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Abstract

We consider a continuous time Markov process on N0 which can be interpreted as

generalized alternating birth-death process in a non-autonomous random environment.

Depending on the status of the environment the process either increases until the

environment changes and the process starts to decrease until the environment changes

again, and the process restarts to increase, and so on, or its starts decreasing, reversing

its direction due to environmental changes, et cetera. The birth and death rates depend

on the state (height, population size) of the birth-death process and the environment’s

transition rates depend on the state of the birth-death process as well. Moreover, a

birth or death event may trigger an immediate change of the environment. Our main

result is an explicit expression for the stationary distribution if the system is ergodic,

providing ergodicity conditions as well.

Removing the reflecting boundary at zero we obtain a two-sided version on Z of this

alternating birth-death process, which for suitable parameter constellations is ergodic

as well. We determine the stationary distribution. This two-sided version is a locally

inhomogeneous discrete space version of the classical telegraph process.

We demonstrate that alternating birth-death processes in a random environment

provide a versatile class of models from different areas of applications. Examples from

the literature are discussed.
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1 Introduction

Birth-death processes are used to describe the evolution of different systems under random

influences, e.g. population dynamics, queueing systems in various application areas, in-

ventories. In many situations occurring in these areas the systems under observation are

influenced by an external environment which is subject to random influences as well. There

exist a rich literature on birth-death processes in a random environment, where typically the

environment develops autonomously as a Markov process of its own, i.e. the environment is

autonomous. Queueing systems as special birth-death processes in an autonomous random

environment are investigated e.g. by Zhu [Zhu94], Economou [Eco05], Tsitsiashvili, Osipova,

Koliev, Baum [TOKB02], and Balsamo, Marin [BM13]. These systems are typical exam-

ples of “quasi-birth-death processes” (QBD’s) where the “level” represents the population

size while the associated “phase” represents the environment. The level-independent QBDs

model birth-death processes in an autonomous environment while the level-dependent QBDs

are related to systems under perturbations by non-autonomous environments, for classical

references see Chapter 6 (Queues in a Random Environment) in [Neu81], and Example C in

[Neu89][p. 202, 203].

Our focus is on modified birth-death processes in a non-autonomous random environment.

This is motivated by several classes of applied probability models which are investigated

in the literature, where the environment is subject to perturbations originating from the

dynamics of the birth-death process. A class of examples represents models for integrated

production-inventory systems, where the production facility is modeled as a queue, while

the inventory represents the environment of that queue, a review is [KLM11], more recent

results are a in [KD15]. A different area where typically the environment of a queue is non-

autonomous is the fields of wireless sensor networks, where the principle of a “referenced

node” is used to aggregate the network and to consider only a single node, resp. its message

queue and to incorporate the external conditions and the other nodes of the network into its

environment. Sending and receiving messages by the referenced message queue (the “birth-

death process”) changes the status of the environment, for a discussion and an elaborated

example see [KD14].

While in standard birth-death processes in a random environment in any state (population

size) > 0 births and deaths occur with intensities which may depend on state and environ-

ment, the alternating birth-death processes in a random environment considered here are
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allowed to move up (birth) or down (death) only when the environment is in the respective

state, called b or d. Our interest in these class of processes originates from different models

in the literature which can be subsumed under a common scheme. Typical examples:

Kella and Whitt [KW92] investigated the structure of an infinite-capacity storage model

(where the maximal service capacity is greater than the arrival intensity) influenced by a two-

state random environment. The environment alternates between states “up” and “down”.

To investigate this model is motivated by queueing systems with random interruptions of

service, the status of the environment indicates the server’s availability: If the environment is

down, no service is provided, only arrivals occur and consequently the content of the storage

increases pathwise according to some general stochastic process. If the environment is up,

service is provided and arrivals occur and consequently the content decreases pathwise ac-

cording to some general stochastic process because service intensity exceeds arrival intensity.

A rather general storage process which is closely related to the model in [KW92] is investi-

gated by Boxma and Kella [BK14]. They consider a process which is either in up or in down

state. In up-state it behaves like a Lévy process with no negative jumps and negative drift,

while in down-state it behaves like a subordinator.

Consider now for the system in [KW92] the situation where during up times the content

increases according to a Poisson process with intensity λ, while during down times the content

decreases according to a Poisson process with intensity µ−λ > 0 (notation of [KW92]). Then

the content process may be described via discrete state space and can be considered as an

“alternating birth-death process in a random environment” which increases by births as long

as the environment is down, and decreases by deaths as long as the environment is up.

Our focus in this paper is in a first step on similar processes on state space N0 with general

transition mechanism: Birth and death rates depend on the state (height, population size) of

the birth-death process (and the status of the environment), and the environment’s transition

rates depend on the state of the birth-death process. Furthermore, an immediate change of

the environment status may be triggered by a birth or death occurring, i.e. an arrival or

departure in terms of queueing models.

In a second step we remove the reflecting boundary at zero and extend the process to a

two-sided birth-death process on state space Z. This results in a process which makes jumps

on Z either to the left for a random time duration and then suddenly changes the direction of

his moves to the right, until the next change. The duration of times with jumps of constant

direction is in our setting controlled by the status of the environment. On state space R

such a process is known as generalized telegraph process, for a short introduction see the

fundamental paper of Kac [Kac74] and the more recent work of Stadje and Zacks [SZ04],
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de Gregorio [DG10], and Crimaldi, di Crescenzo, Iuliano, and Martinucci [CDCIM13]. The

simplest telegraph processes describe the motion of a particle on the continuous real line with

constant speed, the direction is reversed at jump times of a Poisson process. We remark that

Kac derives the equation which governs the density of the particle’s position starting from

a discrete version on the one dimensional lattice Z of the particle’s walk [Kac74].

A generalization of the telegraph process is defined by Ratanov [Rat20]: The particle moves

irregularly governed by different Lévy processes and the switching between these processes

is governed by an underlying two-state Markov process. (In our setting the Lévy processes

are Poisson.) More related processes which generalize the original telegraph processes can

be found in the references there.

Under the heading of “Double-ended queue” and “unrestricted linear random walk” such

two-sided birth-death processes have found many applications. An early survey of the two-

sided M/M/1/∞ queue denoted by ∞2/M/M , resp. two-sided birth-death process on state

space Z is of Conolly [Con71]. More details can be found in the book of Srivastava and

Kashyap [SK82]. A recent in depth study is the paper of Liu, Gong, and Kulkarni [LGK15].

From a general point of view our model with state space N0×{b, d} is related to the processes

which Falin and Gomez-Corral introduced in [FGC00] as a class of bivariate Markov pro-

cesses. The construction of these processes is motivated by models from teletraffic analysis

and the resulting class of models encompass many different retrial systems from the previous

literature.

Structure of the paper. In Section 2 we consider the one-sided birth-death process on N0,

compute the stationary distribution for the ergodic system, and discuss several examples.

Because the process is not reversible we provide the stationary distribution for the finite

space system direct in Section 2.2. In Section 2.3 we discuss regularity issues. In Section

3 we consider the two-sided birth-death process on Z, compute the stationary distribution

for the ergodic system, and discuss the telegraph process as example. We show that our

approach enables us to stabilize the moving particle’s process. In 3.2 we discuss regularity.

Assumptions and conventions. We assume throughout that all processes which occur are

defined on a common probability space on (Ω,F ,P ) and have cadlag paths. By construction

all processes which will occur are conservative, i.e. their intensity matrix (generator matrix)

has zero row sums.



H. Daduna: Alternating birth-death-processes May 11, 2020 5

2 One-sided alternating birth-death process

Let X = (X(t) : t ≥ 0) with X(t) : (Ω,F ,P ) → (N0, 2
N0) be a variant of the standard

birth-death processes the evolution of which depends on an external environment which

changes randomly between two states {b, d}. We denote the environment process by Y =

(Y (t) : t ≥ 0) with Y (t) : (Ω,F ,P ) → ({b, d}, 2{b,d}). Whenever the environment is in

state b (indicating that births may occur) the process X moves upwards only, due to births

occurring, and whenever the environment is in state d (indicating that deaths may occur)

the process X moves downwards only, due to deaths occurring. The joint process with state

space N0 × {b, d} is denoted by Z = (X,Y) with Z(t) = (X(t), (Y (t)). Movements of Z

are governed by transition intensity matrix Q = (q(z, z′) : z, z′ ∈ N0 × {b, d}) with strictly

positive entries as follows for n ≥ 0:

q(n, b;n+ 1, b) = λn, a birth occurs when the population size is n,

q(n, d;n− 1, d) = µn1(n>0), a death occurs when the population size is n,

q(n, b;n, d) = δn, environment changes from “birth” to “death” when

the population size is n,

q(n, d;n, b) = βn, environment changes from “death” to “birth” when

the population size is n,

q(n, b;n+ 1, d) = κn, a birth occurs and environment changes from “birth”

to “death” when the population size is n,

q(n, d;n− 1, b) = νn1(n>0), a death occurs and environment changes from

“death” to “birth” when the population size is n.

The diagonal elements of Q are chosen such that row sums are zero. Unless otherwise indi-

cated for special situations we assume throughout that the parameters λn, κn, δn, µn, νn, βn

are strictly positive. A typical scenario of the transition graph is visualized in Figure 1.

2.1 Stationary distribution for the one-sided process

We assume in this section that the birth-death process is non-exploding, i.e. is regular. (In

Section 2.3 we will discuss this in more detail.) The global balance equation for Z are with
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Figure 1: Transition graph for the one-sided process(n > 1)

unknown values x(n, a) for (n, a) ∈ N0 × {b, d}

x(0, b)(λ0 + κ0 + δ0) = x(1, d)ν1 + x(0, d)β0, (2.1)

x(0, d)β0 = x(1, d)µ1 + x(0, b)δ0, (2.2)

and for n ≥ 1

x(n, b)(λn + κn + δn) = x(n− 1, b)λn−1 + x(n + 1, d)νn+1 + x(n, d)βn, (2.3)

x(n, d)(µn + νn + βn) = x(n + 1, d)µn+1 + x(n− 1, b)κn−1 + x(n, b)δn. (2.4)

Theorem 2.1. Denote for n ≥ 0 by Λn := λn+κn the total uprate out of n and Mn := µn+νn

the total downrate out of n. The global balance equation for Z are solved with any x(0, d) > 0

by

x(n, b) = x(0, d)β0Mn+1

∏n
k=1 (Λk−1βk +Mkλk−1)

∏n
k=0 (Λkµk+1 +Mk+1δk)

, n ≥ 0, (2.5)

and

x(n, d) = x(0, d)β0Λn−1

∏n−1
k=1 (Λk−1βk +Mkλk−1)

∏n−1
k=0 (Λkµk+1 +Mk+1δk)

, n ≥ 1. (2.6)

Z is ergodic if and only if

C(1) =
∞∑

n=0

∏n
k=1 (Λk−1βk +Mkλk−1)

∏n

k=0 (Λkµk+1 +Mk+1δk)
· (Λn +Mn+1) < ∞

Proof. The key observation is that a sequence of simple cuts reduces the computation to

investigating a linear structure. We have for all n ≥ 0 the cut equation

x(n, b)(λn + κn) = x(n + 1, d)(µn+1 + νn+1),

which yields for all n ≥ 0 x(n + 1, d) = x(n, b)
Λn

Mn+1

. (2.7)

This allows to substitute in a first step the variables x(n, d). In (2.2) we obtain

x(0, d)β0 = [x(0, b)
Λ0

M1
]µ1 + x(0, b)δ0,

and therefore x(0, b) = x(0, d)β0

(
Λ0

M1

µ1 + δ0

)−1

. (2.8)



H. Daduna: Alternating birth-death-processes May 11, 2020 7

From (2.3) we obtain for n ≥ 1

x(n, b)(λn + κn + δn) = x(n− 1, b)λn−1 + [x(n, b)
Λn

Mn+1
]νn+1 + [x(n− 1, b)

Λn−1

Mn

]βn,

and so x(n, b)
(λn + κn + δn)Mn+1 − Λnνn+1

Mn+1
= x(n− 1, b)

(λn−1Mn + Λn−1βn)

Mn

,

which leads to

x(n, b) = x(n− 1, b)
Mn+1

Mn

·
Λn−1βn +Mnλn−1

Λnµn+1 +Mn+1δn
, n ≥ 1.

Iterating and using (2.8) we obtain for all n ≥ 0

x(n, b) = x(0, d)β0

(
Λ0

M1
µ1 + δ0

)−1

·

n∏

k=1

Mk+1

Mk

·

n∏

k=1

Λk−1βk +Mkλk−1

Λkµk+1 +Mk+1δk

= x(0, d)β0

(
Λ0

M1
µ1 + δ0

)−1

·
Mn+1

M1
·

n∏

k=1

Λk−1βk +Mkλk−1

Λkµk+1 +Mk+1δk

= x(0, d)β0Mn+1

∏n
k=1 (Λk−1βk +Mkλk−1)

∏n

k=0 (Λkµk+1 +Mk+1δk)
. (2.9)

Adding (2.1) and (2.2) yields

x(1, d) = x(0, b)
Λ0

M1
,

and applying (2.8) we obtain

x(1, d) = x(0, d)β0Λ0
1

Λ0µ1 +M1δ0
, (2.10)

and for n ≥ 1 we obtain from (2.7) and (2.9)

x(n, d) = x(0, d)β0Λn−1

∏n−1
k=1 (Λk−1βk +Mkλk−1)

∏n−1
k=0 (Λkµk+1 +Mk+1δk)

,

which indeed is in line with (2.10).

Remark 2.2. (a) The ergodicity criterion C(1) < ∞ is well-suited for detailed investigation

via “Extensions of the Bertrand-De Morgan test” for convergence of series with positive

summands. For an indepth study see [Abr20].

(b) A stationary birth-death process is reversible for any parameter setting. This is not

the case for the alternating birth-death process in a random environment, which can be seen

easily by writing down the transition intensities of its time reversal.
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Figure 2: The retrial queue

2.1.1 Example: M/M/1/∞ retrial queues with general retrial policy

Retrial queues are classical models for telephony, our description follows [AGC08][Section 2]:

Customers arrive in a Poisson−λ stream at a single server without waiting room. Service

times are exp(δ)-distributed. The server’s states are empty = 0 or busy = 1.

If an arriving customer finds the server empty he enters the system and service starts imme-

diately. If an arriving customer finds the server busy he leaves the service area and enters the

so-called orbit where he successively retries to enter the server. If on his retrial he finds the

server idling he enters the system and service starts immediately. Otherwise he stays-on in

the orbit. There are various retrial policies described in the literature, characterized mainly

by the retrial intensities, see [Fal13][p. 417].

A general retrial policy is as follows: Customers in the orbit queue up according to a First-

Come-First-Served (FCFS) regime. If there are n ≥ 1 customers in the orbit the overall

retrial intensity is νn, i.e, if at time t ≥ 0 the orbit population size is n ≥ 1 then the

one customer at the head of the queue attempts to enter the server during [t, t + ∆) with

probability νn · ∆ + o(∆). If the server is free ( = 0) it becomes occupied and the orbit

population size changes to n−1. If the server is occupied (= 1) the attempt is not successful

and the orbit population size stays at n, with customers in the same order, the transition

diagram of Falin’s retrial queue with general retrial scheme is shown in Figure 3.

This system fits into the model of Section 2 by interpreting the server as the orbit’s envi-

ronment with b ↔ 1 and d ↔ 0. The orbit’s population size is the state of the birth-death

process which (only!) increases with rate λ as long as the environment’s state is 1 (new

arrivals are send to the orbit because the server is occupied). The orbit’s population size

(only!) decreases with rate νn as long as the environment’s state is 0 and the “queue length”

of the orbit is n > 0. If this is the case, a downward jump of the orbit’s queue length from n
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Figure 3: Transition graph of the retrial queue with general retrial policy [Fal13]
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Figure 4: Transition graph of the retrial queue with general retrial policy and state dependent

arrival, service, and retrial rates [FGC00]

to n−1 triggers an immediate change of the environment from 0 to 1: The server is occupied

now and the orbit size starts to increase again.

According to [Fal13][p. 417] of special interest are the following retrial policies:

◦ constant policy, i.e. νn = α, ∀n ≥ 1; the orbit is organized as a standard M/M/1/∞ queue

under First-Come-First-Served (FCFS);

◦ classical policy, i.e. νn = ν ·n, ∀n ≥ 1; the orbit is organized as a standard M/M/∞ queue;

◦ linear policy, i.e. νn = α + ν · n, ∀n ≥ 1.

Details and more references can be found in [Fal13] and [AGC08].

Falin and Gomez-Corral [FGC00] considered the retrial queue from Figure 3 in a more

versatile version. The arrival rates are different for different size of the orbit queue and

depend furthermore on whether the server is busy or idling. The service rate depends on

the size of the orbit queue.

This results in a general “bivariate Markov process arising in the theory of single-server

retrial queues” in [FGC00], which is closer to our general system. With the notation of

Section 2 the joint “(orbit population size/server status)” process Z = (X,Y) is governed



H. Daduna: Alternating birth-death-processes May 11, 2020 10

by the following intensity matrix.

q(n, 1;n+ 1, 1) = λn when the server is busy and the orbit population size is n,

customers arrive with intensity λn and enter the orbit

q(n, 0;n, 1) = βn, when the server is idling and the orbit population size is n,

customers arrive with intensity βn and enter the orbit

q(n, 1;n, 0) = δn when the server is busy and the orbit population size is n,

service is provided with rateδn

q(n, 0;n− 1, 1) = νn1(n>0), when the server is idling and the orbit population size is n,

the customer at the head of the orbit queue retries successfully

with rate νn leaves the orbit and enters the server

The structure of the transition intensity graph is presented in Figure 4. Assuming that all

the rates depicted in Figure 4 are positive, the associated queue lengths processes for the

server-orbit system is irreducible. In case of positive recurrence the stationary distribution

is with suitably scaled x(0, d)

x(n, b) = x(0, d)
β0

δ0

(
n∏

k=1

λk−1

δk

)(
n∏

k=1

βk + νk
νk

)

, (2.11)

and

x(n, d) = x(0, d)
β0

δ0

(
n−1∏

k=1

λk−1

δk

)(
n−1∏

k=1

βk + νk
νk

)

λn−1

νn
. (2.12)

For the case of general retrial policy with state independent arrival and service rates from

Figure 3 this boils down to Falin’s result [Fal13][formulas (3), (2)].

x(n, b) = x(0, d)

(
λ

δ

)n+1(
(λ+ ν1) · · · (λ+ νn)

ν1 · · · νn

)

, (2.13)

and (with ν0 = 0)

x(n, d) = x(0, d)

(
λ

δ

)n(
(λ+ ν0)(λ+ ν1) · · · (λ+ νn)

ν1 · · ·νn

)

. (2.14)

The formulas (2.11) for (2.13), resp. (2.12) for (2.14), reveal interesting structural properties

of the formulas (3), (2) of Falin via expressions with state dependent rates: E.g. the factor
(
λ
δ

)n+1
is composed from rates of different character, as can be seen from β0

δ0

(
∏n

k=1
λk−1

δk

)

.

Similar insights are given for the other terms.
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2.1.2 Example: A dam model

Dam models have been dealt with as special storage models in the literature. A simple

model of a dam is described by Prabhu [Pra80][p.71] as a model for a water reservoir with

effectively infinite capacity. The input of the dam is a Lévy process while the release from

the dam is at unit rate except when the dam is empty. The release of water is controlled by

opening, resp. closing a gate. In case of constant inflow this results in a dam model with

constant input flow and gated outflow:

• Input flow is with rate λ.

• Maximal outflow rate when the gate is opened is θ.

• So, controlled rate of decrease is θ − λ if the controller opens the gate (outflow - inflow).

If the time duration of open gate is exponential-β and the closed-gate times are exponential-

δ we have a continuous state alternating fill-release process as described in Section 2 with

homogeneous-in-space transition structure. The controller in this setting can be considered

as the environment of the dam.

The connection to the alternating birth-death process: If the input and the output are

discretized as Poisonian flows we can apply the above results e.g for determining equilibrium

behaviour. It turns out that the system is stable if and only if the natural condition λ/δ <

(θ − λ)/β is fulfilled. The stationary distribution π of the stable system is

π(0, d) =
(θ − λ)− λβ

(θ − λ)(β + δ)
,

π(n, d) = π(0, d)
βλ

(λ+ δ)(θ − λ)

(
λ(β + θ − λ)

(θ − λ)(λ+ δ)

)n−1

, n ≥ 1,

π(n, b) = π(0, d)
β

λ+ δ

(
λ(β + θ − λ)

(θ − λ)(λ+ δ)

)n

, n ≥ 0.

2.1.3 Example: Fluid queues

Adan and Resing [AR96][Section 1] investigated a fluid queue which resembles the dam model

from the Section 2.1.2, but is in its simple version without control feature. The fluid queue

with state space [0,∞) changes the queue size continuously: Leak rate is constant = 1, while

the input rate is determined by an alternating renewal process (X1, Y1, X2, Y2, . . . ): During

Xi-periods the input rate is = 2, while during Yi-periods the input rate is = 0. So during

Xi-periods the buffer content increases deterministically with rate = 1 and decreases deter-

ministically during Yi-periods with rate = 1. It follows from the homogeneity assumptions

of the system that the buffer content Zi at the beginning of the ith period Xi follows the
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waiting time recursion for the standard G/G/1/∞ queue

Zi+1 = max(Zi +Xi − Yi, 0).

With Xi ∼ exp(β) and Yi ∼ exp(δ) we have the dam model from the Section 2.1.2. Dis-

cretizing the buffer content and the inflow and out flow streams as Poisonian flows connects

this model with the alternating birth-death process formalism from Section 2.

In [AR96][Section 2] the authors specialize the distributions of the alternating renewal pro-

cess to be generated by the alternating busy (Xi) and idle (Yi) periods of an M/M/1/∞

queue. This can be considered as a system where an autonomous M/M/1/∞ queue controls

the opening of the dam.

In the follow-up paper [AvDRS98], Adan, van Doorn, Resing, and Scheinhardt investigate

a similar model under the assumption that the fluid queue and a controlling (generalized)

M/M/1/N queue interact in both directions, because the environment-M/M/1/N queue has

service rates depending on the size of the fluid queue, i.e. the environment-M/M/1/N queue

is non-autonomous. This property is inherent in the very definition of the alternating birth-

death process in a random environment of Section 2 and 3. For discussion of autonomous

versus non-autonomous environment for the fluid queue see [AvDRS98][Section 1].

Because of technical difficulties originating from continuous state space, the authors dis-

cretize in [AvDRS98][Section 4] the state of the buffer content: Quanta of fluid instead of

volume of fluid. The size of the quantum is distributed exponentially.

2.2 Finite state space

Due to reversibility for classical birth-death processes the restriction from state space N0 to

a finite state space {0, 1, . . . , N} with N ≥ 1 the stationary distribution of the latter one

is obtained by truncation of the stationary distribution of the unrestricted process to the

restricted state space.

This is not the case for the alternating birth-death process in a random environment, as can

be seen by inserting (2.5) and (2.6) into the local balance equations.

For n = 0, 1, . . . , N − 1 the equations (2.1) through (2.4) fix again the relevant conditions,

and we have to add the boundary conditions for states (N, b), (N, d). These are

x(N, b)δN = x(N − 1, b)λN−1 + x(N, d)βN ,

x(N, d)(µN + νN + βN ) = x(N − 1, b)κN−1 + x(N, b)δN .
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Taking x(N − 1, b) from (2.5) these equations are solved by

x(N, b) = x(0, d)β0

(
ΛN−1 + λN−1MN

)
∏N−1

k=1 (Λk−1βk +Mkλk−1)
∏N−1

k=0 (Λkµk+1 +Mk+1δk)

and

x(N, d) = x(0, d)β0ΛN−1

∏N−1
k=1 (Λk−1βk +Mkλk−1)

∏N−1
k=0 (Λkµk+1 +Mk+1δk)

.

It is easy to see, that these solutions are compatible with (2.1) - (2.4) and the solutions (2.5)

and (2.6).

2.3 Regularity condition for the one-sided process

By definition, Q it is conservative and under the assumption that the parameters λn, κn, δn,

µn, νn, βn are strictly positive it is irreducible. Strict positivity is not necessary for irreducibil-

ity, but for simplicity of demonstration we shall put this assumption in force. Because of

the very general parameter set, Q and an associated process in general are not regular, i.e.

under our assumptions a process constructed from Q may explode in finite time with positive

probability. The relevant criterion is “Reuter’s explosion condition”, see [Asm03][Proposition

II.3.3].

Proposition 2.3. (Reuter (1957)) A Markovian jump process with discrete state space E

and transition intensity matrix Q is nonexplosive if and only if the set of equations

Q · y = y (2.15)

has y ≡ 0 as the only nonnegative bounded solution.

Equation (2.15) is in our case with unknown y(n, b), y(n, d), n ≥ 0:

y(0, b)(1 + λ0 + κ0 + δ0) = y(0, d)δ0 + y(1, b)λ0 + y(1, d)κ0, (2.16)

y(0, d)(1 + β0) = y(0, b)β0, (2.17)

y(n, b)(1 + λn + κn + δn) = y(n, d)δn + y(n+ 1, b)λn + y(n+ 1, d)κn, n ≥ 1,(2.18)

y(n, d)(1 + µn + νn + βn) = y(n, b)βn + y(n− 1, d)µn + y(n− 1, b)νn. n ≥ 1. (2.19)

Proposition 2.4. An irreducible one-sided alternating birth-death process Z = (Z(t) : t ≥ 0)

is non-explosive if and only if the partial solution sequence (y(n, b) : n ∈ N0) of the system

(2.16) - (2.19) increases unboundedly:

y(n, b)
n→∞

ր ∞. (2.20)
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Denote for n ≥ 0 by Λ+
n := 1 + λn + κn + δn and M+

n := 1 + µn + νn + βn with µ0 = ν0 = 0.

For n ≥ 0 holds

n∏

k=0

(1 + λk)M
+
k+1 + (1 + βk+1)κk

λkM
+
k+1 + βk+1κk

< y(n+1, b) <

n∏

k=0

(1 + λk + δk)M
+
k+1 + (1 + µk+1 + βk+1)κk

λkM
+
k+1 + βk+1κk

(2.21)

A sufficient criterion for (2.20) is

∞∑

n=0

M+
n+1 + κn

λnM
+
n+1 + βn+1κn

= ∞. (2.22)

A sufficient criterion for y(n, b)
n→∞

ր C < ∞ is (2.23)

∞∑

n=0

(1 + δn)M
+
n+1 + (1 + µn+1)κn

λnM
+
n+1 + βn+1κn

< ∞. (2.24)

Proof. Because for irreducible Q any nonnegative solution y = (y(i) : i ∈ E) of (2.15), resp.

of (2.16) - (2.19) with y(i) = 0 for some i ∈ E is identically zero, we can and will henceforth

assume that y(n, b) > 0 and y(n, d) > 0 holds for all n ∈ N0. We start with proving two

facts for the solution of (2.15) for our process:

(y(n, b) : n ∈ N0) is a strictly increasing sequence, and (2.25)

y(n, b)− y(n, d) > 0 holds for all n ∈ N0. (2.26)

We combine (2.18) (resp. (2.16)) for n ≥ 0 and (2.19) for the associated n + 1, and obtain

after some manipulations

y(n+ 1, b) = y(n, b)
Λ+

nM
+
n+1 − νn+1κn

λnM
+
n+1 + βn+1κn

− y(n, d)
δnM

+
n+1 + µn+1κn

λnM
+
n+1 + βn+1κn

,

y(n+ 1, d) = y(n, b)
(Λ+

nM
+
n+1 − νn+1κn)βn+1 + (λnM

+
n+1 + βn+1κn)νn+1

(λnM
+
n+1 + βn+1κn)M

+
n+1

−y(n, d)
(δnM

+
n+1 + µn+1κn)βn+1 − (λnM

+
n+1 + βn+1κn)µn+1

(λnM
+
n+1 + βn+1κn)M

+
n+1

.

Abbreviating

Dn :=
δnM

+
n+1 + µn+1κn

λnM
+
n+1 + βn+1κn

, En :=
(1 + λn)M

+
n+1 + (1 + βn+1)κn

λnM
+
n+1 + βn+1κn

,

and noticing
Λ+

nM
+
n+1 − νn+1κn

λnM
+
n+1 + βn+1κn

= Dn + En,
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this is for n ≥ 0

y(n+ 1, b) = y(n, b)(Dn + En)− y(n, d)Dn, (2.27)

y(n+ 1, d) = y(n, b)

(

(Dn + En)
βn+1

M+
n+1

+
νn+1

M+
n+1

)

− y(n, d)

(

Dn

βn+1

M+
n+1

−
µn+1

M+
n+1

)

.(2.28)

Note that En > 0, Dn > 0 holds. For later reference we remark that we obtained (2.27) and

(2.28) without explicit reference to (2.17).

We first remark that from (2.17) follows

y(0, b)− y(0, d) > 0. (2.29)

Assume now that for some n ≥ 0 holds

y(n, b)− y(n, d) > 0. (2.30)

From (2.27) and En = 1 +
M

+

n+1
+κn

λnM
+

n+1
+βn+1κn

it follows

y(n+ 1, b)− y(n, b) = (y(n, b)− y(n, d))
︸ ︷︷ ︸

>0, from (2.30)

Dn +
M+

n+1 + κn

λnM
+
n+1 + βn+1κn

y(n, b) > 0. (2.31)

Moreover, we have with (2.19)

y(n+ 1, b)− y(n+ 1, d) (2.32)

(2.19)
= y(n+ 1, b)−

(

y(n+ 1, b)
βn+1

M+
n+1

+ y(n, d)
µn+1

M+
n+1

+ y(n, b)
νn+1

M+
n+1

)

= y(n+ 1, b)
1 + µn+1 + νn+1

M+
n+1

− y(n, b)
νn+1

M+
n+1

− y(n, d)
︸ ︷︷ ︸

<y(n,b) from (2.30)

µn+1

M+
n+1

≥ ((y(n+ 1, b)− y(n, b))
︸ ︷︷ ︸

>0 from (2.31)

µn+1 + νn+1

M+
n+1

+ y(n+ 1, b)
1

M+
n+1

> 0.

Summarizing, starting from (2.29), we have proved that (2.25) (from (2.31)) and (2.26) (from

(2.32)) hold. Consequently, whenever y = (y(n, t) : n ∈ N0, t ∈ {b, d}) is unbounded, then

(2.20) holds (by (2.25)). And clearly, vice versa.

To prove (2.22) we rewrite (2.27) as

y(n+ 1, b) = y(n, b) · En +Dn(y(n, b)− y(n, d)), (2.33)

which by iteration yields

y(n+ 1, b) =
( n∏

k=0

Ek

︸ ︷︷ ︸

(⋆)

)

· y(0, b) +

n∑

m=0

(
n∏

k=m+1

Ek

)

·Dm · (y(m, b)− y(m, d)). (2.34)



H. Daduna: Alternating birth-death-processes May 11, 2020 16

From (2.34) and (2.26) we obtain the left inequality of (2.21). Moreover, the sequence of

products (⋆) converges if and only if the series
∞∑

n=0

M+
n+1 + κn

λnM
+
n+1 + βn+1κn

converges [Mes82][Section IX.1, Kriterium XVII]. So, if that series diverges the sequence of

products (⋆) diverges and (because of (2.32)) the partial solution sequence (y(n, b), n ∈ N0)

diverges as well.

On the other side, from (2.33) follows

y(n+ 1, b) < y(n, b)(En +Dn) ≤
( n∏

k=0

(Ek +Dk)

︸ ︷︷ ︸

(⋆⋆)

)

· y(0, b), (2.35)

which proves the right inequality of (2.21). The sequence of products (⋆⋆) converges if and

only if the series
∞∑

n=0

(1 + δn)M
+
n+1 + (1 + µn+1)κn

λnM
+
n+1 + βn+1κn

converges by the same argument as for (⋆).

Remark 2.5. The iterative scheme (2.27) + (2.28) provides a recursion to decide about

(2.20):
(

y(n+ 1, b)

y(n+ 1, d)

)

=




Dn + En −Dn

(Dn + En) ·
βn+1

M
+

n+1

+ νn+1

M
+

n+1

−Dn ·
βn+1

M
+

n+1

+ νn+1

M
+

n+1



 ·

(

y(n, b)

y(n, d)

)

,

and we may choose without loss of generality as initial value
(

y(0, b)

y(0, d)

)

=

(

1

β0/(1 + β0)

)

,

As can be seen by careful inspection of the proof, strict positivity of the parameters is not

necessary for the result to hold. Sufficient condition is irreducibility of Q.

Remark 2.6. A consequence of (2.29) is that (y(n, b) : n ∈ N0) is a strictly increasing

sequence. A similar general property is not valid for (y(n, d) : n ∈ N0). This can be seen as

follows. Utilizing (2.17) and (2.28) we obtain

y(1, d)− y(0, d) = y(0, d)
1

M+
1

(
1

β0
{(D0 + E0)β1 + ν1}+

[
β1M

+
1 + β1κ0

λ0M
+
1 + β1κ0

− 1

])

.

Because {(D0 + E0)β1 + ν1} > 0 this is for λ0 ≤ β1 strictly positive. On the other side, under

λ0 > β1 the term in the squared brackets is in (−1, 0), and because {(D0 + E0)β1 + ν1} > 0

is independent of β0, by choosing β0 appropriately, y(1, d)− y(0, d) can be made positive or

negative.
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3 Two-sided alternating birth-death process

In this section we let the birth-death process take negative values as well, i.e. the reflecting

boundary at 0 is removed. Let X = (X(t) : t ≥ 0) with X(t) : (Ω,F ,P ) → (Z, 2Z) be a

variant of the standard two-sided birth-death processes the evolution of which depends on

an external environment which changes randomly between two states {b, d}. We denote the

environment process by Y = (Y (t) : t ≥ 0) with Y (t) : (Ω,F ,P ) → ({b, d}, 2{b,d}). Whenever

the environment is in state b (indicating that births may occur) the process X moves only

upwards, by births occurring, and whenever the environment is in state d (indicating that

deaths may occur) the process X moves only downwards, due to deaths occurring.

The joint process with state space Z × {b, d} is denoted by Z = (X,Y) with Z(t) =

(X(t), (Y (t)). The movements of Z are governed by a transition intensity matrix Q =

(q(z, z′) : z, z′ ∈ Z× {b, d}) with strictly positive entries as follows for n ∈ Z:

q(n, b;n+ 1, b) = λn, a birth occurs when the population is n,

q(n, d;n− 1, d) = µn, a death occurs when the population is n,

q(n, b;n, d) = δn, environment changes from “birth” to “death” when

the population is n,

q(n, d;n, b) = βn, environment changes from “death” to “birth” when

the population is n,

q(n, b;n+ 1, d) = κn, a birth occurs and environment changes from “birth”

to “death” when the population is n,

q(n, d;n− 1, b) = νn, a death occurs and environment changes from “death”

to “birth” when the population is n.

The diagonal elements of Q are chosen such that row sums are zero. Unless otherwise indi-

cated for special situations we assume throughout that the parameters λn, κn, δn, µn, νn, βn

are strictly positive.

The transition graph for the two-sided process has the same structure as that of the one-sided

version as given in Figure 1, now, for any n ∈ Z.

3.1 Stationary distribution for the two-sided process

We assume in this section that the birth-death process is non-exploding, i.e. is regular. (In

Section 3.2 we will discuss this in more detail.) The global balance equations for Z are with
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unknown values x(n, a) are for (n, a) ∈ Z× {b, d}

x(n, b)(λn + κn + δn) = x(n− 1, b)λn−1 + x(n + 1, d)νn+1 + x(n, d)βn, (3.1)

x(n, d)(µn + νn + βn) = x(n + 1, d)µn+1 + x(n− 1, b)κn−1 + x(n, b)δn. (3.2)

Again we observe that a sequence of simple cuts reduces the computation to investigating a

linear structure. We have for all n ∈ Z the cut equation

x(n, b)(λn + κn) = x(n + 1, d)(µn+1 + νn+1), (3.3)

which yields for all n ∈ Z x(n+ 1, d) = x(n, b)
Λn

Mn+1
. (3.4)

This allows to substitute in a first step the variables x(n, d). In (3.1) we obtain for n ∈ Z

x(n, b)(λn + κn + δn) = x(n− 1, b)λn−1 + [x(n, b)
Λn

Mn+1

]νn+1 + [x(n− 1, b)
Λn−1

Mn

]βn,

and so

x(n, b)
Λnµn+1s+Mn+1δn

Mn+1
= x(n− 1, b)

λn−1Mn + Λn−1βn

Mn

,

which defines a two-sided standard birth-death process with state dependent birth and death

rates.

For n > 0 this leads to

x(n, b) = x(n− 1, b)
Mn+1

Mn

·
Λn−1βn +Mnλn−1

Λnµn+1 +Mn+1δn
, (3.5)

and iterating (3.5) we obtain for all n > 0

x(n, b) = x(0, b) ·
n∏

k=1

Mk+1

Mk

·
n∏

k=1

Λk−1βk +Mkλk−1

Λkµk+1 +Mk+1δk

= x(0, b) ·
Mn+1

M1
·

n∏

k=1

Λk−1βk +Mkλk−1

Λkµk+1 +Mk+1δk

For −n ≤ 0 we obtain

x(−n− 1, b) = x(−n, b)
M−n

M−n+1
·
Λ−nµ−n+1 +M−n+1δ−n

Λ−n−1β−n +M−nλ−n−1
. (3.6)

Iterating (3.6) we obtain for all −n < 0

x(−n, b) = x(0, b) ·

−1∏

k=−n

Mk+1

Mk+2
·

−1∏

k=−n

Λk+1µk+2 +Mk+2δk+1

Λkβk+1 +Mk+1λk

= x(0, b) ·
M−n+1

M1
·

−1∏

k=−n

Λk+1µk+2 +Mk+2δk+1

Λkβk+1 +Mk+1λk

.
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Taking into account (3.4) we obtain for all n > 0

x(n, d) = x(0, b) ·
Λn−1

M1

·
n−1∏

k=1

Λk−1βk +Mkλk−1

Λkµk+1 +Mk+1δk
,

and for −n ≤ 0

x(−n, d) = x(0, b) ·
Λ−n−1

M1

·
−1∏

k=−n−1

Λk+1µk+2 +Mk+2δk+1

Λkβk+1 +Mk+1λk

.

We summarize these computations as

Theorem 3.1. Denote for n ∈ Z by Λn := λn+κn the total uprate out of n and Mn := µn+νn

the total downrate out of n. The global balance equation for Z are solved with any x(0, b) > 0

by

x(n, b) = x(0, b) ·
Mn+1

M1
·

n∏

k=1

Λk−1βk +Mkλk−1

Λkµk+1 +Mk+1δk
, n > 0, (3.7)

x(−n, b) = x(0, b) ·
M−n+1

M1
·

−1∏

k=−n

Λk+1µk+2 +Mk+2δk+1

Λkβk+1 +Mk+1λk

. n ≥ 0, (3.8)

x(n, d) = x(0, b) ·
Λn−1

M1
·

n−1∏

k=1

Λk−1βk +Mkλk−1

Λkµk+1 +Mk+1δk
, n > 0, (3.9)

x(−n, d) = x(0, b) ·
Λ−n−1

M1
·

−1∏

k=−n−1

Λk+1µk+2 +Mk+2δk+1

Λkβk+1 +Mk+1λk

, n ≥ 0. (3.10)

Z is ergodic if and only if

C(2) =

∞∑

n=1

(Λn +Mn+1) ·

n∏

k=1

(Λk−1βk +Mkλk−1)

(Λkµk+1 +Mk+1δk)

+

∞∑

n=1

(Λ−n +M−n+1) ·

−1∏

k=−n

(Λk+1µk+2 +Mk+2δk+1)

(Λkβk+1 +Mk+1λk)
< ∞

3.1.1 Example: Telegraph process

Kac investigated in 1974 a stochastic model related to the telegrapher’s equation [Kac74].

He considered a moving particle on the real line R, starting at 0, and being influenced by an

alternating renewal process Y = (Y (t) : t ≥ 0) with exponential holding times. The process

Y with state space {l,r} with meaning {l:= left,r:= right} represents the environment

for the moving particle and is Markov for its own: Holding times for state l = left are

exponential(β), holding times for state r = right are exponential(δ), and all holding times
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are independent.

There is a one-way-interaction: The status of the environment determines the direction of

the particle’s movement.

[Y(·) = l] =⇒ particle moves with constant velocity v in direction −∞

[Y(·) = r] =⇒ particle moves with constant velocity v in direction +∞

Whenever Y jumps, the particle changes its direction immediately.

The particle’s position at time t ≥ 0 is denoted by X(t) ∈ R. Then Z = (X,Y) is assumed

to be a Markov process.

Kac started his investigation by approximating the particle’s position on a lattice ǫ·Z for ǫ ↓ 0

and in discrete time with holding times deterministic = 1. This generalized random walk in

a random environment and its continuous limit for ǫ ↓ 0 are called “telegraph processes”.

The two-sided alternating birth-death process mimics the telegraph process in continuous

time with exponential holding times with the particle moving on Z when setting

∀n ∈ Z : λn = η, µn = η, βn = β, δn = δ, κn = 0, νn = 0.

This process is clearly not ergodic.

Interesting enough, the two-sided alternating birth-death process allows to construct gener-

alized telegraph processes which are ergodic by controlling the speed of the particle and by

superposition of drifts. The mean speed of the particle in the general two-sided alternating

birth-death process to move from n to n + 1 conditioned on Y (·) = b is (λn + κn), while

the mean speed to move from n to n − 1 conditioned on Y (·) = d is (µn + νn). Telegraph

processes with random speeds are investigated e.g. in [SZ04], [CDCIM13], [DG10].

The natural generalized model of the telegraph process in terms of the two-sided alternating

birth-death process is defined by the parameter setting

∀n ∈ Z : λn > 0, µn > 0, βn > 0, δn > 0, κn = 0, νn = 0.

For the ergodic process the stationary distribution πT is with normalization constant C(T )

πT (n,r) = C(T )−1

n∏

k=1

λk−1

µk

n∏

k=1

µk + βk

λk + δk
, n > 0, (3.11)

πT (n, l) = C(T )−1

n∏

k=1

λk−1

µk

n−1∏

k=1

µk + βk

λk + δk
, n > 0, (3.12)

πT (−n,r) = C(T )−1

−1∏

k=−n

µk+1

λk

−1∏

k=−n

λk+1 + δk+1

µk+1 + βk+1
, n ≥ 0, (3.13)

πT (−n, l) = C(T )−1

−1∏

k=−n

µk+1

λk

−1∏

k=−n−1

λk+1 + δk+1

µk+1 + βk+1
, n ≥ 0. (3.14)
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The short notation

ℓk :=
λk

λk+1 + δk+1
, mk :=

µk

µk + βk

, k ∈ Z,

reveals a birth-death process structure.

πT (n,r) = C(T )−1
n∏

k=1

ℓk−1

mk

n > 0, (3.15)

πT (n, l) = C(T )−1
n∏

k=1

ℓk−1

mk

·
λn + δn
µn + βn

n > 0, (3.16)

πT (−n,r) = C(T )−1
−1∏

k=−n

mk+1

ℓk
n ≥ 0, (3.17)

πT (−n, l) = C(T )−1
−1∏

k=−n

mk+1

ℓk
·
λ−n + δ−n

µ−n + β−n

n ≥ 0. (3.18)

The expressions (3.16) and (3.18) show that in case of a balanced system, i.e. the intensity

to leave state (n,r) equals the intensity to leave state (n, l) for all n ∈ Z, the probability for

these states in equilibrium is the same. Moreover, the expressions (3.11)–(3.18) show that

in a balanced system the δk are linear functions of the βk (and vice versa), but they can

vary over (0,∞) without changing the stationary distribution, which is now the stationary

distribution of simple two-sided birth-death processes.

Ergodic telegraph process with constant speed. As indicated above the classical

telegraph process with constant speed, i.e. λk = µk = η > 0 and with constant mean

duration of the periods for traveling to the left, resp. right, i.e. βk = β, δk = δ (and

κk = νk = 0) for all k ∈ Z, is not ergodic.

We consider the situation of a telegraph process with constant speed λk = µk = η > 0

and given intensities βk, k ≥ 0 and δk, k ≤ 0 for the particle to finish an ongoing period of

traveling towards zero and restarting its drift to −∞, resp. ∞. Our aim is to control the

process by selecting δk, k ≥ 1, and βk, k ≤ −1, in such a way that the system stabilizes, i.e.

the associated Markov process is ergodic. For the ergodic process the stationary distribution

πT would be with normalization constant C(Tη)

πT (n,r) = C(Tη)
−1

n∏

k=1

η + βk

η + δk
, πT (n, l) = C(Tη)

−1

n−1∏

k=1

η + βk

η + δk
, n > 0,

πT (−n,r) = C(Tη)
−1

−1∏

k=−n

η + δk+1

η + βk+1
, πT (−n, l) = C(Tη)

−1

−1∏

k=−n−1

η + δk+1

η + βk+1
, n ≥ 0.
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We have to construct sequences δk, k ≥ 1, and βk, k ≤ −1, such that C(Tη) < ∞ holds, with

C(Tη) =

∞∑

n=1

n∏

k=1

η + βk

η + δk
︸ ︷︷ ︸

(⋆)

+

∞∑

n=1

n−1∏

k=1

η + βk

η + δk

+ 1 +
η + β0

η + δ0
+

∞∑

n=1

−1∏

k=−n

η + δk+1

η + βk+1

+
∞∑

n=1

−1∏

k=−n−1

η + δk+1

η + βk+1

︸ ︷︷ ︸

(⋆⋆)

.

The form of the summands in the infinite sums suggests to apply a quotient test for the

summands. Obviously it suffices to guarantee that the sums (⋆) and (⋆⋆) are convergent.

The recipe we shall apply is borrowed from the construction of the Bertrand-De Morgan

test, see e.g. [Abr20][Theorem 1]:

(⋆) Take any sequence rn, n ≥ 1, with lim infn→∞ rn > 1 and define on the positive axis the

control intensities for restarting traveling to the left

δn+1 := βn+1 + (
1

n
+

rn
n lnn

) · (η + βn+1), n ≥ 1. (3.19)

(⋆⋆) Take any sequence tn, n ≥ 1, with lim infn→∞ tn > 1 and define on the negative axis the

control intensities for restarting traveling to the right

β−n−1 := δ−n−1 + (
1

n
+

tn
n lnn

) · (η + δ−n−1), n ≥ 1, (3.20)

A direct application of the Bertrand-De Morgan test [Abr20][Theorem 1] guarantees conver-

gence of both series. This test reads as follows.

If for positive numbers an, n ≥ 1, we have for all sufficient large n a representation

an
an+1

= 1 +
1

n
+

sn
n lnn

, where lim inf
n→∞

sn > 1,

then the series
∑∞

n=1 an is convergent.

We apply the criterion to (⋆) and (⋆⋆) with

an :=

n∏

k=1

η + βk

η + δk
, with δk from (3.19), resp. an :=

−1∏

k=−n−1

η + δk
η + βk

with βk from (3.20), n ≥ 1.

Note, that a refinement of the Bertrand-De Morgan test as given e.g. in [Abr20][Theorem

2] would produce refined control intensities in a similar way as we demonstrated here.

3.2 Regularity condition for the two-sided process

Recall, that we assume the parameters λn, κn, δn, µn, νn, βn to be strictly positive. Because

of the very general parameter set, Q and an associated two-sided process in general may
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explode in finite time with positive probability. To find criteria for regularity we apply again

Reuter’s criterion from Proposition 2.3. Equation (2.15) now reads

y(n, b)(1 + λn + κn + δn) = y(n, d)δn + y(n+ 1, b)λn + y(n+ 1, d)κn, n ∈ Z,(3.21)

y(n, d)(1 + µn + νn + βn) = y(n, b)βn + y(n− 1, d)µn + y(n− 1, b)νn, n ∈ Z.(3.22)

Because for irreducible Q any nonnegative solution y = (y(i) : i ∈ E) of (2.15), resp. of

(3.21) - (3.22) with y(i) = 0 for some i ∈ E is identically zero, we can and will henceforth

assume that y(n, b) > 0 and y(n, d) > 0 holds for all n ∈ Z. We have to find conditions that

guarantee that this solution is unbounded.

We extend the definitions Λ+
n := 1+λn+κn+ δn and M+

n := 1+µn+νn+βn now for n ∈ Z.

Abbreviating for n ≥ 0

Dn :=
δnM

+
n+1 + µn+1κn

λnM
+
n+1 + βn+1κn

, En :=
(1 + λn)M

+
n+1 + (1 + βn+1)κn

λnM
+
n+1 + βn+1κn

,

we obtain similar to the one-sided case in (2.27) and (2.28) for n ≥ 0

y(n+ 1, b) = y(n, b)(Dn + En)− y(n, d)Dn, (3.23)

y(n+ 1, d) = y(n, b)

(

(Dn + En)
βn+1

M+
n+1

+
νn+1

M+
n+1

)

− y(n, d)

(

Dn

βn+1

M+
n+1

−
µn+1

M+
n+1

)

.(3.24)

Recall that En > 0, Dn > 0 holds.

Defining an anchor. Differently from the one-sided process we have no information

on the sign of y(0, b) − y(0, d). If this would be positive, we could proceed as in Sec-

tion 2.3 to prove monotonicity properties of the set {y(n, b), y(n, d), n ∈ N0}. In this

case the vector (y(0, b), y(0, d)) serves as an anchor for computing the sequence of vectors

((y(n, b), y(n, d)), n ∈ N0).

From the structure of the system (3.21)-(3.22) it follows that if y(k0, b) − y(k0, d) > 0 for

some k0 ∈ Z, we can elaborate on the sequence ((y(k, b), y(k, d)), k ≥ k0) analogously as in

Section 2.3 to obtain with anchor (y(k0, b), y(k0, d)) similar monotonicity results.

For convenience of readers we will henceforth assume that (y(0, b), y(0, d)) can serve as an

anchor for our evaluation, but we will not prescribe y(0, b)− y(0, d) > 0. Transformation of

the proofs, resp. results to different anchors is obvious in any case.

Starting from the anchor (y(0, b), y(0, d)), we obtain that for −n ≤ 0 holds
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y(−n− 1, d) = y(−n, d)
M+

−nΛ
+
−n−1 − κ−n−1ν−n

µ−nΛ
+
−n−1 + δ−n−1ν−n

− y(n, b)
β−nΛ

+
−n−1 + λ−n−1ν−n

µ−nΛ
+
−n−1 + δ−n−1ν−n

y(−n− 1, b) = y(−n, d)

{
M+

−nΛ
+
−n−1 − κ−n−1ν−n

µ−nΛ
+
−n−1 + δ−n−1ν−n

·
δ−n−1

Λ+
−n−1

+
κ−n−1

Λ+
−n−1

}

−y(−n, b)

{
β−nΛ

+
−n−1 + λ−n−1ν−n

µ−nΛ
+
−n−1 + δ−n−1ν−n

·
δ−n−1

Λ+
−n−1

−
λ−n−1

Λ+
−n−1

}

Abbreviating

C−n :=
(1 + µ−n)Λ

+
−n−1 + (1 + δ−n−1)ν−n

µ−nΛ
+
−n−1 + δ−n−1ν−n

B−n :=
β−nΛ

+
−n−1 + λ−n−1ν−n

µ−nΛ
+
−n−1 + δ−n−1ν−n

and noticing
M+

−nΛ
+
−n−1 − κ−n−1ν−n

µ−nΛ
+
−n−1 + δ−n−1ν−n

= B−n + C−n,

this is for −n ≤ 0

y(−n− 1, d) = y(−n, d)(B−n + C−n)− y(n, b)B−n, (3.25)

y(−n− 1, b) = y(−n, d)

{

(B−n + C−n) ·
δ−n−1

Λ+
−n−1

+
κ−n−1

Λ+
−n−1

}

(3.26)

−y(n, b)

{

B−n ·
δ−n−1

Λ+
−n−1

−
λ−n−1

Λ+
−n−1

}

.

Then, starting from the anchor (y(0, b), y(0, d)) we obtain from (3.23)

y(n+ 1, b) =
( n∏

k=0

Ek

)

· y(0, b) +
n∑

m=0

(
n∏

k=m+1

Ek

)

·Dm · (y(m, b)− y(m, d)), (3.27)

and from (3.25) symmetrically via y(−n− 1, d) = y(−n, d)C−n + (y(−n, d)− y(n, b))B−n :

y(−n−1, d) =
( n∏

k=0

C−k

)

· y(0, d)+
n∑

m=0

(
n∏

k=m+1

C−k

)

·B−m · (y(−m, d)−y(−m, b)), (3.28)

Lemma 3.2. (a) If y(0, b)− y(0, d) ≥ 0, then

(y(n, b) : n ∈ N0) is a strictly increasing sequence, and (3.29)

y(n, b)− y(n, d) > 0 holds for all n ≥ 1. (3.30)

(b) If y(0, d)− y(0, b) ≥ 0, then

(y(−n, d) : n ∈ N0) is a strictly increasing sequence, and (3.31)

y(−n, d)− y(−n, b) > 0 holds for all n ≥ 1. (3.32)



H. Daduna: Alternating birth-death-processes May 11, 2020 25

Proof. (a) If y(0, b) − y(0, d) > 0, the proof is verbatim the same as that for the parallel

part of Proposition 2.4.

If y(0, b) = y(0, d) > 0, from (3.23) we have y(1, b) = y(0, b)E0 and with En = 1 +
M

+

n+1
+κn

λnM
+

n+1
+βn+1κn

follows y(1, b) − y(0, b) > 0 and then analogously to (2.32) we find y(1, d)−

y(1, b) > 0. Restarting with the anchor (y(1, b), y(1, d)) we are back in the procedure of the

one-sided case.

(b) Assume that y(−n, d)− y(−n, b) > 0 holds for some n ≥ 0. Taking into account

C−n := 1 +
Λ+

−n−1 + ν−n

µ−nΛ
+
−n−1 + δ−n−1ν−n

we obtain from (3.25)

y(−n− 1, d)− y(−n, d) = (y(−n, d)− y(−n, b))B−n + y(−n, d)
Λ+

−n−1 + ν−n

µ−nΛ
+
−n−1 + δ−n−1ν−n

> 0,

and from (3.21)

y(−n− 1, d)− y(−n− 1, b)

= (y(−n− 1, d)−

(

y(−n− 1, d)
δ−n−1

Λ+
−n−1

+ y(−n, b)
λ−n−1

Λ+
−n−1

+ y(−n, d)
κ−n−1

Λ+
−n−1

)

= y(−n− 1, d)(1−
δ−n−1

Λ+
−n−1

)− y(−n, b)
︸ ︷︷ ︸

<y(−n,d)

λ−n−1

Λ+
−n−1

− y(−n, d)
κ−n−1

Λ+
−n−1

≥ y(−n− 1, d)
1 + λ−n−1 + κ−n−1

Λ+
−n−1

− y(−n, d)
λ−n−1

Λ+
−n−1

− y(−n, d)
κ−n−1

Λ+
−n−1

= (y(−n− 1, d)− y(−n, d))
λ−n−1 + κ−n−1

Λ+
−n−1

+ y(−n− 1, d)
1

Λ+
−n−1

> 0.

If y(−n, d) = y(−n, b) holds we obtain from (3.25)

y(−1, d)− y(0, d) = y(0, d)
Λ+

−1 + ν0

µ0Λ
+
−1 + δ−1ν0

> 0,

and moreover

y(−1, d)− y(−1, b) ≥ (y(−1, d)− y(0, d))
λ−1 + κ−1

Λ+
−1

+ y(−1, d)
1

Λ+
−1

> 0,

which yields a new anchor (y(−1, d), y(−1, b)) which satisfies y(−1, d)− y(−1, b) > 0 and we

can restart the computations as in the first part of the proof of (b).

Proposition 3.3. (a) A non-zero solution ((y(n, b), y(n, d)) : n ∈ Z) of Reuter’s regularity

equation (2.15) is unbounded if and only if

(i) either the sequence (y(n, b) : n ∈ N0) is from some n+ ≥ 0 on strictly increasing to ∞,
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(ii) or the sequence (y(−n, d) : n ∈ N0) is from some n− ≤ 0 on strictly increasing to ∞,

(iii) or (i) and (ii) are valid concurrently.

(b) For the two-sided alternating birth-death process to be non-exploding (in finite time) it

suffices that either of the series

∞∑

n=0

M+
n+1 + κn

λnM
+
n+1 + βn+1κn

(3.33)

or the series
∞∑

n=0

Λ+
−n−1 + νn

µ−nΛ
+
−n−1 + δ−n−1νn

(3.34)

is divergent (or both).

Proof. We start with proving part (b). We can find an anchor for our computations as

follows. Consider a (strict) positive solution y := ((y(n, b), y(n, d)) : n ∈ Z) of Reuter’s

regularity equation (2.15) and denote

A := inf{k ∈ Z : y(k, b)− y(k, d) ≥ 0}. (3.35)

Case 1. A = −∞. Then for all n ∈ Z) holds y(n, b)− y(n, d) > 0. Taking (y(0, b), y(0, d))

as anchor we conclude with Lemma 3.2(a) that the sequence (y(n, b) : n ∈ N0) is strictly

increasing and all differences y(n, b) − y(n, d), n ∈ N0, are strictly positive. From (3.27)

we see that divergence of the sequence of products
∏n

k=0Ek guarantees that the solution

y := ((y(n, b), y(n, d)) : n ∈ Z) of equation (2.15) is unbounded. This sequence of products

converges if and only if the series

∞∑

n=0

M+
n+1 + κn

λnM
+
n+1 + βn+1κn

converges [Mes82][Section IX.1, Kriterium XVII]. So, if that series diverges the sequence of

products diverges and the partial solution sequence (y(n, b), n ∈ N0) diverges as well.

Case 2. A = ∞. Then for all n ∈ Z holds y(n, d) − y(n, b) > 0. Taking (y(0, b), y(0, d))

as anchor we conclude with Lemma 3.2(b) that the sequence (y(−n, d) : n ∈ N0) is strictly

increasing and all differences y(−n, d)− y(−n, b), n ∈ N0, are strictly positive. From (3.28)

we see that divergence of the sequence of products
∏n

k=0C−k guarantees that the solution

y := ((y(n, b), y(n, d)) : n ∈ Z) of equation (2.15) is unbounded. This sequence of products

converges if and only if the series

∞∑

n=0

Λ+
−n−1 + νn

µ−nΛ
+
−n−1 + δ−n−1νn

(3.36)
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converges [Mes82][Section IX.1, Kriterium XVII]. So, if that series diverges the sequence of

products diverges and the partial solution sequence (y(−n, d), n ∈ N0) diverges as well.

Case 3. A ∈ Z is finite. Then for all n < A holds y(n, d) − y(n, b) > 0. Taking (y(A −

1, b), y(A−1, d)) as anchor we conclude similar to Lemma 3.2(b) that the sequence (y(n, d) :

n ≤ A − 1) is strictly increasing and for all n ≤ A − 1 the differences y(n, d)− y(n, b) are

strictly positive. If the series

∞∑

n=0

Λ+
−n−1 + νn

µ−nΛ
+
−n−1 + δ−n−1νn

(3.37)

diverges we conclude as in Case 2. that the solution of (2.15) is unbounded.

If (3.37) is convergent and (3.36) is divergent, we start with (y(A, b), y(A, d)) as anchor and

conclude similar to Lemma 3.2(a) that the sequence (y(n, b) : n ≥ A) is strictly increasing

and all differences y(n, b) − y(n, d), n ≥ A, are strictly positive. Arguing as in Case 1. we

finish the proof.

For part (a) we notice that a non-zero solution of (2.15) is unbounded if and only if at least

one of the following conditions is fulfilled.

lim sup
n≥0

y(n, b) = ∞, lim sup
n≥0

y(n, d) = ∞, lim sup
n≥0

y(−n, b) = ∞, lim sup
n≥0

y(−n, d) = ∞.

Combining the facts from Lemma 3.2 and from the proof of part (b) we conclude the

statement of (a).

Remark 3.4. (a) The proof of Proposition 3.3 shows implicitly that the value A in (3.35)

is uniquely defined.

(b) Evaluating bounds for the y(−n, b), resp. y(−n, d), similar to the one-sided case in

Proposition 2.4 is along the same lines of computation as presented in Section 2.3.

Acknowledgement: I thank Jacques Resing for introducing to me his work in [AR96] and

[AvDRS98], and Vyacheslav Abramov for sending me his forthcoming paper [Abr20].
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cesses and queues with alternating Lévy inputs. Queueing Systems, 77:97–112,

2014.

[BM13] S. Balsamo and A. Marin. Separable solutions for Markov processes in random

environments. European Journal of Operational Research, 229(2):391 – 403,

2013.

[Con71] B. W. Conolly. On randomized random walks. SIAM Review, 13(1):81–99, 1971.

[CDCIM13] I. Crimaldi, A. Di Crescenzo, A. Iuliano, and B. Martinucci. A generalized

telegraph process with velocity driven by random trials. Advances in Applied

Probability, 45(4):1111–1136, 2013.

[DG10] A. De Gregorio. Stochastic velocity motions and processes with random times.

Advances in Applied Probability, 42:1028–1056, 2010.

[Eco05] A. Economou. Generalized product-form stationary distributions for Markov

chains in random environments with queueing applications. Advances in Applied

Probability, 37(1):pp. 185–211, 2005.

[Fal13] G. Falin. On a tandem queue with retrials and losses. Oper. Res. Int. J., 13:415

– 427, 2013.

[FGC00] G. Falin and A. Gomez-Corral. On a bivariate Markov process arising in the

theory of single-server retrial queues. Statistica Neerlandica, 54, 2000.

[Kac74] M. Kac. A stochastic model related to the telegrapher’s equation. Rocky Moun-

tain Journal of Mathematics, 4(3):497–509, 1974.



H. Daduna: Alternating birth-death-processes May 11, 2020 29

[KD14] R. Krenzler and H. Daduna. Modeling and performance analysis of a node

in fault tolerant wireless sensor networks. In K. Fischbach and U.R. Krieger,

editors, Measurement, Modelling, and Evaluation of Computing Systems and

Dependability and Fault-Tolerance, pages 73–88, Heidelberg, 2014. GI/ITG,

Springer.

[KD15] R. Krenzler and H. Daduna. Loss systems in a random environment - steady

state analysis. Queueing Systems, Theory and Applications, 80(1-2):127–153,

2015.

[KLM11] A. Krishnamoorthy, B. Lakshmy, and R. Manikandan. A survey on inventory

models with positive service time. OPSEARCH, 48:153–169, 2011.

[KW92] O. Kella and W. Whitt. A storage model with a two-state random environment.

Operations Research, 40(2):S257–S262, 1992.

[LGK15] X. Liu, Q. Gong, and V. G. Kulkarni. Diffusion models for double-ended queues

with renewal arrival processes. Stochastic Systems, 5(1):1–61, 2015.

[Mes82] H. Meschkowski. Unendliche Reihen. B.I. Wissenschaftsverlag, Mannheim,
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