
ON A LINKING PROPERTY OF INFINITE MATROIDS

ATTILA JOÓ

Abstract. Let M0 and M1 be matroids on E having only finitary and cofinitary
components and let Xi ⊆ E for i ∈ {0, 1}. We show that if Xi can be spanned in Mi

by an M1−i-independent set for i ∈ {0, 1}, then there is a common independent set I

with Xi ⊆ spanMi
(I) for i ∈ {0, 1}. As an application we derive an analogue of Pym’s

theorem in compact graph-like spaces. We also prove a packing-covering-partitioning
type of result for matroid families that generalizes the base partitioning theorem [1] of
Erde et al.

1. Introduction

Linking property attracts a lot of attention in combinatorics and optimization. Roughly
speaking it says that whenever there exists an object satisfying a property A and there is
also one satisfying property B, then one can find a single object satisfying both. It was
discovered for example in the ’50s that matchings of bipartite graphs have the linking
property with respect to covering vertices in the two vertex classes:

Theorem 1.1 (N. S. Mendelsohn and A. L. Dulmage, Theorem 1 in [3]). Let G = (V0, V1;E)
be a bipartite graph and let I0, I1 ⊆ E be matchings in G. Then there exists a matching I
such that V (I) ∩ Vi ⊇ V (Ii) ∩ Vi for i ∈ {0, 1}.1

An important special case is the following classical theorem in set theory:

Theorem 1.2 (F. Bernstein, G. Cantor, R. Dedekind, E. Schröder). If there are injections
fi : Vi → V1−i for i ∈ {0, 1} then there exists a bijection f between V0 and V1.

A bipartite graph can be represented by a pair of matroids on E each of which is a direct
sum of 1-uniform matroids. Indeed, let Uv be the 1-uniform matroid on the edges incident
with v in G and let Mi := ⊕

v∈Vi
Uv for i ∈ {0, 1}. Note that the common independent

sets of M0 and M1 are exactly the matchings in G. It led to the following matroidal
generalization of Theorem 1.1:

Theorem 1.3 (S. Kundu and E. L. Lawler, [2]). Let Mi be a matroid on the finite edge
set E for i ∈ {0, 1}. Then for every I0, I1 ∈ M0 ∩M1 there exists an I ∈ M0 ∩M1 with
spanMi

(I) ⊇ Ii for i ∈ {0, 1}.

1991 Mathematics Subject Classification. Primary 05B35, 05C63, 05C38. Secondary 03E35.
Key words and phrases. infinite matroid, linking property, Mendelsohn-Dulmage theorem, packing and

covering.
The author would like to thank the generous support of the Alexander von Humboldt Foundation and

NKFIH OTKA-129211.
1The authors proved it originally only for finite graphs, the general version was discovered later.

1

ar
X

iv
:2

00
9.

08
43

9v
1 

 [
m

at
h.

C
O

] 
 1

7 
Se

p 
20

20



2 ATTILA JOÓ

The analogue of Theorem 1.3 for arbitrary infinite matroids fails under the Continuum
Hypothesis even if Mi is uniform and Ii is a base of it (take U and U∗ in Theorem 5.1 of
[1]). We have also shown that if Mi is a finitary2 or cofinitary matroid and Ii ∈M0 ∩M1

is a base of Mi for i ∈ {0, 1}, then the conclusion of Theorem 1.3 is true, i.e., there exists
a common base (see Corollary 1.4 of [1]). The condition that Ii is a base of Mi turned out
to be too restrictive in the sense of applicability which motivated further investigation.

Eventually we found an entirely different approach based on a relatively simple but
powerful method that led us to the main result of this paper:

Theorem 1.4. For i ∈ {0, 1}, let Mi be a matroid on E such that each of its components
is either finitary of cofinitary and let Fi ⊆ E. Then there exists an F ⊆ E such that
spanMi

(F ) ⊇ Fi and spanM∗
i
(E \ F ) ⊇ E \ F1−i for i ∈ {0, 1}.

Note that if F1−i ∈Mi for i ∈ {0, 1}, then the dual conditions mean F ∈M0 ∩M1 thus
it really generalizes Theorem 1.3.

In order to introduce an application of Theorem 1.4, we need to mention Pym’s theorem
and graph-like spaces. Pym’s theorem (for undirected graphs) is a generalization of
Theorem 1.1 in which disjoint paths are used to connect two vertex classes (instead of
independent edges as in the Mendelsohn-Dulmage theorem). A V0V1-path-system P in
graph G is a set of pairwise disjoint V0V1-paths (i.e., finite paths meeting V0 and V1 without
having internal vertex in V0 ∪ V1).

Theorem 1.5 (Pym’s theorem, [4]). Assume that G = (V,E) is a graph, V0, V1 ⊆ V and
Pi are V0V1-path-systems in G for i ∈ {0, 1}. Then there exists a V0V1-path-system P with
V (P) ∩ Vi ⊇ V (Pi) ∩ Vi for i ∈ {0, 1}.

End compactification of infinite graphs gave rise to new research directions in group
theory and infinite graph theory. The central idea is to consider a graph as a cell complex
and take the Freudenthal compactification of this space calling the new points ends (for
more details see [5]). An even more general phenomenon, the graph-like space, was
introduced by Thomassen and Vella in [6]. Roughly speaking, we have a graph G = (V,E)
with a totally separated topology on V and for every e ∈ E we take a copy of [0, 1] and
identify 0 and 1 with the endpoints of e respectively.

We prove that an analogue of Pym’s theorem is true in compact graph-like spaces. To
do so, we will define V0V1-pseudo-arc systems in a similar way as V0V1-path-systems were
defined (the precise definition is given later).

Theorem 1.6. Assume that Γ = (V,E) is a compact graph-like space, V0, V1 ⊆ V are
closed sets and Ai are V0V1-pseudo-arc systems in G for i ∈ {0, 1}. Then there exists a
V0V1-pseudo-arc system A with V (A) ∩ Vi ⊇ V (Ai) ∩ Vi for i ∈ {0, 1}.

It will be shown that Theorems 1.5 and 1.6 can be obtained as special instances of our
Theorem 1.4.

To prove Theorem 1.4 we will show first the following packing-covering-partitioning
type of statement:

2A matroid is called (co)fininary if it has only finite (co)circuits.
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Theorem 1.7. Let Pi, Ri ⊆ E for i ∈ Θ such that Pi∩Pj = ∅ for i 6= j and ⋃
i∈ΘRi = E.

For i ∈ Θ, let Mi be a matroid on E such that each of its components is either finitary
of cofinitary. Then there are Ti ⊆ Pi ∪ Ri for i ∈ Θ forming a partition of E such that
spanMi

(Ti) ⊇ Pi and spanM∗
i
(E \ Ti) ⊇ E \Ri.

If the sets Pi and Ri are bases of Mi for each i ∈ Θ, then we get back the main result
Theorem 1.2 of [1]. However our new approach yields to a significantly shorter proof.

The paper is structured as follows. In the next section we give a brief introduction on
matroids and graph-like spaces. Our main results Theorems 1.4 and 1.7 are proved in the
third section. Finally, Pym’s theorem in compact graph-like spaces is shown in the last
section.

Acknowledgement

The author would like to thank his colleagues Nathan Bowler and Max Pitz for their
guidance on graph-like spaces.

2. Preliminaries

2.1. Infinite matroids. Rado asked in 1966 if there is an infinite generalisation of
matroids preserving the key concepts (like duality and minors) of the finite theory. Based
on some early results of Higgs [7] and Oxley [8], Bruhn, Diestel, Kriesell, Pendavingh and
Wollan answered the question affirmatively and gave a set of cryptomorphic axioms for
infinite matroids, generalising the usual independent set-, bases-, circuit-, closure- and
rank-axioms for finite matroids (see [9]). They showed that several fundamental facts
of the theory of finite matroids are preserved in the infinite case. It opened the door
for a more systematic investigation of infinite matroids. An M = (E, I) is a matroid if
I ⊆ P(E) with

(I) ∅ ∈ I;
(II) I is downward closed;
(III) For every I, J ∈ I where J is ⊆-maximal in I but I is not, there exists an e ∈ J \ I

such that I + e ∈ I;
(IV) For every X ⊆ E, any I ∈ I ∩ P(X) can be extended to a ⊆-maximal element of

I ∩ P(X).
For a finite E, axioms (I)-(III) are equivalent to the usual axiomatization of matroids in
terms of independent sets (while (IV) is automatically true).

The terminology and basic facts we will use are well-known for finite matroids. The
elements of I are called independent while the sets in P(E) \ I are dependent. The
maximal independent sets are the bases and the minimal dependent sets are the circuits
of the matroid. Every dependent set contains a circuit (which fact is not obvious if E
is infinite). A singleton circuit is called a loop. The components of a matroid are the
connected components of the hypergraph of its circuits on E. The dual of matroidM is the
matroid M∗ on the same edge set whose bases are the complements of the bases of M . By
the deletion of an X ⊆ E we obtain the matroid M −X := (E \X, {Y ∈ I : Y ⊆ E \X})
and the contraction of X gives M/X := (M∗ −X)∗. If I is independent in M but I + e
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is dependent for some e ∈ E \ I then there is a unique circuit CM(e, I) of M through e
contained in I + e. We say X ⊆ E spans e ∈ E in matroid M if either e ∈ X or there
exists a circuit C 3 e with C − e ⊆ X. We denote the set of edges spanned by X in M
by spanM(X). A matroid is called finitary if all of its circuits are finite. A matroid is
cofinitary if its dual is finitary. A family C of subsets of E is the set of the circuits of a
cofinitary matroid if and only if the following axioms hold:
(C1) ∅ /∈ C;
(C2) There are no C,D ∈ C with C ( D;
(C3) Strong circuit elimination: Whenever e ∈ C ∈ C, X ⊆ C − e and {Cx : x ∈ X}

is a subfamily of C with Cx ∩ X = {e} and e /∈ Cx, there is a D ∈ C with
e ∈ D ⊆ [C ∪ ⋃

x∈X Cx] \X.
(cF ) If F is a nested family of subsets of E and e ∈ E such that each X ∈ F contains

some C ∈ C through e, then ∩{X : X ∈ F} also contains such a C.
Note that strong circuit elimination implies that if C1 and C2 are circuits with e ∈ C1 \C2

and f ∈ C1 ∩ C2, then that there is a circuit C3 with e ∈ C3 ⊆ C1 ∪ C2 − f . For finitary
matroids (C3) is actually equivalent with this simpler statement.

For more information about infinite matroids we refer to [10]. We abuse the notation
and write simply M ∩N instead of IM ∩ IN for the set of common independent sets of
matroids M and N , similarly I ∈M is short for I ∈ IM .

2.2. Graph-like spaces. Graph-like spaces were introduced by Thomassen and Vella
in [6]. A strong connection with the theory of infinite matroids was discovered by N.
Bowler, J. Carmesin and R. Christian in [11]. A graph-like space is a topological space Γ
together with vertex set V , edge set E and functions ιe : [0, 1]→ Γ for e ∈ E satisfying
the following:

(I) The underlying set of Γ3 is the disjoint union of V and E × (0, 1);
(II) For every e ∈ E:

(a) ιe(x) = (e, x) for x ∈ (0, 1)
(b) ιe(0), ιe(1) ∈ V ,
(c) ιe is continues,
(d) ιe is a closed map,
(e) ιe � (0, 1) is an open map;

(III) The subspace V is totally separated.
It follows from the axioms that graph-like spaces are Hausdorff. The set {e} × (0, 1) is
the inner points of edge e while ιe(0) and ιe(1) are its end-vertices (or just end-vertex if
ιe(0) = ιe(1), in which case e is a loop). If V (Γ) = U ∪W is a bipartition where U and W
are clopen in the subspace V (Γ), then the set of edges with one end-vertex in U and the
other in W is called a topological cut of Γ. It is easy to see that U and W can be extended
to disjoint open sets of Γ and the topological connectedness of Γ is equivalent with the
non-existence of an empty topological cut. A graph-like subspace H of Γ is a graph-like
space where H is a subspace of Γ in the topological sense, V (Γ) ⊇ V (H), E(Γ) ⊇ E(H)
and ιHe = ιΓe for e ∈ E(H). The deletion of F ⊆ E(Γ) from Γ is the graph-like subspace

3we abuse the notation and denote the underlying set also by Γ
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Γ− F := Γ \ (F × (0, 1)) on the same vertex set V (Γ) and with edge set E(Γ) \ F and
let Γ(F ) := Γ − (E(Γ) \ F ). Note that for a compact Γ the deletion of edges preserves
compactness. The contraction of a closed vertex set W ⊆ V in a compact graph-like space
Γ is a compact graph-like space Γ/W obtained by identifying the vertices W , i.e., we
take the quotient topology with respect to the equivalence of the elements in W , V (Γ/W )
consists of the vertices V \W together with the equivalence class w corresponding to W
and for e ∈ E(Γ/W ) := E(Γ) and x ∈ [0, 1] we have ιΓ/We (e, x) := ιΓe (e, x) if the right side
is not a vertex in W and w otherwise.

A pseudo-arc between u and v is a compact connected graph-like spaceA with u, v ∈ V (A)
in which every e ∈ E(A) separates u and v (i.e., u and v are in different connected
components of A − e). We call a pseudo-arc trivial if it consists of a single vertex. A
pseudo-circle is a compact connected graph-like space C with E(C) 6= ∅ where

• C − e is connected for each e ∈ E(C) but the deletion of any pair of edges
disconnects C,
• any vertex pair of C can be disconnected by the deletion of a suitable edge pair.

A graph-like space Γ is called pseudo-arc-connected if for any u 6= v ∈ V (Γ) there is a
graph-like subspace A of Γ which is pseudo-arc between u and v.

Theorem 2.1 (P. J. Gollin and J. Kneip, Theorem 4.6 in [13]). A compact graph-like
space is (topologically) connected if and only if it is pseudo-arc connected.

Finally, we will use the following fundamental facts where the analogous graph theoretic
statements are trivial.

Fact 2.2 (Lemma 4.4 in [13]). If C is a pseudo-circle and e ∈ E(C), then C − e is a
pseudo-arc between the end-vertices of e.
If A is a pseudo-arc between u and v in a graph-like space Γ and the end-vertices of

e ∈ E(Γ) are u and v, then A ∪ [{e} × (0, 1)] is a pseudo-circle.

A graph-like tree is a connected graph-like space without pseudo-circles.

Fact 2.3 (Proposition 4.9 of [13]). A compact loop-free graph-like space is a graph-like-tree
if and only if each vertex pair is connected by a unique pseudo-arc.

3. The proof of the main results

Let us start with the packing-covering-partitioning variant of our main result. We repeat
it here for convenience.

Theorem. Let Pi, Ri ⊆ E for i ∈ Θ such that Pi ∩ Pj = ∅ for i 6= j and ⋃
i∈ΘRi = E.

For i ∈ Θ, let Mi be a matroid on E such that each of its components is either finitary
of cofinitary. Then there are Ti ⊆ Pi ∪ Ri for i ∈ Θ forming a partition of E such that
spanMi

(Ti) ⊇ Pi and spanM∗
i
(E \ Ti) ⊇ E \Ri.

Proof. We may assume without loss of generality by “trimming” the sets Ri that they form
a partition of E. We can also assume that Pi ∈Mi since otherwise we replace Pi with a
maximal Mi-independent subset of it. It is enough to consider the case where Pi ∩Ri = ∅
for i ∈ Θ since if it is not the case we contract Pi ∩Ri and delete Pj ∩Rj for j 6= i in Mi.
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Finally, by dividing each Mi into a finitary and a cofinitary matroid (which we extend to
E by loops) and bipartition the sets Ri and Pi according to this, it is enough to deal with
matroid families where each Mi is either finitary or cofinitary.

Let <i be a well-order on Pi ∪Ri where r <i p for every p ∈ Pi and r ∈ Ri. We define a
well-order ≺i on the set [Pi ∪Ri]<ℵ0 of finite subsets of Pi ∪Ri. For X 6= Y ∈ [Pi ∪Ri]<ℵ0

let X ≺i Y if one of the following holds:
• X = ∅,
• maxX <i max Y ,
• maxX = max Y =: z and X − z ≺i Y − z.

It is easy to check that ≺i is indeed a well-order.

Observation 3.1. If X ≺i Y then X + z ≺i Y + z for every z ∈ Pi ∪Ri.

Let 〈Eβ : β < α〉 be a sequence of subsets of E where α is a limit ordinal. If

⋃
γ<α

⋂
β>γ

Eβ =
⋂
γ<α

⋃
β>γ

Eβ

then we call this set the limit of the sequence and denote it by lim 〈Eβ : β < α〉. Since a
finite subset of the limit is a subset of all the members with large enough index, we obtain
the following.

Observation 3.2. Suppose that Eα is the limit of 〈Eβ : β < α〉.
(i) If Eα contains an Mi-circuit C 6⊆ Ri where Mi is finitary, then so does Eβ for

every large enough β < α;
(ii) If g ∈ spanMi

(Eβ) for β < α where Mi is cofinitrary then g ∈ spanMi
(Eα).

To construct the desired partition (Ti : i ∈ Θ), we apply transfinite recursion. Let
T 0
i := Pi ∈ Mi for i ∈ Θ. Suppose that T βi is defined for β < α and i ∈ Θ satisfying the

following properties:
(1) T βi ∩ T

β
j = ∅ for i 6= j ∈ Θ,

(2) T βi ⊆ Pi ∪Ri,
(3) T βi ∩ Pi is ⊆-decreasing and T βi ∩Ri is ⊆-increasing in β,
(4) T βi is the limit of

〈
T δi : δ < β

〉
if β is a limit ordinal,

(5) spanMi
(T βi ) ⊇ Pi,

(6) for every finitary Mi each Mi-circuit C ⊆ T βi is a subset of Ri,
(7) for every finitary Mi and g ∈ Pi the ≺i-smallest finite set Sβg which is witnessing

g ∈ spanMi
(T βi ) is a �i-decreasing function of β,

(8) (T δi : i ∈ Θ) 6= (T δ+1
i : i ∈ Θ) for δ + 1 < α.

Note that condition (6) is a rephrasing of “spanM∗
i
(E \ T βi ) ⊇ E \ Ri for finitary

Mi”. Assume first that α is a limit ordinal. Then conditions (2) and (3) guarantee that
Tαi := lim

〈
T βi : β < α

〉
is well-defined. Preservation of conditions (1)-(4) is straightforward.

Condition (5) restricted to cofinitary matroids and condition (6) are kept by Observation
3.2. To check condition (5) for a finitary Mi, let g ∈ Pi be arbitrary. Since �i is a
well-order, it follows from condition (7) that there is an Sg such that Sβg = Sg for all
large enough β < α. But then Sg ⊆ Tαi from which g ∈ spanMi

(Tαi ) follows. Furthermore,
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clearly Sαg = Sg since a finite set which is ≺i-smaller than Sg and Mi-spans g would have
appeared already before the limit.

Suppose now that α = β + 1. If ⋃
i∈Θ T

β
i ⊇ E and the analogue of condition (6) for the

cofinitary Mi holds, then (T βi : i ∈ Θ) is a desired partition of E and we are done. Suppose
it is not the case. If there is some T βj that contains an Mj-circuit C with C 6⊆ Rj , then we
take an e ∈ Pj ∩C (see property (2)) and define T β+1

j := T βj − e and T β+1
i := T βi for i 6= j.

The preservation of the conditions (1)-(8) is trivial. If there is no such a T βj , then there
must be some e ∈ E which is not covered by the sets T βi . Then there is a unique k ∈ Θ
with e ∈ Rk. If Mk is cofinitary then let T β+1

k := T βk + e and T β+1
i := T βi for i 6= k. We

proceed the same way if Mk is finitary and T βk + e does not contain any Mk-circuit C with
C 6⊆ Rk. The preservation of the conditions is again straightforward in both cases.

Finally assume that Mk is finitary and T βk + e contains an Mk-circuit C with C ( Rk.
Let f be the <k-maximal element of C and we define T β+1

k := T βk + e− f and T β+1
i := T βi

for i 6= k. Since C ∩ Pk 6= ∅ (because C 6⊆ Rk) and the elements of Pk are <k-larger then
the elements of Rk, we have f ∈ Pk. Conditions (1)-(5) remain true for obvious reasons.
Suppose for a contradiction that condition (6) fails and C ′ is an Mk-circuit in T β+1

k with
C ′ 6⊆ Rk. Then f /∈ C ′ and we must have e ∈ C ′ since otherwise C ′ ⊆ T βk and therefore
this condition would have been already violated with respect to T βk . By applying strong
circuit elimination with the Mk-circuits C and C ′ we obtain a circuit C ′′ ⊆ C ∪ C ′ − e
through f . But then C ′′ ⊆ T βk is an Mk-circuit with C ′′ 6⊆ Rk violating condition (6) for
β which is a contradiction. To check (7), we may assume that f ∈ Sβg since otherwise
Sβg ⊆ T β+1

k and thus Sβ+1
g �k Sβg . If Sβg = {g}, then by the previous sentence we have

f = g and by the choice of f we have Sβ+1
f �k C − f ≺k {f}. Otherwise there is an

Mk-circuit C ′ 3 f, g such that Sβg = C ′ − g ⊆ T βk . By applying strong circuit elimination
with C and C ′ we obtain a circuit C ′′ ⊆ C ∪ C ′ − f through g. Since f ∈ C ′ \ C ′′ and
each element of C ′′ \ C ′ is ≺k-smaller than f (because f = max≺k

C) we may conclude
that C ′′ \ C ′ ≺k C ′ \ C ′′ and hence by applying Observation 3.1 repeatedly with the edges
C ′ ∩ C ′′ we get C ′′ − g ≺k C ′ − g. Therefore

Sβ+1
g �k C ′′ − g ≺k C ′ − g = Sβg .

The recursion is done and it terminates at some ordinal since the constructed set families
(T βi : i ∈ Θ) are pairwise distinct by conditions (2), (3) and (8). �

Note that if each Mi is cofinitary then the proof above can be shorten significantly.
Indeed, we do not need the well-orders <i and ≺i and the transfinite recursion becomes
essentially a “greedy” approach. Let us sketch a similarly simple proof for the special
case where all Mi are finitary. We apply transfinite recursion starting with the set family
{Ri : i ∈ Θ} and “going towards” {Pi : i ∈ Θ}. In the general step we have a partition
E = ⋃

i∈Θ Ti where for i ∈ Θ, each Mi-circuit C with C ⊆ Ti is a subset of Ri. Then we
pick a j with Pj 6⊆ spanMj

(Tj) and add an e ∈ Pj \ spanMj
(Tj) to Tj and remove it from

the unique Tk ∩Rk that contained it. Limit steps are defined the limits of sequences so
far. Since cycles are finite, a violating C cannot appear in a limit step.

We proceed with the Mendelsohn-Dulmage type of formulation which was our original
goal.
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Theorem. For i ∈ {0, 1}, let Mi be a matroid on E that such that each of its components
is either finitary of cofinitary and let Fi ⊆ E. Then there exists an F ⊆ E such that
spanMi

(F ) ⊇ Fi and spanM∗
i
(E \ F ) ⊇ E \ F1−i for i ∈ {0, 1}.

Proof. We can assume by “trimming” that Fi ∈Mi for i ∈ {0, 1}. Furthermore, we may
suppose by contracting F0 ∩ F1 and deleting E \ (F0 ∪ F1) in both matroids that the sets
Fi form a bipartition of E. We apply Theorem 1.7 with the matroids M0 and M∗

1 and sets
P0 := R1 := F0 and P1 := R0 := F1. From the resulting bipartition E = T0 ∪ T1 we take
F := T0. Then

(1) spanM0(F ) ⊇ F0,
(2) spanM∗

1
(E \ F ) ⊇ F1,

(3) spanM∗
0
(E \ F ) ⊇ F0,

(4) spanM1(F ) ⊇ F1.
�

It is worth to mention that Theorems 1.7 and 1.4 are actually equivalent. On the one
hand, the special case of Theorem 1.7 where |Θ| = 2 has a direct connection with Theorem
1.4 through the dualization of one of the matroids. On the other hand, a technique of N.
Bowler and J. Carmesin makes possible to reduce Theorem 1.7 to this special case (see
Proposition 3.8 in [12])

4. Pym’s Theorem in compact graph-like spaces

In this section we derive Theorem 1.6 from Theorem 1.4. First we illustrate our proof
method by giving a new proof for Theorem 1.5 that we restate here for convenience.

Theorem. Assume that G = (V,E) is a graph, V0, V1 ⊆ V and Pi are V0V1-path-systems
in G for i ∈ {0, 1}. Then there exists a V0V1-path-system P with V (P) ∩ Vi ⊇ V (Pi) ∩ Vi
for i ∈ {0, 1}.

Proof. For i ∈ {0, 1}, we define Mi to be the finite cycle matroid4 of the graph we obtain
from G by contracting Vi to a single vertex. Then E(Pi) ∈M0∩M1. By applying Theorem
1.4 with Fi := E(Pi) and M1−i, we can find an F ∈M0 ∩M1 with E(P1−i) ⊆ spanMi

(F )
for i ∈ {0, 1}. Then F is a forest in which every tree meets each Vi at most once. Each
connected component of F which meets both Vi contains a unique V0V1-path. We define P
to be the set of these paths. It remains to show that P satisfies the requirements. Suppose
that P ∈ Pi with vertices v0, . . . , vn enumerated in the path-order starting from Vi. It
follows from E(P ) ⊆ spanM1−i

(F ) that for every k < n the vertices vk and vk+1 are either
in the same connected component of F or both of them is reachable from V1−i in F . Thus
by induction v0 is reachable from V1−i in F but then the path witnessing this is in P . �

The core of our topological variant is the following unpublished result:

Theorem 4.1 (N. Bowler and J. Carmesin). For every compact graph-like space Γ the
edge sets of the pseudo-circles in Γ define a cofinitary matroid on E(Γ) in a means of its
circuits.

4the circuits are the edge sets of the graph theoretic cycles
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Proof. Let Γ be fixed. We show that axioms (C1)-(C3) and (cF ) hold for C := {E(C) :
C is a pseudo-circle in Γ}. A pseudo-circle C must have at least one edge by definition
thus E(C) 6= ∅. Suppose for a contradiction that E(C) ( E(D) for some pseudo-circles.
Then for e ∈ E(D) \ E(C) and f ∈ E(C) the space D − e − f is still connected which
contradicts the definition of the pseudo-circle.

We proceed with the strong circuit elimination axiom. Let C be a pseudo-circle with
e ∈ E(C). Suppose that X ⊆ E(C)−e and there is a family {Cx : x ∈ X} of pseudo-circles
such that E(Cx) ∩X = {x} and e /∈ E(Cx) for x ∈ X. We need to find a pseudo-circle D
with

e ∈ E(D) ⊆
[
E(C) ∪

⋃
x∈X

E(Cx)
]
\X =: F.

Let us denote the end-vertices of e by u and w. We may assume u 6= w since otherwise
loop e is suitable for D. By Fact 2.2 it is sufficient to find an arc A between u and w

with E(A) ⊆ F . To do so it is enough to show that u and w are in the same connected
component of the graph-like subspace Γ(F ) (see Theorem 2.1). Suppose for a contradiction
that it is not the case. Then there is an empty topological cut in Γ(F ) separating u and
w, i.e., there is a bipartition V (Γ) = U ∪W with U 3 u and W 3 w where U and W are
open in V (Γ) and for each f ∈ F , the end-vertices of f are either both in U or both in
W . The pseudo-arc C − e (see Fact 2.2) between u and w must have an edge f between
U and W . Since f /∈ F , we must have f ∈ X. But then Γ(F ) contains the pseudo-arc
Cf − f that joins the end-vertices of f , thus some g ∈ E(Cf − f) ⊆ F goes between U
and W which is a contradiction.

Finally, we check (cF ). Let e ∈ E and let F be a nested family of subsets of E such
that for every X ∈ F there is a pseudo-circle C in Γ with e ∈ E(C) ⊆ X. Suppose
for a contradiction that the intersection Y of the elements of F does not contain such
a pseudo-circle. Let u and w be the end-vertices of e. Note that e cannot be a loop so
u 6= w. Then the graph-like subspace H := Γ(Y − e) does not contain any pseudo-arcs
between u and w by Fact 2.2. Since H is a compact graph-like space, Theorem 2.1 ensures
that H admits a bipartition H = U ∪W into open sets separating u and w. We can lift it
up to obtain disjoint open sets U ′ ⊇ U and W ′ ⊇ W in Γ (for example if f ∈ E(Γ) \E(H)
with say ιΓf (0) = v ∈ U , then we add {f} × (0, 1

2) to U). The open sets {f} × (0, 1) for
f ∈ E(Γ) \ E(H) together with U ′ and W ′ form an open cover of Γ. Since there exists a
finite subcover, there is a finite F ⊆ E(Γ) \ E(H) such that Γ = [F × (0, 1)] ∪ U ′ ∪W ′.
Then each f ∈ E(Γ) with one end-vertex in U ′ and the other in W ′ must be in F . Since F
is nested, there is an X ∈ F such that X ∩ F ⊆ {e}. Therefore in the graph-like subspace
Γ(X − e) there is no pseudo-arc between u and w. But it implies by Fact 2.2 that there is
no pseudo-circle in Γ(X) through e which is a contradiction. �

Let us state an important consequence of Fact 2.2.

Corollary 4.2. Assume that graph-like space Γ induces a matroid M and let F ⊆ E(Γ).
Then for each e ∈ spanM(F ) there is a pseudo-arc in Γ(F ) between the end-vertices of e.

Now we are ready to prove the compact graph-like space version of Pym’s theorem
which we repeat here for convenience.
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Theorem. Assume that Γ = (V,E) is a compact graph-like space, V0, V1 ⊆ V are closed
sets and Ai are V0V1-pseudo-arc systems in Γ for i ∈ {0, 1}. Then there exists a V0V1-
pseudo-arc system A with V (A) ∩ Vi ⊇ V (Ai) ∩ Vi for i ∈ {0, 1}.

Proof. Since Γ/Vi is a compact graph-like space, Theorem 4.1 ensures that it induces a
cofinitary matroid Mi for i ∈ {0, 1}. Then Theorem 1.4 gives an F ∈ M0 ∩M1 with
E(A1−i) ⊆ spanMi

(F ) for i ∈ {0, 1}. It is easy to check using Theorem 2.1 that each
connected component of Γ(F ) is a tree-like space meeting Vi at most once for i ∈ {0, 1}.
Each connected component of Γ(F ) which meets both Vi contains a unique V0V1-pseudo-arc
by Fact 2.3. We define A to be the set of these pseudo-arcs and show that it is as desired.

Let i ∈ {0, 1} and A ∈ Ai be arbitrary where V (A) ∩ Vi = {vi}. It is enough to show
that vi and some v ∈ V1−i are in the same component of Γ(F ) (see Fact 2.3). Suppose
for a contradiction that it is not the case. Since Γ(F ) is compact and Hausdorff, the
Šura-Bura lemma5 (see for example in [14]) guarantees that the connected component
containing an x ∈ Γ(F ) can be obtained as the intersection of the clopen subsets of Γ(F )
containing x. Thus for every v ∈ V1−i there is a Γ(F )-clopen Uv containing v but not
vi. Combining this with the compactness of V1−i, we can find a Γ(F )-open bipartition
U0∪U1 = Γ(F ) with Ui 3 vi and U1−i ⊇ V1−i. Since A joins vi and V1−i, there must be some
e ∈ E(A) having one end-vertex u0 in U0 and the other u1 in U1. Let v1−i be the vertex
representing the equivalence class of V1−i in Γ(F )/V1−i. On the one hand, U ′i := Ui and
U ′1−i := U1−i \ V1−i + v1−i is an open bipartition of Γ(F )/V1−i with U ′i 3 ui, U ′1−i 3 u1−i.
On the other hand, we guaranteed that e ∈ spanM1−i

(F ) and hence by Corollary 4.2
the vertices u0 and u1 are in the same connected component of Γ(F )/V1−i which is a
contradiction. �

One cannot omit the assumption that the sets Vi are closed in Theorem 1.6. Indeed,
let us consider the graph-like tree T that we obtain as the end compactification of the
graph on Figure 1 (where the newly added vertex is uω). We define V0 := {ui : i ≤ ω}
and V1 := {wi : i < ω}. Let A0 consists of the unique pseudo-arc (actually arc, i.e.,
homeomorphic with [0, 1]) between uω and w0 and let A1 consists of the unique (vertical)
arcs joining ui and wi for i < ω. Any non-trivial pseudo-arc A with one end uω goes
through the unique neighbour of wi for infinitely many i < ω. It means that those wi
cannot be connected to V0 with an arc disjoint from A. Thus there is not even a V0V1-arc
system A with V (A) ∩ V0 3 uω and V (A) ⊇ V1.

u0

w0

u1

w1

u2

w2

u3

w3

. . .

. . .

. . .

uω

Figure 1. Topological Pym may fail if the sets Vi are not closed.

If V0 ∩ V1 6= ∅ in Theorem 1.6, then the pseudo-arcs in the systems Ai meeting V0 ∩ V1

are necessarily trivial. One might prefer a sufficient condition in this special case of
5Components and quasi-components coincide in compact Hausdorff spaces.
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Theorem 1.6 where the sets Vi are disjoint. Let us point out that in this case “being closed”
is an unnecessarily strong restriction for the sets Vi. One can show that it would imply
that the pseudo-arc systems Ai must be finite. A weaker sufficient condition that we get
instead directly from Theorem 1.6 is the following: there are closed sets K0, K1 ⊆ V (Γ)
with Ki \K1−i = Vi for i ∈ {0, 1}.
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