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central limit theorems for realized quadratic variations based on temporal and spatial in-
crements as well as on double increments in time and space. Resulting method of moments
estimators for the diffusivity and the volatility parameter inherit the asymptotic normality
and can be constructed robustly with respect to the sampling frequencies in time and space.
Upper and lower bounds reveal that in general the optimal convergence rate for joint esti-
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are illustrated in a numerical example.
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1. Introduction

Stochastic partial differential equations (SPDEs) combine the ability of deterministic PDE models
to describe complex mechanisms with the key feature of diffusion models, namely a stochastic signal
which evolves within the system. While SPDEs have been intensively studied in stochastic analysis,
their statistical theory is only at its beginnings. Since we first need to have a thorough statistical
understanding for basic SPDEs before more complex models can be studied, let us consider the
prototype for the large class of parabolic SPDEs given by the stochastic heat equation on [0, 1]:

dXt(x) = ϑ2
∂2

∂x2Xt(x) dt+ σ dWt(x),

Xt(0) = Xt(1) = 0,

X0 = ξ,

(1)

where dW denotes white noise in space and time, ξ is some independent initial condition and we
impose Dirichlet boundary conditions. More general, we will later incorporate also a first and zero
order term in the differential operator. The statistical aim is to infer on the diffusivity parameter
ϑ2 > 0 and the diffusion or volatility parameter σ2 > 0.

In the seminal works by Huebner et al. [13] as well as Huebner and Rozovskii [14] a spectral
approach has been considered where the processes t 7→ u`(t) := 〈Xt, e`〉L2 are observable for
the eigenfunctions e` of the underlying differential operator. These so called Fourier modes u`
are independent and satisfy Ornstein-Uhlenbeck dynamics. Consequently, classical results from
statistics for stochastic processes can be applied directly. While the spectral approach is studied
in numerous papers, see Lototsky [21] or Cialenco [6] for a review, this specific observation scheme
is limiting and too restrictive in potential applications. Especially, for more general equations the
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eigenfunctions will depend on unknown parameters, which is already the case if we add a first
order term ϑ1

∂
∂xXt(x)dt with unknown ϑ1 ∈ R in (1).

Complementary to this spectral approach, the canonical problem of parameter estimation based
on discrete observations of the solution field of the SPDE recently attracted an increased research
activity. Assuming X is observed on a discrete grid (ti, yk)i=0,...,N,k=0,...,M ⊂ [0, T ]× [0, 1], approx-
imate maximum likelihood estimators have been first investigated by Markussen [22] for T →∞.
For various linear SPDEs central limit theorems for method of moment type estimators based
on realized quadratic variations have been studied by Torres et al. [29], Cialenco and Huang [7],
Bibinger and Trabs [3, 2], Chong [4, 5], Shevchenko et al. [28], as well as Kaino and Uchida [18].
However, all these works only give partial answers to the estimation problem. Even for the stochas-
tic heat equation there neither is a sharp analysis for joint estimation of ϑ2 and σ2 nor the case
where the number of spatial observations M dominates the number of temporal observations N
has been explored in general.

Therefore, in this relatively young research field basic and elementary questions even for simple
(linear, parabolic) SPDEs still need to be answered. This becomes most important with regard to
an increasing number of SPDE models in applications, e.g., in neurobiology [31], for the description
of oceans [25, 11], climate modelling [12] or the description of interest rates [8, 27].

In order to provide a complete statistical analysis of parametric estimation for linear parabolic
SPDEs in dimension one based on discrete observations on a finite time horizon T > 0, our main
contributions reveal that:

(i) ϑ2 and σ2 cannot be jointly estimated if N or M is fixed.

(ii) The optimal convergence rate for estimating (ϑ2, σ
2) is 1/

√
M3 ∧N3/2 which generally is

slower than the parametric rate 1/
√
MN .

(iii) Realized space-time quadratic variations can be used to construct estimators which are
robust with respect to the sampling frequencies N and M in time and space, respectively.

In view of (i), we will consider the double asymptotic regime M,N →∞ in our analysis which re-
sults in infill asymptotics in time and space. Since the vector of observations (Xti(yk))i=0,...,N,k=0,...,M

is normally distributed with only two unknown parameters in equation (1), it might surprise that
there is no estimator with parametric rate for (ϑ2, σ

2). Indeed, our lower bound verifies that the
parametric rate can only be achieved if N and M2 are of the same order of magnitude. In view of
the scaling invariance of the stochastic heat equation, this particular asymptotic regime N hM2

implies that we add the same amount of information in time and space as N and M increase. In
this sense we have a balanced design. An unbalanced regime N = o(M2) or M = o(

√
N) causes a

deterioration of the convergence rate.
Our statistical analysis also gives insights into the relation between the spectral and the discrete

observation scheme. While both are heuristically comparable in view of the discrete Fourier trans-
form, it turns out that there are important differences. In particular, the fully discrete observation
scheme is not statistically equivalent (in the sense of Le Cam) to time discrete observations of the
first M Fourier modes in general.

Our estimators rely on realized quadratic variations, taking into account time and space incre-
ments

(∆N
i X)(yk) := Xti+1

(yk)−Xti(yk), (δMk X)(ti) := Xti(yk+1)−Xti(yk), (2)

respectively, as well as space-time increments or double increments

Dik := (δMk ◦∆N
i )X = (∆N

i ◦ δMk )X = Xti+1
(yk+1)−Xti+1

(yk)−Xti(yk+1) +Xti(yk). (3)

In contrast to the maximum likelihood approach which requires inversion of the large MN ×MN
covariance matrix, method of moments type estimators based on (2) and (3) are easy to implement.
As observed in [3], a central limit theorem for realized temporal quadratic variations requires that
the observation frequency in time dominates the observation frequency in space, more precisely,
M = o(

√
N) is necessary. Complementarily, we show that the realized spatial quadratic variation
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satisfies a central limit theorem if N = o(M). The remaining gap can be filled by double increments
and the corresponding realized space-time quadratic variation turns out to be robust with respect
to the sampling frequencies M and N . Based on these statistics, we construct method of moments
estimators for ϑ2 and σ2 (as well as ϑ1 from a first order term). Hereby, the rate optimal method
for joint estimation of all identifiable parameters is an M-estimator relying on double increments.
Our proofs employ directly the Gaussian distribution of X which allows for an explicit covariance
condition for asymptotic normality of quadratic forms of Gaussian triangular schemes. Let us
remark that our estimators could be directly generalized to a nonparametric model with time
dependent coefficients, as indicated in [3, 4].

Note that the solution process X to the SPDE (1) admits continuous trajectories only in one
spatial dimension. In the multi-dimensional case one could consider noise processes which are
more regular in space as studied by Chong [4]. Alternatively, Kriz and Maslowski [20] as well as
Altmeyer and Reiß [1] generalize the spectral approach to the observation of functionals 〈Xt,K〉
for some (localizing) kernel K.

This work is organized as follows: In Section 2 we give a precise definition of the model and study
probabilistic properties of the solution field. In Section 3 we present the central limit theorems
for realized quadratic variations based on space and double increments. The resulting method
of moments estimators are constructed in Section 4. Lower bounds are derived in Section 5. In
Section 6 we illustrate our results with a numerical example. The proofs of the main results are
collected in Section 7 while auxiliary results are postponed to the appendix.

2. Properties of the solution process

For parameters σ2 > 0 and ϑ = (ϑ2, ϑ1, ϑ0) ∈ R+ ×R2 we consider the linear parabolic SPDE
dXt(x) =

(
ϑ2

∂2

∂x2Xt(x) + ϑ1
∂
∂xXt(x) + ϑ0Xt(x)

)
dt+ σ dWt(x), x ∈ [0, 1], t ≥ 0,

Xt(0) = Xt(1) = 0,

X0 = ξ

(4)

driven by a cylindrical Brownian motion W and where ξ ∈ L2([0, 1]) is some independent initial
condition. More precisely, we study the weak solution X = (Xt(x), t ≥ 0, x ∈ [0, 1]) to dXt =

AϑXt dt+ σdWt associated with the differential operator Aϑ = ϑ2
∂2

∂x2 + ϑ1
∂
∂x + ϑ0. As usual, the

Dirichlet boundary condition in (4) is implemented in the domain D(Aϑ) = H2((0, 1))∩H1
0 ((0, 1))

of Aϑ where Hk((0, 1)) denotes the L2-Sobolev spaces of order k ∈ N and with H1
0 ((0, 1)) be-

ing the closure of C∞c ((0, 1)) in H1((0, 1)). The cylindrical Brownian motion W is defined as
a linear mapping L2((0, 1)) 3 u 7→ W·(u) such that t 7→ Wt(u) is a one-dimensional standard
Brownian motion for all normalized u ∈ L2([0, 1]) and such that the covariance structure is
Cov (Wt(u),Ws(v)) = (s ∧ t) 〈u, v〉, for u, v ∈ L2([0, 1]), s, t ≥ 0. W can thus be understood
as the anti-derivative in time of space-time white noise.

The differential operator Aϑ has a complete orthonormal system of eigenvectors. Indeed, the
eigenpairs (−λ`, e`)`≥1 associated with Aϑ are given by

e`(y) =
√

2 sin(π`y)e−κy/2, λ` = ϑ2(π2`2 + Γ), y ∈ [0, 1], ` ∈ N,

denoting

κ :=
ϑ1

ϑ2
and Γ :=

ϑ2
1

4ϑ2
2

− ϑ0

ϑ2
.

The functions (e`)`≥1 are orthonormal with respect to the weighted L2-inner product

〈u, v〉 := 〈u, v〉ϑ :=

∫ 1

0

u(x)v(x)eκx dx, u, v ∈ L2([0, 1]).
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Note that in absence of the first derivative in Aϑ, i.e ϑ1 = 0, the system (e`)`≥1 reduces to the
usual sine-base and 〈·, ·〉 to the standard inner product on L2([0, 1]). In general, both the eigenpairs
and the inner product depend on the model parameters. Hence, they are not accessible from a
statistical point of view.

Throughout, we restrict the parameter space to

Θ =

{
(σ2, ϑ2, ϑ1, ϑ0) ∈ R4 : σ2, ϑ2,

ϑ2
1

4ϑ2
2

− ϑ0

ϑ2
+ π2 > 0

}
such that all the eigenvalues are negative and Aϑ is a negative self-adjoint operator. Consequently,
the weak solution to the SPDE (4) exists and is given by the variation of constants formula

Xt = etAϑξ+σ
∫ t

0
e(t−s)Aϑ dWs, t ≥ 0, where (etAϑ)t≥0 denotes the strongly continuous semigroup

generated by Aϑ, see [26, Theorem 5.4].
Since (e`)`≥1 is a complete orthonormal system, the cylindrical Brownian motion W can be

realized via Wt =
∑
`≥1 β`(t)e` in the sense of Wt(·) =

∑
`≥1 β`(t)〈·, ek〉 for a sequence of in-

dependent standard Brownian motions (β`)`≥1. In terms of the projections or Fourier modes
u`(t) := 〈Xt, e`〉, t ≥ 0, ` ∈ N, we obtain the representation

Xt(x)=
∑
`≥1

u`(t)e`(x), t ≥ 0, x ∈ [0, 1], (5)

where (u`)`≥1 are one dimensional independent processes satisfying the Ornstein-Uhlenbeck dy-
namics du`(t) = −λ`u`(t) dt+ σ dβ`(t) or equivalently

u`(t) = u`(0)e−λ`t + σ

∫ t

0

e−λ`(t−s) dβ`(s), u`(0) = 〈ξ, e`〉

in the sense of the usual finite dimensional stochastic integral. For simplicity, we will assume
throughout that {β`, u`(0), ` ∈ N} is an independent family and u`(0) ∼ N (0, σ2/(2λ`)) such that

each coefficient process u` is stationary with covariance Cov(u`(s), u`(t)) = σ2

2λ`
e−λ`|t−s|, s, t ≥ 0.

The reduction of more general conditions on X0 to the stationary case is discussed in [3].
From representation (5) it is evident that X is a two parameter centered Gaussian field. There-

fore, the model is completely specified by its covariance structure

Cov (Xs(x), Xt(y)) = σ2
∑
`≥1

e−λ`|t−s|

2λ`
e`(x)e`(y), s, t ≥ 0, x, y ∈ [0, 1]. (6)

While σ2 is only a multiplicative factor, the covariance structure depends on ϑ through λ` and e`.
By Kolmogorov’s criterion there is a continuous version of the process (Xt(x), t ≥ 0, x ∈ [0, 1]),
cf. [26, Chapter 5.5]. In particular, point evaluations Xt(x) for fixed values of t and x are well
defined.

For a fixed spatial location x the sample paths of the process X·(x) are no semi-martingales.
In fact, t 7→ Xt(x) is only Hölder continuous of order almost 1/4 [26, Theorem 5.22] and thus has
infinite quadratic variation over any time interval. On the other hand, regarding X as a function
of space at a fixed point in time substantially simplifies the probabilistic structure of the process:

Proposition 2.1. Fix t ≥ 0 and define Γ0 =
√
|Γ|.

(i) For x ≤ y,

Cov (Xt(x), Xt(y)) =
σ2

2ϑ2
e−

κ
2 (x+y) ·


sin(Γ0(1−y)) sin(Γ0x)

Γ0 sin(Γ0) , Γ < 0,

x(1− y), Γ = 0,
sinh(Γ0(1−y)) sinh(Γ0x)

Γ0 sinh(Γ0) , Γ > 0.
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(ii) The process [0, 1] 3 x 7→ Z(x) := Xt(x) is an Itô diffusion. In particular,

dZ(x) =

√
σ2

2ϑ2
e−

κ
2 x dB(x)−


(

Γ0 cos(Γ0(1−x))
sin(Γ0(1−x)) + κ

2

)
Z(x) dx, Γ < 0,(

1
1−x + κ

2

)
Z(x) dx, Γ = 0,(

Γ0 cosh(Γ0(1−x))
sinh(Γ0(1−x)) + κ

2

)
Z(x) dx, Γ > 0,

where B(·) = Bt(·) is a standard Brownian motion.

Note the similarity of the covariance structures of Xt(·) and of the Brownian bridge, especially
in the case Γ = 0. This resemblance is in line with the Dirichlet boundary conditions Xt(0) =
Xt(1) = 0 in our model.

Remark 2.2. For N ≥ 2 and fixed 0 ≤ t1 < t2 < . . . < tN the multi-dimensional process
x 7→ (Xt1(x), . . . , XtN (x)) is not an Itô diffusion. Indeed, it is not even a Markov process: Take
N = 2 and let s < t. It is a well known fact that for Markov processes past and future are inde-
pendent, given the present state. For x < y < z on the other hand, using the Gaussianity of X,
the (Gaussian) conditional distribution of (Xs(x), Xt(z)) given (Xs(y), Xt(y)) can be computed
explicitly. From here, independence is easily disproved by checking the non-diagonal entries of the
conditional covariance matrix.

We conclude this section by studying absolute continuity properties for different parameter
values (σ2, ϑ) which in particular has implications for their identifyability. To that aim we introduce
the notations

(Xt(·), t ∈ [0, T ]) ∼ P(σ2,ϑ) on C([0, T ], L2[0, 1]),

(Xt0(x), x ∈ [0, 1]) ∼ P (t0,·)
(σ2,ϑ) on L2[0, 1],

(Xt(x0), t ∈ [0, T ]) ∼ P (·,x0)
(σ2,ϑ) on L2[0, T ]

for fixed values t0 ≥ 0, x0 ∈ (0, 1) and a finite time horizon T > 0. Further, for probability
measures Q and P we write Q ∼ P if they are equivalent.

Proposition 2.3. Let t0 ≥ 0, x0 ∈ (0, 1) be fixed and consider a finite time horizon T > 0. For
any two sets of parameters (σ2, ϑ), (σ̃2, ϑ̃) ∈ Θ we have

(i) P(σ2,ϑ) ∼ P(σ̃2,ϑ̃) if and only if (σ2, ϑ2, ϑ1) = (σ̃2, ϑ̃2, ϑ̃1),

(ii) P
(t0,·)
(σ2,ϑ) ∼ P

(t0,·)
(σ̃2,ϑ̃)

if and only if

(
σ2

ϑ2
, κ

)
=

(
σ̃2

ϑ̃2

, κ̃

)
,

(iii) P
(·,x0)
(σ2,ϑ) ∼ P

(·,x0)

(σ̃2,ϑ̃)
if and only if

σ2

√
ϑ2

e−κx0 =
σ̃2√
ϑ̃2

e−κ̃x0 ,

where κ = ϑ1/ϑ2, κ̃ = ϑ̃1/ϑ̃2.

Firstly, (i) shows that it is impossible to estimate ϑ0 consistently on a finite time horizon.
Secondly, (ii) and (iii) reveal that an estimator that only exploits the temporal or spatial covari-
ance structure cannot consistently estimate any other parameters than

(
σ2/
√
ϑ2, κ

)
or
(
σ2/ϑ2, κ

)
,

respectively. On the other hand, such estimators can be constructed by using squared time incre-
ments at least at two different spatial positions (cf. [3, Theorem 4.2]) or squared space increments
(cf. Section 4), respectively.

3. Central limit theorems for realized quadratic variations

We will now study central limit theorems for realized quadratic variations based on the space and
double increments from (2) and (3), respectively. To fix assumptions and notation, let X be given
by (5) and suppose we have (M + 1)(N + 1) time and space discrete observations

Xti(yk), i = 0, . . . , N, k = 0, . . . ,M,
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at a regular grid (ti, yk) ⊂ [0, T ] × [0, 1] with a fixed time horizon T > 0 and M,N ∈ N0. More
precisely, assume that

yk = b+ kδ and ti = i∆ where δ =
1− 2b

M
, ∆ =

T

N

for some fixed b ∈ [0, 1/2). The spatial locations yk are thus equidistant inside a (possibly proper)
sub-interval [b, 1 − b] ⊂ [0, 1]. Note that whenever M → ∞ or/and N → ∞, we obtain infill
asymptotics in space δ → 0 or/and time ∆→ 0, respectively.

Throughout, M,N → ∞ should be understood in the sense of min(M,N) → ∞. For two se-
quences (an), (bn), we write an . bn to indicate that there exist some c > 0 such that |an| ≤ c · |bn|
for all n ∈ N and we write an h bn if an . bn . an. If an = a for some a ∈ R and all n ∈ N, we
write (an) ≡ a. Moreover, ‖ · ‖2 denotes the spectral norm and ‖ · ‖F denotes the Frobenius norm
for matrices.

The realized quadratic variations can be regarded as sums of squares of certain Gaussian ran-
dom vectors. Hence, our central limit theorems embed into the literature on quadratic forms in
random variables and their asymptotic properties, see e.g. [23]. Our key tool for proving asymp-
totic normality is the following proposition which is tailor made for the situation present in this
work and which gives an explicit covariance condition that ensures convergence to the normal
distribution.

Proposition 3.1. Let (Zi,n, 1 ≤ i ≤ dn, n ∈ N) be a triangular array which satisfies (Z1,n . . . , Zdn,n) ∼
N (0,Σn) for a covariance matrix Σn ∈ Rdn×dn , n ∈ N, and let (αi,n, 1 ≤ i ≤ dn, n ∈ N) be a

deterministic triangular array with values in {−1, 1}. Define Sn :=
∑dn
i=1 αi,nZ

2
i,n for n ≥ 1. If

‖Σn‖22/Var(Sn)→ 0 as n→∞, then we have

Sn −E(Sn)√
VarSn

D−→ N (0, 1) for n→∞.

The proof relies on the fact that Sn can be represented as a linear combination of independent
χ2(1)-distributed random variables. ‖Σn‖22/Var(Sn) → 0 then implies that the corresponding
Lyapunov condition is fulfilled. In this section we only require αi,n = 1 for all i and n, i.e. Sn =
‖Z•,n‖22. The general case will be necessary to verify asymptotic normality of the M-estimator
in Section 4. It is worth noting that Proposition 3.1 reveals a quite elementary proof strategy to
verify several central limit theorems in [3, 7, 28, 29] instead of advanced techniques from Malliavin
calculus or mixing theory.

Remark 3.2.

1. If αi,n = 1 for all i, n, it follows from Isserlis’ theorem [17] that Var(Sn) = 2‖Σn‖2F and
thus, the condition for asymptotic normality may be written as ‖Σn‖2/‖Σn‖F → 0. This
condition is essentially optimal: In case of independent observations it is in fact equivalent
to asymptotic negligibility of the individual normalized and centered summands and hence
equivalent to Lindeberg’s condition.

2. The spectral norm is bounded by the maximum absolute row sum. Writing Σn =
(
σ

(n)
ij

)
i,j

,

asymptotic normality thus holds under the sufficient condition(
maxi≤dn

∑dn
j=1

∣∣∣σ(n)
ij

∣∣∣)2

VarSn
−→ 0, n→∞. (7)

So far, the double asymptotic regime M,N → ∞ has only been studied for time increments
(∆N

i X)(yk) = Xti+1
(yk)−Xti(yk): If b > 0 and if there exists ρ ∈ (0, 1/2) such that M = O(Nρ),

then the rescaled realized temporal quadratic variation

Vt :=
1

MN
√

∆

N−1∑
i=0

M−1∑
k=0

eκyk(∆N
i X)2(yk) (8)
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satisfies
√
MN

(
Vt −

σ2

√
πϑ2

)
D−→ N

(
0,
Bσ4

πϑ2

)
, N,M →∞, (9)

where

B = 2 +

∞∑
J=1

(
2
√
J −
√
J + 1−

√
J − 1

)2

, (10)

cf. [3, Thm. 3.4]. Note that this result is only valid under the condition M = o(
√
N), i.e., the

observation frequency in time is much higher than in space. This constraint is due to a non-
negligible correlation of realized temporal quadratic variations at two neighboring points in space
if the distance δ of these points is small compared to ∆ or, equivalently, if M is large compared
to N .

In the situation where the number of spatial observations dominates the number of temporal
observations the above result is not applicable. In this case, spatial increments (δMk X)(ti) =
Xti(yk+1)−Xti(yk) and the corresponding rescaled realized spatial quadratic variations

Vsp(ti) :=
1

Mδ

M−1∑
k=0

eκyk(δMk X)2(ti)

at time ti turn out to be useful. In contrast to squared time increments, which have to be renormal-
ized by

√
∆ due to the roughness of t 7→ Xt(y), squared space increments have to be renormalized

by δ due to the semi-martingale nature of y 7→ Xt(y).
In the extreme case where observations are only available at one point t in time (and assuming

ϑ1 = ϑ0 = 0 as well as X0 = 0) Cialenco and Huang [7] showed that Vsp(t) is asymptotically normal

with 1/
√
M -rate of convergence. An analogous result has been proved by Shevchenko et al. [28]

for the wave equation. Proposition 2.1 reveals that Vsp(t) is in fact a rescaled realized quadratic
variation of the Itô diffusion y 7→ Xt(y). Hence,

√
M

(
Vsp(t)− σ2

2ϑ2

)
D−→ N

(
0,

σ4

2ϑ2
2

)
, M →∞,

follows from standard theory on quadratic variation for semi-martingales. In order to generalize
this central limit theorem to the double asymptotic regime M,N →∞, we define the time average
of the rescaled realized spatial quadratic variations:

Vsp :=
1

N

N−1∑
i=0

Vsp(ti) =
1

NMδ

N−1∑
i=0

M−1∑
k=0

eκyk(δMk X)2(ti). (11)

Theorem 3.3. Let b ∈ [0, 1/2). If N/M → 0 then

√
MN

(
Vsp −

σ2

2ϑ2

)
D−→ N

(
0,

σ4

2ϑ2
2

)
, M,N →∞.

Remark 3.4. The condition N/M → 0 is necessary in order to to neglect the bias: The proof of

the theorem reveals that δ−1E
(
e−κyk(δMk X)2(ti)

)
− σ2

2ϑ2
h δ and consequently, the overall bias is

of the order

E

(√
MN

(
Vsp −

σ2

2ϑ2

))
h
√
MN · δ h

√
N

M
.

We conclude that the central limit theorem for realized temporal quadratic variations Vt holds
when (roughly) M = o(

√
N), whereas the central limit theorem for realized spatial quadratic

variations Vsp is fulfilled if N = o(M). To close the remaining gap, we finally study the space-time
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increments Dik from (3). The corresponding rescaled realized quadratic variations are robust with
respect to the sampling regime, as indicated by the representation

Dik =
∑
`≥1

(
u`(ti+1)− u`(ti)

)(
e`(yk+1)− e`(yk)

)
in terms of the series expansion (5).

In contrast to the case of space increments (and in line with the result for time increments), we
impose b > 0 for the remainder of this section. Inspection of the proofs suggests that this condition
may be relaxed to b→ 0 as long as the decay is sufficiently slow. As a first step, we calculate the
expectation of the double increments

Proposition 3.5. Let b ∈ (0, 1/2). Then:

(i) It holds uniformly in 0 ≤ k ≤M − 1 and 1 ≤ i ≤ N − 1 that

E
(
D2
ik

)
= σ2e−κyk Φϑ(δ,∆) +O

(
δ
√

∆
(
δ ∧
√

∆
))

, max(δ,∆)→ 0,

where

Φϑ(δ,∆) := Fϑ2
(0,∆)

(
1 + e−κδ

)
− 2Fϑ2

(δ,∆)e−κδ/2 and

Fϑ2
(δ,∆) :=

∑
`≥1

1− e−π
2ϑ2`

2∆

π2ϑ2`2
cos(π`δ).

(ii) Assuming that r = lim δ/
√

∆ ∈ [0,∞] exists, Φϑ admits three different asymptotic regimes:

Φϑ(δ,∆) =


1
ϑ2
· δ + o (δ) , r = 0,

ψϑ2(r) ·
√

∆ + o(
√

∆), r ∈ (0,∞),
2√
ϑ2π
·
√

∆ + o(
√

∆), r =∞,
where

ψϑ2
(r) :=

2√
πϑ2

1− e−
r2

4ϑ2 +
r√
ϑ2

∫ ∞
r

2
√
ϑ2

e−z
2

dz

 . (12)

If moreover δ/
√

∆ ≡ r ∈ (0,∞), we have

Φϑ(δ,∆) = e−κδ/2ψϑ2
(r) ·
√

∆ +O(∆3/2). (13)

Remark 3.6. The first order constants appearing in the asymptotic expressions in (ii) stem from
a first derivative of Fϑ2

(·,∆) in 0 in case r = 0 and a Riemann sum approximation of Fϑ2
(δ,∆)

in case r 6= 0, respectively. Assuming for simplicity that κ = 0, the proof of Proposition 3.5 shows
a more precise expression for the remainder terms in case r ∈ {0,∞}:

E
(
D2
ik

)
=

{
1
ϑ2
· δ +O(δ2/

√
∆), r = 0,

2√
πϑ2
·
√

∆ +O(∆3/2/δ2), r =∞.

Thus, if our analysis of the remainder terms is sharp (which we believe is the case), the first order
approximations have a poor quality if δ/

√
∆ converges slowly.

Proposition 3.5 suggests to renormalize double increments with δ if δ/
√

∆ → 0 and with
√

∆
otherwise, which is in line with the renormalization of Vsp and Vsp, respectively. However, this
approach might not be feasible: Firstly, it requires the knowledge which asymptotic regime is
present, i.e., whether or not δ/

√
∆ → 0. Especially for one given set of observations this infor-

mation may be inaccessible. In this case renormalizing with Φϑ(δ,∆) automatically captures the
correct asymptotic regime. Secondly, if r ∈ {0,∞}, the previous remark shows that the asymptotic
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expressions for Φϑ(δ,∆) may lead to an undesirably large bias. In fact, in order to obtain a cen-
tral limit theorem with 1/

√
MN -rate of convergence, we would have to impose the assumptions

N2/M → 0 and M5/N → 0, respectively. These constraints are even more restrictive than the
ones required for time or space increments.

Therefore, we renormalize with Φϑ(δ,∆) and introduce the rescaled realized quadratic space-time
variation

V :=
1

MNΦϑ(δ,∆)

M−1∑
k=0

N−1∑
i=0

eκykD2
ik.

Theorem 3.7. Let b > 0. If either δ/
√

∆→ r ∈ {0,∞} or δ/
√

∆ ≡ r ∈ (0,∞), then

√
MN(V− σ2)

D−→ N
(
0, C

(
r/
√
ϑ2

)
σ4
)
, N,M →∞,

where C(·) is a bounded continuous function on [0,∞], given by (25), satisfying

C(0) = 3 and C(∞) = 3 +
3

2

∞∑
J=1

(√
J − 1−

√
J + 1− 2

√
J
)2

.

The condition δ/
√

∆ ≡ r ∈ (0,∞) can be relaxed to δ/
√

∆ → r ∈ (0,∞) as long as the
convergence is fast enough which we omit for the sake of simplicity. If δ/

√
∆ ≡ r ∈ (0,∞) holds,

(13) shows that the renormalization Φϑ(δ,∆) and its first order approximation are close enough
to be exchanged in the previous theorem. In this case we obtain a central limit theorem with a
simpler renormalization which particularly does not depend on the model parameters:

Corollary 3.8. If b > 0 and δ/
√

∆ ≡ r ∈ (0,∞), then

Vr :=
1

MN
√

∆

M−1∑
k=0

N−1∑
i=0

exp
(κ

2
(yk + yk+1)

)
D2
ik (14)

satisfies with ψϑ2
(r) from (12) and C(·) from (25):

√
MN

(
Vr − ψϑ2

(r)σ2
)
D−→ N

(
0, C(r/

√
ϑ2)ψ2

ϑ2
(r)σ4

)
, N,M →∞.

Remark 3.9. The previous central limit results are satisfied for a possibly growing time horizon
TN,∆ := N∆, too. Theorem 3.3 only requires that TN,∆ > ε for some ε > 0. Theorem 3.7 holds if
TN,∆ = o(M) and, in particular, Corollary 3.8 is applicable if N∆3/2 → 0.

To end this section, we compare the realized quadratic variations Vt, Vsp and V and their asymp-
totic variances. For this purpose, we scale the statistics in such a way that they are asymptotically
centered around the same mean, say σ2:

V ′t =
√
πϑ2Vt, V ′sp = 2ϑ2Vsp, V ′ = V. (15)

For simplicity, let κ = 0. Plugging in the asymptotic expressions for Φϑ(δ,∆) from Proposition
3.5 shows that

V ′ ≈ 1

2

M−1∑
k=0

N−1∑
i=0

D2
ik ·


2ϑ2

NMδ
, δ/

√
∆→ 0,

√
ϑ2π

NM
√

∆
, δ/

√
∆→∞.

Therefore, V ′ approximately coincides with V ′sp and V ′t for r ∈ {0,∞}, respectively, except for the
factor 1/2 and using double increments instead of time or space increments, respectively.

Further, denoting the asymptotic variances of V ′t , V
′
sp and V ′ by St, Ssp and S(r), respectively,

we observe the relations S(∞) = 3
2St and S(0) = 3

2Ssp, where the factor 3/2 occurs since each
double increment consists of two space or time increments, respectively.
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4. Parameter estimation

In view of the covariance structure of the observation vector and the fact that the value of ϑ0 is
irrelevant from a statistical point of view (cf. Proposition 2.3), we consider the parameter vector

η = (σ2, ϑ2, κ).

It is straightforward to use the results from the previous section to construct method of moments
estimators for the volatility parameter σ2 or the diffusivity parameter ϑ2, provided that the other
two parameters in (σ2, ϑ2, κ) are known, respectively. Doing so, we generalize the spatial increments
based estimator from [7] to the double asymptotic regime and we complement the time increments
based methods in [3, 4]. Our estimators do not hinge on ϑ0 (or Γ) such that the knowledge of its
true value is not required.

Assuming firstly that ϑ2 and κ are known, we obtain the following volatility estimators:

σ̂2
sp := V ′sp, σ̂2

t := V ′t and σ̂2 := V

where V ′sp and V ′t have been introduced in (15).

Proposition 4.1.

(i) If N = o(M), then we have

√
MN

(
σ̂2

sp − σ2
) D−→ N (0, 2σ4), N,M →∞.

(ii) If M = o(Nρ) for some ρ ∈ (0, 1/2), then we have with B defined in (10):

√
MN

(
σ̂2

t − σ2
) D−→ N (0, Bσ4), N,M →∞.

(iii) If
√
N = o(M), M = o(

√
N) or

√
N/M ≡ r0 > 0, then we have with r = r0

1−2b√
T

and C(·)
from (25): √

MN(σ̂2 − σ2)
D−→ N (0, C(r/

√
ϑ2)σ4), N,M →∞,

As discussed above, the double increments estimator has a larger variance than the single
increments estimators. Hence, if one of the regimes N = o(M) or M = o(

√
N) certainly applies,

the single increments estimators are preferable. If none of the regimes is present or the situation
is unclear, one can profit from the robustness of the double increments estimator with respect to
the sampling regime.

If N = o(M), the situation is close to that of N independent semi-martingales (cf. Proposition
2.1) and the asymptotic variance 2σ4 of the spatial increments estimator equals the Cramér-Rao
lower bound for estimating σ2, as can be seen by a simple calculation. Consequently, σ̂2

sp is an
asymptotically efficient estimator. The efficiency loss of the other estimators is due to the fact
that for increasingly more temporal observations the infinite dimensional nature of the process X
becomes apparent, leading to non-negligible covariances between increments.

If σ2 and κ are known, the diffusivity ϑ2 can be estimated by

ϑ̂2,sp :=
σ2

2Vsp
and ϑ̂2,t :=

σ4

πV 2
t

using Vsp and Vt from (11) and (8), respectively. Due to the non-trivial dependence of the renormal-
ization Φϑ(δ,∆) on ϑ, it is not apparent how to construct a method of moments estimator for ϑ2

based on Theorem 3.7 in general. However, if
√
N/M ≡ r0 > 0, the renormalization can be decou-

pled from the unknown parameter as exploited in Corollary 3.8. Since the function ϑ2 7→ ψϑ2
(r)

has range (0,∞) and is monotonic, there is an inverse Hr(·) and we can define the method of
moments estimator

ϑ̂2,r = Hr(Vr/σ2)
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with Vr from (14) and r = δ√
∆

= r0
1−2b√
T

. As a direct consequence of the delta method,

H ′r(ψϑ2
(r)) =

( ∂

∂ϑ2
ψϑ2

(r)
)−1

= −ϑ3/2
2

√
π
(

1− e−
r2

4ϑ2 +
2r√
ϑ2

∫
r

2
√
ϑ2

e−z
2

dz
)−1

and the above central limit theorems, we obtain:

Proposition 4.2.

(i) If N = o(M), then we have
√
MN

(
ϑ̂2,sp − ϑ2

)
D−→ N

(
0, 2ϑ2

2

)
, N,M →∞.

(ii) If M = o(Nρ) for some ρ ∈ (0, 1/2), then we have with B from (10):
√
MN

(
ϑ̂2,t − ϑ2

)
D−→ N (0, 4ϑ2

2B), N,M →∞.

(iii) If
√
N/M ≡ r0 > 0, then we have with r = r0

1−2b√
T

and C(·) from (25):

√
MN(ϑ̂2,r − ϑ2)

D−→ N
(

0, C(r/
√
ϑ2)
(
ψϑ2

(r)
/ ∂

∂ϑ2
ψϑ2

(r)
)2
)
, N,M →∞.

We now consider parameter estimation when (σ2, ϑ) is unknown. Recall from Proposition 2.3
and its subsequent discussion that ϑ0 cannot be estimated consistently on a finite time horizon.
Moreover, it is not possible to estimate other parameters than (σ2/

√
ϑ2, κ) or (σ2/ϑ2, κ) only

based on the temporal or the spatial covariance structure, respectively. Estimation of (σ2/
√
ϑ2, κ)

via a least squares procedure based on temporal increments is disussed in [3] in the M = o(
√
N)

regime. Analogously, it is possible to estimate (ρ2, κ), where ρ2 = σ2/ϑ2, using spatial increments
and Theorem 3.3: Provided that N = o(M), classical M-estimation theory reveals that

(ρ̂2, κ̂) := arg min
(ρ̃2,κ̃)

M−1∑
k=0

(
2

Nδ

N−1∑
i=0

(∆sp
ik)2 − ρ̃2e−κ̃yk

)2

satisfies a central limit theorem with rate 1/
√
MN . We omit a detailed analysis of this estimator.

To estimate all three identifiable parameters η = (σ2, ϑ2, κ), we employ a least squares approach
based on double increments. Due to the highly nontrivial dependence of the normalization Φϑ(δ,∆)
on ϑ, a direct application of Theorem 3.7 is impossible. Assuming, however, a balanced design in
the sense of δ/

√
∆ ≡ r ∈ (0,∞), we can use Corollary 3.8 where the normalization is decoupled

from the unknown parameter ϑ.
Let δ/

√
∆ ≡ r ∈ (0,∞) and define D̄ik := Dik + D(i+1)k as well as zk = (yk + yk+1)/2.

Corollary 3.8 suggests that

1

N
√

∆

N−1∑
i=0

D2
ik ≈ e−κzkσ2ψϑ2(r) and

1

N
√

2∆

N−2∑
i=0

D̄2
ik ≈ e−κzkσ2ψϑ2(r/

√
2).

By considering the two different sampling frequency ratios r and r/
√

2, we can distinguish σ2 and
ϑ2 instead of recovering only the product σ2ψϑ2

(r). To estimate η = (σ2, ϑ2, κ), we thus introduce
the contrast process

KM,N (η̃) := K1
M,N (η̃) +K2

M,N (η̃) where

K1
M,N (η̃) :=

1

M

M−1∑
k=0

( 1

N
√

∆

N−1∑
i=0

D2
ik − f1

η̃ (zk)
)2

,

K2
M,N (η̃) :=

1

M

M−1∑
k=0

( 1

N
√

2∆

N−2∑
i=0

D̄2
ik − f2

η̃ (zk)
)2

,
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and fνη (z) := σ2e−κzψϑ2
(r/
√
ν), ν = 1, 2. The corresponding M-estimator is given by

η̂ = arg min
η̃∈H

KM,N (η̃), (16)

where H is some subset of (0,∞)2 ×R containing the true parameter η.

Theorem 4.3. Assume b > 0 and δ/
√

∆ ≡ r > 0. If η = (σ2, ϑ2, κ) lies in the interior of H for
some compact set H ⊂ (0,∞)2 ×R, then the least squares estimator η̂ from (16) satisfies

√
MN(η̂ − η)

D−→ N (0,Ωrη), M,N →∞,

where Ωrη ∈ R3×3 is a strictly positive definite covariance matrix, explicitly given by (29).

Remark 4.4. Based on η̂, we can define ϑ̂1 := η̂2η̂3 = ϑ̂2κ̂ to estimate ϑ1. The delta method then
yields a central limit theorem for (σ̂2, ϑ̂2, ϑ̂1).

Even when δ/
√

∆ ≡ r > 0 does not hold, there are always subsets of the data having the bal-
anced sampling design. Hence, the estimation procedure treated in Theorem 4.3 can be generalized
to an arbitrary set {Xti(yk), i ≤ N, k ≤ M} of discrete observations by considering an averaged
version of the above contrast process. To that aim, choose v, w ∈ N such that v h max(1, N/M2)
and w h max(1,M/

√
N). Then, ∆̃ := v∆ and δ̃ := wδ satisfy

r := δ̃/
√

∆̃ h 1.

Using double increments on the coarser grid

Dv,w(i, k) = Xti+v (yk+w)−Xti(yk+w)−Xti+v (yk) +Xti(yk),

we set

KνN,M (η̃) =
1

M − w + 1

M−w∑
k=0

(
1

(N − νv + 1)
√
νv∆

N−νv∑
i=0

D2
νv,w(i, k)− fνη̃

(yk + yk+w

2

))2

,

where fνη (z) = 2σ2ψϑ2
(r/
√
ν)e−κz and ν = 1, 2. The final estimator for η is then defined as

η̂v,w = arg min
η̃∈H

(
K1
N,M (η̃) +K2

N,M (η̃)
)
. (17)

The rate of convergence of this estimation procedure is inherited from the observations on the
coarser grids {(ti+jv, yk+lw) : 0 ≤ j ≤ N/v−1, 0 ≤ l ≤M/w−1}, i = 0, . . . , v−1, k = 0, . . . , w−1,
on which we calculate the double increments. Each such subset consists of

M

w
· N
v

h (M ∧N1/2)(N ∧M2) = M3 ∧N3/2

observations and has a balanced design by construction. Therefore, Theorem 4.3 implies the con-
vergence rate 1/

√
M3 ∧N3/2.

Proposition 4.5. Assume b > 0 and let η = (σ2, ϑ2, κ) lie in the interior of H for some compact
set H ⊂ (0,∞)2 ×R. If there exist values v h max(1, N/M2) ∈ N and w h max(1,M/

√
N) ∈ N

such that wδ/
√
v∆ is constant, then the estimator given by (17) satisfies

‖η̂v,w − η‖ = OP
( 1√

M3 ∧N3/2

)
, M,N →∞.

Remark 4.6. Integer values v and w such that wδ/
√
v∆ is constant exist, for instance, if the

observations are recorded at a diadic grid, i.e. M = 2m and N = 4n where m,n→∞.

Compared to the thinning method of [18], this rate is a considerable improvement. Indeed, it
is (almost) optimal in the minimax sense, as shown in Section 5.
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5. Lower bounds

Our next theorem proves that the estimator η̂ from (17) for η = (σ2, ϑ2, κ) is optimal in the
minimax sense, up to a logarithmic factor. To obtain a lower bound, it suffices to consider the
sub-problem where ϑ1 = ϑ0 = 0 and only (σ2, ϑ2) has to be estimated.

Theorem 5.1. Let ϑ1 = ϑ0 = 0, (σ2, ϑ2) ∈ H for some open set H ⊂ (0,∞)2 and consider
observations at ti = i/N, i ≤ N, and yk = b+ kδ, k ≤M, for some b ∈ [0, 1/2) ∩Q. Then:

(i) If min(M,N) remains finite, there is no consistent estimator of (σ2, ϑ2).
(ii) There is a constant c > 0 such that

lim inf
M,N→∞

inf
T

sup
(σ2,ϑ2)∈H

P(σ2,ϑ2)

(∥∥∥T − (σ2

ϑ2

)∥∥∥ > c · rM,N

)
> 0,

where rM,N :=


N−3/4,

M√
N

& 1,(
M3 log

N

M2

)−1/2

,
M√
N
→ 0.

and infT is taken over all estimators T of (σ2, ϑ2) based on observations {Xti+1(yk) −
Xti(yk), i < N, k ≤M}.

Remark 5.2. The lower bound for the case M/
√
N & 1 is also valid for estimators based on

{Xti(yj), i ≤ N, k ≤ M} instead of the increments. We conjecture that this is also true for the

case M/
√
N → 0.

This lower bound shows that, in general, (σ2, ϑ2) cannot be estimated with the parametric rate
1/
√
MN , in contrast to a conjecture in [7]. Instead, we observe a phase transition in the rate

depending on the sampling frequency. The parametric rate can only be attained for a balanced
design N hM2.

The proof of Theorem 5.1 relies on the standard lower bound technique, cf. Tsybakov [30].
Using an inequality by Ibragimov and Has’minskii [16], we will bound the Hellinger distance of
the laws of the observations in terms of the corresponding Fisher information for suitably chosen
reparametrizations of (σ2, ϑ2). For each sampling regime we choose a reparametrization (γ1, γ2) of
(σ2, ϑ2) in such a way that γ1 can be estimated with parametric rate, even without knowledge of
γ2. Bounding the Fisher information for γ2, we then obtain a lower bound for the simpler problem
of estimating the one dimensional parameter γ2, assuming that γ1 is known. Clearly, the resulting
lower bound for γ2 carries over to (γ1, γ2) and consequently to (σ2, ϑ2). The main effort, noting
that the observations are significantly correlated, is to derive sharp upper bounds for the Fisher
information in the different sampling regimes.

In the case M/
√
N & 1 we apply the following bound on the Fisher information for discrete

observations of the first M coefficient processes. Thanks to the Markov property, the probability
density function for discrete observations of an Ornstein-Uhlenbeck process is provided by the
transition density and allows for explicit computations.

Proposition 5.3. Let ϑ1 = ϑ0 = 0 and consider a sample (u`(i∆), ` ≤ M, i ≤ N) where
(u`, ` ∈ N) are independent Ornstein-Uhlenbeck processes given by

du`(t) = −λ`u`(t) dt+ σ dβ`(t), u`(0) ∼ N
(

0,
σ2

2λ`

)
.

Consider the reparametrization (σ2, ρ2) where ρ2 = σ2/ϑ2 and the corresponding Fisher informa-
tion JN,M . For max(M,N)→∞, the diagonal entries of JN,M satisfy

JN,M (σ2) = O(N3/2 ∧ (MN)) and JN,M (ρ2) = O(M3 ∧ (MN)). (18)

In particular, min
(
JN,M (σ2), JN,M (ρ2)

)
. N3/2 ∧M3 for max(N,M)→∞.
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Remark 5.4.

1. If M .
√
N and σ2 is known, Proposition 5.3 suggest a lower bound of M−3/2 for estimation

of ϑ2 in the spectral approach. Indeed, this rate is achieved by the maximum likelihood
estimator for time continuous observations of the coefficient processes, cf. [21].

2. The reparametrization was chosen since σ2 can be computed from the quadratic variation
of any coefficient process u` when N → ∞, while ρ2 can be computed from the empirical
variance of `u`(ti), ` ≤ M, for a fixed ti as M → ∞, even without knowledge of the other
parameter, respectively.

Letting M →∞, Proposition 5.3 suggests that based on observations of the coefficient processes
it is not possible to estimate σ2 (and in particular (σ2, ϑ2)) at a rate faster than N−3/4. Further,
assuming ϑ1 = 0, the eigenfunctions e`(·) do not depend on unknown parameters and hence, the
space-time discrete observations of the SPDE may be reconstructed from {u`(ti), i ≤ N, ` ∈ N}.
Consequently, the lower bound N−3/4 carries over to discrete observations of the SPDE.

Although the lower bounds resulting from Proposition 5.3 and Theorem 5.1 are almost the
same, their proofs require a very different reasoning if M/

√
N → 0: In this case, if σ2 is known,

Proposition 4.2 shows that it is possible to estimate ϑ2 with parametric rate of convergence based
on discrete observations of the SPDE whereas Proposition 5.3 suggests that ϑ2 = σ2/ρ2 cannot
be estimated at a faster rate than M−3/2 based on the coefficient processes. In particular, both
observation schemes are not asymptotically equivalent in the sense of Le Cam.

To derive the lower bound in the case M/
√
N → 0, we consider the situation where observations

are recorded at rational positions yk = k
M , k = 1, . . . ,M − 1, where we work with M − 1 instead

of M spatial observations for ease of notation. Thus, we potentially add spatial observations on
the margin [0, b) ∪ (1 − b, 1] which can only increase the amount of information contained in the
data. Since e`(·) =

√
2 sin(π` ·) is the sine basis, trigonometric identities imply that the vectors

ēk := (ek(y1), . . . , ek(yM−1)) ∈ RM−1, k ∈ N,

satisfy ēk+2M = ēk for all k ∈ N and 〈ēk, ēl〉 = M1{k=l 6=M} − M1{k+l=2M} for k, l ≤ 2M .
Equivalently, (ek)k=1,...,M−1 form an orthonormal basis with respect to the empirical scalar prod-
uct and the relations for (ēk)k≥1 follow from the symmetry of the sine. Therefore, observing
{Xti(yk), i ≤ N, k ≤M − 1} is equivalent to observing

{Uk(ti), k ≤M − 1, i ≤ N}, Uk(t) :=
1

M
〈Xt(y·), ēk〉 =

∑
`∈I+

k

u`(t)−
∑
`∈I−k

u`(t), (19)

where I+
k := {k + 2M`, ` ≥ 0}, I−k := {2M − k + 2M`, ` ≥ 0}. Since the sets Ik = I+

k ∪ I
−
k are

disjoint for different values of k, the processes {U1, . . . , UM−1} are independent which simplifies the
calculation of the Fisher information considerably. Based on their spectral densities and Whittle’s
formula (34) for the asymptotic Fisher information of a stationary Gaussian time series, we obtain
the following result for the increment processes Ūk, k ≤M − 1, defined by

Ūk(j) := Uk(tj+1)− Uk(tj), j = 0, . . . , N − 1. (20)

Proposition 5.5. Consider the parametrization (σ2
0 , ϑ2) where σ2

0 := σ2/
√
ϑ2. If M/

√
N → 0,

the Fisher information JM,N with respect to ϑ2 of a sample {Ūk(j), j ≤ N−1, k ≤M−1} satisfies

JM,N (ϑ2) = O
(
M3 log

N

M2

)
.

Hereby, the reparametrization allows for estimation of σ2
0 = σ2/

√
ϑ2 with parameteric rate based

on time increments in the regime M/
√
N → 0, even when ϑ2 is unknown. We have considered

Ūk instead of Uk due to the technical reason that the N -th order Fourier approximation of the
spectral density of the increment process is positive and hence, a spectral density as well. We
conjecture that the same bound holds for the Fisher information of Uk.
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Figure 1. Normalized mean squared errors of estimators for σ2 (left) and ϑ2 (right) based on 500 Monte Carlo
simulations.

6. Simulations

The following numerical example illustrates the asymptotic results for the estimators derived in
Section 4. In order to simulate X on a grid in time and space, we have considered the approxima-
tion XK

ti (yk) =
∑K
`=1 u`(ti)e`(yk) where K is a large number. Moreover, the Ornstein-Uhlenbeck

processes u` are simulated exploiting their AR(1)-structure, namely

u`(0) =
σ√
2λ`

N `
0 , u`(ti+1) = e−λ`∆u`(ti) + σ

√
1− e−2λ`∆

2λ`
N `
i , i ∈ N,

where (N `
i ) are independent standard normal random variables.

Hereby, we have considered a fixed number N = 625 = 252 of temporal observations and
M ∈ {10, 15, 25, 40, 70, 110, 180, 300}. The margin was set to b = 0.1. In general, an appropriate
choice for the cut of frequency K highly depends on these values. For our setting K = 70, 000
produced accurate results. The parameters are chosen as σ2 = 0.1, ϑ2 = 0.5, ϑ1 = −0.4 and
ϑ0 = 0.3.

First, we consider the estimators for the volatility σ2 and the diffusivity ϑ2 which have been
analyzed in Propositions 4.1 and 4.2, respectively. Figure 1 shows the normalized mean squared
error based on 500 Monte Carlo iterations plotted against the logarithm of the sampling ratio√
N/M . The simplified double increments estimator ϑ̂2,r is computed with r = (1− 2b)

√
N
M . Using

the same value for r, the simplified double increments estimator for σ2 is computed by replacing
the normalization Φϑ(δ,∆) by e−κδ/2ψϑ2

(r)
√

∆.
As expected, the estimators based on temporal increments only achieve the parametric rate of

convergence as long as M is not too large, whereas estimators based on space increments only
work well when M is not too small. The estimators based on double increments perform very well
throughout any regime depicted in the plot. Even the simplified versions work surprisingly well,
although their applicability is only supported by our theory as long as M h

√
N . In particular,

the double increments estimator for σ2 can barely be distinguished from the simplified one. The
theory suggests that the estimators based on space increments or time increments should have a
smaller mean squared error than the double increments estimators in the regimes

√
N/M → 0

or
√
N/M → ∞, respectively. The simulation confirms this effect for time increments, while we

would require larger values of M to see the asymptotic behavior for space increments. However,
to simulate the spatial increments estimator for large M , a considerably larger value of K turns
out to be crucial since otherwise the statistical bias of the estimator is amplified by a numerical
bias.
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Figure 2. Mean squared errors for the least squares estimator η̂ and its averaged version η̂v,w.

The above estimators require that all but one of the parameters (σ2, ϑ2, κ) are known. In
the more difficult statistical problem where all parameters are unknown, η = (σ2, ϑ2, κ) can be
estimated by η̂ from (16) and by η̂v,w from (17). Figure 2 shows their mean squared error, again
based on 500 Monte Carlo iterations. For the averaged estimator η̂v,w, we set v = [max(1, N

4M2 )]

and w = [max(1,M/
√
N)] where [·] indicates rounding to the next integer. Since minimizing a

functional of the type ‖F (η̃)‖2 for some function F on a compact set is a hard numerical task
we have considered the corresponding ridge regression problem, that is we minimize ‖F (η̃)‖2 +
λ‖η̃‖2 instead. Regularizing with the squared inverse of the expected rate of convergence, i.e. λ =
1/(N3/2 ∧M3) for η̂v,w and λ = 1/(NM) for η̂ produced reasonable results, respectively.

In contrast to the double increments estimators for single parameters, η̂ only produces good
results as long as M h

√
N , which is covered by the theoretical foundation. The averaged version

η̂v,w works well throughout. Furthermore, we see that it is only possible to profit from an increasing

number of spatial observations up to a certain degree. Indeed, for M ≥
√
N the optimal rate is

N−3/2 and the Monte Carlo mean squared error does not improve further. To cover also the regime√
N/M → ∞ for sufficiently large values of M,N , corresponding simulations are costly and not

part of this simulation study. The Monte Carlo mean squared error of η̂v,w is not everywhere
monotonic in M since the effective sampling frequency ratio r on the coarser grid where the
double increments are computed is only approximately constant throughout the plot. Finally, we
remark that our choice of v and w results in v = w = 1 for the two smallest values of M and
hence, the two estimators are the same.

7. Proofs of the main results

7.1. Proofs for the central limit theorems for realized quadratic variations

First, we prove the generic central limit result in Proposition 3.1. Afterwards, we can verify the
central limit theorems for realized quadratic variations based on spatial increments (Theorem 3.3)
and double increments (Theorem 3.7).

Proof of Proposition 3.1. Since Σn = Q>nΛnQn for an orthogonal matrix Qn ∈ Rdn×dn and a
diagonal matrix Λn, the vector Z•,n has the same distribution as BnX

n for Bn := QTnΛ1/2

and Xn := (X1, . . . , Xdn) with independent standard normal random variables (Xk)k∈N. Denot-

ing An = diag(α1,n, . . . , αdn,n), we obtain Sn = Z>•,nAnZ•,n
D
= Xn>B>n AnBnX

n. Furthermore,

B>n AnBn is symmetric such that B>n AnBn = P>n ΓnPn where Pn is an orthogonal matrix and Γn
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is a diagonal matrix. Since PnX
n ∼ N (0, Edn), we conclude as in [23, p. 36]

Sn
D
= Xn>B>n AnBnX

n = (PnX
n)TΓ(PnX

n)
D
= Xn>ΓnX

n =

dn∑
i=1

γi,nX
2
i ,

where γi,n, i ≤ dn are the eigenvalues of B>n AnBn. The statement now follows by Lyapunov’s
condition and ‖Bn‖22 = ‖Σn‖2:∑dn

i=1 γ
4
i,nE

((
X2
k −EX2

k

)4)
(VarSn)

2 h
∑dn
i=1 γ

4
i,n(∑dn

i=1 γ
2
i,n

)2 .
maxi≤dn γ

2
i,n∑dn

i=1 γ
2
i,n

=
‖BTnAnBn‖22

VarSn

≤ (‖Bn‖22‖An‖2)2

VarSn
=
‖Σ‖22
VarSn

.

Throughout, for a function f : R→ R we use the notation

Dδf(x) := f(x+ δ)− f(x) and D2
δf(x) := f(x+ 2δ)− 2f(x+ δ) + f(x).

Proof of Theorem 3.3. We abbreviate the (rescaled) space increments by

Sik := (δMk X)(ti) and S̃ik := eκyk/2(δMk X)(ti).

Step 1. We calculate the asymptotic mean of Vsp. Application of the trigonometric identity
sin(α) sin(β) = 1

2 (cos(α− β)− cos(α+ β)) yields

eκx/2(e`(x+ δ)− e`(x))eκy/2(e`(y + δ)− e`(y))

= g(δ) (2 cos(π`(y − x))− cos(π`(y − x− δ))− cos(π`(y − x+ δ)))

+ (g(2δ) + g(0)− 2g(δ))(cos(π`(y − x)))

+ 2g(δ) cos(π`(y + x+ δ))− g(0) cos(π`(y + x))− g(2δ) cos(π`(x+ y + 2δ)),

(21)

where g(x) = exp(−κx/2). Plugging in x = y gives

eκy(e`(y + δ)− e`(y))2

= 2(1− cos(π`δ)) + 2(1− g(δ))(cos(π`δ)− 1) + (g(2δ) + g(0)− 2g(δ))

+ 2g(δ) cos(π`(2y + δ))− g(2δ) cos(2π`(y + δ))− g(0) cos(2π`y).

(22)

Thus, in terms of

f(y) :=
∑
`≥1

1

2λ`
cos(π`y), y ∈ [0, 1],

we have

E
(

eκy (Xt(y + δ)−Xt(y))
2
)

= σ2
∑
`≥0

1

2λ`
eκy (e`(y + δ)− e`(y))

2

= σ2
(
−2Dδf(0)− 2Dδg(0)Dδf(0) + f(0)D2

δg(0)−D2
δ(g(·)f(2y + ·))(0)

)
.

Owing to its closed form expression in (40) below, we see that f ∈ C∞b ([0, 2]) and f ′(0) = − 1
4ϑ2

.
Hence,

E
(
eκy(Xt(y + δ)−Xt(y))2

)
= −2σ2f ′(0) · δ +O(δ2) =

σ2

2ϑ2
· δ +O(δ2).

For y = yk we obtain the asymptotic mean E(Vsp) = σ2

2ϑ2
+ O(δ) and in particular, under the

condition N/M → 0,

√
MN

(
Vsp −

σ2

2ϑ2

)
=
√
MN(Vsp −E(Vsp)) + o(1).
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Step 2. We calculate the asymptotic variance. By Isserlis’ Theorem [17] we have

Cov((S̃ik)2, (S̃jl)
2) = 2 Cov(S̃ik, S̃jl)

2.

Together with the symmetry Cov(S̃ik, S̃jl) = Cov(S̃jk, S̃il) this implies

Var(Vsp) =
2

N2M2δ2
(v1 + v2 + v3 + v4)

where

v1 :=

N−1∑
i=0

M−1∑
k=0

Var(S̃ik)2, v2 := 2

N−2∑
i=0

N−1∑
j=i+1

M−1∑
k=0

Cov(S̃ik, S̃jk)2

v3 := 2

N−1∑
i=0

M−2∑
k=0

M−1∑
l=k+1

Cov(S̃ik, S̃il)
2, v4 := 4

N−2∑
i=0

N−1∑
j=i+1

M−2∑
k=0

M−1∑
l=k+1

Cov(S̃ik, S̃jl)
2.

We have already shown that Var(S̃ik) = E((S̃ik)2) = σ2

2ϑ2
· δ +O(δ2). Therefore,

v1 = NMδ2 · σ
4

4ϑ2
2

+O
(
N

M2

)
= NMδ2 · σ

4

4ϑ2
2

+ o

(
N

M

)
.

In the sequel, we show that the remaining covariances do not contribute to the asymptotic variance.
For v2 we define ω := ϑ2(π2 ∧ (π2 + Γ)) > 0 such that λ` ≥ ω`2 for all ` ∈ N. Since

(e`(yk+1)− e`(yk))
2 . `2δ2, we get for J = |i− j| ≥ 1

Cov(S̃ik, S̃jk) = σ2
∑
`≥1

e−λ`J∆

2λ`
eκyk (e`(yk+1)− e`(yk))

2 . δ2
∑
`≥1

e−ω`
2J∆ .

δ2

√
J∆

where the last step follows by Riemann summation with mesh size
√
J∆. Since logN

M2∆ ≤
N

M2∆ =
N2

M2
1
T → 0,

v2 .
Mδ4

∆

N−1∑
i=0

N∑
j=i+1

1

(j − i)
≤ NMδ4

∆

N∑
i=1

1

i
= O

(
N logN

M3∆

)
= o

(
N

M

)
.

To bound v3 we follow the same strategy as for the mean: Since (21) consists exclusively of
second order differences we have Cov(S̃ik, S̃il) = O(δ2) for k 6= l. Therefore, v3 = O(NM2δ4) =
o(N/M).

To estimate v4, we deduce from (21) for k < l and J = |i− j| ≥ 1 that

Cov(S̃ik, S̃jl) =− g(δ)D2
δfJ∆ (yl − yk+1)

+ fJ∆ (yl − yk)D2
δg(0)−D2

δ (g(·)fJ∆ (yl + yk + ·)) (0), where

ft(y) :=σ2
∑
`≥1

e−λ`t

2λ`
cos(π`y).

By Riemann summation we have f ′′t (y) .
∑
`≥1 e−λ`t . 1√

t
. On the other hand, by Lemma A.7,

f ′′t (y) .
1

y ∧ (2− y)
sup
k

∣∣∣∣ k2

λk
e−λkt

∣∣∣∣ . 1

y ∧ (2− y)
.

Therefore,

f ′′t (y) . B(t, y) :=
1

y ∧ (2− y)
∧ 1√

t
.
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Similarly, ft(y), f ′t(y) . B(t, y) can be shown. We conclude

v4 . NM

N−1∑
i=0

2M−2∑
k=0

δ4B

(
i∆,

k

M

)2

.
N

M3

N∑
i=1

M∑
k=0

M2

k2
∧ 1

i∆

=
N

M3

N∑
i=1

 ∑
k<M

√
i∆

1

i∆
+

∑
M≥k≥M

√
i∆

M2

k2

 .
N

M3

N∑
i=1

M√
i∆

.
N3/2

M2
√

∆
= o

(
N

M

)

where the last step follows from
√
N

M
√

∆
= N

M
1√
T
→ 0. Summing up, we have proved that

Var(Vsp) =
σ4

2ϑ2
2

· 1

MN
+ o

(
1

NM

)
.

Step 3. To prove asymptotic normality, we interpret the number of temporal and spatial obser-
vations as sequences M = Mn, N = Nn indexed by n ∈ N and consider the triangular array
(Zik,n, n ∈ N, k < Mn, i < Nn), where Zik,n = S̃ik/

√
NMδ. Since Var(

∑
i,k Z

2
ik) h (MN)−1,

Proposition 3.1 applies if:
1

MNδ2

(∑
i,k

|Cov(S̃ik, S̃jl)|
)2

→ 0

uniformly in j < N, l < M in view of criterion (7). The covariance bounds in Step 2 yield uniformly
in j < N, k < M :∑

k<M

|Cov(S̃jk, S̃jl)| = O(δ),
∑
i<N

|Cov(S̃il, S̃jl)| = O(δ2
√
N/
√

∆),

( ∑
i 6=j,k 6=l

|Cov(S̃ik, S̃jl)|
)2

.MN
∑

i 6=j,k 6=l

|Cov(S̃ik, S̃jl)|2 = o(N/M),

where we have used the Cauchy-Schwarz inequality to obtain the last bound. It remains to note
N/M → 0 and N∆ & 1.

The proof of Theorem 3.7 is similar to the previous one but the more complex covariance
structure of the double increments has to be taken into account carefully, see Section A.1. The
(asymptotic) mean of the realized quadratic space-time variation is provided by Proposition 3.5,
which we prove first. In the following, we write

D̃ik := eκyk/2Dik. (23)

Proof of Proposition 3.5. Step 1. We show asymptotic independence of Γ, i.e.,

E
(
(Dik)2

)
= σ2

∑
`≥1

1− e−π
2ϑ2`

2∆

π2ϑ2`2
(e`(yk+1)− e`(yk))2 +O

(
δ
√

∆
(
δ ∧
√

∆
))

.

Define f(x) := 1−e−x

x . A first order Taylor approximation of f yields

E
(
(Dik)2

)
= σ2∆

∑
`≥1

f
(
π2ϑ2`

2∆
)

(e`(yk+1)− e`(yk))2 +R

where R . ∆2
∑
`≥1 f

′(ϑ2(π2`2 + ξ`)∆)(e`(x+ δ)− e`(x))2 for some |ξk| ≤ |Γ|. Since

(e`(y + δ)− e`(y))2 .
(

e−κδ/2(sin(π`(y + δ))− sin(π`y)) + sin(π`y)(e−κδ/2 − 1)
)2

. 1 ∧ (`δ)
2

and noting that f ′(x2) and x2f ′(x2) are integrable, we deduce

R . ∆2
∑
`≥1

(1 ∧ (`δ)2)f ′(ϑ2(π2`2 + ξ`)∆) = O
(
∆3/2 ∧ (δ2

√
∆)
)

= O
(
(δ∆) ∧ (δ2

√
∆)
)
.
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Step 2. We verify (i). Thanks to Step 1 we may assume λ` = π2ϑ2`
2. It follows from (22) that

E(D̃2
ik) =σ2e−κy

(
Fϑ2

(0,∆)
(
1 + e−κδ

)
− 2Fϑ2

(δ,∆)e−κδ/2
)

− σ2e−κyD2
δ

(
g(·)Fϑ2

(2yk + · ,∆)
)

(0).

Consequently, it remains to show

D2
δ

(
g(·)Fϑ2

(2y + · ,∆)
)

(0) = O
(
δ
√

∆
(
δ ∧
√

∆
))

uniformly in y ∈ [b, 1− b]. As before, this is done by showing

Fϑ2(x,∆) . ∆,
∂Fϑ2

(x,∆)

∂x
. ∆ and

∂2Fϑ2
(x,∆)

∂x2
.
√

∆

uniformly in x ∈ [2b, 2(1 − b)]. By Lemma A.8 we have Fϑ2(x,∆) = ∆
∑
`≥1 f(λ`∆) cos(π`x) =

O(∆). In order to access the first two derivatives of Fϑ2
(·,∆), we split it into two summands,

Fϑ2(x,∆) = ∆
∑
`≥1

1

1 + λ`∆
cos(π`x)︸ ︷︷ ︸

=:H∆(x)

+ ∆
∑
`≥1

(
1− e−λ`∆

λ`∆
− 1

1 + λ`∆

)
cos(π`x)︸ ︷︷ ︸

=:G∆(x)

.

Using the cosine series formula (40), we can compute

H∆(x) =
1

ϑ2π2

∑
`≥1

1

`2 + 1
π2ϑ2∆

cos(π`x) =

√
∆

2
√
ϑ2

cosh
(

1√
ϑ2∆

(x− 1)
)

sinh
(

1√
ϑ2∆

) − ∆

2
,

from which it easily follows that H ′∆(x) . ∆ and H ′′∆(x) .
√

∆. The derivatives of

G∆(x) = ∆
∑
`≥1

h(`
√

∆) cos(π`x), where h(z) :=
1− e−z(1 + z)

z(1 + z)
,

can be bounded summand-wisely,

G′∆(x) h
√

∆
∑
`≥1

(`
√

∆)h(`
√

∆) sin(π`x) . ∆, G′′∆(x) h
∑
`≥1

(`2∆)h(`
√

∆) cos(π`x) .
√

∆,

where the bounds follow from the Riemann sum approximations in Lemma A.8, owing to xh(x)|x=0 =
x2h(x)|x=0 = 0.

Step 3. We show the asymptotic expressions in (ii). Due to a Riemann sum argument, we have
‖Fϑ2

(·,∆)‖∞ .
√

∆ and consequently,

Φϑ(δ,∆) = 2 (Fϑ2(0,∆)− Fϑ2(δ,∆)) + Fϑ2(0,∆)
[
1 + e−κδ − 2e−κδ/2

]
− 2 (Fϑ2(δ,∆)− Fϑ2(0,∆))

(
e−κδ/2 − 1

)
= 2 (Fϑ2

(0,∆)− Fϑ2
(δ,∆)) +O(δ

√
∆).

In the case δ/
√

∆→ 0 Taylor’s formula yields

Fϑ2(0,∆)− Fϑ2(δ,∆) = −δ ∂Fϑ2
(0,∆)

∂x
− δ2

2

∂2Fϑ2
(η,∆)

∂x2

for some η ∈ [0, δ]. We employ the representation Fϑ2(·,∆) = H∆ +G∆ from Step 2: Since sin(0) =

0 we have
∂Fϑ2

(0,∆)

∂x = H ′∆(0) = − 1
2ϑ2

. Further, H ′′∆(η) = 1/
√

∆ and the Riemann sum argument

yields G′′∆(η) .
∑
`≥1(`2∆)h(`

√
∆) . 1/

√
∆. Therefore, Fϑ2

(0,∆)−Fϑ2
(δ,∆) = 1

2ϑ2
·δ+O

(
δ2
√

∆

)
.
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If δ/
√

∆→∞, Lemma A.8 implies Fϑ2
(δ,∆) = −∆

2 +O(∆3/2

δ2 ) and Lemma A.9 yields

Fϑ2(0,∆) =
√

∆

∫ ∞
0

1− e−π
2ϑ2z

2

π2ϑ2z2
dz − ∆

2
+O(∆3/2). (24)

Since
∫∞

0
1−e−π

2ϑ2z
2

π2ϑ2z2 dz = 1√
ϑ2π

, we obtain Fϑ2
(0,∆)− Fϑ2

(δ,∆) =
√

∆√
ϑ2π

+O(∆3/2

δ2 ).

Finally, we derive the asymptotic expression for the case δ/
√

∆ ≡ r, while δ/
√

∆ → r can be
handled similarly. We have

Φϑ(δ,∆) = 2(Fϑ2
(0,∆)− Fϑ2

(δ,∆))e−κδ/2 + Fϑ2
(0,∆)(1 + e−κδ − 2e−κδ/2)

= 2(Fϑ2
(0,∆)− Fϑ2

(δ,∆))e−κδ/2 +O(∆3/2)

and since 1− cos(0) = 0, Lemma A.9 yields

Fϑ2
(0,∆)− Fϑ2

(r
√

∆,∆) =
∑
`≥1

1− e−π
2ϑ2`

2∆

π2ϑ2`2

(
1− cos

(
π`r
√

∆
))

=
√

∆

∫ ∞
0

1− e−π
2ϑ2z

2

π2ϑ2z2
(1− cos (πrz)) dz +O(∆3/2).

It remains to compute the integral. By substituting r̃ = r/
√
ϑ2 we can pass to∫ ∞

0

1− e−π
2ϑ2z

2

π2ϑ2z2
(1− cos (πrz)) dz =

1

π
√
ϑ2

(
h1(r̃)− h2(r̃)

)
where

h1(r̃) =

∫ ∞
0

1− cos(r̃z)

z2
dz, h2(r̃) =

∫ ∞
0

e−z
2 1− cos(r̃z)

z2
dz.

To compute h1, note that S(z)+ cos(z)−1
z is an antiderivative of 1−cos(z)

z , where S(z) =
∫ z

0
sin(h)
h dh

is the sine integral. Consequently, a substitution and limz→∞ S(z) = π/2 yields

h1(r̃) = r̃

∫ ∞
0

1− cos(z)

z2
dz =

πr̃

2
.

To treat h2, note that h2(0) = h′2(0) = 0 and hence, h2(r̃) =
∫ r̃

0

∫ s
0
h′′2(u) du ds. Now, plugging in

h′′2(r̃) =
∫∞

0
e−z

2

cos(r̃z) dz =
√
π

2 e−r̃
2/4 and integrating by parts yields

h2(r̃) =

√
π

2

∫ r̃

0

∫ s

0

e−u
2/4 du =

√
πr̃

∫ r̃/2

0

e−u
2

du+
√
π
(

e−r̃
2/4 − 1

)
.

The claim thus follows from

h1(r̃)− h2(r̃) =
πr̃

2

(
1− 2√

π

∫ r̃/2

0

e−u
2

du

)
+
√
π
(

1− e−r̃
2/4
)

= r̃
√
π

∫ ∞
r̃/2

e−u
2

du+
√
π
(

1− e−r̃
2/4
)
.

Proof of Theorem 3.7. Asymptotic normality follows just like in the proof of Theorem 3.3. Using
the notation from the proof of the latter theorem (with space increments replaced by double
increments) we have

Var(V) =
2

M2N2Φ2
ϑ(δ,∆)

(v1 + v2 + v3 + v4).

To determine the asymptotic variances, we have to treat the three different sampling regimes
separately.
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Case δ/
√

∆→ 0. By Lemmas A.1 and A.2 we have

Var(D̃ki)
2 =

σ4

ϑ2
2

e−κδ · δ2 + o(δ2), Cov(D̃ki, D̃k(i+1))
2 =

σ4

4ϑ2
2

e−κδ · δ2 + o(δ2)

as well as

Cov(D̃ki, D̃kj)
2 = o

(
δ2

|i− j|5

)
, |i− j| ≥ 2,

Cov(D̃ki, D̃lj)
2 = O

(
δ4

(|i− j|+ 1)4

(
M2

(k − l)2
∧ 1

∆

))
, k 6= l.

The latter covariances are negligible for the asymptotic variance since
∑
k≤M (M

2

k2 ∧ 1
∆ ) . M√

∆
,

cf. the proof of Theorem 3.3. Inserting Φ2
ϑ(δ,∆) = e−κδ

ϑ2
2
δ2 + o(δ2) from Proposition 3.5 yields the

claim.
Case δ/

√
∆→∞. By Lemmas A.1 and A.3 we have

Var(D̃ki)
2 =

4σ4

πϑ2
e−κδ ·∆ + o(∆), Cov(D̃ki, D̃(k+1)i)

2 =
σ4

πϑ2
e−κδ ·∆ + o(∆).

From
√
J − 1 +

√
J + 1− 2

√
J = O(J−3/2) and

√
∆/δ → 0 it follows for J = |i− j| ≥ 1 that

Cov(D̃ki, D̃kj)
2 =

σ4

πϑ2

(√
J − 1 +

√
J + 1− 2

√
J
)2

e−κδ ·∆ + o

(
∆

J3/2

)
+O(∆3),

Cov(D̃ki, D̃(k+1)j)
2 =

σ4

4πϑ2

(√
J − 1 +

√
J + 1− 2

√
J
)2

e−κδ ·∆ + o

(
∆

J3/2

)
+O(∆3).

Note that the O(∆3)-term is negligible for the asymptotic variance since

N2M∆3 = MN∆ ·N∆2 = MN∆ · T
M
·M
√

∆ ·
√

∆ = o(NM∆).

The remaining covariances do not contribute to the asymptotic variance since for |k − l| ≥ 2 we
have

Cov(D̃ki, D̃lj)
2 = O

(
∆δ4

(J + 1)3

)
+O

(
∆2

(J + 1)2

M2

(k − l)2

)
.

The claim is now proved by inserting Φ2
ϑ(δ,∆) = 4

πϑ2
e−κδ∆+o(∆) and noting that for the function

g(j) = (
√
j − 1 +

√
j + 1− 2

√
j)2 we have

1

N

N−1∑
i,j=0

i 6=j

g(|i− j|) =
2

N

N−1∑
i=1

i∑
j=1

g(j) −→ 2
∑
j≥1

g(j), N →∞

by Cesàro summation.
Case δ/

√
∆ ≡ r ∈ (0,∞). For f : R2 → R define

D2
xf(x, y) := f(x+ 2, y) + f(x, y)− 2f(x+ 1, y),

D2
yf(x, y) := f(x, y + 2) + f(x, y)− 2f(x, y + 1).

We show that the asymptotic variance is given by C(r/
√
ϑ2)σ4 where

C(h) :=
2

Λ2
0,0(h)

∑
j,l∈Z

Λ2
j,l(h), Λj,l(h) :=

(
D2
xD

2
yGh

)
(|j| − 1, |l| − 1) (25)
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and

Gh(j, l) :=
√
|j|H

(
h|l|√
|j|

)
1{j 6=0}, H(x) :=

1

2
√
π

(
exp

(
−x

2

4

)
− x

∫ ∞
x/2

e−z
2

dz

)
. (26)

Define

ξ∆
i−j,k−l :=

{
2DδF|i−j|,∆(0), l = k,

D2
δF|i−j|,∆((|k − l| − 1)δ), l 6= k,

with δ = r
√

∆ such that Lemma A.1 reads as

Cov(D̃ik, D̃ik) = −σ2e−κδ/2ξ∆
i−j,k−l +O

(
∆3/2

(J + 13/2)

)
. (27)

Since each term ξ∆
J,L is a Riemann sum multiplied by

√
∆, we have for J, L ≥ 0

lim
∆→0

∆−1/2ξ∆
J,L = −

{
2(Ψr(J, 1))−Ψr(J, 0)), L = 0,

Ψr(J, L− 1) + Ψr(J, L+ 1)− 2Ψr(J, L), L ≥ 1,

where

Ψr(J, L) :=


∫ ∞

0

1− e−π
2ϑ2z

2

π2ϑ2z2
cos (πrLz) dz, J = 0,∫ ∞

0

2e−Jπ
2ϑ2z

2 − e−(J+1)π2ϑ2z
2 − e−(J−1)π2ϑ2z

2

2π2ϑ2z2
cos (πrLz) dz, J ≥ 1.

By symmetry of the cosine,

lim
M,N→∞

∆−1/2ξJ,L =−
(

Ψr(J, |L| − 1) + Ψr(J, |L|+ 1)− 2Ψr(J, |L|)
)

also holds for negative L. Hence, we can write for all L ∈ Z and J ≥ 0 and with G from (26)

Ψr(J, L) =

∫ ∞
0

2e−Jπ
2ϑ2z

2 − e−(J+1)π2ϑ2z
2 − e−|J−1|π2ϑ2z

2

2π2ϑ2z2
cos (πrLz) dz

=
(
Gr/
√
ϑ2

(J + 1, L) +Gr/
√
ϑ2

(J − 1, L)− 2Gr/
√
ϑ2

(J, L)
)
/
√
ϑ2,

where the last equality follows from

Gr/
√
ϑ2

(j, l)
√
ϑ2

=

∫ ∞
0

1− e−|j|π
2ϑ2z

2

2π2ϑ2z2
cos (πrlz) dz, j, l ∈ Z,

which may be shown analogously to the calculation of ψϑ2
(r). Consequently, for all J ∈ {1 −

N, . . . , N − 1} and L ∈ {1−M, . . . ,M − 1} we have

lim
M,N→∞

∆−1/2ξJ,L = −ΛJ,L(r/
√
ϑ2)/

√
ϑ2.

The usual Riemann sum argument yields FJ,∆(0) .
√

∆
(J+1)3/2 .

√
∆

(J+1) for J ≥ 0 and Lemma A.3

(more precisely (44)) yields FJ,∆(Lδ) . ∆
(J+1)Lδ .

√
∆

(J+1)(L+1) for J ∈ N0 and L ≥ 1. We obtain

∆−1/2ξ∆
J,L = O

(
1

(|J |+ 1)(|L|+ 1)

)
, J, L ∈ Z. (28)

Therefore,

Var

(
1√

NM∆

N−1∑
i=0

M−1∑
k=0

D̃2
ik

)
=

2σ4

NM∆

N−1∑
i,j=0

M−1∑
k,l=0

(ξ∆
i−j,k−l)

2 + o(1).
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By dominated convergence and taking Cesàro limits twice, we conclude

lim
M,N→∞

Var

(
1√

NM∆

N−1∑
i=0

M−1∑
k=0

D̃2
ik

)
= lim
M,N→∞

2σ4

ϑ2NM

N−1∑
i,j=0

M−1∑
k,l=0

Λ2
i−j,k−l(r/

√
ϑ2)

=
2σ4

ϑ2

∑
i,k∈Z

Λ2
i,k(r/

√
ϑ2).

Since ψϑ2
(r) = −Λ0,0(r/

√
ϑ2)/
√
ϑ2, we have Φ2

ϑ(δ,∆) = e−κδΛ2
0,0(r/

√
ϑ2)/ϑ2 · ∆ + o(∆) and

dividing by limM,N→∞∆−1Φ2
ϑ(δ,∆) = Λ2

0,0(r/
√
ϑ2)/ϑ2 yields the claimed asymptotic variance.

7.2. Proofs for the estimators

Propositions 4.1 and 4.2 follow immediately from the central limit theorems for the realized
quadratic variations and the delta method. Before proving Theorem 4.3, we introduce some no-
tation that will be used throughout the proof and we state the asymptotic covariance matrix
explicitly. Recall the definition of Λi,k(·) from (25) and for any i, k ∈ Z let

Arik := −Λik(r/
√
ϑ2)/

√
ϑ2, Brik := 2Arik +Ar(i−1)k +Ar(i+1)k, Crik := Arik +Ar(i−1)k,

Ar :=
∑
i,k∈Z

(Arik)2, Br :=
∑
i,k∈Z

(Brik)2, Cr :=
∑
i,k∈Z

(Crik)2.

In terms of

H(x) :=
4x√
π

(
1− e−x

2

+ 2x

∫ ∞
x

e−z
2

dz

)
, H ′(x) =

4√
π

(
1− e−x

2

+ 4x

∫ ∞
x

e−z
2

dz

)
,

x ≥ 0, we have ψϑ2
(r) = 1

rH
(

r
2
√
ϑ2

)
and ∂

∂ϑ2
ψϑ2

(r) = −H ′
(

r
2
√
ϑ2

)
1

4ϑ
3/2
2

. Denoting ri := r/
√
i, let

giη(z) := e−κz

(
1

ri
H
( ri

2
√
ϑ2

)
,− σ2

4ϑ
3/2
2

H ′
( ri

2
√
ϑ2

)
,−z σ

2

ri
H
( ri

2
√
ϑ2

))>
, hiη(z) := e−κzgiη(z)

for i = 1, 2 and z ∈ [b, 1− b], where giη is the gradient of η 7→ f iη(z). Moreover, we write 〈f, g〉b :=
1

1−2b

∫ 1−b
b

f(x)g(x)dx for f, g ∈ L2([b, 1−b]). We will prove that the asymptotic covariance matrix
equals

Ωrη := V −1UV −1, (29)

where U = U(η) and V = V (η) are defined via

Uij = 4σ4
(

2Ar〈(h1
η)i, (h

1
η)j〉b +Br〈(h2

η)i, (h
2
η)j〉b +

√
2Cr

(
〈(h1

η)i, (h
2
η)j〉b + 〈(h2

η)i, (h
1
η)j〉b

))
,

Vij = 2
(
〈(g1

η)i, (g
1
η)j〉b + 〈(g2

η)i, (g
2
η)j〉b

)
, i, j ∈ {1, 2, 3}.

Proof of Theorem 4.3. The proof uses the classical theory on minimum contrast estimators, see
e.g. [9]. In particular, the mean value theorem yields

−K̇N,M (η) = K̇N,M (η̂)− K̇N,M (η) =

(∫ 1

0

K̈N,M (η + τ(η̂ − η)) dτ

)
(η̂ − η)

as soon as [η̂, η] ⊂ H, where K̇N,M and K̈N,M denote gradient and Hessian with respect to η,
respectively. In the sequel, we will verify that KN,M is associated with the contrast function

K(η, η̃) = K1(η, η̃) +K2(η, η̃), where Ki(η, η̃) =
1

1− 2b

∫ 1−b

b

(f iη(z)− f iη̃(z))2 dz,
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(Steps 1-2), show consistency of η̂ (Step 3), prove asymptotic normality of K̇N,M (η) with co-

variance matrix U (Steps 4-7) and deduce stochastic convergence of
∫ 1

0
K̈N,M (η + τ(η̂ − η)) dτ

to the invertable matrix V (Steps 8-9). The result then follows from Slutsky’s Lemma and

−
√
MNV (η)−1K̇N,M (η)

D−→ N (0,Ωrη).
Step 1. We show that K is a contrast function in the sense that for each η the function η̃ 7→

K(η, η̃) attains its unique minimum in η̃ = η. Since f iη(·) is continuous it is sufficient to show that
(f1
η , f

2
η ) = (f1

η̃ , f
2
η̃ ) if and only if η = η̃. Clearly, (f1

η , f
2
η ) = (f1

η̃ , f
2
η̃ ) holds if and only if κ = κ̃ and

σ2ψϑ2
(ri) = σ̃2ψϑ̃2

(ri) for i = 1, 2. Therefore, in order to prove identifyability, it is sufficient to
show that ϑ2 7→ ψϑ2

(r1)/ψϑ2
(r2) is injective, which in turn is implied by strict monotonicity of

H(r1z)/H(r2z) in z > 0. We show that the corresponding derivative or, equivalently, the function
z 7→ H ′(r1z)H(r2z)r1 − H ′(r2z)H(r1z)r2, is strictly negative for all z > 0: For x > 0 define

p(x) =
∫∞
x

e−z
2

dz and q(x) = 1− e−x
2

. A simple calculation shows that

H ′(r1z)H(r2z)r1 −H ′(r2z)H(r1z)r2 =
32

π
r1r2z

(
p(r1z)q(r2z)r1z − p(r2z)q(r1z)r2z

)
which is strictly negative if we can show that p(b)q(a)b− p(a)q(b)a < 0 for all 0 < a < b. Now, a

substitution yields p(x) = x
∫∞

1
e−x

2t2 dt and q(x) = 2x2
∫ 1

0
se−x

2s2 ds and therefore,

p(b)q(a)b− p(a)q(b)a = 2a2b2
∫ 1

0

∫ ∞
1

s
(

e−b
2t2−a2s2 − e−a

2t2−b2s2
)
dt ds < 0

follows from negativity of the integrand.
In the sequel we follow the series of arguments from Theorem 5.1 of [3].

Step 2. K is the contrast function associated with the process KN,M in the sense that KN,M (η̃)
Pη−→

K(η, η̃), N,M →∞, for all η̃ ∈ H: Recall from the proof of Theorem 3.7 that for i, j, k, l ∈ N we
have

Cov(Dik, Djl) = σ2e−κ
zk+zl

2 ξ∆
i−j,k−l +O

(
∆3/2

(|i− j|+ 1)3/2

)
, (30)

ξ∆
i,k = O

( √
∆

(|i|+ 1)(|k|+ 1)

)
(31)

and limN,M→∞∆−1/2ξ∆
i−j,k−l = Arik = −Λik(r/

√
ϑ2)/
√
ϑ2. Now, in terms of

rik(η) = D2
ik/
√

∆− f1
η (zk), Rk(η) =

1

N

N−1∑
i=0

rik(η)

we can write

K1
N,M (η̃) =

1

M

M−1∑
k=0

(
f1
η (zk)− f1

η̃ (zk)
)2

+
2

M

M−1∑
k=0

Rk(η)
(
f1
η (zk)− f1

η̃ (zk)
)

+
1

M

M−1∑
k=0

R2
k(η). (32)

Clearly, the first summand converges to K1(η, η̃). To prove that the other two summands are
negligible, note that

E(rikrjl) = E
(

(D2
ik/
√

∆−E(D2
ik/
√

∆) +O(∆))(D2
jl/
√

∆−E(D2
jl/
√

∆) +O(∆))
)

=
1

∆
Cov(D2

ik, D
2
jl) +O(∆2)

=
2

∆
Cov(Dik, Djl)

2 +O(∆2) = O
(

1

(|i− j|+ 1)2(|k − l|+ 1)2

)
+O(∆2).
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By Markov’s inequality and boundedness of φ(·) = f1
η (·)− f1

η̃ (·), we have for any ε > 0,

P

(∣∣∣∣∣ 1

M

M−1∑
k=0

Rkφ(zk)

∣∣∣∣∣ ≥ ε
)
≤ 1

ε2M2

M−1∑
k,l=0

|E (RkRl)φ(zk)φ(zl)| .
1

M2

M−1∑
k,l=0

|E (RkRl) |

≤ 1

M2N2

M−1∑
k,l=0

N−1∑
i,j=0

|E (rikrjl) | = o(1),

hence, the second summand in (32) converges to zero in probability. For the third summand the
same conclusion holds since

E

(
1

M

M−1∑
k=0

R2
k

)
=

1

M

M−1∑
k=0

E
(
R2
k

)
=

1

MN2

M−1∑
k=0

N−1∑
i,j=0

E (rikrjk) = o(1)

and L1-convergence implies convergence in probability. K2
N,M can be handled similarly by consid-

ering a decomposition into two sums of non-overlapping increments:

R̄k(η) = 2

 1

2N

∑
i≤N−1
i even

r̄ik(η) +
1

2N

∑
i≤N−1
i odd

r̄ik(η)


where r̄ik = D̄2

ik/
√

2∆− f2
η (zk).

Step 3. Consistency of η̂ follows from uniform convergence in probability of the contrast process.
Since KN,M and K are continuous, this in turn follows from

∀ε > 0 : lim
h→0

lim sup
M,N→∞

Pη

(
sup

|η1−η2|<h
|KN,M (η1)−KN,M (η2)| ≥ ε

)
= 0 :

By compactness of the parameter space, for each a > 0 there exists h > 0 such that ‖f iη1
−

f iη2
‖∞, ‖(f iη1

)2 − (f iη2
)2‖∞ ≤ a for all |η1 − η2| < h. Therefore,

|K1
N,M (η1)−K1

N,M (η2)|

≤ 2

M

M−1∑
k=0

(
1

N
√

∆

N−1∑
i=0

D2
ik

)
|f1
η2

(zk)− f1
η1

(zk)|+ 1

M

M−1∑
k=0

|f1
η1

(zk)2 − f1
η2

(zk)2|

≤ a

(
2

M

M−1∑
k=0

(
1

N
√

∆

N−1∑
i=0

D2
ik

)
+ 1

)

and hence,

lim sup
M,N→∞

Pη

(
sup

|η1−η2|<h
|K1

N,M (η1)−K1
N,M (η2)| ≥ ε

)

≤ lim sup
M,N→∞

1

ε
E

(
sup

|η1−η2|<h
|K1

N,M (η1)−K1
N,M (η2)|

)

≤ lim sup
M,N→∞

a

ε
E

(
2

M

M−1∑
k=0

(
1

N
√

∆

N−1∑
i=0

D2
ik

)
+ 1

)
.
a

ε
.

The same argument applies to K2
N,M and the result follows.
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Step 4. Let F1, F2 ∈ C1([0, 1]) and (ak)k∈Z be absolutely summable. Then we can write

1

n

n−1∑
k,l=0

ak−lF1(zk)F2(zl) =
a0

n
(F1(z0)F2(z0) + · · ·+ F1(zn−1)F2(zn−1))

+
a1

n
(F1(z1)F2(z0) + · · ·+ F1(zn−1)F2(zn−2))

+
a−1

n
(F1(z0)F2(z1) + · · ·+ F1(zn−2)F2(zn−1)) + · · ·

and, consequently, we have 1
n

∑n−1
k,l=0 ak−lF1(zk)F2(zl) → 〈F1, F2〉b ·

∑
k∈Z ak, n → ∞, by domi-

nated convergence.
Step 5. We show that the asymptotic covariance matrix of

√
NMK̇N,M (η) is given by U : We have

K̇N,M (η) = K̇1
N,M (η) + K̇1

N,M (η) as well as

K̇1
N,M (η) = − 2

M

M−1∑
k=0

(
1

N
√

∆

N−1∑
i=0

D2
ik − f1

η (zk)

)
g1
η(zk)

and similarly for K̇2
N,M (η). From Isserlis’ theorem, (30) and D̄ik = Dik +D(i+1)k it follows that

Cov(D2
ik, D

2
jl) = 2

(
σ2e−

zk+zl
2 ξ∆

i−j,k−l +O
(

∆3/2

(|i− j|+ 1)3/2

))2

,

Cov(D̄2
ik, D̄

2
jl) = 2

(
σ2e−

zk+zl
2 (2ξ∆

i−j,k−l + ξ∆
i−j−1,k−l + ξ∆

i−j+1,k−l) +O
(

∆3/2

(|i− j|+ 1)3/2

))2

,

Cov(D2
ik, D̄

2
jl) = 2

(
σ2e−

zk+zl
2 (ξ∆

i−j,k−l + ξ∆
i−j−1,k−l) +O

(
∆3/2

(|i− j|+ 1)3/2

))2

.

Now, for any 1 ≤ e, f ≤ 3, the first summand in the expansion

Cov((K̇N,M )e, (K̇N,M )f ) =Cov((K̇1
N,M )e, (K̇

1
N,M )f ) + Cov((K̇2

N,M )e, (K̇
2
N,M )f )

+ Cov((K̇1
N,M )e, (K̇

2
N,M )f ) + Cov((K̇2

N,M )e, (K̇
1
N,M )f ) (33)

is given by

Cov((K̇1
N,M )e, (K̇

1
N,M )f ) =

4

M2N2∆

N−1∑
i,j=0

M−1∑
k,l=0

Cov(D2
ik, D

2
jl) (g1

η)e(zk) (g1
η)f (zl).

Like in the proof of Theorem 3.7, the covariances may be replaced by their asymptotic expressions
due to dominated convergence. Further, using (hiη)e(z) = e−κz(giη)e(z) and Step 4, we have

MN · Cov((K̇1
N,M )e, (K̇

1
N,M )f )→ 8σ4

∑
i,k∈Z

(Ari,k)2 · 〈(h1
η)e, (h

1
η)f 〉b, M,N →∞.

Analogously,

MN · Cov((K̇2
N,M )e, (K̇

2
N,M )f )→ 4σ4

∑
i,k∈Z

(Bri,k)2 · 〈(h2
η)e, (h

2
η)f 〉b, M,N →∞,

MN · Cov((K̇1
N,M )e, (K̇

2
N,M )f )→ 4

√
2σ4

∑
i,k∈Z

(Cri,k)2 · 〈(h1
η)e, (h

2
η)f 〉b, M,N →∞,

and insertion into (33) yields the claimed asymptotic covariance matrix.
Step 6. U is strictly positive definite: It is sufficient to show that Cr <

√
ArBr, then it follows for
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any α ∈ R3 \ {0} and Hi
α =

∑3
j=1 αj(h

i
η)j , i = 1, 2 that

α>Uα = 4σ4
(

2Ar‖H1
α‖2b +Br‖H2

α‖2b + 2
√

2Cr〈H1
α, H

2
α〉b
)

> 4σ4
(

2Ar‖H1
α‖2b +Br‖H2

α‖2b + 2
√

2ArBr〈H1
α, H

2
α〉b
)

= 8σ4
∥∥∥√2ArH

1
α +
√
BrH

2
α

∥∥∥2

b
≥ 0,

where we may assume 〈H1
α, H

2
α〉b < 0 since otherwise α>Uα > 0 follows immediately from the first

equality. Now, consider (Ari,k) and (Bri,k) as elements in the Hilbert space `2 of square summable

sequences indexed by Z × Z. Clearly, Ar = ‖(Ari,k)‖2`2 , Br = ‖(Bri,k)‖2`2 and a direct calculation

shows that Cr = 〈(Ari,k), (Bri,k)〉`2 . Thus, by the Cauchy-Schwarz inequality we have Cr ≤
√
ArBr

and equality is ruled out by the fact that (Ari,k) and (Bri,k) are not linearly dependent.

Step 7. We show
√
NMK̇1

N,M (η)
D−→ N (0, U) under Pη. In view of the Cramér-Wold device, we

have to prove
√
NMα>K̇N,M

D−→ N (0, α>Uα) for any α ∈ R3. Let sik and Zik be given by the

relation sikZ
2
ik = − 2αT ḟ1

η (zk)
√
NM∆

D2
ik where sik ∈ {−1, 1} is deterministic. Analogously, define s̄ik and

Z̄2
i,k. Then, ZN,M = (Zik, Z̄j,l)i,j,k,l is a Gaussian vector and from Proposition 3.5 it follows that

√
NMα>K̇N,M (η) = SN,M −E(SN,M ) + o(1)

where SN,M =
∑N−1
i=0

∑M−1
k=0 sikZ

2
ik+

∑N−1
i=0

∑M−2
k=0 s̄ikZ̄

2
ik. From Steps 5 and 6 we can deduce that

Var (SN,M ) → α>Uα > 0, N,M → ∞ and thus, in view of criterion (7), asymptotic normality
follows if the absolute row sums of the covariance matrix of ZN,M vanish uniformly. This in turn
is a simple consequence of (30) and (31).

Step 8. In order to prove
∫ 1

0
K̈N,M (η+ τ(η̂− η)) dτ

Pη−→ V (η), we show K̈N,M (ηN,M )
Pη−→ V (η) for

any consistent estimator ηN,M of η: We have

K̈1
N,M (η) =

2

M

M−1∑
k=0

g1
η(zk)g1

η(zk)> − 2

M

M−1∑
k=0

(
1

N
√

∆

N−1∑
i=0

D2
ik − f1

η (zk)

)
f̈1
η (zk) .

and analogously for K̈2
N,M . By using Pη(ηN,M ∈ H)→ 1 and the uniform continuity of f iη(z) and

its derivatives in the parameter (z, η) ∈ [0, 1] × H, it is straightforward to show K̈N,M (ηN,M ) −
K̈N,M (η)

Pη−→ 0. Now, write V = 2(V 1 + V 2) where V i is the Gram matrix of the functions
{(giη)1, (giη)2, (giη)3} with respect to the inner product 〈·, ·〉b, i.e. V ief = 〈(giη)e, (g

i
η)f 〉b, 1 ≤ e, f ≤ 3.

Clearly, first summand of K̈1
N,M (η) converges to 2V 1 while the calculations of Step 2 show that

the second summand converges to 0 in probability. The same reasoning holds for K̈2
N,M (η) and

the result follows.
Step 9. V is strictly positive definite: Being Gram matrices, V 1 and V 2 are positive semi-definite
and consequently, the same holds for V . Clearly, the only way V can be singular is if there exists

α ∈ R3 such that 0 = α>V iα =
∥∥∑3

e=1 αe(g
i
η)e
∥∥2

b
holds for both i ∈ {1, 2}. From the particular

form of the functions (giη)e it is apparent that this would imply that α1ψϑ2(ri) + α2σ
2 ∂ψϑ2

(ri)

∂ϑ2
=

α3 = 0 for both i ∈ {1, 2}, which is impossible.

Proof of Proposition 4.5. We have to prove

∀ε > 0 ∃C > 0 : lim sup
N,M→∞

Pη

(√
M3 ∧N3/2‖η̂v,w − η‖ ≥ C

)
≤ ε.

Similar calculations as in Theorem 4.3 show that Steps 1-3 and 8-9 of the corresponding proof
remain valid. Consequently, we have the representation −K̇N,M (η) = VN,M (η̂v,w, η)(η̂v,w − η),
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where VN,M (η̃, η) =
∫ 1

0
K̈N,M (η+ τ(η̃− η)) dτ as well as VN,M (η̂v,w, η)

Pη−→ V (η) where V (η) is an
invertible deterministic matrix. In particular, the set

AN,M =
{
VN,M (η̂v,w, η) is invertible with ‖VN,M (η̂v,w, η)−1‖2 ≤ ‖V (η)−1‖2 + 1

}
satisfies Pη(AN,M )→ 1. Further, K̇N,M (η) can be written as an average of expressions of the type

K̇N,M from Theorem 4.3 so that the calculations of Step 5 show together with the Cauchy-Schwarz

inequality that Eη

(
‖K̇N,M (η)‖2

)
= O((M3 ∧N3/2)−1). Now,

Pη

(√
M3 ∧N3/2‖η̂v,w − η‖ ≥ C

)
≤ Pη

({√
M3 ∧N3/2‖η̂v,w − η‖ ≥ C

}
∩AN,M

)
+ Pη(Ac

N,M ).

The second summand becomes arbitrarily small as M,N →∞. For the first summand, let γ(η) =
‖V (η)−1‖2 + 1, then it follows from Markov’s inequality that

Pη

(
{
√
M3 ∧N3/2‖η̂v,w − η‖ ≥ C} ∩AN,M

)
= Pη

(
{
√
M3 ∧N3/2‖VN,M (η̂v,w, η)−1K̇N,M (η)‖ ≥ C} ∩AN,M

)
≤ Pη

(
{
√
M3 ∧N3/2‖K̇N,M (η)‖ ≥ C

γ(η)
} ∩AN,M

)
≤ Pη

(√
M3 ∧N3/2‖K̇N,M (η)‖ ≥ C

γ(η)

)
≤ (M3 ∧N3/2)Eη(‖K̇N,M (η)‖2)

γ(η)2

C2
.

1

C2
.

7.3. Proofs of the lower bounds

Before we prove Theorem 5.1, we verify its ingredients Proposition 5.3 and Proposition 5.5.

Proof of Proposition 5.3. By setting a = k2, µ = π2ϑ2 and ν2 = σ2

π2ϑ2
in Lemma A.4 and using

independence of (u`, ` ∈ N) we get the Fisher information matrix I for the parameters (µ, ν2),
namely

I11 = N

M∑
`=1

`4∆2(e−4µ`2∆ + e−2µ`2∆)

(1− e−2µ`2∆)2
= N

M∑
`=1

g11(`
√

∆), g11(x) :=
x4(e−4µx2

+ e−2µx2

)

(1− e−2µx2)2
,

I12 = N

M∑
`=1

`2∆e−2µ`2∆

ν2(1− e−2µ`2∆)
= N

M∑
`=1

g12(`
√

∆), g12(x) :=
x2e−2µx2

ν2(1− e−2µx2)
,

I22 =
(N + 1)M

2ν4
.

The Fisher information matrix J = JM,N for the parameters (σ2, ρ2) can be computed via the
change of variables formula J = A>IA where

A =

(
π2/ρ2 −π2σ2/ρ4

0 1/π2

)
is the Jacobian of the function transforming (σ2, ρ2) to (µ, ν2). Hence, the diagonal entries of J
are given by

J11 =
π4

ρ4
I11, J22 =

π4σ4

ρ8
I11 −

2σ2

ρ4
I12 +

1

π4
I22.

If M
√

∆ is bounded away from 0, then I11 can be interpreted as a Riemann sum. We obtain

J11 h I11 h N3/2

∫ M
√

∆

0

g11(x) dx h N3/2.
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On the other hand, if M
√

∆→ 0, it follows from Lemma A.10 and g11(0) = 1
2µ2 = ρ4

2π4σ4 , g12(0) =
1

2µν2 = 1
2σ2 as well as g′11(0) = g′12(0) = 0 that

I11 = N3/2(M
√

∆g11(0) +
M2∆

2
g′11(0) +O(M3∆3/2)) =

ρ4

2π4σ4
NM +O(M3),

I12 = N3/2((M
√

∆g12(0) +
M2∆

2
g′12(0) +O(M3∆3/2))) =

NM

2σ2
+O(M3),

I22 =
π4

2ρ4
MN +O(M).

Therefore, the leading terms in J22 cancel and consequently, J22 = O(M3).

Proof of Proposition 5.5. For a discrete time, centered, stationary Gaussian process (Zj)j∈Z whose
covariance function depends on an unknown parameter θ ∈ R we denote the Fisher information
of a sample (Z0, . . . , Zn−1) with respect to θ by In(Z). A particularly useful result to calculate
In(Z) for the above class of Gaussian processes is given by Whittle [32]:

lim
n→∞

1

n
In(Z) =

1

4π

∫ π

−π

(
∂
∂θφθ(ω)

φθ(ω)

)2

dω, n→∞, (34)

where φ(ω) =
∑
j∈ZE[Z0Zj ]e

−ijω, ω ∈ [−π, π], is the spectral density of Z.

Setting θ = π2ϑ2, (34) cannot be directly applied to the process Z = Ūk, for 1 ≤ k ≤ M − 1,
since Ūk arises from high-frequency increments of the continuous time process Uk. In this case,
the spectral density Φ∆

k of Ūk hinges on ∆ = 1/N and therefore, even for large N , IN (Ūk)/N is
not necessarily close to the asymptotic Fisher information defined in (34).

To circumvent this difficulty, consider the N -th order Fourier approximation to Φ∆
k :

ΦN,∆k (ω) =

N−1∑
j=1−N

E[Ūk(0)Ūk(j)]e−ijω ≥ 0, ω ∈ [−π, π]. (35)

Lemma A.6(i) verifies that ΦN,∆k is positive. Therefore, there exists a stationary Gaussian process

Yk = (Yk(j))j∈Z with spectral density ΦN,∆k . Clearly,

(Yk(j), . . . , Yk(j +N − 1)))
D
=
(
Ūk(0), . . . , Ūk(N − 1)

)
, j ∈ N0,

and (Yk(j), . . . , Yk(j +N − 1))) is independent of (Yk(h), . . . , Yk(h+N − 1))) whenever |j − h| >
2N . Consequently, it is possible to extract L independent copies of

(
Ūk(0), . . . , Ūk(N − 1)

)
from

a sample (Yk(0), . . . , Yk(2NL− 1)) for any L ∈ N. Now, using the fact that a statistic never has
larger information than the data from which it is constructed (cf. [16, Theorem I.7.2]) yields

L · IN (Ūk) ≤ I2NL(Yk). (36)

For fixed ∆ = 1/N we can now apply Whittle’s formula (34) for L → ∞: For each ε > 0 we can
choose L ∈ N such that

I2NL(Yk) ≤ 2NL(1 + ε)Ik, (37)

where

I N,∆
k :=

1

4π

∫ π

−π
S2(ω) dω, S :=

∂

∂ϑ2
log ΦN,∆k .

By combining (36) and (37) we get IN (Ūk) ≤ 2NIk. Proving below that uniformly in k =
0, . . . ,M − 1

I N,∆
k .M2∆ log

1

M2∆
, (38)

we obtain IN (Ūk) .M2 log 1
M2∆ and the results follows by independence of the processes Ū1, . . . , ŪM−1.
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In order to verify (38), we only have to consider the integral over [0, π] by symmetry. From
Lemma A.6 we can deduce for ω ≥ k2∆

S(ω) .

{
M
√

∆√
ω
, ω ≥M2∆

1, ω ∈ [k2∆,M2∆]
implying

∫ π

k2∆

S2(ω) dω .M2∆ log
1

M2∆
.

For ω ≤ k2∆, Lemma A.6 gives S(ω) . ( ω2

k4∆2 + k2e−θk
2

)/( ω2

k4∆2 + e−θk
2

). Since

∫ 1

0

dω

(ω2 + e−θk2)2
≤
∫ e−θk

2/2

0

1

e−2θk2 dω +

∫ 1

e−θk2/2

1

ω4
dω . exp

(
3

2
θk2

)
,

a substitution yields

∫ k2∆

0

S2(ω) dω . k2∆

∫ 1

0

(
ω2 + k2e−θk

2

ω2 + e−θk2

)2

dω .M2∆.

We can now conclude the main lower bound.

Proof of Theorem 5.1. The proof of the lower bound relies on the fact that if (Pγ)γ∈G is a dom-
inated family of distributions with a convex parameter space G ⊂ R, then the Hellinger dis-
tance H can be bounded in terms of the Fisher Information J : Let ν be a dominating measure,
p(·, γ) = dPγ/dν and g =

√
p. Then, as shown in [16, Theorem I.7.6], Jensen’s inequality yields

H2(Pγ , Pγ+h) =

∫
(g(x, γ)− g(x, γ + h))2 ν(dx) ≤ h2

∫ ∫ 1

0

∂g

∂γ
(x, γ + sh)2 ds ν(dx)

=
h2

4

∫ 1

0

∫ (
∂

∂θ
log p(x, γ + sh)

)2

Pγ+sh(dx) ds =
h2

4

∫ 1

0

J(γ + sh) ds.

Combining this bound of the Hellinger distance (in the setting of Theorem 5.1) with Theorem 2.2
by Tsybakov [30], it suffices that for each sampling regime there is a reparametrization (γ1, γ2)
of (σ2, ϑ2) such that the corresponding Fisher information satisfies JM,N (γ2) . r−2

M,N locally
uniformly. Inspection of the proofs of Propositions 5.3 and 5.5 shows that the bounds on the
Fisher information are indeed locally uniform.

(ii) Case M/
√
N & 1. For L ∈ N define the process XL via XL

t (y) =
∑L
`=1 u`(t)e`(y), t ≥

0, y ∈ [0, 1], and let XLN,M = {XL
ti(yk), i = 0, . . . , N − 1, k = 0, . . . ,M} as well as XN,M = X∞N,M .

Denoting the corresponding covariance matrices by ΣLN,M and ΣN,M and using the result of [10],

we can bound the total variation distance of the Gaussian distributions by TV(ΣN,M ,Σ
L
N,M ) ≤

3
2‖Σ

−1
N,M (ΣLN,M −ΣN,M )‖F ≤ 3

2‖Σ
−1
N,M‖F ‖ΣLN,M −ΣN,M‖F . Consequently, we can pick a sequence

LN,M → ∞ such that XLN,MN,M and XN,M are statistically equivalent in the sense of Le Cam and

it is sufficient to derive a lower bound for XLN,MN,M , or even {u`(ti), i ≤ N, ` ≤ LN,M}. Assuming
LN,M ≥M without loss of generality, for this observation scheme Proposition 5.3 yields under the
parametrization (σ2/ϑ2, σ

2):

JM,N (σ2) . N3/2 ∧ L3
N,M = N3/2 = r−2

N,M .

Case M/
√
N → 0. For b ∈ Q ∩ (0, 1/2) write b = p/q where p ∈ Z and q ∈ N such that yk =

pM+k(q−2p)
qM , k ≤ M, and consequently {yk, k = 0, . . . ,M} is a subset of {zk, k = 1, . . . , qM − 1}

where zk = k
qM . Now, qM

√
∆→ 0 and since q3M3 log

(
1

q2M2∆

)
.M3 log

(
1

M2∆

)
Proposition 5.5

implies under the parametrization (σ2/
√
ϑ2, ϑ2):

JM,N (ϑ2) .M3 log(
1

M2∆
) = r−2

N,M .
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(i) If min(M,N) remains finite and M/
√
N & 1, then N necessarily remains finite and the result

follows from (ii). On the other hand, if M/
√
N → 0, then M must remain finite. Like in the proof of

(ii), extend the set of spatial locations to {zk, k < qM} and consider the corresponding processes
Uk, k = 1, . . . , qM−1 from (19). A similar calculation as in the proof of Proposition 2.3 shows that
for any k < qM , the laws of the independent continuous processes {Uk(t), t ≤ 1} are absolutely

continuous for different parameter values (σ2, ϑ2) and (σ̃2, ϑ̃2) as long as σ2/
√
ϑ2 = σ̃2/

√
ϑ̃2 and

hence, consistent estimation of (σ2, ϑ2) based on continuous or discrete observations is impossible:

Note that the continuous spectral density of Uk is fk(u) = 1
2u2

∑
`∈Ik h(σ2,ϑ2)

(
`√
|u|

)
, u ∈ R,

where h(σ2,ϑ2) is defined in the proof of Proposition 2.3. Now, a Riemann sum midpoint approx-
imation, cf. Lemma A.9, shows that

f+
k (u) :=

1

2u2

∑
`≥0

h(σ2,ϑ2)

(k + 2M`√
u

)
=

1

2u2

(√
u

2M

∫ ∞
(k−M)/

√
u

h(σ2,ϑ2)(z) dz +O
( 1√

u

))

f−k (u) :=
1

2u2

∑
`≥0

h(σ2,ϑ2)

(2M − k + 2M`√
u

)
=

1

u2

(√
u

4M

∫ ∞
(M−k)/

√
u

h(σ2,ϑ2)(z) dz +O
( 1√

u

))
.

as u→∞. Since h(σ2,ϑ2) is symmetric around 0 we obtain

fk(u) = f+
k (u) + f−k (u) =

1

u2

(√
u

2M

∫ ∞
0

h(σ2,ϑ2)(z) dz +O
(

1√
u

))
from which equivalence follows as in Proposition 2.3.

7.4. Proofs for Section 2

Proof of Proposition 2.1. Due to (6) and the trigonometric identity

sin(α) sin(β) =
1

2
(cos(α− β)− cos(α+ β)) (39)

we have

Cov(Xt(x), Xt(y)) =
σ2

2π2ϑ2
e−

κ
2 (x+y)

∑
`≥1

1

`2 + Γ/π2
(cos(π`(y − x))− cos(π`(x+ y))).

The claimed formulas now follow by inserting the closed expressions

∑
`≥1

1

`2 + β
cos(π`x) =


−π cos(π

√
|β|(x−1))

2
√
|β| sin(π

√
|β|)

+ 1
2|β| , −1 < β < 0

π2(x−1)2

4 − π2

12 , β = 0
π cosh(π

√
β(x−1))

2
√
β sinh(π

√
β)
− 1

2β , β > 0

(40)

for x ∈ [0, 1] and again applying (39) and sinh(α) sinh(β) = 1
2 (cosh(α + β) − cosh(α − β)), re-

spectively. To prove the second statement we use the ansatz Z(x) = u(x)B(v(x)), u, v positive
and v non-decreasing, which is the general form of a Gaussian Markov process, cf. [24]. Com-

parison of covariance functions yields explicit expressions for u and v. Further, u(x)B(v(x))
(d)
=

u(x)
∫ x

0

√
v′(z) dB(z) for v(0) = 0 and the claimed semi-martingale representation follows from

Itô’s formula.

Proof of Proposition 2.3. The necessity of the conditions on the parameters follow from the fact
that (i) the parameter σ2/

√
ϑ2e−κx0 may be consistently estimated using time increments, see

[3], and (ii) the parameters σ2

ϑ2
and κ may be consistently estimated by computing the quadratic
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variation of the process x 7→ Xt(x) on two different sub-intervals of [0, 1] in view of Proposition
2.1.

It remains to prove sufficiency of the conditions on the parameters:
(i) is a simple consequence of [19, Proposition 1]: Set λ` = ϑ2(π2`2 + Γ) and λ̃` = ϑ2(π2`2 + Γ̃)

where Γ =
ϑ2

1

4ϑ2
2
− ϑ0

ϑ2
and Γ̃ =

ϑ2
1

4ϑ2
2
− ϑ̃0

ϑ2
. Then, absolute continuity follows from

∑
`≥1

(λ`−λ̃`)2

λ`
<∞.

Thanks to (i) and due to the one to one correspondence between Γ and ϑ0 we may assume
Γ = Γ̃ = 0 for the remainder of the proof.

(ii) follows from the fact that Cov(Xt0(x), Xt0(y)) only depends on
(
σ2

ϑ2
, κ
)

in view of the

Gaussianity of X.
For (iii) note that t 7→ Xt(x0) is a stationary Gaussian process with covariance function

ρ(t) = σ2
∑
k≥1

e−λkt

2λk
e2
k(x0).

Let

f(σ2,ϑ2)(u) =
1

2π

∫
e−iutρ(|t|) dt =

1

π

∫ ∞
0

cos(ut)ρ(t) dt =
σ2

2π

∑
`≥1

e2
`(x0)

λ2
` + u2

be the spectral density of t 7→ Xt(x0). By Theorem 17 and its preceding discussion in [15] it
suffices to show

∃r > 1 : lim
u→∞

urf(σ2,ϑ2)(u) ∈ (0,∞) and
f(σ2,ϑ2) − f(σ̃2,ϑ̃2)

f(σ2,ϑ2)
∈ L2(R).

To prove these statements, we may assume κ = 0 without loss of generality. Set h(σ2,ϑ2)(z) =
σ2

π(π4ϑ2
2z

4+1)
, z ∈ R. By Lemma A.9 (ii) we have for u→∞

f(σ2,ϑ2)(u) =
1

u2

∑
`≥1

h(σ2,ϑ2)

(
`√
u

)
sin2(π`x0) =

1

u2

(√
u

2

∫ ∞
0

h(σ2,ϑ2)(z) dz +O
(

1√
u

))
,

which proves the first condition. Now, if σ2/
√
ϑ2 = σ̃2/

√
ϑ̃2 then clearly

∫∞
0
h(σ2,ϑ2)(z) dz =∫∞

0
h(σ̃2,ϑ̃2)(z) dz and therefore, the second condition follows:

f(σ2,ϑ2)(u)− f(σ̃2,ϑ̃2)(u)

f(σ2,ϑ2)(u)
= O

(
1

u

)
, u→∞.

Appendix A: Remaining proofs and auxiliary results

A.1. Covariances of double increments

The following three lemmas are used to calculate the asymptotic variance of V. Recall the definition
of D̃ik from (23).

Lemma A.1. Let b ∈ (0, 1/2). For J ≥ 1 define

FJ,∆(z) =
∑
`≥1

2e−π
2ϑ2J`

2∆ − e−π
2ϑ2(J+1)`2∆ − e−π

2ϑ2(J−1)`2∆

2π2ϑ2`2
cos(π`z)

and F0,∆ = Fϑ2(· ,∆). Then, for J = |i− j|,

Cov(D̃ik, D̃jl) =− σ2e−κδ/2 ·

{
2DδFJ,∆(0) l = k

D2
δFJ,∆(yl − yk+1) l > k

+O

( √
∆δ2

(J + 1)3/2

)
.
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Proof. It immediately follows from the covariance structure Cov(u`(s), u`(t)) = σ2

2λ`
e−λ`|t−s|, s, t ≥

0, of the coefficient processes that

Cov(Dik, Djl)

= σ2
∑
`≥1

(e`(yk+1)− e`(yk))(e`(yl+1)− e`(yl)) ·

{
1−e−λ`∆

λ`
, J = 0,

2e−λ`J∆−e−λ`(J+1)∆−e−λ`(J−1)∆

2λ`
, J ≥ 1.

Step 1. We show negligibilty of Γ. From the first step of the last proof we already know that

Cov(Dik, Dil) = σ2
∑
`≥1

1− e−π
2ϑ2`

2∆

π2ϑ2`2
(e`(yk+1)− e`(yk))(e`(yl+1)− e`(yl)) +O

(√
∆δ2

)
.

For J ≥ 1 we will show now that

Cov(Dik, Djl) = σ2
∑
`≥1

2e−π
2ϑ2`

2J∆ − e−π
2ϑ2`

2(J+1)∆ − e−π
2ϑ2`

2(J−1)∆

2π2ϑ2`2

· (e`(yk+1)− e`(yk))(e`(yl+1)− e`(yl)) +O

( √
∆δ2

(J + 1)3/2

)
.

If J = 1 this directly follows from the case J = 0 since

2e−λ`∆ − e−2λ`∆ − 1

2λ`
=

1− e−2λ`∆

2λ`
− 1− e−λ`∆

λ`
. (41)

For J ≥ 2 define gJ(x) = 2e−Jx−e−(J+1)x−e−(J−1)x

2x . A first order Taylor approximation of gJ gives

Cov(Dik, Djl) = ∆
∑
`≥1

gJ(λ`∆)(e`(yk+1)− e`(yk))(e`(yl+1)− e`(yl))

= ∆
∑
`≥1

gJ(π2ϑ2`
2∆)(e`(yk+1)− e`(yk))(e`(yl+1)− e`(yl)) +R,

where R . ∆2
∑
`≥1 g

′
J(ϑ2(π2`2 + ξ`)∆)`2δ2 for some |ξ`| ≤ |Γ|. It can be shown easily that

g′J(x) . e−(J−1)x/2. Therefore, for some ω > 0 and by regarding R as a Riemann sum with lag√
(J − 1)∆,

R . ∆2
∑
`≥1

e−ω(J−1)`2∆`2δ2 .

√
∆δ2

(J − 1)3/2
.

√
∆δ2

(J + 1)3/2
.

Step 2. By Step 1 we may assume λ` = π2ϑ2`
2. By (22) we have

Cov(D̃ik, D̃jk) =− 2σ2g(δ)DδFJ,∆(0) + σ2FJ,∆(0)D2
δg(0)− σ2D2

δ (g(·)FJ,∆(2yk + ·)) (0)

and by (21) for l > k

Cov(D̃ik, D̃jl) =− σ2g(δ)D2
δFJ,∆(yl − yk+1) + σ2FJ,∆(yl − yk)D2

δg(0)

− σ2D2
δ (g(·)FJ,∆(yl + yk + ·)) (0).

Hence, as in previous Lemmas it is sufficient to establish

FJ,∆(0), FJ,∆(z), F ′J,∆(z)F ′′J,∆(z) .

√
∆

J3/2
, z ∈ [2b, 2(1− b)].
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For J = 0 this was already proven in Proposition 3.5. The case J = 1 follows from the case J = 0
since (41) shows

F1,∆(z) =
1

2
F2∆(z)− F∆(z). (42)

For J ≥ 2 we have

2e−λ`J∆ − e−λ`(J+1)∆ − e−λ`(J−1)∆ . e−λ`(J−1)∆(λ`∆)2, (43)

and therefore, again using a Riemann sum approximation with lag
√

(J − 1)∆,

FJ,∆(z) . FJ,∆(0) .
∑
`≥1

λ`∆
2e−λ`(J−1)∆ = O

( √
∆

(J − 1)3/2

)
.

The bound on the first derivative is provided by Lemma A.7,

F ′J,∆(z) .
∑
`≥1

2e−λ`J∆ − e−λ`(J+1)∆ − e−λ`(J−1)∆

2λ`
` sin(π`z)

. sup
`

∣∣∣∣2e−λ`J∆ − e−λ`(J+1)∆ − e−λ`(J−1)∆

2λ`
`

∣∣∣∣ 1

z ∧ (2− z)
. sup

`

∣∣λ`∆2e−λ`J∆`
∣∣ . √∆

J3/2
.

Finally, to bound F ′′J,∆ we define hJ(z) = 2e−Jz
2 − e−(J+1)z2 − e−(J−1)z2

. Clearly, hJ(0) = 0 and

d

dz
hJ(z) = −2(J − 1)ze−(J−1)z2

(2e−z
2

− e−2z2

− 1)︸ ︷︷ ︸
.z4

−e−(J−1)z2

(4ze−z
2

− 4ze−2z2

)︸ ︷︷ ︸
.z3

.
1

J3/2
,

i.e. ‖h′J‖∞ . J−3/2. In view of Lemma A.8 this shows

F ′′J,∆(z) .
∑
`≥1

2e−λ`J∆ − e−λ`(J+1)∆ − e−λ`(J−1)∆

2λ`
`2 cos(π`z)

.
∑
`≥1

hJ(
√
λ`∆) cos(π`z) = O

(
1

(z ∧ (2− z))2

√
∆

J3/2

)
.

Lemma A.2. For J ∈ N0 and z ∈ (0,2) it holds that

(i) FJ,∆(0)− FJ,∆(δ) = δ 1
2ϑ2

1{J=0} − δ 1
4ϑ2

1{J=1} +O
(

δ2

(J+1)5/2
√

∆

)
(ii) 2FJ,∆(z)− FJ,∆(z + δ)− FJ,∆(z − δ) = O

(
δ2

(J+1)2

(
1√
∆
∧ 1
z∧(2−z)

))
.

Proof. (i) The validity for the case J = 0 follows from the proof of Proposition 3.5 (ii), the case
J = 1 follows from (42). For J ≥ 2 we have by Taylor’s theorem

FJ,∆(0)− FJ,∆(δ) = −δF ′J,∆(0)− δ2

2
F ′′J,∆(ξ)

for some ξ ∈ [0, δ]. Now, the claim is proved by inserting F ′J,∆(0) = 0 and noting due to (43):

∥∥F ′′J,∆∥∥∞ .
∑
`≥1

(
2e−λ`J∆ − e−λ`(J+1)∆ − e−λ`(J−1)∆

)
.
∑
`≥1

λ2
`∆

2e−λ`(J−1)∆ .
1

J5/2
√

∆
.

(ii) As in previous Lemmas it suffices to establish

F ′′J,∆(z) .
1

(J + 1)2

(
1√
∆
∧ 1

z ∧ (2− z)

)
.
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For the case J = 0 we employ the representation F∆ = H∆ + G∆ from Proposition 3.5 . The
validity of the bound on H ′′∆ follows from H ′′∆(z) . 1√

∆
∧ 1
z∧(2−z) . The bound on G′′∆(z) follows

from ‖G′′∆‖∞ . 1/
√

∆ and G′′∆(z) . sup`

∣∣∣ 1−e−λ`∆(1+λ`∆)
1+λ`∆

∣∣∣ 1
z∧(2−z) . 1

z∧(2−z) , see Lemma A.7.

The case J = 1 follows from the case J = 0, see (42). For J ≥ 2 we proceed in the same way: In
the proof of (i) it was shown that ‖F ′′∆,J‖∞ . 1

J5/2
√

∆
. 1

J2
√

∆
. Finally, by Lemma A.7,

F ′′J,∆(z) . sup
`

∣∣∣2e−λ`J∆ − e−λ`(J+1)∆ − e−λ`(J−1)∆
∣∣∣ 1

z ∧ (2− z)

. sup
`

∣∣∣(λ`∆)2e−λ`(J−1)∆
∣∣∣ 1

z ∧ (2− z)
.

1

(J + 1)2

1

z ∧ (2− z)
.

Lemma A.3. For J ∈ N0 and z ∈ (0, 2) we have

(i) FJ,∆(0)− FJ,∆(δ) =


√

∆√
ϑ2π

+O
(

∆3/2

δ2

)
, J = 0,

√
∆

2
√
πϑ2

(√
J − 1 +

√
J + 1− 2

√
J
)

+O
(

∆3/2 + ∆
(J+1)δ

)
, J ≥ 1,

(ii) 2FJ,∆(δ)− FJ,∆(0)− FJ,∆(2δ)

=

−
√

∆√
ϑ2π

+O
(

∆3/2

δ2

)
, J = 0,

−
√

∆
2
√
πϑ2

(√
J − 1 +

√
J + 1− 2

√
J
)

+O
(

∆3/2 + ∆
(J+1)δ

)
, J ≥ 1,

(iii) 2FJ,∆(z)− FJ,∆(z − δ)− FJ,∆(z + δ) = O
(

∆

J + 1

1

z ∧ (2− z)

)
.

Proof. (iii) It is sufficient to show

FJ,∆(z) = O
(

∆

J + 1

1

z ∧ (2− z)

)
(44)

for J ∈ N0 and z ∈ (0, 2): If J = 0, Lemma A.7 gives

F∆(z) . sup
`≥1

∣∣∣∣1− e−λ`∆

λ`

∣∣∣∣ 1

z ∧ (2− z)
.

∆

z ∧ (2− z)
.

By (42) this bound is also valid for F1,∆(z). For J ≥ 2 the same method gives

FJ,∆(z) . sup
`≥1

∣∣∣∣2e−λ`J∆ − e−λ`(J+1)∆ − e−λ`(J−1)∆

λ`

∣∣∣∣ 1

z ∧ (2− z)

. sup
`≥1

∣∣λ`∆2e−λ`J∆
∣∣ 1

z ∧ (2− z)
.

∆

J

1

z ∧ (2− z)
,

where we have used (43).
(i) The case J = 0 was already shown in the proof of Proposition 3.5. For J ≥ 1 we prove

FJ,∆(0) =

√
∆

2
√
πϑ2

(√
J − 1 +

√
J + 1− 2

√
J
)

+O(∆3/2),

then (ii) follows in view of (44): If J = 1 we use (24) to calculate

F1,∆(0) =
1

2
F2∆(0)− F∆(0) =

1

2

( √
2∆√
πϑ2

−∆

)
−

( √
∆√
πϑ2

− ∆

2

)
+O

(
∆3/2

)
=

√
∆

2
√
πϑ2

(√
2− 2

)
+O

(
∆3/2

)
.

For J ≥ 2 define gJ(z) = 2e−Jπ
2ϑ2z

2
−e−(J+1)π2ϑ2z

2
−e−(J−1)π2ϑ2z

2

2π2ϑ2z2 . Then,∫ ∞
0

gJ(z) dz =
1

2
√
πϑ2

(√
J − 1 +

√
J + 1− 2

√
J
)
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and since gJ(0) = 0 we have by Lemma A.9

FJ,∆(0)= ∆
∑
`≥1

gJ(`
√

∆) =
√

∆

∫ ∞
0

gJ(z) dz +O
(

∆3/2
)

=

√
∆

2
√
πϑ2

(√
J − 1 +

√
J + 1− 2

√
J
)

+O(∆3/2).

Finally, (ii) is a direct consequence of (i).

A.2. Auxiliary results for the lower bounds

For the proofs of Propositions 5.3 and 5.5 we require the following auxiliary lemmas.

Lemma A.4. Consider a discrete sample (u(i∆), i = 0, . . . , N) of an Ornstein-Uhlenbeck process
given by

du(t) = −aµu(t) dt+ ν
√
µdBt, u(0) ∼ N

(
0,
ν2

2a

)
and assume ∆ = 1/N . Then, the Fisher information I = IN for the parameter (µ, ν2) is given by

I11 =
a2∆(e−4µa∆ + e−2µa∆)

(1− e−2µa∆)2
, I12 =

ae−2µa∆

ν2(1− e−2µa∆)
, I22 =

N + 1

2ν4
.

Proof. By the Markov property of u, the log-likelihood function of (µ, ν2) is given by

`(µ, ν2) = log π0(u(0)) +

N−1∑
i=0

log p∆(u(i∆), u((i+ 1)∆)),

where pt(x, y) = 1√
πν2(1−e−2µat)/a

exp
(
− (y−xe−µat)2

ν2(1−e−2µat)/a

)
is the transition density of u and π0 is the

density of the initial distribution N
(

0, ν
2

2a

)
. By stationarity of u, the Fisher information simplifies

to

I = −E
(
D2`(µ, ν2)

)
= −E

(
D2 log π0(u(0))

)
−NE

(
D2 log p∆(u(0), u(∆))

)
,

where we write D2g for the Hessian of a function g. This expression can be computed explicitly,
yielding the claimed formulas.

Lemma A.5. The function g : [0,∞)× [−π, π]→ R defined by

g(x, ω) =
2x2 − sinh(x2) cosh(x2) + cos(ω)(sinh(x2)− 2x2 cosh(x2))

x2(cosh(x2)− cos(ω))2
(1− cos(ω))

satisfies

(i)
∫∞

0
g(x, ω) dx = 0, for all ω ∈ [−π, π],

(ii) sup|ω|≤π ‖ ∂∂xg(·, ω)‖L1 <∞.
(iii) |g(x, ω)| . 1+x2

x4 ω2 uniformly in ω ∈ [−π, π], x > 0.

Proof. (i) follows from the fact that

G(x, ω) :=
sinh(x2)(1− cos(ω))

x(cosh(x2)− cos(ω))
, x > 0, ω ∈ [−π, π],

is a primitive of x 7→ g(x, ω) and since limx→∞G(x, ω) = limx→0G(x, ω) = 0 for all ω ∈ [−π, π].
(ii) can be shown by writing G(·, ω) as a sum of monotonic functions and noting that for a

monotonic function g : R+ → R it holds that ‖g′‖L1 = | limx→∞ g(x)− limx→0 g(x)|.
Finally, (iii) follows by direct calculations.
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Lemma A.6. Consider the parametrization of Proposition 5.5 and the function ΦN,∆k from (35).

If M
√

∆→ 0, then

(i) ΦN,∆k (ω) > 0 for all ω ∈ [−π, π],
(ii)

ΦN,∆k (ω) &



√
∆

M

√
|ω|, |ω| ≥M2∆, (45a)

∆, k2∆ ≤ |ω| ≤M2∆, (45b)

ω2

k4∆
+ ∆e−ϑ2k

2

, |ω| ≤ k2∆, (45c)

(iii)

∂

∂ϑ2
ΦN,∆k (ω) .


∆, ω ∈ [−π, π], (46a)

ω2

k4∆
+ ∆k2e−ϑ2k

2

, |ω| ≤ k2∆. (46b)

Proof. Without loss of generality let θ = π2ϑ2 and σ2
0 = π2. We denote the covariance function of

Ūk by ρk : Z→ R and write ΦNk instead of ΦN,∆k , i.e. ΦNk (ω) =
∑N−1
j=1−N ρk(j)e−ijω, ω ∈ [−π, π].

(i) Let rk be the covariance function of the process (Uk(t0), Uk(t1), . . .), i.e.

rk(j) =
∑
`∈Ik

e−θ`
2|j|∆

2
√
θ`2

, j ∈ Z,

where Ik = I+
k ∪ I

−
k . Note that rk and ρk are related by ρk(j) = 2rk(j) − rk(j − 1) − rk(j + 1),

j ∈ Z, which is a second order difference. Since x 7→ e−x has a positive second derivative, it
follows that ρk(j) < 0 if j 6= 0. On the other hand, for j = 0 we have ρk(0) = Var(Ūk(t0)) > 0 and
therefore,

ΦNk (ω) = ρk(0) + 2

N−1∑
j=1

ρk(j) cos(jω) ≥ ρk(0) + 2

N−1∑
j=1

ρk(j) = 2(rk(N − 1)− rk(N)) > 0.

To treat (ii) and (iii) we calculate

ΦNk (ω) =
N−1∑
j=1−N

ρk(j)e−ijω = 2(1− cos(ω))
N−2∑
j=2−N

rk(j)e−ijω + 4rk(N − 1) cos((N − 1)ω)

− 2rk(N) cos((N − 1)ω)− 2rk(N − 1) cos((N − 2)ω).

From
∑J−1
j=0 z

j = 1−zJ
1−z for z ∈ C \ {1} it follows that

J−1∑
j=1−J

e−θ`
2|j|∆e−ijω =

1− e−2θ`2∆ + 2e−(J+1)θ`2∆ cos((J − 1)ω)− 2e−Jθ`
2∆ cos(Jω)

1 + e−2θ`2∆ − 2e−θ`2∆ cos(ω)

=
sinh(θ`2∆) + e−Jθ`

2∆ cos((J − 1)ω)− e−(J−1)θ`2∆ cos(Jω)

cosh(θ`2∆)− cos(ω)

for J ≥ 1 and by elementary manipulations we can pass to the representation ΦNk = Φ + RN ,
where

Φ(ω) = (1− cos(ω))
∑
`∈Ik

1√
θ`2

sinh(θ`2∆)

cosh(θ`2∆)− cos(ω)
,

RN (ω) =
∑
`∈Ik

(1− cosh(θ`2∆))
e−θ`

2(N−1)∆

√
θ`2

e−θ`
2∆ cos((N − 1)ω)− cos(Nω)

cosh(θ`2∆)− cos(ω)
.
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Note that we have suppressed the dependence on k for ease of notation. We remark that Φ(ω) =∑
j∈Z ρk(j)e−ijω, ω ∈ [−π, π], is the spectral density of the process (Ūk(j))j≥0.

(ii) To prove (45a) we note that for ω ≥M2∆ we have∣∣∣e−θ`2∆ cos((N − 1)ω)− cos(Nω)
∣∣∣

=
∣∣∣(e−θ`2∆ − 1) cos((N − 1)ω) + cos((N − 1)ω)− cos(Nω)

∣∣∣ . `2∆ + ω . `2ω.

Consequently,

RN (ω) .
∑
`∈Ik

`2∆ sinh(θ`2∆)
e−θ`

2(N−1)∆

√
θ`2

`2ω

cosh(θ`2∆)− cos(ω)

.
∆

ω

∑
`∈Ik

sinh(θ`2∆)

`2(cosh(θ`2∆)− cos(ω))
(1− cos(ω)) .

1

M2
Φ(ω)

and hence, RN is negligible compared to Φ. In order to compute an asymptotic expression for Φ,
set

h(x, ω) =
sinh(θx2)(1− cos(ω))

x2(cosh(θx2)− cos(ω))
, x > 0, ω ∈ [−π, π].

We have ∂h
∂x ≤ 0 and therefore,

∥∥ ∂
∂xh(·, ω)

∥∥
L1 = h(0, ω)−limx→∞ h(x, ω) = θ is uniformly bounded

in ω. Thus, using the mean value theorem and a Riemann sum approximation with mesh size M
√

∆
for ∂

∂xh(·, ω), we obtain

Φ(ω) h ∆
∑
`∈Ik

h(`
√

∆, ω) = ∆

∞∑
`=1

h(2`M
√

∆, ω) +O(∆).

Further, since ∣∣∣ε∑
`≥1

f(`ε)−
∫ ∞

0

f(x) dx
∣∣∣ ≤ ε‖f ′‖L1 (47)

for any function f ∈ C1[0,∞), we get Φ(ω) h
√

∆
M

∫∞
0
h(x, ω) dx+O(∆). Finally, due to

a+ b h max(a, b), a, b > 0, (48)

we have (cosh(θωx2)− cos(ω)) h max
(
cosh(θωx2)− 1, 1− cos(ω)

)
and consequently,

h(
√
ωx, ω) =

sinh(θωx2)(1− cos(ω))

ωx2(cosh(θωx2)− cos(ω))
&

sinh(θωx2)

ωx2
& 1, x ≤ θ−1/2.

Therefore, ∫ ∞
0

h(x, ω) dx =
√
ω

∫ ∞
0

h(
√
ωx, ω) dx &

√
ω,

finishing the proof of (45a).
To prove (45b) and (45c), let us write Φ =

∑
`∈Ik ϕ` and RN =

∑
`∈Ik %

N
` . Since the argument

in the proof of (i) was on a summand-wise level, also each of the functions ϕ` + %N` is positive,
` ∈ N. Therefore, we can bound ΦNk from below with the first summand,

ΦNk ≥ ϕk + %Nk = %Nk (0) + ϕk +
(
%Nk − %Nk (0)

)
.

We show that there exists an environment U around zero and some δ ∈ (0, 1) such that

|%Nk (ω)− %Nk (0)| ≤ (1− δ)ϕk(ω), ω ∈ U : (49)
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A simple calculation yields

%Nk (ω)− %Nk (0) = e−(N−1)θk2∆ (cos((N − 1)ω))− cos(Nω))(1− cosh(θk2∆))√
θk2(cosh(θk2∆)− cos(ω))

+ e−(N−1)θk2∆ (1− e−θk
2∆)(1− cos((N − 1)ω)))(1− cosh(θk2∆))√

θk2(cosh(θk2∆)− cos(ω))

+ e−(N−1)θk2∆

(
e−θk

2∆ − 1
)

(1− cos(ω))
√
θk2(cosh(θk2∆)− cos(ω))

.

Since cos(x)− cos(y) = −2 sin x+y
2 sin x−y

2 , x, y ∈ R, we have∣∣∣ cos((N − 1)ω)− cos(Nω)
∣∣∣ =

∣∣∣2 sin

(
(2N − 1)ω

2

)
sin
(ω

2

) ∣∣∣ ≤ Nω2. (50)

Therefore, for any α > 0 there exists an environment U of 0 such that

| cos((N − 1)ω)− cos(Nω)| ≤ Nω2 ≤ N(1− cos(ω))(2 + α)

1− cos((N − 1)ω) ≤ N2ω2

2
≤ N2

2
(1− cos(ω))(2 + α)

holds for all ω ∈ U . Further, for all x ≥ 0 we have cosh(x)− 1 ≤ sinh(x)x
2 , 1− e−x ≤ sinh(x), and

consequently,

|%Nk (ω)− %Nk (0)|
ϕk(ω)

≤ e−(N−1)θk2∆(1 +
2 + α

2
θk2 +

2 + α

4
θ2k4)

≤ 2 + α

2
e∆θk2

e−θk
2

(1 + θk2 +
θ2k4

2
) <

2 + α

2
e∆θk2

.

Clearly, for ∆ sufficiently small one can choose α in such a way that this bound is strictly less
than 1 for all k ≤M − 1, yielding (49). Consequently, it is sufficient to prove (45b) and (45c) with
ΦNk replaced by ϕk + %Nk (0): Now,

ϕk(0) + %Nk (0) = %Nk (0) = e−θk
2(N−1)∆ 1− e−θk

2∆

k2
h ∆e−θk

2

and again by using (48), we get

ϕk(ω) &
sinh(θk2∆)

k2
& ∆, ω ≥ k2∆,

ϕk(ω) & (1− cos(ω))
1√
θk2

sinh(θk2∆)

cosh(θk2∆)− 1
&

ω2

k4∆
, ω ≤ k2∆.

(iii) We show (46a): We have ∂
∂θΦ(ω) = ∆

2
√
θ

∑
`∈Ik g(`

√
θ∆, ω) with g defined in Lemma A.5.

Using the properties of g derived in Lemma A.5 and the Riemann sum approximation (47) with
mesh size M

√
∆, we obtain

∂

∂θ
Φ(ω) h ∆

∑
`≥1

g(`M
√

∆, ω) +O(∆) =

√
∆

M

∫ ∞
0

g(x, ω) dx+O(∆) = O(∆).

To show that also ∂
∂θRN is of the claimed order, we write

%N` = α`β` where α`(ω) =
1− cosh(θ`2∆)√

θ`2 (cosh(θ`2∆)− cos(ω))
,

β`(ω) = e−θ`
2(N−1)∆

(
e−θ`

2∆ cos((N − 1)ω)− cos(Nω)
)
.
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The corresponding derivatives are given by

∂

∂θ
α`(ω) =

cosh(θ`2∆)− 1

2θ3/2`2 (cosh(θ`2∆)− cos(ω))︸ ︷︷ ︸
=:a1

`(ω)

− ∆ sinh(θ`2∆) (1− cos(ω))√
θ (cosh(θ`2∆)− cos(ω))

2︸ ︷︷ ︸
=:a2

`(ω)

and

∂

∂θ
β`(ω) = e−θ`

2(N−1)∆
(
−`2N∆e−θ`

2∆ cos((N − 1)ω) + `2(N − 1)∆ cos(Nω)
)

=: b`(ω).

Using the estimates

cosh(x)− 1

cosh(x)− cos(ω)
.

x2

x2 ∨ ω2
,

x sinh(x)(1− cos(ω))

(cosh(x)− cos(ω))2
.

x2

x2 ∨ ω2

in combination with β`(ω) . e−θ`
2(N−1)∆

(
(`2∆) ∨ ω

)
and b`(ω) . e−θ`

2(N−1)∆`2
(
(`2∆) ∨ ω

)
shows that any of the three products in

∂

∂θ
RN =

∑
`∈Ik

a1
`β` + a2

`β` + α`b` (51)

can be bounded by∑
`∈Ik

e−θ`
2(N−1)∆ `4∆2

(`4∆2) ∨ ω2

(
(`2∆) ∨ ω

)
≤ ∆

∑
`∈Ik

e−θ`
2(N−1)∆`2 . ∆.

Consequently, we have ∂
∂θRN = O(∆), which finishes the proof of (46a).

To prove (46b), we use property (iii) of Lemma A.5 to deduce

∂

∂θ
Φ(ω) . ω2∆

∑
`∈Ik

1 + θ`2∆

θ2`4∆2
.
ω2

∆

1 + θk2∆

θ2k4
+
∑
`≥1

1 + θ(2`M)2∆

θ2(2`M)4

 .
ω2

k4∆
,

where the last step follows from k2∆ ≤M2∆→ 0. Further, using decomposition (51),

∂

∂θ
(RN (ω)−RN (0)) =

∑
`∈Ik

a1
`(ω)(β`(ω)− β`(0)) +

∑
`∈Ik

(a1
`(ω)− a1

`(0))β`(0)

+
∑
`∈Ik

a2
`(ω)β`(ω) +

∑
`∈Ik

α`(ω)(b`(ω)− b`(0)) +
∑
`∈Ik

(α`(ω)− α`(0))b`(0). (52)

Now, by (50), we have

β`(ω)− β`(0) = e−θ`
2(N−1)∆

(
(e−θ`

2∆ − 1)(cos((N − 1)ω)− 1) + cos((N − 1)ω)− cos(Nω)
)

. e−θ`
2(N−1)∆`2Nω2.

In a similar way we can bound

β`(0) . e−θ`
2(N−1)∆`2∆, β`(ω) . e−θ`

2(N−1)∆
(
(`2∆) ∨ ω

)
. e−θ`

2(N−1)∆`2∆,

b`(ω)− b`(0) . e−θ`
2(N−1)∆`4Nω2, b`(0) . e−θ`

2(N−1)∆`4∆,

where the second inequality uses ω ≤ k2∆ ≤ `2∆ for ` ∈ Ik. Also,

a1
`(ω)− a1

`(0) .
1− cos(ω)

cosh(θ`2∆)− cos(ω)
.

1− cos(ω)

(cosh(θ`2∆)− 1)
.

ω2

k4∆2

and similarly, α`(ω)− α`(0) . ω2

k4∆2 , a2
`(ω) . ω2

k4∆2 , a1
`(ω) . 1 and α`(ω) . 1.
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Using the bounds just developed in combination with e−θ`
2(N−1)∆ . 1

k4`m , m ∈ N, shows that

any of the five terms in (52) is of order O( ω2

k4∆ ) and hence, ∂
∂θ (RN (ω)−RN (0)) . ω2

k4∆ . Now, the
proof of (46b) is finalized by

∂

∂θ
RN (0) =

∑
`∈Ik

e−θ`
2(N−1)∆ 2θ`2(N − 1)∆(e−θ`

2∆ − 1) + 2θ`2∆e−θ`
2∆ + e−θ`

2∆ − 1

2θ3/2`2

. ∆
∑
`∈Ik

e−θ`
2(N−1)∆`2 . ∆k2e−θk

2

.

A.3. Bounds on Fourier series and Riemann summation

The Lemmas in this section provide bounds for Fourier series and Taylor expansions for Riemann
sums. Similar results are stated in Lemma 7.2 of [3].

Lemma A.7. Let (an) be a real sequence and τ ∈ {sin, cos}. Then,∣∣∣∣∣
N∑
k=1

akτ(ky)

∣∣∣∣∣ ≤ 1 + 2KN

y ∧ (2π − y)
sup
n≤N
|an|

holds for any y ∈ (0, 2π) where KN is the number of monotone sections of (an)1≤n≤N .

Proof. By Lagrange’s trigonometric identities,

N∑
k=1

cos(ky) =
sin ((N + 1/2)y)− sin(y/2)

2 sin(y/2)
,

N∑
k=1

sin(ky) =
cos(y/2)− cos ((N + 1/2)y)

2 sin(y/2)
,

we have
∣∣∣∑N

k=M τ(ky)
∣∣∣ ≤ 1

sin(y/2) ≤
1

y∧(2π−y) uniformly in M ≤ N . Therefore, |
∑N
k=1 akτ(ky)|

can be decomposed by∣∣∣∣∣a1

N∑
k=1

τ(ky) + (a2 − a1)

N∑
k=2

τ(ky) + (a3 − a2)

N∑
k=3

τ(ky) + · · ·+ (aN − aN−1)τ(Ny)

∣∣∣∣∣
≤ |a1|

∣∣∣∣∣
N∑
k=1

τ(ky)

∣∣∣∣∣+ |a2 − a1|

∣∣∣∣∣
N∑
k=2

τ(ky)

∣∣∣∣∣+ |a3 − a2|

∣∣∣∣∣
N∑
k=3

τ(ky)

∣∣∣∣∣+ · · ·+ |aN − aN−1| |τ(Ny)|

≤ 1

y ∧ (2π − y)

(
|a1|+

N−1∑
k=1

|ak+1 − ak|

)
≤ 1 + 2KN

y ∧ (2π − y)
sup
n≤N
|an|,

where the last inequality follows from the fact that if (ak)N0≤k≤N1
is monotone for some N0 ≤

N1 ≤ N , then
∑N1−1
k=N0

|ak+1 − ak| = |aN1
− aN0

| ≤ 2 supn≤N |an|.

Lemma A.8. Let g ∈ C1 (R+) be such that g′ is bounded and has a finite number K of monotone
sections. Then, for y ∈ (0, 2π), as ε→ 0,

∞∑
k=1

g(kε) cos(ky) = −g(0)

2
+O

(
ε ‖g′‖∞

(y ∧ (2π − y))
2

)
∞∑
k=1

g(kε) sin(ky) =
g(0)

2
cot
(y

2

)
+O

(
ε ‖g′‖∞

(y ∧ (2π − y))
2

)
.
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Proof. We use the formula sin(α)− sin(β) = 2 cos α+β
2 sin α−β

2 , α, β ∈ R, to calculate

g(0)

2
+

∞∑
k=1

g(kε) cos(ky) =
g(0)

2
+

1

2 sin y
2

∞∑
k=1

g(kε)
(

sin ((k + 1/2) y)− sin ((k − 1/2) y)
)

=
g(0)

2
− g(ε)

2
+

1

2 sin y
2

∞∑
k=1

sin ((k + 1/2) y)
(
g(kε)− g((k + 1)ε)

)
= −1

2

(
g′(ξε0) +

1

sin y
2

∞∑
k=1

sin ((k + 1/2) y) g′(ξεk)

)
ε ≤ 1 + 2K

(y ∧ (2π − y))
2 ‖g

′‖∞ ε,

where ξεk ∈ [kε, (k + 1)ε]. Here, the last step follows from sin((k + 1/2)y) = sin(ky) cos(y/2) +
cos(ky) sin(y/2) and then applying Lemma A.7. The second statement can be proved analogously,

using cos(α)− cos(β) = −2 sin
(
α+β

2

)
sin
(
α−β

2

)
, α, β ∈ R.

Lemma A.9. Let g ∈ C2(R+) ∩ L1(R+), g′ ∈ L∞(R+) and g′′ ∈ L1(R+). Then,

(i) ε
∑
k≥1

g(kε) =

∫ ∞
0

g(z) dz − g(0)

2
ε+O(ε2 ‖g′′‖L1),

(ii) ε
∑
k≥1

g(kε) sin2(ky) =
1

2

∫ ∞
0

g(z) dz +O
(
ε2

(
‖g′‖∞

(y ∧ (π − y))2
∧ ‖g′′‖L1

))
.

Proof. For a detailed proof of (i) we refer to [3, Lemma 7.2]. The main idea is to regard each term
εg(kε) as a midpoint integral approximation. Since sin2(y) = (1 − cos(2y))/2, statement (ii) is a
direct consequence of (i) and the previous lemma.

Lemma A.10. Let g ∈ C2(R+) and M →∞, Mε→ 0. Then,

ε

M∑
k=1

g(kε) = Mεg(0) +
(M2 +M)ε2

2
g′(0) +O((Mε)3).

Proof. First of all, by the midpoint rule there exist ηk ∈ [(k − 1/2)ε, (k + 1/2)ε] such that∣∣∣∣∣ε
M∑
k=1

g(kε)−
∫ (M+1/2)ε

ε/2

g(x) dx

∣∣∣∣∣ =

∣∣∣∣∣
M∑
k=1

∫ (k+1/2)ε

(k−1/2)ε

(g(kε)− g(x)) dx

∣∣∣∣∣ ≤ ε3
M∑
k=1

|g′′(ηk)| .M3ε3

and secondly, a Taylor approximation shows that∫ (M+1/2)ε

ε/2

g(x) dx = Mεg(0) +
(M2 +M)ε2

2
g′(0) +O((Mε)3).

References

[1] Altmeyer, R. and Reiß, M. (2019). Nonparametric estimation for linear SPDEs from local
measurements. arXiv preprint arXiv:1903.06984.

[2] Bibinger, M. and Trabs, M. (2019a). On central limit theorems for power variations of the
solution to the stochastic heat equation. In Stochastic Models, Statistics and Their Applications.
Springer Proceedings in Mathematics & Statistics, volume 294, pages 69–84.

[3] Bibinger, M. and Trabs, M. (2019b). Volatility estimation for stochastic PDEs using high-
frequency observations. Stochastic Process. Appl. Forthcoming.

[4] Chong, C. (2019a). High-frequency analysis of parabolic stochastic PDEs. Ann. Statist. Forth-
coming.

[5] Chong, C. (2019b). High-frequency analysis of parabolic stochastic PDEs with multiplicative
noise: Part I. arXiv preprint arXiv:1908.04145.



Hildebrandt and Trabs/Parameter estimation for SPDEs based on discrete observations 44

[6] Cialenco, I. (2018). Statistical inference for spdes: an overview. Statistical Inference for Stochas-
tic Processes, 21(2):309–329.

[7] Cialenco, I. and Huang, Y. (2019). A note on parameter estimation for discretely sampled
SPDEs. Stoch. Dyn. Forthcoming.

[8] Cont, R. (2005). Modeling term structure dynamics: an infinite dimensional approach. Int. J.
Theor. Appl. Finance, 8(3):357–380.

[9] Dacunha-Castelle, D. and Duflo, M. (1986). Probability and statistics. Vol. II. Springer-Verlag,
Berlin Heidelberg New York.

[10] Devroye, L., Mehrabian, A., and Reddad, T. (2019). The total variation distance between
high-dimensional Gaussians. arXiv preprint arXiv:1810.08693v3.

[11] Dostal, L. (2019). The effect of random wind forcing in the nonlinear Schrödinger equation.
Fluids, 4(3):121.

[12] Hottovy, S. and Stechmann, S. N. (2015). A spatiotemporal stochastic model for tropical
precipitation and water vapor dynamics. J. Atmospheric Sci., 72(12):4721–4738.

[13] Huebner, M., Khasminskii, R., and Rozovskii, B. (1993). Two examples of parameter es-
timation for stochastic partial differential equations. In Stochastic processes, pages 149–160.
Springer.

[14] Huebner, M. and Rozovskii, B. L. (1995). On asymptotic properties of maximum likelihood
estimators for parabolic stochastic PDE’s. Probab. Theory Related Fields, 103(2):143–163.

[15] Ibragimov, I. and Rozanov, Y. (1978). Gaussian random processes. Springer-Verlag, Berlin
Heidelberg New York.

[16] Ibragimov, I. A. and Has’minskii, R. Z. (1981). Statistical estimation, volume 16 of Applica-
tions of Mathematics. Springer-Verlag, New York Berlin. Asymptotic theory, Translated from
the Russian by Samuel Kotz.

[17] Isserlis, L. (1918). On a formula for the product-moment coefficient of any order of a normal
frequency distribution in any number of variables. Biometrika, 12:134–139.

[18] Kaino, Y. and Uchida, M. (2019). Parametric estimation for a parabolic linear SPDE model
based on sampled data. arXiv preprint arXiv:1909.13557.

[19] Koski, T. and Loges, W. (1985). Asymptotic statistical inference for a stochastic heat flow
problem. Statist. Probab. Lett., 3:185–189.

[20] Kriz, P. and Maslowski, B. (2019). Central limit theorems and minimum-contrast estimators
for linear stochastic evolution equations. Stochastics, 0(0):1–32.

[21] Lototsky, S. V. (2009). Statistical inference for stochastic parabolic equations: a spectral
approach. Publ. Mat., 53(1):3–45.

[22] Markussen, B. (2013). Likelihood inference for a discretely observed stochastic partial differ-
ential equation. Bernoulli, 9(5):745 – 762.

[23] Mathai, A. M. and Provost, S. B. (1992). Quadratic Forms in Random Variables. Marcel
Dekker, inc., New York.
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