
GREEDOIDS FROM FLAMES
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Abstract. A digraph D with r ∈ V (D) is an r-flame if for every v ∈ V (D)− r, the
in-degree of v is equal to the local edge-connectivity λD(r, v). We show that for every
digraph D and r ∈ V (D), the edge sets of the r-flame subgraphs of D form a greedoid.
Our method yields a new proof of Lovász’ theorem stating: for every digraph D and
r ∈ V (D), there is an r-flame subdigraph F of D such that λF (r, v) = λD(r, v) for
v ∈ V (D)− r. We also give a strongly polynomial algorithm to find such an F working
with a fractional generalization of Lovász’ theorem.

1. Introduction

Subgraphs preserving some connectivity properties while having as few edges as possible
is a subject of interest since the beginning of graph theory. Suppose that D is a digraph
with r ∈ V (D) and we are looking for a spanning subgraph H of D with the smallest
possible number of edges in which all the local edge-connectivities outwards from the root r
are the same as in D, i.e., λH(r, v) = λD(r, v) for all v ∈ V (D)−r. In order to have λD(r, v)
many pairwise edge-disjoint paths from r to v in H, it is obviously necessary for H to
contain at least λD(r, v) ingoing edges of v. Writing this with a formula: %H(v) ≥ λD(r, v)
for all v ∈ V (D)− r, from which the estimation |E(H)| ≥ ∑

v∈V (D)−r λD(r, v) follows. It
was shown by Lovász that, maybe surprisingly, this trivial lower bound is always sharp.

Theorem 1.1 (Lovász, Theorem 2 of [1]). For every digraph D and r ∈ V (D), there is a
spanning subdigraph H of D such that for every v ∈ V (D)− r

λD(r, v) = λH(r, v) = %H(v).

Calvillo-Vives rediscovered Theorem 1.1 independently in [2] and named ‘r-flame’ the
rooted digraphs F with λF (r, v) = %F (v) for all v ∈ V (F )− r.

We establish a direct connection between the extremal problem above and the theory of
greedoids. The latter were introduced by Korte and Lovász as a generalization of matroids
to capture greedy solvability in problems where the matroid concept turned out to be too
restrictive. The field is actively investigated since the ’80s, for a survey we refer to [3].

We show that the subflames of a rooted digraph always form a greedoid whose bases
are exactly the subdigraphs described in Theorem 1.1.

Theorem 1.2. Let D be a digraph and r ∈ V (D). Then

FD,r := {E(F ) |F ⊆ D is an r-flame}
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2 ATTILA JOÓ

is a greedoid on E(D). Furthermore, for each ⊆-maximal element F ∗ of F(D, r) we have
λF ∗(r, v) = λD(r, v) for all v ∈ V (D)− r.

The proof of Theorem 1.1 by Lovász is algorithmic but only for simple digraphs
polynomial. We prove a fractional generalization of Lovász’ theorem considering digraphs
with non-negative edge-capacities and replacing ‘edge-connectivity’ by ‘flow-connectivity’.
Our proof provides a simple strongly polynomial algorithm to find an H with properties
given in Theorem 1.1.

It is worth to mention that one can formulate a structural infinite generalization of
Theorem 1.1 in the same manner as Erdős conjectured such an extension of Menger’s
theorem (see [4]). As in the case of Menger’s theorem, the problem is getting much harder
by dropping finiteness. The “vertex-variant” of this generalization was proved for countably
infinite digraphs in [5] which was then further developed in [6].

2. Notation

In this paper we deal only with finite combinatorial structures. An F ⊆ 2E is a greedoid
on E if ∅ ∈ F and F has the Augmentation property, i.e., whenever F, F ′ ∈ F with
|F | < |F ′|, there is some e ∈ F ′ \ F such that F + e ∈ F . Let a vertex set V and a
“root vertex” r ∈ V be fixed through the paper. A digraph D is a set of directed edges
with their endpoints in V where parallel edges are allowed but loops are not. For U ⊆ V ,
inD(U) and outD(U) stand for the set of ingoing and outgoing edges of U respectively,
furthermore, let %D(U) := |inD(U)| and δD(U) := |outD(U)|. For simplicity we always
assume that inD(r) = ∅. For v ∈ V − r, we write λD(v) for the local edge-connectivity
(i.e., the maximal number of pairwise disjoint paths) from r to v . We define GD(v) to be
the set of those I ⊆ inD(v) for which there exists a system P of edge-disjoint r → v paths
where the set of the last edges of the paths in P is I. Recall that set GD(v) is the family
of independent sets of a matroid and matroids representable this way are called gammoids.
A digraph F is a flame if GF (v) is a free matroid1 for every v ∈ V − r, equivalently
λF (v) = %F (v) for every v 6= r.

3. The flame greedoid of a rooted digraph

The core of the proof of Theorem 1.2 is the following lemma.

Lemma 3.1. Let H and D be digraphs and assume that λH(u) < λD(u) for some u ∈ V −r.
Then there is an e ∈ D \H with head, say v, such that e is a coloop2 of GH+e(v), i.e.,

GH+e(v) = {I + e : I ∈ GH(v)}.

Proof. Let U := {U ⊆ V − r : u ∈ U and %H(u) = λH(u)}. By Menger’s theorem U 6= ∅
and the submodularity of the map X 7→ %H(X) ensures that U is closed under union and
intersection. Let U be the ⊆-largest element of U . Since λH(u) < λD(u), there exists
some edge e ∈ inD(U) \ inH(U). Note that in H + e every X ⊆ V − r with X ⊇ U has
at least λH(u) + 1 = %H+e(U) many ingoing edges because of the maximality of U . By

1matroid where all sets are independent
2edge of a matroid which can be added to any independent set without ruin independence
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applying Menger’s theorem in H + e with r and U , we find a system P of edge-disjoint
r → U paths of size λH(u) + 1 (see Figure 1). The set of the last edges of the paths in
P is necessarily the whole inH+e(U). Let the head of e be v and let I ∈ GH(v) witnessed
by the path-system Q. Clearly each Q ∈ Q enters U at least once. For Q ∈ Q, we define
fQ as the last meeting of Q with inH(U). Finally, we build a path-system R witnessing
I + e ∈ GH(v) as follows. For Q ∈ Q, we consider the unique PQ ∈ P with last edge fQ
and concatenate it with the terminal segment of Q from fQ to obtain RQ. Moreover, let Re

be the unique path in P with last edge e. Then R := {RQ : Q ∈ Q} ∪ {Re} is as desired.

v

u

r

e U

P

Q

Figure 1. inH+e(U) consists of the thick edges, the terminal segments of
the paths in Q are dashed.

�

Proof of Theorem 1.2. Suppose that F0, F1 ⊆ D are flames with |F0| < |F1|. Then there
must be some u ∈ V − r for which %F0(u) < %F1(u). Since F0 and F1 are flames

λF0(u) = %F0(u) < %F1(u) = λF1(u).
By applying Lemma 3.1 with F0, F1 and u, we find an e ∈ F1 \ F0 with head v where
e is a coloop of GF0+e(v). On the one hand, GF0(v) is a free matroid and the previous
sentence ensures that GF0+e(v) is free as well. On the other hand, for w ∈ V \ {r, v} any
path-system witnessing that GF0(w) is the free matroid showing the same for GF0+e(w).
By combining these we may conclude that F0 + e is a flame.

In order to prove the last sentence of Theorem 1.2, let F ∗ be a maximal flame in D and
suppose for a contradiction that λF ∗(u) < λD(u) for some u ∈ V − r. Applying Lemma
3.1 gives again some e ∈ D \ F ∗ for which F ∗ + e is a flame contradicting the maximality
of F ∗. �

4. Fractional generalization and algorithmic aspects

In this section we define a fractional version of Lovász’s theorem and prove it by giving
a strongly polynomial algorithm that finds a desired optimal substructure. We consider
non-negative vectors defined on (the edge set of) a fixed digraph D. This time we assume
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without loss of generality that D has no parallel edges because replacing a bunch of
parallel edges by a single edge whose capacity is defined to be the sum of the capacities
of those will be a meaningful reduction step in all the results we discuss. For x, y ∈ RD

+ ,
we write x ≤ y if x(e) ≤ y(e) for every e ∈ D and for U ⊆ V let %x(U) := ∑

e∈inD(U) x(e)
and δx(U) := ∑

e∈outD(U) x(e). An x ∈ RD
+ is an r → v flow if %x(u) = δx(u) holds for all

u ∈ V \ {r, v} and %x(r) = δx(v) = 0. The amount of the flown x is defined to be δx(r)
which is equal to %x(W ) − δx(W ) for every choice of W ⊆ V − r containing v. Recall
that x can be written as the non-negative combination of directed cycles and r → v paths
(more precisely of their characteristic vectors). The sum of the coefficients of the paths in
any such a decomposition is again δx(r). For v ∈ V − r and c ∈ RD

+ , the flow-connectivity
of c from r to v is

λc(v) := max{δx(r) : x is an r → v flow with x ≤ c.}

The Max flow min cut theorem (see [7]) guarantees that λc(v) is well-defined and equals to

min{%c(W ) : W ⊆ V − r with v ∈ W}.

For v ∈ V − r and c ∈ RD
+ , we write Gc(v) for the set of those vectors in RinD(v)

+ that
can be obtained as a restriction of an r → v flow x ≤ c to inD(v) that we denote by
x � inD(v). It is not too hard to prove that Gc(v) is a polymatroid and it is natural to
call it a polygammoid. An f ∈ RD

+ is a fractional flame if f � inD(v) ∈ Gf (v) (equivalently
λf (v) = %f (v)) for all v ∈ V − r. For e ∈ D, let χe ∈ RD

+ be the vector where χe(e′) is 1 if
e = e′ and 0 otherwise. We call a vector integral if all of its coordinates are integers.

The fractional version of Lovász’ theorem can be formulated in the following way.

Theorem 4.1. For every c ∈ RD
+ there is an f ≤ c such that for every v ∈ V − r

λc(v) = λf (v) = %f (v),

moreover, f can be chosen to be integral if so is c. Such an f can be found in strongly
polynomial time.

Proof. In the contrast of Theorem 1.1, the following fractional analogue of Lemma 3.1 is
not sufficient itself to provide the existence part of Theorem 4.1 but will be an important
tool later.

Lemma 4.2. Let x, y ∈ RD
+ such that λy(u) < λx(u) for some u ∈ V − r. Then there is

an e ∈ D with head(e) =: v and an ε > 0 such that x(e)− y(e) ≥ ε and

Gy+εχe(v) = {s+ δχe : s ∈ Gy(v) ∧ 0 ≤ δ ≤ ε}.

Proof. The proof goes similarly as for Lemma 3.1. By applying the Max flow min cut
theorem and the submodularity of the functionX 7→ %y(X), we take the maximal U ⊆ V −r
with u ∈ U and %y(U) = λy(u). We pick some e ∈ inD(U) with x(e) > y(e) and let

ε := min{x(e)− y(e), %y(W )− %y(U) : U ( W ⊆ V − r}.

The Max flow min cut theorem ensures (applying it after contracting U to u) that there is
a p ≤ y + εχe, which can be chosen as a non-negative combination of r → U paths, such
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that
p � inD(U) = (y + εχe) � inD(U).

Let s ∈ Gy(u) witnessed by the r → u flow q which is a non-negative combination of
r → u paths. Take the sum of the terminal segments of these weighted paths from the
last common edge with inD(U) together with the trivial path e with a given weight δ to
obtain a vector q′. Starting with p one can construct a p′ ≤ p which is a non-negative
combination of r → U paths and for which p′ � inD(U) = q′ � inD(U). It is easy to see that
the coordinate-wise maximum of p′ and q′ witnessing s+ δχe ∈ Gy+εχe(v). �

Now we turn to the description of the algorithm. Let V = {v0, . . . , vn} where v0 = r.
The algorithm starts with f0 := c. If fk ∈ RD

+ is already constructed and k < n, then we
take an r → vk+1 flow zk+1 ≤ fk of amount λfk

(vk+1), which we choose to be integral if so
is fk, and define

fk+1(e) :=

zk+1(e) if e ∈ inD(vk+1)
fk(e) otherwise.

Since the flow problem can be solved in strongly polynomial time, the algorithm described
above is strongly polynomial with a suitable flow-subroutine. We claim that fn satisfies
the demands of Theorem 4.1. Since we start with c and lower some values in each step,
fn ≤ c holds. If c ∈ ZD+ , then a straightforward induction shows that fn ∈ ZD+ .

Lemma 4.3. If z ≤ x is an r → v flow of amount λx(v) and y(e) :=

z(e) if e ∈ inD(v)
x(e) otherwise

then λy(u) = λx(u) for every u ∈ V − r.

Proof. Suppose for a contradiction that there exists a u ∈ V − r with λy(u) < λx(u).
Note that u 6= v because λx(v) = λy(v) is witnessed by z. By Lemma 4.2, there is an
e ∈ D and an ε such that x(e)− y(e) > ε > 0 (which implies that head(e) must be v) and
Gy+εχe(v) = {s+ δχe : s ∈ Gy(v) ∧ 0 ≤ δ ≤ ε}. Let s0 := z � inD(v).

λx(v) ≥ λy+εχe(v) ≥ ||s0||1 + ε = λx(v) + ε

which is a contradiction. �

By applying Lemma 4.3 with x = fk, y = fk+1 and z = zk+1 we obtain the following.

Corollary 4.4. λfk
(v) = λfk+1(v) for every k < n and v ∈ V − r.

It follows by induction on k that λfk
(v) = λc(v) for every v ∈ V − r and k ≤ n.

In particular λfn(v) = λc(v) for all v ∈ V − r. Let 1 ≤ k ≤ n be arbitrary. Then
%fk

(vk) = λfk
(vk) follows directly from the algorithm (the common value is %zk

(vk)). On
the one hand, the left side is equal to %fn(vk) since the algorithm does not modify anymore
the relevant coordinates. On the other hand, we have seen that λfk

(vk) = λfn(vk) = λc(vk).
By combines these we have %fn(v) = λfn(v) which completes the proof of Theorem 4.1. �

Finally, let us point out a special case of Lemma 4.3.
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Corollary 4.5. Let D be a directed graph and let P be a maximal sized family of pairwise
edge-disjoint r → v paths in D. Then the deletion of those ingoing edges of v that are
unused by the path-family P does not reduce any local edge-connectivities of the form
λD(r, u) with u ∈ V (D)− r.

5. Outlook

By Theorem 4.1, finding a spanning subdigraph of a given digraph D that preserves all
the local edge-connectivities from a prescribed root vertex r and has the fewest possible
edges with respect to this property can be done in polynomial time. It is natural to ask
the complexity of the weighted version:

Question 5.1. What is the complexity of the following combinatorial optimization problem?
Input: digraph D, r ∈ V (D) and cost function c : E(D)→ R+

Output: spanning subdigraph F of D with λF (r, v) = λD(r, v) for every v ∈ V (D)− r for
which ∑

e∈E(F ) c(e) is minimal with respect to this property.

The special case where λD(r, v) is the same for every v ∈ V (D) − r can be solved in
polynomial time by using weighted matroid intersection (see [8]).

There are more general flow models involving polymatroidal bounding functions (see for
example [9] and [10]). The Max flow min cut theorem is preserved under these models.

Question 5.2. Is it possible to generalize Theorem 4.1 by using the polymatroidal flow
model of Lavler and Martel in [9]?

The relation between matroids and polymatroids motivates the following concept of
polygreedoids: a polygreedoid is a compact P ⊆ RE

+ such that

PG1 0 ∈ P ,
PG2 whenever x, y ∈ P with ||x||1 < ||y||1, there is some e ∈ E with y(e) > x(e) such

that x+ εχe ∈ P for all small enough ε > 0.

It follows directly from Lemma 4.2 that fractional flames under a given bounding
vector form a polygreedoid. Greedoids has the property called accesibility which can be
considered as a weakening of the downward closedness of matroids. It tells that every
F ∈ F can be enumerated in such a way that each initial segment belongs to F , i.e.,
F = {e1, . . . , en} such that {e1, . . . , ek} ∈ F for every k ≤ n. Accessibility tends to be
a part of the axiomatization of greedoids via the restriction the Augmentation axiom
for pairs with |F ′| = |F |+ 1. It is not too hard to prove that polygreedoids satisfy the
following analogous propery: for every x ∈ P there is a continues strictly increasing3

function g : [0, 1]→ P with g(0) = 0 and g(1) = x.

Question 5.3. How much of the theory of greedoids is preserved for polygreedoids?

3with respect to the coordinate-wise partial ordering of RE
+
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