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Abstract. Let E be a possibly infinite set and let M and N be matroids defined on
E. We say that the pair {M, N} has the Intersection property if M and N share an
independent set I admitting a bipartition IM ∪IN such that spanM (IM )∪spanN (IN ) = E.
The Matroid Intersection Conjecture of Nash-Williams says that every matroid pair has
the Intersection property.

It was shown by N. Bowler and J. Carmesin that the conjecture can be reduced to the
special case where one of the matroids is a partitional matroid. We prove that if M is
an arbitrary matroid and N is a partitional matroid of finitely many components, then
{M, N} has the Intersection property.

1. Introduction

Some of the motivating examples of matroids are vector-systems with the linear inde-
pendence and graphs with graph theoretic cycles as circuits. Both type of structures can
be infinite in which case the resulting matroid is infinite as well. An axiomatization of
matroids (in the language of circuits) that allows infinite ground sets can be obtained
from the axiomatization of finite matroids in a natural way: C is the set of the circuits
of a matroid if C is a family of finite nonempty and pairwise ⊆-incomparable subsets of
a possible infinite set E satisfying the Circuit elimination axiom1. Working with this
definition, Nash-Williams proposed around 1990 his Matroid Intersection Conjecture [1]
which has been the most important open problem in infinite matroid theory for decades. It
generalizes the Matroid Intersection Theorem of Edmonds [2] to infinite matroids capturing
the combinatorial structure corresponding to the largest common independent sets instead
of dealing with infinite quantities (cardinality is usually turn out to be an overly rough
measure for problems in infinite combinatorics). Adapting a terminology of Bowler and
Carmesin, for a pair {M, N} of matroids defined on the same edge set E we say that it
has the Intersection property if M and N has a common independent set I admitting a
bipartition IM ∪ IN such that spanM(IM) ∪ spanN(IN) = E

Conjecture 1.1 (Matroid Intersection Conjecture, [1]). Every pair {M, N} of matroids
defined on the same (potentially infinite) ground set has the Intersection property.

The infinite matroid concept given in the first paragraph was not entirely satisfying for
the experts in matroid theory. Under that definition matroids may fail to have a dual
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1If C0, C1 ∈ C are distinct and e ∈ C0 ∩ C1, then ∃C2 ∈ C with C2 ⊆ C0 ∪ C1 − e
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although that is a key phenomenon of the finite theory. Rado asked in 1966 for a more
general concept of infinite matroids having duality while preserving the minor operations.
Among other attempts Higgs introduced [3] a class of structures he called “B-matroids”
that solves Rado’s problem. Oxley gave an axiomatization of B-matroids and showed that
under some reasonable assumptions they are the largest class of structures that we may get
(see [4] and [5]). Despite these discoveries of Higgs and Oxley, the systematic investigation
of B-matroids started only around 2010 when Bruhn, Diestel, Kriesell, Pendavingh and
Wollan found a set of cryptographic axioms for them, generalising the usual independent
set-, bases-, circuit-, closure- and rank-axioms for finite matroids (see [6]). They also
showed that several well-known facts of the theory of finite matroids are preserved. They
axiomatization in the language of independent sets is the following:

An M = (E, I) is a B-matroid (or simply matroid) if I ⊆ P(E) with
(i) ∅ ∈ I;
(ii) I is downward closed;
(iii) For every I, J ∈ I where J is ⊆-maximal in I but I is not, there exists an e ∈ J \ I

such that I + e ∈ I;
(iv) For every X ⊆ E, any I ∈ I ∩ P(X) can be extended to a ⊆-maximal element of
I ∩ P(X).

After this success of Rado’s program the name ‘Matroid Intersection Conjecture’ gained
a new interpretation by applying the definition above instead of the more restrictive
infinite matroid concept given at the beginning of the Introduction. The latter class
consists of exactly those matroids that have only finite circuits which matroids are called
finitary. Although several partial results have been obtained about the Matroid Intersection
Conjecture (see [1],[10], [11], [12], [13], [14]), even the original finitary version is remained
wide open.

Bowler and Carmesin discovered (Corollary 3.9 (b) in [11]) that the general form of
Conjecture 1.1 is implied by its special case where one of the two matroids is a partitional
matroid2. Our main result is the following:

Theorem. Let M and N be matroids on the common edge set E where N is a partitional
matroid of finitely many components. Then {M, N} has the Intersection property.

We do not presuppose any background about finite or infinite matroids but give in the
next section all the basic facts we need.

2. Notation and Preliminaries

We apply the standard set theoretic convention that natural numbers are identified with
the set of smaller natural numbers, i.e., n = {0, . . . , n− 1}. By abusing the notation we
write simply X − y + z instead of X \ {y} ∪ {z}.

2.1. General matroidal terms. A pair M = (E, I) is a matroid if I ⊆ P(E) satisfies
the axioms (i)-(iv). The sets in I are called independent and the maximal independent
sets are the bases. For an X ⊆ E, M � X := (X, I ∩ P(X)) is a matroid and it is called

2They proved actually more: all components of the partitional matroid is 1-uniform on a 2-element set.
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the restriction of M to X. We write M −X for M � (E \ X) and call it the minor
obtained by the deletion of X. Let BX be a maximal independent subset of X. The
contraction M/X of X in M is the matroid on E \X where I ⊆ E \X is independent if
I ∪ BX is independent in M . One can show that the definition does not depend on the
choice of BX . Contraction and deletion commute, i.e., for disjoint X, Y ⊆ E, we have
(M/X)−Y = (M −Y )/X. Matroids of this form are the minors of M . The set spanM (X)
of edges spanned by X in M consists of the edges in X and of those e ∈ E \X for which
{e} fails to be independent in M/X. From the well-definedness of contraction minors the
following simple fact can be obtained:

Fact 2.1. Suppose that I, I0, I1 are independent where I0 ⊆ I and span(I0) = span(I1).
Then (I \ I0) ∪ I1 is independent and span [(I \ I0) ∪ I1] = span(I).

By abusing the notation we will write simply M for the set IM of M -independent sets.
For i ∈ K let Mi be a matroid on Ei such that Ei ∩Ej = ∅ for i 6= j. Then the direct sum⊕

i∈K Mi is the matroid defined on E := ⋃
i∈K Ei where I ∈ ⊕

i∈K Mi if I ∩ Ei ∈ Mi for
every i ∈ K. For a detailed introduction to the theory of infinite matroids we refer to [7].

2.2. Uniform matroids. A matroid U is called uniform if for any I ∈ U, e ∈ I and
f ∈ E \ I we have I − e + f ∈ U . Note that the class of uniform matroids are closed under
taking minors. On a finite E, the bases of an uniform matroids are the n-element subsets
of E for some n ≤ |E|. If E is infinite and n ∈ N, then the n-element subsets of E as well
as the complements of those sets is the family of bases of a uniform matroid. A natural
question is if there are uniform matroids beyond these trivial ones.

It was discovered by Bowler and Geschke in [8] that (under appropriate set theoretic
assumption) the answer is yes, actually most of the uniform matroids on a given infinite
ground set are non-trivial. In contrast of the finite case, uniform matroids are interesting
themself, they led to important relative consistency results. Indeed, Bowler and Geschke
showed for example using a uniform matroid that the existence of a matroid admitting two
bases with different infinite sizes is consistent with set theory ZFC (actually independent of
it). In order to mention another such an application, let us tell that for finitary matroids:
if M has an N -independent base and visa versa then they actually share a base (see
Corollary 1.4 of [9]). By constructing a suitable pair of uniform matroids, the unprovability
of the generalization of the previous statement for general matroids was demonstrated
(take U and its dual in Theorem 5.1 of [9]).

We will apply often the following characteristic property of uniform matroids:

Proposition 2.2. Matroid U on E is uniform if and only if each F ⊆ E either contains
a base of U or contained in a base of U .

Direct sums of uniform matroids are called partitional matroids.

3. Main result

Theorem 3.1. Let M and N be matroids on the common edge set E such that N = ⊕
i<n Ui

where Ui is a uniform matroid on Ei and n ∈ N. Then {M, N} has the Intersection
property.
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Proof. We use induction on n.

Observation 3.2. If M ′ and N ′ are arbitrary matroids and BM ′ ⊆ BN ′ for some base
BM ′ of M ′ and base BN ′ of N ′, then BM ′ is a witness of the Intersection property ensured
by the trivial bipartition BM ′ ∪∅.

For n = 1, we take an arbitrary base B of M . Since in this case N = U0 itself is uniform,
Proposition 2.2 tells that either B contained in a base N or it contains a base N both of
which cases we are done by Observation 3.2.

Let n > 1. Suppose first that there is a nonempty W ⊆ E which is the union of
some of the sets Ei such that M � W admits an N -independent base B. Note that
N −W = N/W . We apply the induction hypothesis with M/W and N −W to obtain a
witness IM/W ∪ IN−W that {M/W, N −W} has the Intersection property. It is easy to
check that for IM := IM/W ∪ B and IN := IN−W the set IM ∪ IN shows the Intersection
property of {M, N}. Let us now assume the following condition:

Condition 3.3. There is no nonempty W ⊆ E which is the union of some of the sets Ei

such that M � W admits an N-independent base B.

In order to prove Theorem 3.1 it is (more than) enough to show the following theorem:

Theorem 3.4. Let M and N be matroids on the common edge set E such that N = ⊕
i<n Ui

where Ui is a uniform matroid on Ei and n ∈ N. Assume that Condition 3.3 holds. Then
for every J ∈M ∩N there exists an M -independent N -base B with spanM (J) ⊆ spanM (B).

Indeed, Observation 3.2 guarantees that the B in Theorem 3.4 witnesses the Intersection
property of {M, N}.

Proof of Theorem 3.4. Note that both in M and in N the union of a ⊆-increasing sequence
of independent sets may fail to be independent. Therefore Zorn’s Lemma cannot be used
to extend a common independent set to a maximal one. Even so, this extension always
can be done without much effort:

Lemma 3.5. Every common independent set I of M and N can be extended to a maximal
common independent set.

Proof. Let i < n be arbitrary. By applying Proposition 2.2 with an arbitrary base of
M/I � Ei and uniform matroid Ui/(I ∩ Ei), we obtain B0, B1 ⊆ Ei with B0 ⊆ B1, where
either B0 is a base of M/I � Ei and B1 is a base of Ui/(I ∩ Ei) or the other way around.
It follows directly from the construction that I ∪B0 ∈M ∩N , furthermore, I ∪B0 either
M -spans or N -spans Ei depending on whose base was B0. Iterating this with all indices
yields a maximal common independent set. �

One may observed that in the previous proof we obtained a seemingly stronger property
than maximality. Let us point out that it is not really stronger:

Lemma 3.6. If I is a maximal element of M ∩N , then every Ei is spanned by I in at
least one of the matroids
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Proof. Let I be a maximal common independent set and let i < n. On the one hand, every
e ∈ Ei \ I is spanned by I in at least one of the matroids because I + e /∈M ∩N . On the
other hand, either I ∩ Ei is a base of Ui in which case Ei ⊆ spanN(I), or I ∩ Ei is not a
base of Ui but then (by the uniformity of Ui) I does not N -span any edge from E \ I and
hence we must have Ei ⊆ spanM(I). �

For I ∈M ∩N let

P (I) := {i < n : Ei ⊆ spanM(I) ∩ spanN(I)}
Q(I) := {i ∈ n \ P (I) : Ei ⊆ spanM(I)}
R(I) := n \ (P (I) ∪Q(I)).

Furthermore, for K ⊆ n let EK := ∪{Ei : i ∈ K} and IK := I ∩ EK .

Lemma 3.7. For a maximal I ∈M ∩N we must have Ei ⊆ spanN(I) for i ∈ R(I).

Proof. We cannot have Ei ⊆ spanM(I) because R(I) = {i < n : Ei 6⊆ spanM(I)} by
definition thus it follows from Lemma 3.6. �

Lemma 3.8. There exists a maximal I ∈ M ∩ N with spanM(I) ⊇ spanM(J) such that
|R(I)| is minimal among such I’s and Ej ⊆ spanM(IP (I)∪{k∈Q(I):k≥j}) for every j ∈ Q(I).

Proof. Suppose for a contradiction that it is not the case and take a maximal I ∈M ∩N

with spanM (I) ⊇ spanM (J) minimizing |R(I)| in which the largest violating index j ∈ Q(I)
is minimal. We pick an F ⊆ Ej \ Ij such that IP (I)∪{k∈Q(I):k≥j} ∪ F ∈ M ∩ N and
either Ij ∪ F is a base of Uj or Ej ⊆ spanM(IP (I)∪{k∈Q(I):k≥j} ∪ F ). Then we choose a
G ⊆ E \ (IP (I)∪{k∈Q(I):k≥j}∪F ) such that (I ∪F )\G is M -independent again and M -spans
G. Finally, we extend (I ∪ F ) \G to a maximal element I ′ of M ∩N .

On the one hand, either j ∈ P (I ′) or j ∈ Q(I ′) ∧ Ej ⊆ spanM(IP (I′)∪{k∈Q(I′):k≥j} ∪ F )
depending on if Ij ∪ F is a base of Uj or not. Note that spanM(I ′) ⊇ spanM(I). It
is enough to show that Q(I ′) ⊆ Q(I) because then the largest violating index for I ′

is strictly smaller than j contradicting the choice of I. Since I minimized |R(I)| and
spanM(I ′) ⊇ spanM(I) we must have R(I ′) = R(I). By the construction P (I ′) ⊇ P (I)
also holds. Since P (I ′) ∪ Q(I ′) ∪ R(I ′) is a partition of n, the inclusion Q(I ′) ⊆ Q(I)
follows. �

Let I be as in Lemma 3.8 fixed. If I is a base of N then B := I is as demanded by
Theorem 3.4 and we are done. Suppose for a contradiction that it is not the case. It means
that Q(I) 6= ∅. We define a sequence (I t)t∈N of maximal common independent sets of M

and N . Let us write simply Pt and Qt for P (I t) and Q(I t) respectively. We also maintain
an ordering <Pt of Pt and an ordering <Qt of Qt.

Let I0 = I and let <P0 and <Q0 be the usual ordering of N restricted to P0 and Q0

respectively. Suppose that I t together with the orderings <Pt and <Qt is already defined
for some t ∈ N and the following conditions hold:

(1) I t is a maximal element of M ∩N ,
(2) spanM(I t) = spanM(I0),
(3) Ej ⊆ spanM(I t

Pt∪{k∈Qt:k≥Qt j}) for every j ∈ Qt ,
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(4) Qt 6= ∅.
Let j be the <Qt-largest element of Qt (exists by (4)). Then by property (3), Ej ⊆
spanM(I t

Pt+j). Let St be the smallest <Pt-upward closed subset of Pt for which Ej ⊆
spanM(I t

St+j). Note that S(t) 6= ∅ since otherwise I t
j witnesses that W := Ej violates

Condition 3.3. Let i be the <Pt-smallest element of St. We take an F ⊆ Ej \ I t
j in such a

way that I t
St−i+j ∪F ∈M ∩N and either I t

j ∪F is a base of Uj or Ej ⊆ spanM (I t
St−i+j ∪F ).

Then we pick a G ⊆ I t
i such that (I t

St+j ∪ F ) \G is M -independent again and M -spans
G. Note that F, G 6= ∅. Then Fact 2.1 guarantees that It+1 := (I t ∪ F ) \ G satisfies
properties (1) and (2) while i ∈ Qt+1 ensures property (4). On the sets Pt ∩ Pt+1 and
Qt ∩Qt+1 we define <Pt+1 and <Qt+1 to be identical to <Pt and <Qt respectively. If I t

j ∪F

is a base of Uj, then Pt+1 \ Pt = {j} and j is defined to be the <Pt+1-largest element of
Pt+1. Furthermore, the unique element i of Qt+1 \ Qt is defined to be the <Qt+1-largest
element of Qt+1. If I t

j ∪ F is not a base of Uj (and hence Ej ⊆ spanM(I t
St−i+j ∪ F )), then

only index i changes position. In this case we define i to be the second <Qt+1-largest
element of Qt+1 (right bellow j). It follows directly from the construction via Fact 2.1
that property (3) is also kept. The recursion is done.

Let O be the set of those indices i that are moving infinitely often. More precisely i ∈ O

if and only if there are infinitely many t with i ∈ Pt and there are also infinitely many
t with i ∈ Qt. We are going to show that W := EO contradicts Condition 3.3. Let us
choose t0 ∈ N in such a way that the position of indices in n \ O are stabilized already,
i.e., for every i ∈ n \O either i ∈ Pt for every t ≥ t0 or i ∈ Qt for every t ≥ t0.

Lemma 3.9. For every k ∈ n \O there are only finitely many t for which k ∈ St.

Proof. Suppose for a contradiction that index k is a counterexample. Then necessarily
k ∈ Pt for t ≥ t0 since St ⊆ Pt. On the one hand, if Pt+1 \ Pt 6= ∅, then for its unique
element j we have k <Pt+1 j because j is the <Pt+1-largest element of Pt+1. On the other
hand, whenever k ∈ St for some t ≥ t0, then for i := (min<Pt

St) <Pt k we have i ∈ Qt+1.
Combining these we see that as t goes from t0 to ∞, index k never gets a new element
<Pt-bellow itself but loses such an element infinitely many times. Since there are only
finitely many indices it is a contradiction. �

By Lemma 3.9 we can find some t1 ≥ t0 such that St ⊆ O for t ≥ t1.

Lemma 3.10. spanM(It,O) = spanM(It1,O) for every t ≥ t1.

Proof. We use induction on t. Suppose that we know the statement for some t ≥ t1. Let
j, F, G be as in the description of the general step of the recursion. Let us point out that
necessarily j ∈ O since otherwise |Pt| would be eventually strictly decreasing in t, since Pt

looses one element and get no new in each step after j is stacked on the top of Qt, which
is impossible.

This together with Lemma 3.9 ensures that St + j ⊆ O for every t ≥ t1. It is enough to
show that spanM(I t

St+j) = spanM(I t+1
St+j) since I t and I t+1 are identical out of ESt+j (use

Fact 2.1). But we know from the recursion that F ⊆ Ej ⊆ spanM(I t
St+j) and we chose

G in such a way that G ⊆ spanM

[
(I t

St+j ∪ F ) \G
]
, thus spanM(I t

St+j) = spanM(I t+1
St+j)

holds. �
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Finally, we show that EO ⊆ spanM (I t1
O ). Let j ∈ O be arbitrary and choose some t ≥ t1

for which j ∈ Qt but j ∈ Pt+1. Then by the definition of the recursion j must be the
<Qt-largest element of Qt and we have Ej ⊆ spanM(I t

St+j). Lemma 3.9 ensures St ⊆ O,
thus Ej ⊆ spanM(I t

O) follows. But then by Lemma 3.10, Ej ⊆ spanM(I t1
O ). Since j ∈ O

was arbitrary it means EO ⊆ spanM(I t1
O ). Therefore W := EO contradicts Condition 3.3

witnessed by I t1
O which completes the proof of Theorem 3.4.

�

�
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