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PATH SPACES I: A MENGER-TYPE RESULT

HENDRIK HEINE

Abstract. Infinite graphs are finitary in the sense that their points are

connected via finite paths. So what would an infinitary generalization

of finite graphs look like? Usually this question is answered with the

aid of topology, e.g. in the case of graph-like spaces. Here we introduce

a more combinatorial answer, which we call path space, and prove a

version of Menger’s theorem for it. Since there are many topological

path-like objects which induce path spaces, this result can be applied in

a variety of settings.

1. Introduction

Paths in graphs, being the basic notion underlying connectivity, have
been generalized in various ways, the most prominent being the notion of
topological arcs. This connection has become more important in recent years
with the study of topological infinite graphs. Considering an infinite graph as
a 1-complex with ends as points at infinity, topological arcs in this space can
substitute for paths of finite graphs in a number of theorems. One of the
original successes of this technique was the cycle space duality for locally
finite graphs described by Diestel and Kühn in [5]. With this approach
becoming more prolific, this also generated additional interest in a superclass
of these spaces, so called graph-like spaces. These being topological spaces,
arcs could be studied as before and in [11] Thomassen and Vella investigated
the extent to which Menger’s theorem held in spaces like these.

However, arcs do not necessarily capture all ’path-like’ structures in these
spaces. By arraying edges like ω1, one can construct a graph-like space called
the long-line. Even though this space appears to consist of just a single
path, there is no arc between its endpoints since [0, 1] has no uncountable
ascending sequences. This can be resolved using a notion called pseudo-line
introduced in [2], which can be born from any linear order.

Although not every pseudo-arc is an arc and not every Hausdorff space
is graph-like many proofs for arcs in Hausdorff spaces and pseudo-arcs in
graph-like spaces are parallel. This raises the question of whether there
could be a further generalization of both which would allow us to prove
theorems valid for any notion of paths sharing some essential properties.

In this article we will describe such a notion, which we call path spaces.
These are sets of linear orders satisfying some compatibility axioms. By
forgetting all information about the paths except their induced linear orders,
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we can forego the need for any setting for our paths to live in and define
these spaces purely by the interactions of the paths themselves.

Path spaces can also be viewed as a different way to generalize the concept
of finite graph to the infinite realm. While infinite graphs are still finitary,
that is all paths are finite, path spaces allow for true infinitary connectivity.
Indeed, graphs correspond exactly to those path spaces all whose paths are
finite. In addition, many of the standard results about connectivity in graphs
generalize to path spaces, as this series of articles will demonstrate.

The first theorem we will prove about path spaces will be a version of
Menger’s theorem. This being perhaps the fundamental theorem of graph
connectivity and spawning a multitude of variants, strenghthenings and gen-
eralizations, including the breakthrough result in [1] by Aharoni and Berger,
versions of it were already proven for many of the structures mentioned, in-
cluding topological graphs in [4] and arcs in topological spaces (or graph-like
spaces) e.g. in [11] and [7], but our version extends further, e.g. to long arcs.

Building hereupon, further articles ([8] and [9]) will consider decomposi-
tions of path spaces similar to tree decompositions and how these allow us
to separate path spaces into blocks or 3-connected parts. Furthermore, in
[10] we will prove some ubiquity results for path spaces.

This article starts with a section defining path spaces and developing
some basic notions and results. This is followed by a discussion of examples.
Afterwards we observe some properties of alternating walks in path spaces
and use them to prove the main result. The final section deals with coun-
terexamples, in particular we give an example of a graph-like space which
fails to satisfy Menger’s theorem for cardinality ℵ0.

2. Path spaces

Let us start by defining some preliminary notions to prepare the introduc-
tion of path spaces. Call a subset Y of a linearly ordered set X complete, if
for any nonempty Z ⊆ Y there exists a supremum and infimum in X and
these are contained in Y . In this paper, a path will be a complete linearly
ordered set. A set of paths P is called compatible if for any P,Q ∈ P the set
P ∩Q is complete in P . For a path P with x ≤ y in P we call the interval
from x and y with the induced order its segment from x to y. Given two
paths P and Q we say that P connects to Q, if P ∩Q = {x} where x is the
maximum of P and the minimum of Q. If this is so, we call the union of P
and Q with the induced order their concatenation. The inverse of a path is
obtained by reversing its order.

Now we have enough to define path spaces. Since the bookkeeping in-
volved in the proof of Menger’s theorem is more natural for directed objects,
we also introduce a directed version of path spaces. A set of paths is called a
dipath space if is compatible and closed under segments and concatenations.
A dipath space is a path space if it is also closed under inverses. The ground
set V (P) of a dipath space P is the union of the ground sets of its paths.
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Let P be a set of paths. We can closed it under segments by just adding
all segments of its paths and close it under concatenations by inductively
adding in countably many steps all concatenations of paths constructed so

far. Now we define P̂ by closing under segments and then closing under
concatenations.

Lemma 2.1. Let P be a compatible set of paths. Then P̂ is a dipath space.

Proof. Let us first show that P̂ is closed under segments. Let Q be a segment
of some P ∈ P. Now P is the concatenation of finitely many P1, . . . , Pn

which are segments of paths in P. We may assume w.l.o.g. that Q meets
all of these in a nontrivial segment, otherwise we may move to a shorter
concatenation. Let Q1 be the segment of P1 which Q meets and define Qn

similary. Then Q is the concatenation of Q1, P2, . . . , Pn−1, Qn, which are all

segments of paths in P and thus contained in P̂ .

Now it remains to show that P̂ is compatible. Since segments are closed
under suprema and infima closing a compatible set under segments keeps it
compatible. Thus it suffices to prove that adding the concatenation of two
paths from a compatible set to this set leaves it compatible. For this let
P1, P2, Q be three paths from a compatible set and let P be the concatena-
tion of P1 and P2. Let Z ⊆ P ∩Q be nonempty. Clearly there is a supremum
of Z in Q as required, namely the maximum of the suprema of Z ∩ P1 and
Z ∩ P2 in Q. Furthermore if Z does not meet P2, then the supremum of Z
in P1 is the supremum of Z in P and otherwise the supremum of Z in P2 is
the supremum of Z in P . For infima the proof proceeds analogously. �

This justifies calling P̂ the induced dipath space of P. If we close P under
inverses before taking the induced dipath space then we obtain a path space
P, which we call the induced path space of P.

Given a path space P we write x ∼ y for x, y in its ground set if there
exists some P ∈ P with minimum x and maximum y.

Lemma 2.2. ∼ is an equivalence relation.

Proof. It is clearly reflexive and symmetric, so let x, y, z ∈ V (P) with x ∼ y
and y ∼ z be given and let P and Q be paths witnessing this respectively.
Since P ∩Q is complete in Q, it has a maximum m. Let P ′ be the segment
of P up to m and Q′ the segment of Q starting from m. Then P ′ connects
to Q′ and their concatenation witnesses x ∼ z. �

We call the equivalence classes defined by ∼ components of P and call P
connected if it has just one component. In general dipath spaces we define
components and connectedness via the induced path space.

We may delete a set of paths Q from a dipath space P by removing all
those paths which share a nontrivial segment with a path from Q. This also
gives a dipath space.

Given a path space P and some v ∈ V (P) we can define a relation on the
nontrivial paths of P starting at v where two paths are equivalent if there
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exists a nontrivial path starting at v in P which is an initial segment of both.
Clearly, this an equivalence relation. We call its classes the outdirections at
v. The number of these directions is the outdegree of v. Similarly we can
define indirections and the indegree of v.

Let P be a dipath space. A walk in P is a map f : P → V (P) for some
path P not neccessarily from P such that for any x ∈ P and small enough
nontrivial closed interval I in P beginning or ending in x we have f [I] ∈ P.
The set of paths of P which occurs as f [I] for any closed interval I is called
the space induced by f .

Note that even if P is the set of arcs of a Hausdorff space, say, its walks
in this sense do not necessarily match the paths of the topological space.
Indeed, this is impossible since there may be multiple spaces with different
sets of paths, but the same set of arcs.1 However, the single notion of walk
just defined will enough for our purposes.

A path space P is called finitary if there exists a set of finitely many paths
inducing P.

Lemma 2.3. For any walk f in some dipath space P the space induced by

f in P is finitary and connected.

Proof. Let f : P → V (P) be a walk, let a be the minimum and b the
maximum of P . Now we define c to be the supremum of all x such that the
space induced by f ↾[a,x] is finitary and connected. Let I be a nontrivial
closed interval ending at c small enough that f [I] ∈ P and let J be similar
beginning at c. Now f [I] clearly witnesses that the space induced by f ↾[a,c]
is connected. But it is also finitary, since I contains some x for which the
space induced by f ↾[a,x] is finitary. Thus c is a maximum. This, however,
implies that c = b, since otherwise any point of J larger than c would clearly
witness that c is not an upper bound. �

It follows that the space induced by f is the same for any P in which f

is a walk. Thus we will just write f̂ for the space induced by f . A walk
which has no two nontrivial segments which are have the same or the inverse
image is called a trail.

3. Examples of path spaces

In this section we will give various examples of (di)path spaces. Since
the proofs are all straightforward and very similar, we will give just one and
omit the rest.

Let X be a Hausdorff space and Φ : [0, 1] → X an arc in X. Then Φ
induces a path PΦ on its image given by the standard ordering on [0, 1]. Let
A(X) be the set of all these PΦ for all arcs Φ in X (together with the trivial
path for each point).

1Indeed, one may construct a topological star either such that there is a topological

path reaching each leaf and converging to the center or such that every path reaches only

finitely many leafs.
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Lemma 3.1. A(X) is a path space.

Proof. Clearly A(X) is closed under inverses.
Let PΦ ∈ A(X) be arbitrary and let a, b be two points in the image of f ,

w.l.o.g. different. Then by scaling the interval between their preimages, we
can obtain a new arc Ψ between a and b such that PΨ is a segment of PΦ.

Let PΦ and PΨ in A(X) be such that the maximal element of PΦ is the
minimal element of PΨ, but otherwise disjoint. By scaling and combining Φ
and Ψ we then obtain a new arc Λ, such that PΛ is the concatenation of PΦ

and PΨ.
Now let PΦ and PΨ in A(X) be arbitrary. Since the images of Φ and Ψ

are compact in X, so is their intersection. Since X is Hausdorff, PΦ ∩ PΨ is
closed. Because any closed set in [0, 1] is complete, so is PΦ ∩ PΨ. �

In a Hausdorff space X one could also consider the set of injective maps
from any compact, connected LOTS to X and obtain a path space the same
way.

Let G be a graph-like space and L a pseudo-line in G. Then f together
with an endvertex v of L induces a path Qv

L on V (L) given by the order of
L with minimal element v. Let P (G) be the set of all these Qv

L. This is a
path space.

Furthermore given some set o of orientations of edges of G, we can define
P o(G) as the set of all Qv

L such that the orientation towards v of every edge
of L is contained in o. This is a dipath space. As a corollary the set of paths
in a graphs defines a path space and the set of dipaths in a digraph defines a
dipath space. Conversely, given a (di)pathspace P with all paths finite one
can extract a set of (directed) edges by taking segments and these define a
(di)graph inducing P.

In both the case of LOTS and pseudo-lines one may choose some infinite
cardinal as a maximum length for these and still obtain a (di)path space.

Let k ∈ {1, 2, . . . ,∞}. If M is a differentiable manifold and f an injective,
piecewise k-times (continously) differentiable curve on M , let Qf be the
image of f with the order induced by [0, 1]. Then the set of all these Qf

forms a path space.
All the classes of path spaces considered so far are in some sense topologi-

cal. We will now look at a path space which does not belong to any of them
and is slightly pathological.

Example 3.2. Let X = [0, 1]×{0, 1, 2} \ {(1, 0)}. Let ∼ be the relation on
X with (x, a) ∼ (y, b) if x = y and one of the following conditions holds:

(1) a = b
(2) {a, b} = {0, 1} and x ∈ (1− 1

2n , 1−
1

2n+1 ) for n even

(3) {a, b} = {0, 2} and x ∈ (1− 1
2n , 1−

1
2n+1 ) for n odd

(4) x = 1− 1
2n for some n

(5) x = 1
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Figure 1. The space from Example 3.2. The hollow circle
signifies that this point does not form a path with the top
ray.

Note that ∼ is an equivalence relation. Let X ′ be its set of equivalence
classes and f : X → X ′ the natural surjection. Let Y consist of all paths
of the form [0, x] × {0} for x ∈ [0, 1) with the obvious order together with
[0, 1]×{1} and [0, 1]×{2} and let Y ′ be the set of images of all these paths
under f . Then Y ′ is a compatible set of paths and so P = Y ′ is a path
space.

4. Menger’s theorem

In this section we prove our main result, namely Menger’s theorem for
dipath spaces. We closely follow the augmenting paths proof of Menger’s
theorem in [3].

Perhaps surprisingly, the more difficult part of this proof in which the
separator is constructed can be generalized with basically no extra work. In
order to emulate the argument that alternating paths actually augment the
path system, however, we need to control the components of the relevant
symmetric difference.

This will be accomplished by showing that these dipath spaces are rayless,
that is for any ascending sequence R of paths there exists a finite set of paths
whose union contains a final segment of the union of R.

The following lemma demonstrates that this will suffice.

Lemma 4.1. Let P be a connected, rayless dipath space with every indegree

and outdegree at most one. Then P is a dipath or a directed circuit.

Proof. If P contains a directed circuit, then it must actually be a directed
circuit, since any other path meeting it would increase the degree at some
point. Thus we may assume that it does not. Let R be an ascending sequence
of paths in P. Since P is rayless, there exist P1, . . . , Pk ∈ P containing a
final segment of the union of R. Choose these to minimize k. We claim
that k ≤ 1. Indeed, by the degree condition no Pi can leave R in an inner
point, so given paths P1 and P2 meeting R we can obtain a path from their
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union by connecting them via segments of R, if neccessary. Thus we may
find a maximal path P in P by Zorn’s Lemma. Now any path that is not a
segment of P can only attach at exactly one endpoint of P . This, however,
would contradict the maximality of P . �

Given two dipath spaces P and Q, we write P△Q for the space obtained

from P̂ ∪ Q by deleting P ∩ Q.
For the rest of this section, fix a dipath space G, sets A,B ⊆ V (G) and a

finite set P of disjoint A-B-paths in G.
Call a trail f : P → G alternating (with respect to P) if it satisfies the

following conditions:

(1) It starts in A \ V (P).
(2) f has no nontrivial segment in P or in the inverse of any path not

sharing a segment with P.
(3) |f−1(v)| ≤ 1 for any v /∈ V (P.)

(4) For any v ∈ V (P) ∩ V (f̂) which is not the final vertex of f there
exists some nontrivial segment of f containing v whose inverse is
contained in P.

(5) Every path of P meets f̂ in only finitely many segments.

Lemma 4.2. Let f be a trail alternating with respect to P. Then the space

P̂△f̂ is rayless.

Proof. Let R = (Pα)α<β be an ascending sequence of paths in X = P̂△f̂ .
We will show that there exists some finite set of paths in X whose union
contains a final segment of R. By the last condition for alternating trails we
may assume w.l.o.g. that R is completely contained in P̂ or f̂ .

First assume that it is contained in P̂ . Then there must exist a path
P ∈ P̂ which contains a final segment of R, w.l.o.g. P with its final point
deleted also meets R cofinally. Since R is contained in P̂ , a final segment of
P has no segment in f̂ and is thus contained in X.

Now assume that R is contained in f̂ . Since f̂ is finitary, in particular
there exist P1, . . . , Pk inducing a final segment R in f̂ , w.l.o.g. R meets each
Pi with its final point deleted cofinally. As before, final segments of each Pi

have no segment in P̂ and thus they are all contained in X. �

Proposition 4.3. If there is an alternating trail ending in B \ V (P), there
exists a set of disjoint A-B-paths Q with |Q| > |P|.

Proof. Let T = f̂△P̂. By Lemmas 2.3 and 4.2 T is rayless. Let A′ be the
set of initial points of f and the paths of P and B′ their set of final points.
Now define Q to be the set of components of T meeting A′ ∪B′.

Note that T has maximum indegree and outdegree one, exactly the points
of A′ have indegree zero and exactly the points of B′ have outdegree zero.
By Lemma 4.1 any element of Q is then a path starting in A′ and ending in
B′. In particular, |Q| > |P|. �
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Proposition 4.4. If there is no alternating trail ending in B \ V (P), there
exists a choice of one point from each element of P which meets every A-B-

path.

Proof. For every P ∈ P let xP be the supremum in P of all points v such
that there exists an alternating trail ending in v and let X be the set of all
these points. We claim that X meets every A-B-path. Let S consist of the
segment of each P ∈ P up to xP .

Assume for contradiction that there exists an A-B-path Q avoiding X.
Since Q is not an alternating trail to a point of B \ V (P) or V (P) \ S, it
meets S; let y be its last point in it and R the element of P containing
y. Since Q avoids X, y 6= xR, so there exists a z on R after y such that
there is an alternating trail f ending in z. Let z′ be the first point of f on
the segment of R between z and y and let f ′ be the concatenation of the
segment of f until z′ with the inverse of R between y and z′. Then f ′ is an
alternating trail ending in y. Since f ′ meets V (P) only in S and y is the last
point of Q, the segment of Q from y can meet f ′ only outside V (P) and in y.
If they only meet in y, let f ′′ be their concatenation. Otherwise, let f ′′ be
the concatenation of f ′ up to meeting Q for the first time with Q starting
from that meeting point.

Now f ′′ is alternating with respect to the set consisting of the segment
of each P up to xP . But if f ′′ had a first vertex on the complementary
segments, say on some path P , it would then be an alternating trail to that
point, contradicting the choice of xP . �

Theorem 4.5. Let G be a dipath space, A,B ⊆ V (G) and k a natural

number. Then either there exists a set of size less than k meeting every

A-B-path or a set of k disjoint A-B paths.

Proof. Assume that there is no set of k disjoint A-B-paths. Then there
exists a set P of disjoint A-B-paths of maximal size. By Proposition 4.3
there is no trail alternating with respect to P. But then there must be a set
of size |P| < k meeting every A-B-path by Proposition 4.4. �

While we have only looked at A-B-paths so far, the same proof will work if
we replace all occurences of ’A-B-paths’ in Theorem 4.5 with ’paths from A
to B’.

5. Counterexamples

Some natural-sounding alternate versions of Theorem 4.5 can easily be
refuted by simple, known counterexamples. This is also shown in [11] with
very similar examples originally given in [6] and [12].

Figure 2 shows a combination of such examples: a dominated ray, where
the first vertex a and the end d have two extra neighbors each (b, c and e, f
respectively) and b and c are also adjacent to the dominating vertex.

In this example there is no single vertex except a or b meeting every path
from a to b, but there are not even two edge-disjoint paths between them.



PATH SPACES I: A MENGER-TYPE RESULT 9

a d

c

b

e

f

Figure 2. A combined counterexample to three Menger variations

Thus a version of Menger for internally disjoint paths fails between a and b,
one for fans between {a, b} and d and one for edge-disjoint paths between
{b, c} and {e, f}.

One could also ask for a version for infinite cardinalities or even an
Aharoni-Berger-type statement, but an example from [11] shows that a car-
dinality version of Theorem 4.5 already fails for ℵ0. For this consider a the
space [0, 1]2 and take A to be the points of the form (0, 1

n
) and B those of

the form (1, n−1
n

). This example can also be modified to obtain a graph-like
space. In an upcoming article ([10]), the author will build on this to obtain
some negative ubiquity results.

Acknowledgement

I thank Nathan Bowler for many helpful discussions and comments.



10 HENDRIK HEINE

References

[1] Ron Aharoni and Eli Berger. “Menger’s theorem for infinite graphs”.
In: Invent. Math. 176 (2008), pp. 1–62.

[2] Nathan Bowler, Johannes Carmesin, and Robin Christian. “Infinite
graphic matroids Part I”. In: Combinatorica 39 (2013).

[3] Reinhard Diestel. Graph Theory. 5th ed. 2017.
[4] Reinhard Diestel. “The countable Erdős-Menger conjecture with ends.”
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