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A canonical tree-of-tangles theorem for
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We show that every structurally submodular separation system admits a
canonical tree set which distinguishes its tangles.

The concept of tangles has its origins in Robertson’s and Seymours graph minor pro-
ject [6], where tangles were introduced as a unifying framework with which to describe
and study highly cohesive substructures in graphs. A central theorem in their work is
a tree-of-tangles theorem, which roughly says that the tangles of the graph give rise to a
tree-shaped decomposition of that graph with each tangle in a different part.

Since their inception the theory of tangles has seen a number of advancements: it
has been discovered [3, 5] that the notion of tangles can be formulated more abstractly
and does not require an underlying graph structure, making it applicable to a wider
field of combinatorial structures. A separation system in this abstract set-up is an
axiomatisation of separations of well-known structures such as graphs or matroids: a set
whose elements we call separations that is equipped with a poset structure in which all
the properties important for tangle theory such as ‘nested’, ‘orientation’, or ‘consistency’
can be expressed [5].

This higher level of abstraction, and of stripping away the superfluous information
about the underlying graph, have facilitated a number of cleaner proofs and stronger res-
ults. A recent result [3] of Diestel, Hundertmark, and Lemanczyk extends Robertsons’s
and Seymours tangle-tree theorem to tangles outside graph theory by finding a tree
set, a set of pairwise nested separations, and in addition to this achieves a significant
strengthening: the tree set found in [3] can be built canonically. The latter means that
the construction of the tree set can be carried out using exclusively invariants of the
given combinatorial structure. Having a canonical way of constructing the tree set is
desirable, for instance, for reproducibility of results when implementing an algorithm
for this construction: the canonicity guarantees that the algorithm will construct the
same tree set regardless of how the separation system and tangles to be distinguished
are presented to it as input.

Establishing a canonical tree-of-tangles theorem has been a long-standing goal in
tangle theory since the original proof in [6] relied on a technique that is unable to
produce canonical results. A first breakthrough towards this goal was achieved in [1],
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which managed to establish such a canonical theorem for tangles in graphs. With a sim-
ilar overall strategy [3] could then extend this canonical result to arbitrary separation
systems and the most general class of tangles called profiles.

A central ingredient in the proof of [3]’s result is an order function on the separa-
tions considered, similar to the order |A ∩ B| of a separation (A, B) of a graph that
was already used in [6] and [1]. In this setting one then considers the separation sys-
tem Sk of all separations of order less than k and studies its tangles. In analogy to
the function (A, B) 7→ |A ∩ B| from graphs this order function is usually assumed to be
submodular. This submodularity of the order function has a structural effect on the sep-
aration system Sk : for any two separations in Sk at least one of their pairwise join and
meet (which are separations given by opposite ‘corners’ of the given pair of separations)
again lies in Sk .

Later Diestel, Erde, and Weißauer [2] showed that the latter structural condition by
itself is already sufficiently strong for proving tree-of-tangles theorems: tangle theory
can be meaningfully studied without the hitherto usual assumption of a submodular
order function, further widening its applicability. If a separation system has this struc-
tural property but not necessarily a submodular order function then it is structurally
submodular or simply submodular if the context is clear. The tree-of-tangles theorem
established in [2] then reads as follows:

Theorem 1 ([2, Theorem 6]). Let S be a structurally submodular separation system
and P a set of profiles of S. Then S contains a tree set N that distinguishes P.

The tree set N distinguishes P if each pair of profiles in P differs on some separation
in N . For formal definitions we refer the reader to [5].

This Theorem 1 is even more widely applicable than the result of [3], but has one major
downside: it does not yield canonicity since the proof in [2] chooses certain separations
arbitrarily.

In this note we present a proof which makes use of invariants of S and P only, and
thereby establishes the following canonical version of Theorem 1:

Theorem 2. Let S be a structurally submodular separation system and P a set of
profiles of S. Then there is a nested set N = N(S, P) ⊆ S which distinguishes P.
This N(S, P) can be chosen canonically: if ϕ : S → S′ is an isomorphism of separation
systems and P ′ := {ϕ(P ) | P ∈ P} then ϕ(N(S, P)) = N(S′, P ′).

Note that in our formulation of canonicity in Theorem 2 we do not require that the
map ϕ preserves pairwise joins and meets. If ϕ does preserve them then its image S′ is
also structurally submodular and P ′ a set of profiles of S′. If ϕ does not preserve pairwise
joins and meets but only the partial order on S then it may happen that S′ is no longer a
structurally submodular separation system or that the orientations of S′ contained in P ′

are no longer profiles. However even in those cases since ϕ preserves nestedness we can
nevertheless follow the construction of N(S, P) to obtain a nested set N(S′, P ′) which
distinguishes all orientations in P ′, and we will have ϕ(N(S, P)) = N(S′, P ′) as asserted
in Theorem 2. In other words: the construction of N(S, P) uses only invariants of S
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and P and does not depend on the way in which S is embedded in some lattice structure
of separations. If there is an embedding of S into a lattice of separations that makes S
structurally submodular and P a set of profiles of S, then the construction of N(S, P)
succeeds not only inside this lattice structure, but also for any other embedding of S.

For a full introduction to tangle theory and its terminology and notation we refer the
reader to [5]. The remainder of this note is dedicated to the proof of Theorem 2.

A common tool in proving tree-of-tangles theorems is the so called fish lemma:

Lemma 3 ([5, Lemma 3.2]). Let r, s ∈ S be two crossing separations. Every separation
t that is nested with both r and s is also nested with all four corner separations of r and
s.

A universe of separations is a separation system whose poset is a lattice with pairwise
join and meet operations ∨ and ∧. For the rest of this note let S be a structurally
submodular separation system inside some universe U of separations and P a set of
profiles of S.

We need the following additional terminology. A separation s ∈ S is exclusive (for P)
if it lies in exactly one profile in P. If P ∈ P is the profile containing an exclusive
separation s then we might also say that s is P -exclusive (for P). Observe that if r
is P -exclusive for P, then so is every s ∈ P with r ≤ s.

For each P ∈ P let MP consist of the maximal elements of the set of all P -exclusive
separations. Equivalently, MP is the set of all maximal elements of P that are exclusive
for P.

Our strategy for proving Theorem 2 will be to canonically pick nested P -exclusive
representatives of all profiles P ∈ P that contain exclusive separations, then discard
from P and S all those profiles P for whom we selected a representative and all those
separations not nested with these representatives, respectively. Iterating this procedure
will yield the canonical nested set.

In order for this strategy to work we must ensure that the sets MP are not all empty.
Our first lemma addresses this:

Lemma 4. If P is non-empty, then some MP is non-empty.

The existence of exclusive separations and thus Lemma 4 is actually an immediate
consequence of Theorem 1: if N ⊆ S is a nested set which distinguishes P, and each
element of N distinguishes some pair of profiles in P, then any maximal element of N is
exclusive for P. In other words, the separations labelling the incoming edges of leaves
of the tree associated with N are exclusive.

To avoid the proof of Theorem 2 relying on its non-canonical version, let us give an
independent proof of Lemma 4.

Proof of Lemma 4. If P consists of only one profile the assertion is trivial. For |P| ≥ 2
we show the following stronger claim by induction on |P|:

If |P| ≥ 2 there is for each P ∈ P a separation that is exclusive but not P -exclusive
for P.
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For the base case |P| = 2 observe that any separation distinguishing the two profiles
in P has two exclusive orientations, one in each profile.

Suppose now that |P| > 2 and that the claim holds for all non-singleton proper subsets
of P. Let P ∈ P be the given fixed profile and set P ′ := P r {P}. By the induction
hypothesis applied to P ′ and an arbitrary profile there is an exclusive separation r for P ′,
contained in some Q ∈ P ′. Applying the induction hypothesis again to P ′ and Q yields
another separation s that is exclusive for P ′ and lies in some Q′ ∈ P ′ with Q 6= Q′.

If either of r and s is also exclusive for P then we are done. So suppose not, that is,
suppose we have r, s ∈ P . Then r 6= s, and hence r and s must be incomparable by the
consistency of Q and Q′. If r ≤ s then s is Q-exclusive for P. Thus we may assume
that r and s cross.

By submodularity of S one of r ∨ s and r ∨ s lies in S; by symmetry we may assume
that (r ∨ s) ∈ S. Since s is Q′-exclusive we have s ∈ Q and hence (r ∨ s) ∈ Q by the
profile property. From (r ∨ s) ≥ r we infer that (r ∨ s) is Q-exclusive for P ′. Moreover
we cannot have (r ∨ s) ∈ P : it would be inconsistent with s ∈ P as r and s cross.

Therefore r ∨ s is exclusive but not P -exclusive for P.

We remark that the stronger assertion used for the induction hypothesis in this proof,
too, can be established immediately using Theorem 1: for |P| ≥ 2 the tree associated
with the nested set N ⊆ S distinguishing P has at least two leaves, and hence some leaf
for which the separation labelling its incoming edge does not lie in the fixed profile P .
(See [4] for the precise relationship between tree sets and trees.)

Returning to the proof of Theorem 2, let us find a way to canonically pick represent-
atives of those P ∈ P with non-empty MP in such a way that these representatives are
nested with each other. For the ‘canonically’-part of this we will make use of the fact
that the sets MP themselves are invariants of P and S. For the nestedness we start by
showing that separations from different MP ’s cannot cross at all:

Lemma 5. For P 6= P ′ all r ∈ MP and s ∈ MP ′ are pairwise nested.

Proof. Suppose some r ∈ MP and s ∈ MP ′ cross. By submodularity one of r ∨s and r∨s
lies in S; by symmetry we may suppose that (r ∨ s) ∈ S. Then P , too, contains this
separation since s ∈ P . But (r ∨ s) is also P -exclusive and strictly larger than r, a
contradiction.

It is possible, however, that the set MP itself is not nested. In fact the elements of MP

all cross each other, unless P = {P}: any r and s in MP that are nested must point
towards each other by maximality. But every other profile in P contains both r and s and
would then be inconsistent. If we want to represent a P ∈ P with non-empty MP by an
element of MP , we are therefore limited to picking at most one element of MP . However
there is no canonical way of singling out an element of MP to be the representative of P ;
we must therefore find another way of choosing an invariant P -exclusive separation,
using MP only as a starting point.

Clearly each non-empty MP has an infimum in the ambient lattice U . If this infimum
of MP lies in S then it is also the infimum of MP as measured in the poset S, and hence
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an invariant of S and P. Therefore the infimum of an MP is a canonical choice for a
representative of P , provided that this infimum happens to lie in S and be P -exclusive.
Our next lemma shows that this is indeed always the case:

Lemma 6. Let P ∈ P with MP 6= ∅ and P 6= {P} be given. Then MP has an in-
fimum sP in the poset S, and sP is P -exclusive for P. Moreover if some t ∈ S is nested
with MP then t is also nested with sP .

Proof. Fix an enumeration MP = {r1 , . . . , rn } and some t ∈ S that is nested with MP .
For i = 1, . . . , n let si := r1 ∧ . . . ∧ ri , where these infima are taken in U . We show by
induction on i that si lies in S, is P -exclusive for P, and is nested with t; this yields the
claim for i = n.

The case i = 1 is trivially true, so suppose that i > 1 and that si−1 = (r1 ∧ . . . ∧ ri−1 )
is already known to lie in S and be P -exclusive and nested with t.

If si−1 = ri there is nothing to show, so suppose that si−1 6= ri. Let us first treat the
case that ri and si−1 are nested. Clearly the two cannot point away from each other
since P is consistent. If ri and si−1 are comparable then si = (ri ∧ si−1 ) equals one of
the two and hence is as claimed. Finally, if ri and si−1 point towards each other, we
obtain a contradiction: for then their inverses point away from each other, making every
profile in P other than P inconsistent. Thus if ri and si−1 are nested the induction
hypothesis holds for si .

Let us now consider the case that ri and si−1 cross. Then ri ∨ si−1 cannot lie in S
since it would be P -exclusive and strictly larger than ri ∈ MP . Therefore (r ∧si−1 ) ∈ S,
that is, si ∈ S. By consistency we have that si ∈ P . Every profile in P other than P
contains ri as well as si−1 and hence si−1 by the profile property, which shows that si

is P -exclusive. Finally, by Lemma 3, si is also nested with t.

It remains to show that after picking as a representative for each P ∈ P with exclusive
separations the infimum of MP , the set of separations in S that are nested with all these
representatives is still rich enough to distinguish all profiles in P for which we have not
yet picked a representative.

For this let S′ ⊆ S be the system of all those separations that are nested with all MP ,
and let P ′ ⊆ P be the set of those profiles Q that have empty MQ. Our next lemma
says that if we restrict ourselves to S′, we can still distinguish P ′:

Lemma 7. The separation system S′ is submodular and distinguishes P ′.

Proof. The fact that S′ is submodular is immediate from Lemma 3. For the latter, let Q
and Q′ be distinct profiles in P ′; we shall show that some s′ ∈ S′ distinguishes them.
For this choose a separation s ∈ S which distinguishes Q and Q′ and which is nested
with MP for as many P ∈ P as possible. If s is nested with all MP we are done; otherwise
there is some P ∈ P for which s crosses something in MP .

So suppose that there is a P ∈ P for which s is not nested with MP . Among all s′ ∈ S
which distinguish Q and Q′ and which are nested with each MP ′ with which s is nested,
pick a minimal s′ with s′ ∈ P . We claim that this s′ is nested with MP , contradicting
the choice of s.
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To see this, suppose that s′ crosses some r ∈ MP . Then r ∨ s′ cannot lie in S
since that would be a strictly larger P -exclusive separation than r. Hence (r ∧ s′) ∈ S.
By P /∈ {Q, Q′} we have that both Q and Q′ contain r , and hence this corner separation
distinguishes Q and Q′ as well. However, by Lemma 3 and Lemma 5, this r ∧ s′ would
be nested with each MP ′ with which s was nested, while being strictly smaller than s′ ,
a contradiction.

If MP is non-empty let us write sP for its infimum in S as in Lemma 6. We are now
ready to prove Theorem 2 by induction.

Proof of Theorem 2. We proceed by induction on |P|. If |P| ≤ 1 there is nothing to
show, so suppose that |P| > 1 and that the assertion holds for all proper subsets of P.

Recall that S′ ⊆ S consists of all separations in S that are nested with all sets MP and
that P ′ ⊆ P is the set of all P ∈ P with empty MP . Clearly both S′ and P ′ are invariants
of S and P since the sets MP themselves are invariants. For each non-empty MP let sP

be its infimum in S as described in Lemma 6. Then

N1 :=
{

sP | P ∈ P r P ′
}

is clearly a canonical set. From Lemma 6 we further know that N1 distinguishes all
profiles in P ′

r P from each other and from each profile in P ′.
By Lemma 5 every element of MP is nested with every element of MP ′ for all P 6= P ′.

Applying the ‘moreover’-part of Lemma 6 twice thus implies that sP is nested with every
element of MP ′ and subsequently with sP ′ . Therefore N1 is a nested set. Likewise every
separation in S′ is nested with N1.

Let us apply the induction hypothesis to P ′ in S′, as made possible by the Lemmas 4
and 7, yielding a canonical nested set N2 ⊆ S′ which distinguishes P ′. Since S′ and P ′

themselves are invariants of S and P we have that the union N1 ∪ N2 is the desired
canonical nested set.
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