2 ´

1
3 `W p2d ´ cq and (2) is

proved.
For proving (3), let c P t2, 3u and note that if there are at least d ` 1 non isolated

vertices in H, then the result follows from (2). Thus, assume that there are only d non
isolated vertices in H. Observe that ri “

`

d
i

˘

for i P rd´ 2s, rd “ 0 and rd´1 “ d´ pc´ 1q.
Hence, due to (3.1) we have hi “

`

d
i

˘

for i P rd´ 2s and because of H being hereditary and
the size of H, further hd´1 ě d ´ pc ´ 1q. In fact, hd´1 ą rd´1 “ d ´ pc ´ 1q has to hold
since H fl Rp2d ´ cq. Together with (3.2) the result follows. �

The following is the second local lemma mentioned in the overview. Part (2) states
that a family on d vertices with high minimum degree contains many edges and therefore,
considering Lemma 2.1, this is a local version of Theorem 1.3. Moreover, Part (1) states
that if a family has not enough edges, then there are several vertices of low degree.

Lemma 3.2. Let d, c P N, V be a d-set and let H Ď 2V be hereditary.

(1) If |H| ď 2d ´ c´ 1, then degpvq ď 2d´1 ´ c´ 1 for at least d´ c vertices v.
(2) If d ě c` 1 and δpHq ě 2d´1 ´ c, then |H| ě 2d ´ c.

Proof. (1): By sH denote the family tV r F : F P 2V r Hu. The bound on |H| implies
that c` 1 ď | sH| and observe that since H is hereditary, sH is hereditary. Consider some
ordering sH “ tH1, . . . , H| sH|u with |Hi| ď |Hi`1|. Note that because sH is hereditary, we
know that if some vertex v P V is contained in one of the edges H1, . . . , Hj, then in
fact tvu “ Hi for some i P rjs. Thus, there are d ´ c vertices that do not lie in any
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of H1, . . . , Hc`1. Note that these vertices lie in at least c` 1 sets of 2V r H and therefore,
for each such v we have degHpvq ď 2d´1 ´ c´ 1.

(2): Assume for contradiction that |H| ď 2d´c´1. Then (1) gives the contradiction. �

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Let n, d, and c be given as in the theorem. First note that

F0 “
!

F ` pi´ 1q : F P Rp2d
´ pc´ 1qq and i P

”n

d

ı)

Ď 2rns

shows that for m “ 2d´c
d
n` 1, we have pn,mq Û

`

n´ 1,m´ p2d´1 ´ cq
˘

.
In an hereditary family on n vertices with m edges the existence of a set of size n´ 1

on which the trace of the family has size at least m ´ p2d´1 ´ cq is equivalent to the
existence of a vertex with degree at most 2d´1 ´ c. Therefore, Lemma 2.1 implies that it is
sufficient to show that for every hereditary family F on n vertices with minimum degree at
least 2d´1 ´ c` 1 we have |F | ě 2d´c

d
n` 1. Let now F Ď 2V be such a hereditary family

on some n-set V in which every vertex has degree at least 2d´1 ´ c` 1.
To prove the lower bound on the number of edges, we will define a weight function w

on V with the property that 1 `
ř

vPV wFpvq ď |F |. Subsequently, it will be enough to
show that

ř

vPV wFpvq ě
2d´c

d
n. Indeed, for c “ 1 the weight function

ř

HPLv

1
|H|`1 together

with Lemma 3.1 provide this, so from now on we assume c ě 2. Note however, that for
this uniform weight and c large, in F0 there are vertices with weight below and above 2d´c

d
.

As mentioned in the overview, we overcome this difficulty by using non-uniform weights
and by bounding the average weight of sets of vertices instead of bounding the weight of
every single vertex.

To that aim, we will in the following consider a partition of V . Let us call a vertex v P V
light if |Vv| “ d. Further, let L be a maximum set of light vertices such that Vv X Vv1 “ ∅
for all v, v1 P L and call the sets Vv with v P L clusters. Later, the weight of a vertex
will be defined depending on how it relates to to these clusters. Moreover, call the
vertices u P V r

Ť

vPL Vv with |Vu| ą d heavy vertices and let H be the set of all heavy
vertices. The vertices in L will be distinguished further into two different types L1 and L2

as follows. Let L1 be the set of those vertices v P L for which every vertex in Vv is only
contained in edges of 2Vv , that is

L1 “ tv P L : there is no e P F r 2Vv with eX Vv ‰ ∅u.

Furthermore, let L2 be the set of those vertices v P L for which there exists an x P Vv that
is contained in an edge of F r 2Vv , in other words,

L2 “ tv P L : there is an e P F r 2Vv with eX Vv ‰ ∅u. (3.3)
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Note that we have L “ L1 Ÿ L2. Lastly, we collect the remaining vertices in the
set sL “ V r pHY

Ť

vPL Vvq. Thus, we have V “ H Ÿ
Ť

vPL1
Vv Ÿ

Ť

vPL2
Vv Ÿ sL.

Next, for each of the partition classes H,
Ť

vPL1
Vv,

Ť

vPL2
Vv, and sL the weights will be

defined and we will show that the average weight in each partition class is bounded from
below by 2d´c

d
.

Assign the uniform weight wFpuq “
ř

HPLu

1
|H|`1 to every heavy vertex u P H. This

definition and (2) from Lemma 3.1 give that every heavy vertex has weight at least

1
6 `W p2

d´1
´ c` 1q ě 1

6 `
2d ´ 1
d

´
c´ 1

d´ logpc´ 1q ě
2d ´ c

d
, (3.4)

where we used the bound (2.1) for the first inequality and d ě 4c and log x ď 2
3x for x ě 1

for the second (recall that we can assume c ě 2).
Given v P L1, we have that FrVvs is a family on d vertices with minimum degree at

least 2d´1´ c` 1. Thus, from Lemma 3.2 (2) (with c´ 1 here in place of c there) it follows
that |FrVvs| ě 2d ´ c` 1. Since summing the uniform vertex weights of all vertices of a
family amounts to the number of non-empty edges in that family, assigning the uniform
weight wFpxq “

ř

HPLx

1
|H|`1 to every x P Vv yields

1
d

ÿ

xPVv

wFpxq “
|FrVvsr t∅u|

d
ě

2d ´ c

d
. (3.5)

Given v P L2, the idea is that the vertices in Vv already have a relatively large uniform
weight just taking into account the edges on Vv. Thus, they only need a smaller proportion
of the weight of an edge that includes vertices outside of Vv. More precisely, we assign the
weight

wFpxq “
ÿ

HPLx

1
|H| ` 1 ´ |Vx r Vv|

ˆ

1
2 ´

c´ 1
d´ c

˙

to every vertex x P Vv. This definition can be understood as vertices in Vv basically having
the uniform weight but then renouncing part of their uniform share of 2-uniform edges that
cross from the inside of a cluster to the outside. Later, these crossing edges will contribute
more than their uniform share to the outside vertex.

Of course, if |FrVvs| ě 2d ´ c` 1, then again the bound (3.5) follows for v directly by
double counting and thus, we may assume that |FrVvs| ď 2d ´ c. Define the set C as the
set of vertices x P Vv for which there exists some Fx with x P Fx P F r 2Vv . Note that in
fact, since F is hereditary, we may assume |Fx| “ 2. Considering the minimum degree
condition in F and applying Lemma 3.2 (1) to FrVvs (with c´ 1 here instead of c there) it
follows that

|C| ě d´ c` 1 . (3.6)
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Moreover, the minimum degree of F implies dpvq ě 2d´1 ´ c ` 1 and hence, F being
hereditary gives that |2Vv rF | ď 2pc´ 1q. Therefore, double counting the non-empty edges
in FrVvs yields

|FrVvsr t∅u| “
ÿ

xPVv

ÿ

HPLxX2Vv

1
|H| ` 1 ě 2d

´ 2c` 1 . (3.7)

Now, observe that the definition of the weight together with (3.7) and (3.6) give
1
d

ÿ

xPVv

wFpxq ě
1
d

ˆ

|FrVvsr t∅u| ` |C|
c´ 1
d´ c

˙

ě
1
d

ˆ

2d
´ 2c` 1` pd´ c` 1qc´ 1

d´ c

˙

ě
2d ´ c

d
. (3.8)

Lastly consider vertices from sL. Recall that in particular, these vertices are light and
could potentially have a too low weight if the uniform weight would be used. Note that by
the maximality of L, for every vertex a P sL we can pick a vpaq P L2 such that there exists
an edge containing a and a vertex of Vvpaq. Since the vertices in

Ť

vPL2
Vv renounced their

full share of some of those edges, the vertices in sL can be given a larger fraction. To be
precise, the weight for a P sL is defined as

wFpaq “
ÿ

HPLa

1
|H| ` 1 `

ˇ

ˇVa X Vvpaq

ˇ

ˇ

ˆ

1
2 ´

c´ 1
d´ c

˙

.

Lemma 3.1 (1) yields that

wFpaq ě W p2d´1
´ c` 1q ` 1

2 ´
c´ 1
d´ c

ě W p2d´1
´ c` 1q ` 1

6 ě
2d ´ c

d
, (3.9)

where the second inequality follows from d ě 4c and the third follows as in (3.4). Observe
that the definition of wF implies

ř

xPV wFpxq ď 1` |F | because the left-hand side counts
every edge of F apart from the empty set at most once. Since (3.4), (3.5), (3.8), and (3.9)
say that the average weight per vertex in F is at least 2d´c

d
, the proof is complete. �

§4. Proof of Theorem 1.5

This section is dedicated to the proof of Theorem 1.5. The proof is very similar to the
proof of the main theorem just with some adaptions to obtain more precise bounds at
certain points. Hence, we will omit some details that already appeared in the last section.

Proof of Theorem 1.5. Let c P t3, 4u and note that the cases d “ 3 and 4 have been
solved before, see [4] and [11], so assume d ě 5. Firstly, the family F0 from the proof of
Theorem 1.3 shows that for m “ n

d
p2d ´ cq ` 1, we have pn,mq Û

`

n´ 1,m´ p2d´1 ´ cq
˘

.
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Let now F Ď 2V be a hereditary family on some n-set V in which every vertex has
degree at least 2d´1 ´ c` 1. In the following we will show that |F | ě

`

2d ´ c
˘

n
d
` 1.

To gain more precision later, this time we call a vertex v P V light if Lv – Rp2d´1´pc´1qq.
Again, let L be a maximum set of light vertices such that Vv X Vv1 “ ∅ for all v, v1 P L.
Call the vertices u P V r

Ť

vPL Vv with Lu fl Rp2d´1 ´ pc ´ 1qq heavy vertices. The
sets Li, H, sL are defined similarly as in the proof of Theorem 1.3, just according to the
different definitions of light and heavy vertices here.

Again we assign the uniform weight to every heavy vertex of F . Note that then, due to
Lemma 3.1 (3) and the structure of Rp2d´1 ´ cq for c ď 4, every heavy vertex has weight
at least

min
ˆ

1
6 ,

1
d

˙

`W p2d´1
´ pc´ 1qq ě min

ˆ

1
6 ,

1
d

˙

`
2d ´ 1
d

´
pc´ 1qd´ 1
pd´ 1qd ě

2d ´ c

d
.

(4.1)

For v P L1 and x P Vv the weight is again defined as the uniform weight and as in the
proof of Theorem 1.3, we obtain

1
d

ÿ

xPVv

wFpxq ě
2d ´ c

d
. (4.2)

To write the next weight definitions in a compact way, we define the following set

S “
 

H P F : |H| “ 3 and H X
ď

vPL2

Vv, H X sL ‰ ∅
(

Note that S is the set of those edges of size 3 in F crossing from the inside of some Vv

with v P L2 to its outside and contain a vertex from sL. For v P L2 and a vertex x P Vv,
assign the weight wFpxq “

ř

HPLx

1
|H|`1 ´

1
9 |tH P Lx : H Y txu P Su|.

Claim 4.1. For v P L2 we have 1
d

ř

xPVv
wFpxq ě

2d´c
d

.

We postpone the proof of this claim to the end of the section and first finish the proof
of Theorem 1.5 using the claim.

For a vertex define the weight a P sL as wFpaq “
ř

HPLa

1
|H|`1`

1
18 |tH P La : HYtau P Su| .

Note that by the maximality of L, there exists a vpaq P L2 such that there are an edge F and
a vertex xa P Vvpaq with a, xa P F . In fact, it is easy to check that since La – Rp2d´1´pc´1qq,
the number of 2-sets in La that contain xa is at least d´ 2 ě 3. Thus, Lemma 3.1 (1) and
the definition of the weight yield

wFpaq ě W p2d
´ pc´ 1qq ` d´ 2

18 ě W p2d
´ pc´ 1qq ` 1

6 ě
2d ´ c

d
. (4.3)

Now observe that the definition of wF implies
ř

xPV wFpxq ď 1` |F | because the left-
hand side counts every edge of F apart from the empty set at most once. In particular,
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for H P S there are at least one x P H X
Ť

vPL2
Vv and at most two a, a1 P H X sL. Thus, H

contributes at most 1 to
ř

xPV wFpxq.
Since (4.1), (4.2), Claim 4.1, and (4.3) say that the average weight per vertex in F is at

least 2d´c
d

, the proof is complete. �

Proof of Claim 4.1. Here, we will differ slightly depending on the value of c.
Case c “ 3: If δpFrVvsq ě 2d´1 ´ 2, then (4.2) holds for v as well and so we may

assume δpFrVvsq ă 2d´1 ´ 2 and thereby |2Vv r F | ě 3. On the other hand, since dpvq ě
2d´1 ´ 2 and F is hereditary, |2Vv r F | ď 4. So we can assume that |2Vv r F | P t3, 4u.
If |2Vv rF | “ 3, then dpvq ě 2d´1´2 and F being hereditary imply that the sets in 2Vv rF
are Vv, Vv r tvu, and some A P pVvq

pd´1q with v P A. Thus, each vertex x P A r tvu lies
in all three sets of 2Vv r F , and so there has to be an Fx P Lx X pV r Vvq

p1q because of
the minimum degree of F . Thus, the definition of the weight and double counting the
non-empty edges in FrVvs implies

ÿ

xPVv

wFpxq ě |FrVvsr t∅u| `
|Ar tvu|

2 ě 2d
´ 4` d´ 2

2 ě 2d
´ 3.

Similarly, if |2Vv r F | “ 4, then the sets in 2Vv r F are Vv, Vv r tvu, some A P pVvq
pd´1q

with v P A, and Ar tvu. Hence, there are d´ 2 vertices x (namely, the vertices in Ar tvu)
for which there has to be an Fx P Lx X pV r Vvq

p1q and at least one further F 1x P Lx

with F 1xX pV r Vvq ‰ ∅ and |F 1x| ď 2. Noting that each Fx contributes 1{2 to
ř

xPVv
wFpxq

and each F 1x at least 1{3´ 1{9 “ 2{9, we obtain in the usual way
ÿ

xPVv

wFpxq ě 2d
´ 5` d´ 2

2 `
2pd´ 2q

9 ě 2d
´ 3

and thereby the claim if c “ 3.
Case c “ 4: In a similar way as in the beginning of the case c “ 3, we observe that we may

assume |2Vv rF | P t4, 5, 6u. Further observe that if |2Vv rF | “ 4, then since dpvq “ 2d´1´3,
the sets in 2Vv r F are Vv, Vv r tvu, A, and B for some distinct A,B P V pd´1q

v which both
contain v. Thus, there are at least d´ 3 vertices (namely those in AXB r tvu) that lie in
four sets of 2Vv r F . Since for any such vertex x there has to be an Fx P Lx X pV r Vvq

p1q,
we get

ř

xPVv
wFpxq ě 2d ´ 5` d´3

2 ě 2d ´ 4.
Similarly, if |2Vv r F | “ 5, the sets in 2Vv r F are Vv, Vv r tvu, A, B, and A r tvu

for some distinct A,B P V pd´1q
v which both contain v. Hence, for the d ´ 3 vertices x P

A X B r tvu there have to be an Fx P Lx X pV r Vvq
p1q and at least one further F 1x P Lx

with F 1x X pV r Vvq ‰ ∅ and |F 1x| ď 2. In addition, for the one vertex x P ArB there has
to be an Fx P Lx X pV r Vvq

p1q. For a vertex x P A X B r tvu we observe the following.
If F 1x R S, then F 1x contributes at least 1{3 to

ř

xPVv
wFpxq. On the other hand, if F 1x P S,
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then there is some a P sL with a P F 1x. Since for any a P sL we have La – Rp2d´1 ´ 3q
(and d ě 5), the number of 2-sets in La which contain x is at least d´ 2 ě 3. So in this
case the edges in tH P Lx : H Y txu P Su contribute at least 2

9 ¨ 3 “ 2{3. In either case, we
derive

ÿ

xPVv

wFpxq ě 2d
´ 6` d´ 2

2 `
d´ 3

3 ě 2d
´ 4 .

Lastly, if |2Vv r F | “ 6, then the sets in 2Vv r F are Vv, Vv r tvu, A, B, A r tvu,
and B r tvu for some distinct A,B P V pd´1q

v which both contain v. Thus, for the d ´ 3
vertices x P AXB r tvu there is an Fx P Lx X pV r Vvq

p1q and at least two further F i
x P Lx

with F i
x X pV r Vvq ‰ ∅ and |F i

x| ď 2, i P r2s. In addition, there are two further
vertices x P A4B for which there is at least one Fx P Lx X pV r Vvq

p1q. For a vertex x P
AXB r tvu we observe the following. If F i

x R S for i “ 1, 2, then these two edges together
contribute at least 2{3 to

ř

xPVv
wFpxq. If F i

x P S for some i P t1, 2u, then the edges
in tH P Lx : H Y txu P Su contribute at least 2{3 as noted above. Therefore the definition
of the weight entails

ÿ

xPVv

wFpxq ě 2d
´ 7` d´ 1

2 `
2pd´ 3q

3 ě 2d
´ 4

and thereby the claim is proved if c “ 4. �

§5. Further Remarks and Open Problems

Consider mpsq to be the following limit introduced in [4]

mpsq :“ lim
nÑ8

mpn, sq

n
.

It is not difficult to check that mpsq is well-defined (see [4]). Rephrased by means of this
definition, Theorem 1.3 implies that for c ď d

4 we have that

mp2d´1
´ cq “

2d ´ c

d
. (5.1)

The first open problem we would like to mention concerns finding a sharp relation
between d and c such that (5.1) holds. More precisely, finding the maximum integer c0pdq

such that the equality (5.1) holds for every c ď c0. In view of Theorem 1.3 we have
that c0pdq ě td

4 u, and below we will give a construction that proves that c0pdq ď d for d ě 5.
Let F Ď 2V with |V | “ n and d be a positive integer such that d|n. We say that F

is d-local if there exists a partition of V into sets of size d such that every F P F is a subset
of one of the sets of the partition. Observe that the extremal construction presented in
the proof of Theorem 1.3 is a d-local hypergraph with minimum degree 2d´1 ´ c` 1 and
with mpn, 2d´1 ´ cq ` 1 edges. That construction can be generalised in the following way.
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Take d ě 5 and c P r2d´2s and set s “ 2d´1 ´ c, for simplicity let d|n. By definition
of mp¨, ¨q, there is a family on d vertices with mpd, sq ` 1 edges such that all vertices
have degree at least s ` 1. Take n{d vertex disjoint copies of such a family. It is clear
that in the resulting family all vertices have degree at least s ` 1 and the number of
edges is mpd, sqn

d
` 1. This family minimises the number of edges for d-local families with

minimum degree at least s` 1 and gives the following general upper bound on mp2d´1´ cq

mp2d´1
´ cq ď

mpd, 2d´1 ´ cq

d
. (5.2)

Moreover, we observe that for c “ d` 1 we have that mpd, 2d´1´ pd` 1qq ă 2d´ pd` 1q.
To see this, consider the family F Ď 2rds containing all sets with at most d ´ 2 vertices.
Then F has 2d ´ pd` 1q edges and minimum degree 2d´1 ´ d ą 2d´1 ´ c. Thus, from (5.2)
it follows that

mp2d´1
´ pd` 1qq ď 2d ´ pd` 2q

d
.

This means (5.1) does not hold for c “ d` 1, and hence c0pdq ď d.
Note that this construction is also d-local. An interesting problem is to find the values

of c for which there are no d-local extremal families.

Problem 5.1. Given a positive integer d ě 2, find the minimal c‹pdq P r1, 2d´2s such that
for all c ě c‹ we have

mp2d´1
´ cq ă

mpd, 2d´1 ´ cq

d
.

A solution to this problem would give an insight into the structural behaviour of the
extremal families: For c ě c‹ and large n (possibly satisfying certain divisibility conditions)
there is no d-local extremal family for mpn, 2d´1 ´ cq. Note that the results in [2, 4, 11]
solved Problem 5.1 for d ď 4.

In the following, given a vertex set of size n we describe a non d-local family that has
less edges than any possible d-local family with the same minimum degree. More precisely,
the construction below yields that, given d ě 5 and c “ d, we have

mp2d´1
´ dq ď

2d ´ d´ 1
2

d
ă
mpd, 2d´1 ´ dq

d
. (5.3)

Construction 5.2. Let d ě 5 and k a positive integer, set n “ 2dk. Take V to be a set
of n vertices. Consider U1, . . . , U2k to be a partition of V into sets of size d, and for every
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set Ui arbitrarily pick a vertex xi P Ui. Define

G “ tS Ď V : there is an i such that S Ď Ui and |S| ď d´ 2u

H “ tUi r txiu : for i P t1, 2, . . . , 2kuu

I “ ttxi, xi`1u : for i P t1, 3, 5, . . . , 2k ´ 1uu .

One can check that the number of edges of the family F “ G YH Y I is given by

|G| ` |H| ` |I| “ 2d ´ d´ 2
d

n` 1` n

d
`

n

2d “
2d ´ d´ 1

2
d

n` 1.

Moreover, every vertex in V has degree s “ 2d´1 ´ d` 1. This implies the first inequality
of (5.3). Taking d “ c` 1 in Lemma 3.2 (1) yields

2d
´ d ď mpd, 2d´1

´ dq,

and thereby the second inequality in (5.3).

For s ď 16 (that is d ď 5q, considering the results from [2,4,11] and Theorem 1.5 all values
of mpsq are found, except mp11q. We recall the conjecture of Frankl and Watanabe [4],
which states that Construction 5.2 is extremal for d “ 5.

Conjecture 5.3 ([4]). mp11q “ 5.3

A complementary approach than the one taken in this paper could be as follows.

Problem 5.4. Given a positive integer d and an integer c P r0, 2d´1q, find the value
of mp2d´1 ` cq.

Naturally, for c ě 2d´1´ d
4 Problem 5.4 is solved by Theorem 1.3. For c ď 2d´2, the only

general result is given in [4], where it is shown that mp2d´1q “ 2d´1
d
` 1

2 . For other values
of c Problem 5.4 is still open.

Observe that Theorems 1.3 and 1.5 and the results presented in [2,4,11] concern cases in
which s is close to 2d for some value of d. In general, there are still large intervals between
powers of 2 for which the only bounds on mpsq that are known are those that follow directly
from the previously mentioned results. Finding a solution for Problem 5.1 might shed light
on this problem by possibly providing a first understanding of the structural behaviour in
those intervals.
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