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Abstract

We study multi-scalar models of radius stabilization, with an eye towards appli-
cation to novel extra-dimensional models of symmetry breaking. With inspiration
from holography, we construct a multi-scalar effective potential that is a function of
UV-brane values of the scalar fields, and that takes into account bulk gravitational
backreaction. We study extrema of this potential, and additionally provide a “super-
potential” method for generating static solutions for the extra-dimensional geometry.
We apply these methods to some simple models of the Higgs mechanism where the
Higgs itself plays a non-trivial role in radius stabilization. We conclude that mass
mixing of the Higgs and radion is generic unless additional symmetries are imposed.
We focus on models with moderate gap between the electroweak and Kaluza-Klein
scale, as required by phenomenological constraints. We note that tuning of the Higgs
mass relative to the KK scale is related to various classes of tuning of 5D parameters,
with different resulting spectra and phenomenologies.
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1 Introduction

The mass of the Higgs is far smaller than dimensional analysis predicts given that there
are so far no experimental signatures of new physics indicating new symmetries near the
electroweak scale. This suggests that there may be some degree of fine tuning of param-
eters to achieve consistency with observations. Of course, the Higgs mass problem is not
the only one of the Standard Model. The SM offers no explanation of large fermion mass
hierarchies, of dark matter, of the matter/anti-matter asymmetry, etc. Strong dynamics,
and/or field theories in higher-dimensional spacetimes offer resolutions or at least interest-
ing reformulations of many of these problems, along with partially ameliorating the Higgs
hierarchy problem.

The Higgs mass couples to singlet sectors in many extensions of the electroweak sector,
which can put the the hierarchy problem into a new light [1]. The question is no longer
“Why is the Higgs light?” Rather, the correct question is “Why does a small Higgs mass
coincide with the global (or a cosmologically metastable) minimum of the scalar potential?”

Such scalars are generic features in models with additional compact spatial dimen-
sions [2]. In these models, there are typically moduli that are gauge singlet states with
non-trivial couplings to matter required by higher dimensional general covariance [3, 4].
Stabilization of these moduli is typically non-trivial as the moduli can be interpreted as
Goldstone bosons of spontaneously broken spacetime symmetries. Providing a potential
for them often requires new scalar degrees of freedom whose dynamics serve to explicitly
break the spacetime symmetries, demoting the moduli to pseudo-Goldstone bosons.

In this work, we explore the relationship between extra-dimensional radius stabilization
and the Higgs mass. In particular, the modulus of Randall-Sundrum models (the “radion”)
generally plays a crucial role in determining the value of the Higgs vacuum expectation
value. The same goes for the reverse: the Higgs VEV itself will backreact on the geometry,
and feed into the total effective potential for the radion.

This first motivates the development of a formalism for dealing with multi-scalar mod-
els of 5D RS model radius stabilization. This is the focus of the first part of this work. We
show that even in cases of complicated bulk dynamics with many interacting scalar fields,
the classical effective potential lives on the boundary. Making the assumption that the 5D
action is of Einstein-Hilbert form with minimal couplings to bulk scalar fields, we calculate
the classical potential to all orders in the 5D gravitational coupling constant.

The criteria for minimization of this effective potential determine aspects of the physics
such as the Kaluza-Klein scale, and the masses of light resonances. We study these criteria,
and provide conditions for extremization of this potential that fully include geometric
backreaction effects.

We then apply this formalism to a few illustrative examples of the Higgs mechanism
in RS models. Given the lack of signals for extra-dimensional resonances in collider ex-
periments, we look for models which achieve moderate separation of scales between the
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electroweak scale and the scale associated with the IR brane f/v & O(10). The Higgs mass
term is generally a function of the brane separation. Thus, in order to achieve a light Higgs,
the minimum of the modulus potential must coincide with the region where the Higgs mass
is small. We expect (and find) that tuning is involved in these cases. For example, such
a coincidence problem may require that the IR brane mistune (between the brane tension
and the bulk cosmological constant) be adjusted to high degree in order to keep the Higgs
light. We explore the type and degree of tuning required in a few examples in which there
is non-trivial interplay between electroweak symmetry breaking and radius stabilization.

As noted in [5], fine tuning can have dramatic phenomenological consequences when
parameters of the Standard Model are set by the dynamics of a modulus field. These
consequences influence both early universe cosmology and collider physics. Cosmology
can be dramatically changed by interplay of Higgs and modulus field, with oscillations of
the coupled scalar system leading to repercussions for gravity waves, and constraints on
inflationary models. It is with this in mind that we choose models whose parameter space
explore the full range of classes of mixed modulus-Higgs potential. The specifics of these
classes are expanded on in the introduction to Section 3.

The example models we study are as follows:

• Higgs on the IR brane, Goldberger-Wise scalar stabilizing field in the bulk;

• Higgs in the bulk, with mass near the Breitenlohner-Freedman bound [6], stabilizing
the geometry (studied previously in [7, 8]);

• Both Higgs and Goldberger-Wise stabilizing field in the bulk.

For simplicity of presentation, these models are all studied to lowest non-trivial order in
the gravitational backreaction, where neither the Higgs or Goldberger-Wise scalar develop
VEVs that are comparable to the AdS curvature.

An important result from these studies is that mass mixing between the Higgs and
radion is completely generic. Mass mixing occurs in different ways: through symmetry-
allowed couplings between a Goldberger-Wise field and the Higgs, or from mixing of the
Higgs with the 5D gravity sector through backreaction.1 It occurs both when the Higgs is
purely localized on the IR brane through couplings to the Goldberger-Wise field, or when
the Higgs is in the bulk of the extra dimension. This mixing is different in the various
classes of Higgs-radion potential, and influences the spectrum of light scalar modes.

In Section 2 we discuss general properties of multi-scalar stabilization, giving con-
ditions under which the geometry is stabilized. In Section 3, we explore the construc-
tion, phenomenology, and spectra of three different models where the Higgs is coupled to
the extra-dimensional radion. In Section 4 we discuss a CFT interpretation of different

1This is in addition to kinetic mixing, which can occur through couplings of the Higgs to either the 5D
curvature, or to the extrinsic curvature of the IR brane [9].
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multi-scalar stabilization models. In Section 5 we conclude. In Appendix A, we include
derivations of some results in Section 2. In Appendix B, we give a presentation of a “su-
perpotential” method to generate static geometries with multiple scalar fields.

2 General Properties of the Radion Potential

Before analyzing particular models, we first study some general properties of radius sta-
bilization when there is more than one 5D scalar field that has non-vanishing vacuum
expectation value. In such cases, the radion potential is affected by backreaction of all of
these VEVs onto the geometry. In what follows, we consider arbitrary backreaction onto
the geometry, however we presume that the action is of Einstein-Hilbert form, with no
higher curvature operators.

The generic problem is one of N real scalar fields minimally coupled to gravity in
5D space with negative cosmological constant Λ5 = −6k2/κ2. The bulk geometry can be
described with metric

ds2 = e−2A(y) dx2
4 − dy2 , (2.1)

where we have presumed flat 4D slices. The space is cut off on both sides by branes at
positions y0 and y1.

All dimensionful quantities are understood to be expressed in units of the AdS curva-
ture: k = 1. For perturbative control of the 5D gravity theory, the 5D Newton constant
must be small: κ2 = 1

2M3
5
∼ O(1/10). The action is:

S =
∫

d4x dy√g
[

1
2
∑
i

(∂Mφi)2 − V ({φi})−
1

2κ2R

]

−
∫

d4x
√
−g0V0({φi})

∣∣∣∣
y=y0

−
∫

d4x
√
−g1V1({φi})

∣∣∣∣
y=y1

,

(2.2)

where the scalar potential includes the bulk cosmological constant term.
The bulk Einstein equations relate derivatives of A(y) to the scalar fields in the fol-

lowing way:

A′
2 = κ2

12
∑
i

φ′2i −
κ2

6 V ({φi}),

A′′ = κ2

3
∑
i

φ′i
2
.

(2.3)
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The scalar curvature is given by

R = 20A′2 − 8A′′. (2.4)

In the absence of scalar field VEVs, or in the limit of small κ2, the space is AdS.
Plugging the result for the scalar curvature, and for the scalar terms into the action

above, we find that the bulk portion is a derivative, and thus can be expressed as a boundary
term:

Sbulk = 2
κ2

∫
d4x dy ∂

∂y

[
e−4A(y)A′(y)

]
= 2
κ2

∫
d4x

[
e−4A(y0)A′(y0)− e−4A(y1)A′(y1)

]
. (2.5)

The factor of 2 is from integration over the circle. We note that on the boundaries, there
must be a jump in the derivative of the metric. This can be seen most easily from
the orbifold perspective, where on either side of an orbifold fixed point, you must have
A(y0,1)+ = A(y0,1)− and A′(y0,1)+ = −A′(y0,1)−. This leads to a term in the scalar curva-
ture R which is a delta function, as you must have A′′(y0,1) ⊇ ±2δ(y0,1−y)A′(y0,1). Inclusion
of the delta function term in the scalar curvature gives additional boundary contributions
to the effective action.

Including all terms, the effective potential can now be expressed as a pure boundary
term [10]:

Veff = e−4A(y0)
[
V0({φi(y0)})− 6

κ2A
′(y0)

]
+ e−4A(y1)

[
V1({φi(y1)}) + 6

κ2A
′(y1)

]
. (2.6)

where, at the moment, none of the boundary conditions have been imposed, nor even the
bulk scalar equations of motion, which are given by:

φ′′i = 4A′φ′i + ∂V

∂φi
. (2.7)

The scalar boundary conditions are given (in these coordinates) as:

φ′i

∣∣∣∣
y0,y1

= ±1
2
∂V0,1

∂φi

∣∣∣∣
y0,y1

. (2.8)

The boundary Einstein equations (the metric junction conditions that match the geometry
to the brane-localized stress-energy) are

A′
∣∣∣∣
y0,y1

= ±κ
2

6 V0,1

∣∣∣∣
y0,y1

, (2.9)

which correspond to the UV and IR terms in the effective potential vanishing individually.
One can associate the brane separation with the vacuum expectation value of the

radion. The metric boundary condition at y1 can be thought of as setting the VEV of the
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radion. That is, one varies y1 until the IR brane contribution to the effective potential
vanishes. We show in the next Subsection that it is always the case that the minimum in
the static effective potential corresponds to vanishing VIR after all scalar bulk and boundary
equations of motion are imposed.2

At this point we can impose the scalar field equations of motion. For a single scalar
field, if we impose the bulk equations, the effective potential is then a function of the
two remaining freedoms in the scalar field (its value and derivative, on, for example, the
UV brane), and the position of the IR brane. If one further imposes the scalar boundary
conditions on both of the two branes, then only the value of y1 remains, to be determined
by minimizing the effective potential with respect to it. However, we might be interested in
a more intuitive measure of the effective potential, particularly when taking into account
the multiple scalar degrees of freedom, where we expect to have a multidimensional scalar
potential.

We advocate an approach inspired by holography, where the effective potential is
measured in terms of field values on the UV brane only. In this case, the procedure we
should take to find the effective potential is as follows:

• pick a particular value of y1;

• impose the IR boundary conditions, eliminating N of the 2N scalar boundary condi-
tions. N degrees of freedom remain, e.g. the values of the fields on the UV brane;

• we are left with N scalar boundary values and the free value of y1. Ideally, one would
then, for constant UV field values, minimize the effective action over y1.

This last step is difficult to implement in practice. However, if at least one of the scalar
fields (say φN) has “stiff” boundary conditions in the UV, then one instead imposes that
UV brane condition, leaving N−1 scalar degrees of freedom on the UV brane. The value of
y1 corresponds to the last degree of freedom, so that one has Veff(φ1(y0), · · · , φN−1(y0); y1).

2.1 Derivative of the Radion Potential

We are interested in finding stable configurations of the branes, where the effective potential
is minimized. We explore here the conditions for minimization, showing analytically that
they correspond in most, but not all, cases to vanishing of the IR portion of the effective
potential.

Employing the above procedure, imposing the IR brane boundary conditions for the
scalar fields the derivative of the effective potential with respect to y1 takes a particularly

2However, it curiously remains possible that extrema or saddles arise where neither the scalar or metric
conditions are satisfied (and this occurs in some models [11]). This may be due to nearby extrema which
do not satisfy the ansatz of a Lorentz invariant background.
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simple form:

dV
dy1

= e−4A(y0)∑
i

(
∂V0

∂φi
(y0)− 2φ′i(y0)

)
dφi
dy1

(y0)− 4e−4A1
dA1

dy1

[
V1 + 6

κ2A
′
1

]
. (2.10)

We provide proof of this relation in Appendix A. The first term is vanishing if the boundary
conditions for the scalars on the UV brane are imposed. The second term is vanishing if
the metric junction condition in the IR is imposed. We thus note that this formula implies
that extremization of the action implies (as it must, of course) extremization of the effective
potential. However, the converse is not necessarily the case. It may be that this expression
vanishes where the two terms cancel against each other and neither metric nor scalar
boundary conditions are met. We hypothesize that this may occur when there are extrema
of the action “nearby” in configuration space that do not obey the static, homogeneous,
and isotropic ansatz that was the starting point for this analysis of the effective action.

We note that there is a method that generalizes the well known superpotential method
for stabilization [12] to include multiple scalar fields. This method guarantees a solution
in which the effective potential is extremized. In Appendix B, we derive and present this
method.

3 Examples of Radion-Induced Symmetry Breaking

We now explore some specific simple models that illustrate different classes of multi-scalar
potentials where a Higgs instability occurs over some region of radius values. We are
particularly interested in models where some tuning has been performed to obtain mild or
large hierarchies between the electroweak scale and the KK scale. Broadly speaking, there
are 3 classes of tunings distinguished by the shape of the 2-dimensional scalar potential.
These are as follows:

• All parameters of the 5D theory are of order 1 (in units of the AdS curvature for
dimensionful couplings). Tuning is achieved by making the symmetry breaking critical
point extremely close to the minimum of the radion potential.

• The Higgs potential has only mild dependence on the radion VEV. Tuning is achieved
by arranging the Higgs effective mass term to be small over a large range of radius,
including at the minimum of the radion potential.

• The radion potential itself is very shallow due to tuning. The Higgs VEV then con-
tributes sizably to the stabilization, and even small Higgs VEV successfully stabilizes
the geometry for large KK scale.

In Figure 1, we display the basic pictures of these three types of 2D scalar potentials.
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Figure 1: In this figure, we roughly characterize the different types of potentials in the space of
the radion and the Higgs VEVs. Each plot shows a potential as a function of a modulus VEV, φ,
and a Higgs VEV. Dashed lines indicate points at which the Higgs potential is minimized with φ
held constant. In the first image, all couplings are order 1, however, the minimum of the modulus
potential is tuned to be close to the critical point for the Higgs. In the second, the dependence
of the Higgs potential on the modulus field is weak, and the bare Higgs mass is taken to be
somewhat small. In the final plot, the modulus potential without the Higgs is very flat, and thus
the backreaction of the Higgs onto the modulus potential is the dominant feature in the potential.

These different types of tunings have implications for phenomenology. For example,
there may be consequences for cosmology, affecting the manner in which the early universe
electroweak phase transition takes place [13–15], and possibly playing a crucial role during
post-inflationary reheating [5]. Additionally, the different tunings have implications for the
mass spectrum of the lightest scalar modes, and for general considerations about vacuum
energy [16, 17]. For example, the radion mass may be typically lighter or heavier than the
Higgs for the different classes of model.

3.1 Higgs on the Brane

We now want to consider the case in which the interactions between the Higgs and the
GW scalar take place on the IR brane. We assume no bulk interactions between the fields.
This can be done with a Higgs which is either in the bulk or completely localized on the
IR brane. We first consider the latter.

When the Higgs is localized on the IR brane, the only field that propagates in the bulk
is the Goldberger-Wise (GW) scalar. The bulk action is then

Sbulk =
∫

d5x
√
g
(1

2g
MN∂MΦ ∂NΦ + 6

κ2 −
1
2m

2
ΦΦ2 − 1

2κ2R
)
. (3.1)

We take m2
Φ ≡ ε(ε − 4), where ε is taken to be O(1/10) in order to generate exponential

hierarchies without severe tuning. The bulk action is supplemented by brane-localized
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Lagrangian terms, including a kinetic term and potential for the Higgs on the IR brane:

Sbrane = −
∫

d4x
√
−g0 V0(Φ)

∣∣∣∣
y=y0

−
∫

d4x
√
−g1

(
|∂µH|2 − V1(Φ, |H|)

)∣∣∣∣
y=y1

. (3.2)

We presume the following form for the brane-localized potentials:

V0 = T0 + γ0(Φ− v0)2,

V1 = T1 + λH |H|2(|H|2 − v2
H − λΦ) + γ1(Φ− v1)2.

(3.3)

These include brane tensions and localized mass terms for the Goldberger-Wise stabilizing
field that displace the VEV from the origin. In addition, there is a standard potential for
the IR brane-localized Higgs with an additional trilinear coupling to the Goldberger-Wise
field. This last term is crucial for our purposes, as it couples the Higgs field to the radius.

We then solve the equation of motion (2.7), supplemented by the boundary condi-
tions (2.8), under the assumption of an x-independent background VEV, 〈Φ〉 = φ(y).
Putting everything together we get the effective dilaton potential of Equation (2.6) in the
case of a single bulk scalar field, with the added contributions of the brane-localized Higgs.

We consider the small backreaction limit, κ � 1. In this case, A′ ≈ 1 and the bulk
equation of motion can be solved in general to give

φ(y) = φεe
εy + φ4e

(4−ε)y. (3.4)

The coefficients are fixed by imposing the boundary conditions. We adopt a stiff wall
boundary condition for the GW field on the UV brane, corresponding to the limit γ0 →∞,
which fixes φ0 ≡ φ(y = 0) = v0.

The IR brane potential contains the interaction between the GW scalar and the Higgs.
We do not take the stiff wall limit for the GW scalar on the IR brane, so φ1 ≡ φ(y1) is not
fixed at v1. Through the trilinear coupling to Φ, the brane-localized Higgs mass is then
a function of y1. The equation of motion for the Higgs background that minimizes the
effective potential energy is

2〈H〉2 ≡ v2(y1) =

0 v2
H + λφ1 < 0

v2
H + λφ1 v2

H + λφ1 > 0,
(3.5)

while the boundary condition for φ(y) is

φ′1 = −γ1(φ1 − v1) + 1
4λλHv

2(y1). (3.6)

If we impose only the IR boundary condition for φ, leaving the Higgs VEV free (not
imposing Equation (3.5)), we can explore the two dimensional effective potential as a
function of v and y1.
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Figure 2: Higgs VEV in units of the symmetry breaking scale f and its dependence on various
parameters of the model. On the left, we show the variation as a function of the IR brane mistune
δT1. On the right, we display it in terms of how close the minimum of the radion potential is to
yc

1, the critical point in the extra dimension where the interplay between the GW scalar and the
Higgs first triggers electroweak symmetry breaking. We have taken v0 = 1/10, v1 = 2, γ1 = 1,
λH = 1/8, κ = 1/50. The different curves are obtained by fixing the ratio λ/v2

H , so that equal
values of ε correspond to equal values of yc

1.

In the small backreaction limit, the effective potential for the system is

Veff = e−4y0

(
V0 −

6
κ2 −

1
4φ
′
0

2 − ε(4− ε)
4 φ2

0

)
+ e−4y1

(
V1 + 6

κ2 + 1
4φ
′
1

2 + ε(4− ε)
4 φ2

1

)
. (3.7)

For small y1 values, it can be arranged that v2
H + λφ1 < 0, and the origin in Higgs field

space is a stable minimum: 〈H〉 = 0.
In this region, the effective potential (after imposing the Higgs equation of motion) is

determined by the single GW field and its backreaction onto the geometry.
On the other hand, for larger y1 values, the Higgs may develop a VEV. For example,

when ε is taken to be small and we set γ1 = 0, we can approximate the electroweak
symmetry breaking condition as

y1 &
1
ε

log
(
− v

2
H

λv0

)
. (3.8)

Minimizing the effective potential with respect to y1 relates the Higgs VEV to the symmetry
breaking scale. The effective VEV, in units of the Kaluza-Klein scale f , scales with δT1,
the IR brane mistune, as

v

f
≈
(

64δT1

λH(16− λ2λH)

)1/4

. (3.9)

In Figure 2 we quantify the amount of tuning associated with a given Higgs VEV v.
The Higgs VEV is fixed in the following way: first we identify the effective 4D scale of
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gravity, i.e. the Planck scale, via M2
Pl ≈ 1/(2κ2), as a consequence of the warped geometry.

For a given value of κ, we then reproduce the experimentally measured hierarchy between
the Planck and the weak scale, log(MPl/v) ≈ 38.4. We scan over f by changing ε ∼ 1/10, so
that the corresponding values of y1 provide a large range of Kaluza-Klein scales. To obtain a
small v/f , parameters must be chosen so that the global minimum of the effective potential
is very close to the critical point for electroweak symmetry breaking. We denote the critical
values of the 5D parameters with the superscript “c”. We display this information in two
different ways: on the left, as a function of δT1, which is the physical parameter that needs
to be tuned to adjust the location of the minimum of the effective potential. On the right,
as a function of y1, the location of the minimum itself, which is more useful to visually
determine how close the minimum has to be to the critical point. As expected from the
analytic estimate of Equation (3.9), a small Higgs VEV requires a very small mistune in
the brane tension against the bulk cosmological constant.

Mass Spectrum

In order to understand the spectrum of the theory, we consider fluctuations around the
background solutions for the metric and the two scalar field profiles to linearized order. In
particular, we parametrize the various degrees of freedom as

Φ(x, y) = φ(y) + ϕ(x, y),

H(x) = 1√
2

[v + h(x)] exp(iα),

ds2 = e−2A(y)−2F (x,y)ηµν dxµ dxν − (1 + 2F (x, y))2 dy2 .

(3.10)

It is possible to show that, when having only one scalar field in the bulk, the whole set of
linearized Einstein equations, together with the equations of motion for the scalar fields,
reduces to a single homogeneous differential equation for F in the bulk [18]:

F ′′ − 2A′F ′ − 4A′′F − 2φ
′′

φ′
F ′ + 4φ

′′

φ′
A′F = e2A�F. (3.11)

We also have to specify the boundary conditions. When considering a stiff wall UV brane
boundary condition for the background GW field (γ0 →∞), the UV boundary condition is
F ′0 = 2A′0F0. The IR boundary condition for F can be obtained by combining the following
equations:

φ′ϕ = 3
κ2 (F ′ − 2A′F ),

−2ϕ′1 = ∂2V1

∂φ2 ϕ1 + ∂2V1

∂φ∂h
h+ 2F1

∂V1

∂φ
,

�h+ e−2A1

(
∂2V1

∂φ∂h
ϕ1 + ∂2V1

∂h2 h

)
= 0.

(3.12)
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Figure 3: Dependence of the mass scales in the theory on various parameters of the model. On
the left, we show how for a fixed value of κ the IR brane mistune controls the Higgs mass and
VEV, while the radion mass is essentially unchanged. On the right, we see that the radion mass
is dependent on the amount of backreaction. The parameters are the same as in Figure 2.

Notice that the mass eigenvalue appears both in the bulk equation and in the boundary
condition because of the presence of the brane-localized Higgs kinetic term which leads to
the � ≡ ∂µ∂

µ operator.
Solutions are parametrized by 3 unknowns. Two are integration constants associated

with the second order equation for F , and the third is the eigenvalue. One integration
constant can be fixed by choosing a convenient normalization, and the other is eliminated
by imposing the UV brane boundary condition. To find the eigenvalues, we employ a
shooting method and determine the mass eigenvalues for which the IR boundary condition
is satisfied. We find that the spectrum contains a light radion and Higgs along with a KK
tower due to the bulk GW field.34

Figure 3 shows the mass spectrum obtained by solving Equation (3.11) supplemented
by the boundary conditions (3.12). Once again, we fix v to the electroweak value and we
scan over f by varying ε ∼ 1/10. We can see how the mass of the Higgs fluctuation tracks
the Higgs VEV and is controlled by the amount of mistune (left subfigure), while the radion
mass is determined by the backreaction parameter κ (right subfigure). On the other hand,
the Higgs and radion masses are essentially insensitive to changes in κ and δT1, respectively.
The lightest particle in the spectrum can be either the Higgs or the radion, depending on
the choice of parameters. This is in contrast to the results of Subsection 3.3, where we
consider only the Higgs in the bulk, and the radion is constrained to be the lightest state
in the spectrum.

3As usual, there is no separate KK tower for the radion field, as these modes are eaten by the massive
KK gravitons.

4Recent work also utilizes a new approach to get the full potential for the lightest scalar mode, going
beyond the mass eigenvalue [19].
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3.2 Two Bulk Fields

In this Subsection, we consider the case where both fields, GW scalar Φ and the Higgs H,
propagate in the bulk. For simplicity, we assume that they are uncoupled, despite such a
coupling being allowed by the symmetry. However, they still interact indirectly through
gravity, as both fields backreact on the geometry. We assume that the Higgs is localized
towards the IR brane by taking its bulk mass close to (but above) the Breitenlohner-
Freedman bound m2

H = −4. Note that the bulk mass is constant.
The bulk action is given by

Sbulk =
∫

d5x
√
g
(1

2∂
NΦ∂NΦ + ∂NH†∂NH + 6

κ2 −
1
2m

2
ΦΦ2 −m2

H |H|
2 − 1

2κ2R
)
. (3.13)

Again we take m2
Φ ≡ ε(ε − 4) with ε ∼ O(1/10), and we also define ν2 ≡ 4 + m2

H with
ν ∼ O(1/10). This bulk action is supplemented by brane-localized Lagrangian terms

Sbrane = −
∫

d4x
√
−g0V0(Φ, |H|)

∣∣∣∣
y=y0

−
∫

d4x
√
−g1V1(Φ, |H|)

∣∣∣∣
y=y1

. (3.14)

The brane-localized potentials are given by the following:

V0(Φ, |H|) = T0 + γ0(Φ− v0)2 +m2
0|H|

2,

V1(Φ, |H|) = T1 + γ1(Φ− v1)2 + λH |H|2(|H|2 − v2
H).

(3.15)

In this Subsection, we work in the simplifying limit γ0,1 → ∞, which sets the UV/IR
boundary conditions for the GW field as Φ(y = y0) = v0 and Φ(y = y1) = v1 respectively.

We write the VEVs for the GW and the Higgs field respectively as 〈Φ〉 = φ(y) and
〈|H|〉 = v(y)/

√
2. Presuming small metric backreaction, the bulk equations of motion for

the scalars are given by

φ′′ − 4φ′ − ε(ε− 4)φ = 0,
v′′ − 4v′ − (−4 + ν2)v = 0.

(3.16)

The GW field φ has the same profile as in the previous Subsection, which is given by (3.4)
where the coefficients φε and φ4 are fixed by the boundary conditions φ(y0 = 0) = v0 and
φ(y1) = v1. The solution for the Higgs VEV can be conveniently expressed as

v(y) = v(y1)e2(y−y1)
(
eνy − re−νy

eνy1 − re−νy1

)
, (3.17)

where v(y1) and r are integration constants which will be determined by the Higgs boundary
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conditions generated by the brane potentials (3.15):

v′(y0) = m2
0

2 v(y0),

v′(y1) = λH
2 v(y1)

(
v2
H − v2(y1)

)
.

(3.18)

The UV boundary condition fixes r as

r = m2
0 − 4− 2ν

m2
0 − 4 + 2ν . (3.19)

The constant v(y1), the Higgs VEV on the IR brane, is determined by the IR boundary
condition which has two solutions. One of them is the trivial one v(y1) = 0 corresponding
to unbroken electroweak symmetry. By defining m2

1 ≡ λHv
2
H , the second solution is given

by

v2(y1) = 1
λH

[
(m2

1 − 4− 2ν) + 4ν(m2
0 − 4− 2ν)

(m2
0 − 4− 2ν)− e2νy1(m2

0 − 4 + 2ν)

]
, (3.20)

provided that the term inside brackets is positive. In this case, the above solution is the
preferred one, corresponding to broken electroweak symmetry.

If the Higgs has a nonzero VEV, it contributes to the 4D effective potential (3.7) by a
term given by

V v
eff =

[
m2

0
2 v2 − 1

4v
′2 + 1

4m
2
Hv

2
]∣∣∣∣
y=0

+ e−4y1

[
λH
2 v2

(
v2

2 − v
2
H

)
+ 1

4v
′2 − 1

4m
2
Hv

2
]∣∣∣∣
y=y1

(3.21)

By using the Higgs solution (3.17) and the boundary conditions (3.19) and (3.20), the above
expression takes a very simple form:

V v
eff = −λH4 v4(y1)e−4y1 . (3.22)

We can directly see that it is negative definite, therefore if there is a solution with a non-
trivial VEV, then it will be energetically favored.

Parameter Space for Electroweak Symmetry Breaking

By inspecting the function v2(y1), we can see that it has a singularity at

ys1 = 1
2ν log

(
m0 − 4− 2ν
m2

0 − 4 + 2ν

)
, (3.23)
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since the denominator of the second term in (3.20) diverges. In the region of parameter
space where m2

0−4 < −2ν, ys1 is positive, hence physical. As a result, the effective potential
will be unbounded from below at y1 = ys1. This singularity is an artifact of neglecting the
backreaction of the Higgs on the geometry, which cannot be done in the vicinity of ys1.
Nevertheless, since we want to continue to work in the small backreaction limit, we will
exclude the m2

0 − 4 < −2ν from our parameter space.
For the rest of the discussion, we will assume m2

0 − 4 > −2ν and define α0,1 ≡ m2
0,1 −

4 − 2ν for notational simplicity. By taking the derivative of (3.20) with respect to y1, we
find

∂v2(y1)
∂y1

= 1
λH

8α0ν
2(α0 + 4ν)e2νy1

[α0 − e2νy1(α0 + 4ν)]2 . (3.24)

This tells us that v2(y1) is either monotonically increasing or decreasing depending on the
sign of α0. We will consider the former case in this particular example.

In order to have symmetry breaking, we need limy1→∞ v
2(y1) > 0 which implies α1 > 0.

Additionally, the symmetry will be unbroken in the UV if v2(y1 = 0) < 0, or α0 > α1. In
this case there is a “critical” position of the IR brane, y1 = yc1, where the effective Higgs
mass squared term is vanishing. This point corresponds to v2(y1 = yc1) = 0 and is given by

yc1 = 1
2ν log

(
α0(α1 + 4ν)
α1(α0 + 4ν)

)
. (3.25)

A convenient measure of the size of the Higgs VEV is the mass that would be given to
a gauge field by the Higgs mechanism. For small backreaction, this can be approximated
by (

veff

f

)2

=
∫ y1

y0
dy e−2(y−y1)v(y)2, (3.26)

where f = e−y1 is the conformal symmetry breaking scale, i.e. the KK scale.
The full effective potential can be expressed as the sum of the UV and IR contributions:

Veff(y1) = e−4y0V UV
eff (y1) + e−4y1V IR

eff (y1). (3.27)

As we have proved in Appendix A, the condition for an extremum of the effective potential
is that V IR

eff vanishes, provided that the scalar boundary conditions (2.8) are satisfied. Such
a point, let us denote it by yext

1 , is a minimum provided that

V ′′eff(y1)
∣∣∣∣
y1=yext

1

> 0. (3.28)

Since the Higgs contribution to the effective potential scales as the fourth power of the
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Higgs VEV, we can neglect it for finding the extremum points and their stability. Then we
can approximate V IR

eff by

V IR
eff (y1) ≈ δT̃1 − v0v1(2− ε)(4− ε)eεy1 + v2

0(2− ε)2e2εy1 , (3.29)

where in the second line we absorbed all the y1-independent terms into the definition of δT̃1.
The extremum of the potential is determined by the solution of the quadratic equation:

δT̃1 − v0v1(2− ε)(4− ε)f−εext + v2
0(2− ε)2f−2ε

ext = 0, (3.30)

where fext = exp{−yext
1 } denotes the conformal breaking scale at the extremum point yext

1 .
To determine the stability, we need to calculate the full effective potential. Again ignoring
Higgs contributions, it can approximately be expressed as

Veff(f) ≈ δT̃0 + δT̃1f
4 − 4v0v1(2− ε)f 4−ε + 2v2

0(2− ε)f 4−2ε. (3.31)

Since V ′′eff(y1) and V ′′eff(f) have the same sign, we can calculate the latter. Then, the stability
condition reads

12δT̃1 − 4v0v1(2− ε)(3− ε)(4− ε)f−εext + 2v2
0(2− ε)(3− 2ε)(4− 2ε)f−2ε

ext > 0. (3.32)

Finally, we replace δT̃1 with the solution of (3.30). Then we find that the extremum point
fext is stable if

fext <

(
(v1/v0)(4− ε)

4− 2ε

)−1/ε

. (3.33)

Mass Spectrum

In this Subsection, we will work out the mass spectrum when both fields are propagating in
the bulk. We will parameterize the fluctuations of the metric and the field in the same way
as in Subsection 3.1, except now the Higgs field does also depend on the bulk coordinate y:

H(x, y) = 1√
2

[v(y) + h(x, y)] exp{iα}. (3.34)
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In this case, the linearized Einstein equations for fields F, h, ϕ take the form

12A′2F − 6A′′F − 6A′F ′ + F ′′ = −κ
2

3

[
2V F + 3F (φ′2 + v′2)− ∂V

∂φ
ϕ− ∂V

∂v
h− φ′ϕ′ − v′h′

]

− κ2

3
∑
j=0,1

(
4VjF −

∂Vj
∂φ

ϕ− ∂Vj
∂v

h

)
δ(y − yj), (3.35)

4A′F ′ + e2A�F = −κ
2

3

(
4V F + ∂V

∂φ
ϕ+ ∂V

∂v
h− φ′ϕ′ − v′h′

)
, (3.36)

∂µ(3F ′ − 6A′F ) = κ2∂µ(φ′ϕ+ v′h), (3.37)

where all derivatives of the bulk and brane potentials are evaluated on the background
scalar VEVs. The µ5-equation can directly be integrated to give

F ′ − 2A′F = κ2

3 (φ′ϕ+ v′h). (3.38)

By combining the µν- and 55-equations in the bulk we obtain

F ′′ − 2A′F ′ + e2A�F = 2κ2

3 (φ′ϕ′ + v′h′). (3.39)

Matching the singular terms in the µν-equation gives the junction conditions for F :

[F ′]i = 2κ2

3 ViF + κ2

3

(
∂Vi
∂φ

ϕ+ ∂Vi
∂v

h

)
. (3.40)

By using the boundary conditions for the background solution, one can show that this is
equivalent to the µ5-equation so it provides no new constraints.

The linearized scalar field equations are given by

e2A�ϕ− ϕ′′ + 4A′ϕ′ + ∂2V

∂φ2 ϕ = −6F ′φ′ − 4∂V
∂φ

F, (3.41)

e2A�h− h′′ + 4A′h′ + ∂2V

∂v2 h = −6F ′v′ − 4∂V
∂v

F, (3.42)

together with the boundary conditions

[ϕ′ − 2φ′F ]i = ∂2Vi
∂φ2

∣∣∣∣
φ
ϕ, (3.43)

[h′ − 2v′F ]i = ∂2Vi
∂v2 h. (3.44)

So far, there are three second order differential equations, (3.39)(3.41) and (3.42), which
need to be solved simultaneously. However, we can use the µ5-equation (3.38) to eliminate
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ϕ from the system. Then (3.39) becomes

F ′′ − 2A′F ′ − 4A′′F − 2φ
′′

φ′
F ′ + 4A′φ

′′

φ′
F = e2A�F + 2κ2

3

(
v′′ − φ′′

φ′
v′
)
h. (3.45)

To find the mass spectrum, we expand both F and h into their Kaluza-Klein (KK)
modes by

F (x, y) =
∑
n

Fn(y)Rn(x), (3.46)

h(x, y) =
∑
n

hn(y)Rn(x), (3.47)

where each KK mode in the above expansions satisfies �Rn = −m2
nRn. Using (3.42) and

(3.45), we write the system of differential equations to determine the mass spectrum as

F ′′n − 2A′F ′n − 4A′′Fn − 2φ
′′

φ′
F ′n + 4A′φ

′′

φ′
Fn + e2Am2

nFn = 2κ2

3

(
v′′ − φ′′

φ′
v′
)
hn, (3.48)

h′′n − 4A′h′n −
(
∂2V

∂v2 − e
2Am2

n

)
hn = 6F ′nv′ + 4∂V

∂v
Fn. (3.49)

This system of differential equations have five integration constants; two from each equation
plus the eigenvalue. Two of them are fixed by the boundary condition (3.44), which reads

h′n − 2v′Fn = ±1
2
∂2V0,1

∂v2 hn, +/− is for the UV/IR brane. (3.50)

In the case of stiff-wall boundary conditions, (3.43) sets ϕ = 0 on both branes. Then,
(3.40) implies the relation

F ′n − 2A′Fn = κ2

3 v
′hn, on the branes. (3.51)

The remaining integration constant can be fixed by normalizing both Fn and hn by a
common factor, since the system is invariant under such a scaling.

The rest of this Subsection is devoted to solving this system of equations to zero and
leading order in the backreaction. We will assume that κ is small enough so that the
background field profiles are accurately expressed by their zero backreaction solutions. We
shall investigate the validity of this assumption later.

Mass Spectrum with Backreaction Neglected

First, we will study the mass spectrum in the κ2 → 0 limit. This means that we will
search for the mass eigenvalues which remain finite after this limit. We will denote these
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eigenvalues and their corresponding eigenvector components Fn and hn by the superscript
(0). Then (3.48) and (3.49) become

(
F (0)′

n − 2F (0)
n

)′
− 2φ

′′

φ′

(
F (0)′

n − 2F (0)
n

)
+ e2y

(
m(0)
n

)2
F (0)
n = 0, (3.52)

h(0)′′

n − 4h(0)′

n −
(
∂2V

∂v2 − e
2y
(
m(0)
n

)2
)
h(0)
n = 6F (0)′

n v′ + 4∂V
∂v

F (0)
n . (3.53)

The µ5-component of the Einstein equations (3.38) tells us that F (0)′
n − 2F (0)

n ∝ κ2. Then
(3.52) implies F (0)

n ∝ κ2 too. Hence, the mass spectrum in the κ2 → 0 limit is given by the
differential equation

h′′n − 4h′n + (m2
ne

2y −m2
H)hn = 0, (3.54)

with boundary conditions

h′n = ±1
2
∂2V0,1

∂v2 hn, (3.55)

where +/− for UV/IR brane, and we have omitted the superscripts for brevity.
We see that the fluctuations F and h are decoupled from each other in this limit, which

is expected since there is no explicit coupling between the GW and the Higgs field. In the
absence of backreaction, each field does not know about the existence of the other.

The solution of (3.54) is given in terms of Bessel functions:

hn = e2y[Jν(mne
y) + cYν(mne

y)], (3.56)

where c is a constant which is determined by the UV boundary condition. The mass
eigenvalue is fixed by the IR boundary condition. After applying both, we find that the
mass spectrum is given by the roots of

bv(mn) = J̃1
ν (mn)− J̃0

ν (mn)
Ỹ 0
ν (mn)

Ỹ 1
ν (mn), (3.57)

where we defined

X̃0(mn) ≡
(
∂2V0

∂v2 − 4
)
Xν(mn)−mn(Xν−1(mn)−Xν+1(mn)), (3.58)

X̃1(mn) ≡
(
∂2V1

∂v2 + 4
)
Xν(mn) +mne

y1(Xν−1(mne
y1)−Xν+1(mne

y1)), (3.59)

with X = {J, Y }. The Higgs mass is the smallest mn which satisfy bv(mn) = 0.
The Higgs sector of the model is specified by five parameters; m2

0, m2
1, λH , ν and f .
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Figure 4: In this figure, we are plotting the necessary value of m2
1 in order to get vEW = 246 GeV

and mh = 126 GeV, as a function of m2
0. The hierarchy between the electroweak and the conformal

breaking scale is f/vEW = 10 and f/vEW = 100 for the left and right plot respectively. In the
shaded region, there is no ”critical region”, i.e. the electroweak symmetry is broken, even if the
IR brane is very close to the UV brane.

Two of them can be fixed in terms of the others, by setting the effective Higgs VEV (3.26)
and the Higgs mass to 246 GeV and 126 GeV respectively. We have chosen to keep m2

0, ν
and f free, and calculate m2

1 and λH in terms of the rest. We show the results in Figure 4.
One can see that a fair amount of tuning is needed in the IR brane mass parameter of
the Higgs. One might get the impression that the tuning is less severe when we lower the
ν parameter, or increase the hierarchy between the electroweak and conformal breaking
scales. But in that case, the tuning between the GW and the Higgs sector does increase,
as we shall see shortly.

Since the GW contribution dominates the effective potential, the minimum is mainly
determined by the GW sector. Therefore, one can choose a particular value for the IR
mistune δT1, such that the minimum coincides with yc

1, as long as (3.33) is satisfied. We
denote this “critical” mistune by δT c1 . Then, a convenient parameter to measure the tuning
between the GW and the Higgs sector is |δT1/δT

c
1 | − 1.

In Figure 5, we show the required tuning on the parameter space where the electroweak
symmetry breaking is activated by the radion. The procedure to obtain these plots is as
follows: We have set the GW sector parameters to be v0 = 1/50, v1 = 1 and ε = 1/10.
Then we set the conformal breaking scale to be f = 10(50) TeV for the left(right) plot. For
each point on the α0−α1 plane, we fix the Higgs parameters such that veff = 246 GeV and
mh = 126 GeV. Finally, we solve for δT1 such that V IR

eff = 0.
Different points in Figure 5 which share the same α0 = m2

0−4−2ν values are obtained
by varying ν. For a fixed α0, larger ν values correspond to larger α1 = m2

1− 4− 2ν, thus ν
increases as one goes up on the vertical axis. As one can see more clearly in the plot on the
right, tuning between the GW and the Higgs sectors does also increase in this direction.
Therefore, as one relaxes the tuning in the m2

1 parameter, the tuning in δT1 becomes larger.
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Figure 5: These plots show the amount of tuning required between the Higgs and the GW sector
when the breaking scale is set to f = 10 TeV (left figure) and f = 50 TeV (right figure). Different
points which have the same α0 value are obtained by varying ν which is decreasing as one goes up
on the vertical axis. We can observe that the tuning increases as we go the the top-right region
of the α0 − α1 plane. Also increasing the breaking scale increases the tuning, which is expected.

The Radion Mass

To calculate the radion mass, we make the following ansatz for the radion wavefunction,
and the radion mass eigenvalue:

Fr = e2A
(
1 + κ2F̃r

)
and m2

r = κ2l2r . (3.60)

By plugging this ansatz into (3.45), and keeping only the terms which are at leading order
in κ2 we find

F̃ ′′r + F̃ ′r

(
2− 2φ

′′

φ′

)
= 2

3

[
(φ′2 + v′2) +

(
v′′ − φ′′

φ′
v′
)
hre
−2y

]
− e2yl2r . (3.61)

The solution of this equation is

F̃ ′r(y) = 1
u(y)

[2
3

∫ y

0
dy′ u(y′)(φ′2 + gv(y′))− l2r

∫ y

0
dy′ u(y′)e2y + F̃ ′r(0)

]
, (3.62)

where

u(y) = exp
{∫ y

0
dy′

(
2− 2φ

′′

φ′

)}
and gv(y) = v′2 +

(
v′′ − φ′′

φ′
v′
)
hre
−2y. (3.63)

The function u(y) can be obtained analytically:

u(y) =
(
φ′(0)
φ′(y)

)2

e2y. (3.64)
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By plugging this result into (3.62) and evaluating it at y = y1, we can write an expression
for the radion mass:

l2r
f 2 =

(∫ y1

0
dy e

4(y−y1)

φ′(y)2

)−1[1
3 + 2

3

∫ y1

0
dy gv(y)

φ′2
e2(y−y1) +

(
F̃ ′(0)e−2y1

φ′(0)2 − F̃ ′(y1)
φ′(y1)2

)]
, (3.65)

where we have dropped the e−2y1 term after evaluating the integral
∫ y1

0 dy e2(y−y1). The
boundary values for F̃ ′r can be expressed in terms of the boundary values for hr using the
junction conditions given in (3.40). Since ϕ = 0 on the branes in the case of stiff wall
boundary conditions, these give

F̃ ′r = 1
3v
′hre

−2y, on the branes. (3.66)

Plugging this result into (3.65) gives

l2r
f 2 =

(∫ y1

0
dy e

4(y−y1)

φ′2

)−1[1
3 + 2

3

∫ y1

0
dy gv(y)

φ′2
e2(y−y1)

+ 1
3

(
v′(0)hr(0)
φ′(0)2 − v′(y1)hr(y1)

φ′(y1)2

)
e−2y1

]
.

(3.67)

The first term in this expression is the radion mass in the absence of the Higgs VEV, which
can be calculated analytically. Ignoring the terms which are proportional to e−2y1 and
higher, it is given by

l2r,0
f 2 ≡

1
3

(∫ y1

0
dy e

4(y−y1)

φ′2

)−1

= 4
3ε(2− ε)

2v2
0e
εy1

[
(v1/v0)(4− ε)

4− 2ε − eεy1

]
. (3.68)

We note that this result confirms the stability condition we have derived in (3.33).
In the case of nonzero Higgs VEV, the radion mass receives contributions due to its

mixing with the Higgs, which are given by the remaining terms in (3.67). To calculate them,
all we need is the profile for the field hr. It can be obtained by solving (3.42) together with
the boundary condition (3.44) in the small backreaction limit. By using the ansatz (3.60),
the equation of motion and the boundary condition for h̃r ≡ hre

−2y are given respectively
by

h̃′′r − ν2h̃r = 4[3v′ + (−4 + ν2)v] = 4(v′′ − v′), (3.69)

and

(h̃′r + 2h̃r)− 2v′ = ±1
2
∂2V0,1

∂v2 h̃r, +/− on the UV/IR brane. (3.70)

This equation can be solved exactly, and its solution can be plugged into (3.67) to determine
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Figure 6: In these plots, we show the values of the radion mass rescaled with the breaking scale
f and backreaction parameter κ. In both plots, we fix v1 = 1 and vary v0. On the left figure, we
fix the breaking scale to f = 10 TeV and plot for various values of ε. On the right figure, we fix
ε = 1/10 and plot for various values of the breaking scale.

the correction to the radion mass due to Higgs-Radion mixing. The expression for the
correction is fairly complicated, but it can be easily seen that it scales with v2(y1) ∼ v2

eff/f
2,

so they are heavily suppressed compared to the leading term inside the brackets of (3.67).
Hence we conclude that, for the parameter space we are interested in, the radion mass
is given by (3.68) to a very good approximation. We are showing the radion mass as a
function of GW parameters in Figure 6.

The Validity of Small Backreaction

At the beginning of this Subsection, we have ignored the backreaction of gravity when
obtaining the solutions for the VEVs of both field, and we have used those solutions to
calculate the mass spectrum. Now, we shall check the validity of this approximation.

In this model, the field profiles in the bulk have different scales. While the GW field
starts with O(0.01) and ends with O(1), the Higgs field scales as ∼ v(y1)e−2y1 and ∼ v(y1)
near the UV and IR branes respectively. Therefore, the backreaction of the GW field on the
Higgs profile can be sizable, due to the fact that the GW field heavily dominates throughout
the bulk. Hence, we should analyze the backreaction carefully, and determine the largest
value of κ, so that the results we have derived so far remain valid.

In order to study the backreaction, we need to use the general form of the equation of
motion which is given by (2.7). The function A′(y) is given by (2.3), which for this model
reads

A′ =
√

1 + κ2

12[φ′2 + v′2 − ε(ε− 4)φ2 − (−4 + ν2)v2]. (3.71)
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We are only interested in the backreaction of the GW field to leading order. Therefore we
approximate A′ as

A′ ≈ 1 + κ2

24
(
φ′2 − ε(ε− 4)φ2

)
. (3.72)

This function peaks on the IR brane, thus we can use its IR value to determine the strength
of the backreaction. Hence we estimate the size of the corrections as

κ2

24
(
φ′2(y1)− ε(ε− 4)φ2(y1)

)
≈ κ2

24 ×O(1), (3.73)

Although this number seems quite small, it has a significant effect on the Higgs VEV as
we shall see below.

The Higgs VEV on the IR brane is determined by the IR boundary condition for the
Higgs, which can be rearranged to have the form

v2(y1)
v2
H

= 1− 2
λHv2

H

v′(y1)
v(y1) . (3.74)

The Higgs parameters we have used in this Subsection typically have λ−1
H ≈ 17 and m2

1 ≈ 4
to satisfy vEW = 246 GeV and mh = 126 GeV. This sets v2

H = λ−1
H m2

1 ≈ 68. So the
number on the LHS of (3.74) is very small. Therefore, a delicate cancellation between
two O(1) parameters is needed. This equation encodes the tuning required to get a Higgs
VEV that is suppressed compared with the KK scale. For a fixed set of 5D parameters,
Equation (3.74) effectively gives the Higgs VEV as a function of y1, which is the position
of the IR brane that minimizes the effective potential. One can alternatively see that there
is a large sensitivity to 5D parameters. For example, by increasing the value of the 5D
Newton constant, κ2 even slightly, one finds that the Higgs VEV will change significantly
because of the sensitivity of the cancellation to small changes.

To see explicitly how large the backreaction parameter κ can be, let us assume that
we want to know v2(y1) to a 10% accuracy. Then a rough upper bound for κ can be given
by

κ2

24
(
φ′2(y1)− ε(ε− 4)φ2(y1)

)
. 0.1× v2(y1)

v2
H

. (3.75)

For a hierarchy f/veff ∼ 10, we get κ . O(1)× 10−3.
In the next Subsection, we will study the same model but without the GW field. Then

the only source of the backreaction is due to the Higgs field itself. In that case, we need to
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Figure 7: On the left figure, we show the ratio between v2(y1) obtained by solving (2.7) nu-
merically with nonzero backreaction, and the analytical result (3.20) obtained by neglecting the
backreaction. The green dots show the results for the model of this Subsection, where both GW
and the Higgs are in the bulk, while the blue dots are the results for the model of the next Sub-
section, where only the Higgs is in the bulk. The green and blue dashed vertical lines show the
upper bound estimates for κ calculated via (3.75) and (3.76) respectively. The gray line corre-
sponds to a ratio of 0.9 which we have assumed in our estimates. On the right figure, we plot
the Radion-Higgs mass ratio for κ = 4 × 10−3. The parameters for these plots are v0 = 1/50,
v1 = 1, ε = 1/10, f = 10 TeV, m2

0 = 43/10, ν = 1/10 unless otherwise specified. The remaining
free parameters are fixed such that vEW = 246 GeV and mh = 126 GeV.

replace the GW field in the above expression by the Higgs field:

κ2

24
(
v′2(y1)− (−4 + ν2)v2(y1)

)
� 0.1× v2(y1)

v2
H

. (3.76)

The term inside the parentheses on the LHS is ∼ 8v2(y1), thus the bound on κ in this
model is given by

κ �

√
0.1× 3

v2
H

∼ O(1)× 10−2. (3.77)

On the left plot of Figure 7, we show the ratio v2
κ(y1)/v2

0(y1) as a function of κ,
where v2

κ(y1) is the Higgs VEV square on the IR brane found by numerically solving (2.7)
with nonzero backreaction, and v2

0(y1) is the analytical result with no backreaction given in
(3.20). The green and blue dots show the results for models of this and the next Subsection
respectively. The green and blue dashed vertical lines denote the bounds calculated via
(3.75) and (3.76) respectively, while the gray line shows the v2

κ(y1)/v2
0(y1) ratio of 0.9, which

we have used in our estimates. We can see that the backreaction has a much bigger effect
when both GW and the Higgs are in the bulk, and our estimates agree with the numerical
results quite well.
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On the right plot of Figure 7, we show the Radion-Higgs mass ratio by assuming
κ = 4× 10−3. We see that, if we insist on staying in the regime where the backreaction can
be neglected, then the radion mass is about an order of magnitude smaller than the Higgs
mass. The radion can be made heavier by increasing the backreaction, but one needs a full
numerical analysis of the mass spectrum, which is beyond the scope of this work.

3.3 Higgs in the Bulk

In this Subsection, we will study a model where the Higgs is the only stabilizing field in the
bulk. This model has two major differences compared to the one in the previous Subsection
where both the Goldberger-Wise and the Higgs fields were propagating in the bulk. First,
the parameter space for electroweak symmetry breaking receives another constraint due
to the fact that now the Higgs is responsible for radius stabilization. This means that we
don’t have the freedom of adjusting Goldberger-Wise parameters to get a stable minimum;
instead, we demand that the Higgs parameters α0,1 and ν satisfy additional conditions
which we shall derive below. The second main difference will be the radion mass, which
now depends only on the Higgs parameters.

Parameter Space for Electroweak Symmetry Breaking

We will be using the notation introduced in Subsection 3.2 and assume α0 > 0 so that
(3.24) is positive definite. From (3.22), we can write the effective potential everywhere as

Veff(y1) =

e
−4y1δT1, No EWSB
e−4y1

[
δT1 − λH

4 v
4(y1)

]
, EWSB,

(3.78)

where we have tuned δT0 = 0. By taking the derivative and setting it to zero, we find that
at an extremum point y1 = yext

1 , the IR brane mistune is given by

δT ext
1 = λH

8 v2(yext
1 )

[
2v2(yext

1 )− ∂v2(y1)
∂y1

∣∣∣∣
y1=yext

1

]
. (3.79)

In order to not have a runaway solution in the UV, i.e. to have a global minimum, we
demand that this term is positive. Then the second derivative of Veff at y1 = yext

1 , where
δT1 is replaced by δT ext

1 is given by

V ′′eff(yext
1 ) = e−4y1

λH
2

v2(y1)
(

4∂v
2(y1)
∂y1

− ∂2v2(y1)
∂y2

1

)
−
(
∂v2(y1)
∂y1

)2
∣∣∣∣

y1=yext
1

. (3.80)

By using explicit expression for v2(y1), it is possible to show that δT ext
1 > 0 implies

V ′′eff(yext
1 ) > 0, so we can use the former. Then we obtain the following constraint on
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Figure 8: In this figure, the circles denotes possible {α0, α1} pairs characterized by vEW = 246 GeV
and mh = 126 GeV. The hierarchy between the electroweak and the conformal breaking scales
is f/vEW = 10 and f/vEW = 100 for the left and right plot respectively. The gray shaded area
denotes the region in parameter space where there is no “critical” value of y1. The color shaded
areas are the regions where the condition for global minimum (3.81) is violated. To improve
clarity, we are showing the {α0, α1} pairs corresponding to these regions with semi-transparent
circles.

the parameter α1:

α1 >
4α0ν[(1 + ν)(α0 + 4ν)e2νy1 − α0]

[(e2νy1 − 1)α0 + 4νe2νy1 ]2
∣∣∣∣
y1=yext

1

. (3.81)

We are showing the effect of this constraint on the Higgs parameter space in Fig-
ure 8. In these plots, we are plotting m2

1 in terms of m2
0 such that the electroweak scale is

vEW = 246 GeV and the Higgs mass is mh = 126 GeV. The methods and the equations for
determining m2

1 are identical to the Goldberger-Wise and Higgs model studied in the previ-
ous Subsection. The semi-transparent circles correspond to the points where the constraint
(3.81) is not satisfied, hence those points should be excluded from the parameter space.
We can see that the constraint becomes more stringent as one decreases ν and increases
the breaking scale f .

The Radion Mass

The radion mass can be calculated by following the procedure described in Subsection 3.2.
For this model we find

l2r
f 2 = 1

3

(∫ y1

0
dy e

4(y−y1)

v′(y)2

)−1[
1− h̃r(y1)

v′(y1) + h̃r(0)
v′(0) e

−2y1

]
, (3.82)
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Figure 9: In this figure, we are plotting the ratio between the radion mass and the Higgs mass as
a function of α0 by assuming κ = 6× 10−2. The breaking scale is f = 10 TeV and f = 50 TeV on
the left and right figure respectively. The Higgs parameters are fixed such that vEW = 246 GeV
and mh = 126 GeV.

where h̃r is the solution to equations (3.69) and (3.70). Again, the full solution is analytical,
but fairly complicated. Nevertheless, we can get a good insight by calculating the factor
which multiplies the term inside the brackets. It is given by

I ≡ 1
3

(∫ y1

0
dy e

4(y−y1)

v′(y)2

)−1

= 4v2(y1)m2
0ν

2e−2νy1

3(e2νy1 − 1)(m2
0 − 4 + 2ν)

[
e2νy1(2 + ν)− r(2− ν)

(1− re−2νy1)2

]
, (3.83)

where r = m2
0−4−2ν

m2
0−4+2ν . We find that the term inside the brackets varies between 1.0 and 1.4

in the parameter space we are using. We show the results of the Radion-Higgs mass ratio
in Figure 9 as a function of α0 = m2

0 − 4 − 2ν, under the assumption that κ = 6 × 10−2.
To make the plots we have used the full analytical result given in (3.82). We can see that
in this model, the radion is two to three orders of magnitude lighter than the Higgs. Since
the effect of the backreaction is not as significant as in the previous model, we expect that
a significantly light radion is a property of this model, even with backreaction.5

It might seem surprising that decreasing ν increases the radion mass. To understand
the effect of this parameter, it is useful to study the quantity I in detail. Since f ∼
O(10 TeV), we have y1 ∼ O(30). Choosing ν ≈ 1/10 implies e2νy1 ∼ O(1000) hence we can
assume e2νy1 � 1. In this approximation, I becomes

I ≈ 4
3v

2(y1)m
2
0(2 + ν)ν2

m2
0 − 4 + 2ν e

−2νy1 , e2νy1 � 1. (3.84)

In this regime, the radion mass is heavily suppressed by e−2νy1 , which isO(10−3), in addition
5Note that radion masses at the GeV scale and above are still largely unconstrained by the latest

experimental results, as shown by the detailed analysis of [20].
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to suppression by v2(y1) and ν2. On the other hand, if ν ∼ 1/100, then e2νy1 ∼ O(1). In
this case, we can evaluate I at the leading order in ν. The result is

I ≈ 8
3v

2(y1) m2
0ν

2

m2
0 − 4

e2νy1

(e2νy1 − 1)2 , ν � 1. (3.85)

We see that the exponential suppression is absent in this case, hence the radion is heavier
in this regime.

4 CFT Interpretation

Field theories in AdS admit an interpretation in terms of a 4D strongly coupled CFT
(or approximate CFT) dual [21, 22]. In this Section, we discuss a CFT interpretation of
multi-scalar stabilization models.

It is useful to first recall the CFT interpretation of the original unstabilized Randall-
Sundrum construction [2], and then the simplest stabilization mechanism introduced by
Goldberger and Wise [3, 4]. We then discuss the specific interpretation of multi-scalar
models with emphasis on those where there are critical points for symmetry breaking in
the moduli space for the radion.

The original 2-brane RS model with weak 5D gravity has an interpretation as a large-
N approximate CFT where the conformal symmetry is spontaneously broken. The radion
degree of freedom corresponds to the dilaton – the Goldstone boson of spontaneously bro-
ken conformal invariance. The classical equations of motion (Einstein’s equations) rule out
a static geometry unless the UV and IR brane tensions are individually tuned against the
bulk cosmological constant. These two tunings represent (respectively) the need to have
a vanishing bare cosmological constant so that there is no explicit breaking of conformal
invariance, and the vanishing of the dilaton quartic, an allowed coupling that would oth-
erwise destabilize the conformally non-invariant vacuum state. In other words, as is well
known [23], spontaneous breaking of exact conformal invariance without breaking Poincaré
invariance requires a flat direction.

Even in this case, with both tunings performed (and ignoring quantum effects)6, the
continuum of physically inequivalent vacua (the moduli space of inter-brane separations)
present a problem for creating a low energy description that resembles our Standard Model.
Thus, a model must incorporate a stabilization mechanism. The simplest such mechanism
posits a bulk scalar field that develops a vacuum expectation value, deforming the geometry
through gravitational backreaction. If this scalar has an approximate shift symmetry,
violated by (for example) a small bulk mass term, its VEV grows slowly, and backreaction
effects are sizable only deep into the bulk of AdS. This backreaction leads to an effective

6In fact, even with both UV and IR brane tunings performed, quantum corrections will generally lead
to a nonzero Casimir potential between the branes.
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potential for the inter-brane separation, and stabilization is achieved dynamically without
tuning of the IR brane tension (the UV tuning must still be performed, or enforced by
additional symmetries to obtain static geometries). The slow growth of the scalar VEV in
the UV region of the geometry ensures that the generated hierarchy is exponentially large.

This 5D picture is dual to 4D dimensional transmutation in which a nearly marginal
operator (not necessarily classically marginal as is the case for asymptotic freedom) is
given a nonzero coupling constant. Its logarithmic evolution breaks conformal invariance
explicitly, leading to the dynamical generation of an infrared scale where either the theory
has flowed very far away from the UV fixed point [24, 25], or has flowed to a point where
the effective dilaton quartic has become small [10,26].

There is a similar class of 5D models where, in the 4D CFT dual, it is a composite
operator that serves as the nearly marginal deformation of the CFT. This occurs in the
case where there is a 5D field with mass near the Breitenlohner-Freedman bound, which
(in 5D) is m2 = −4 in units of the AdS curvature [27–29]. The corresponding operator O
in the CFT dual has dimension ∆ ∼ 2, such that at large N , the composite operator O†O
has dimension ∆ ∼ 4. Thus, turning on this composite operator corresponds at large N to
a nearly marginal deformation of the CFT. The model we discuss where only the Higgs is
in the bulk is of this form, where it is the Higgs vacuum expectation value that backreacts
on the geometry and stabilizes the inter-brane separation.

To understand the CFT interpretation of radion-induced Higgs criticality, it is first
necessary to review the interpretation of the UV brane and field dynamics there. In models
with a UV brane, the interpretation is that there are two sectors of the theory, a funda-
mental sector and a CFT sector, and that these sectors mix.

First, we review the basics of the correspondence without the UV brane (or with the
UV brane taken to the boundary of AdS). In this case the correspondence links field config-
urations on the boundary of AdS (which are not integrated over in the higher dimensional
partition function) to sources for a dual CFT:

ZCFT[J(x) = φ(x, z = 0)] =
∫

[Dφ]bulk exp[iS(φ)]. (4.1)

The CFT with sources could be described by a Lagrangian of the form LCFT = L0
CFT +

J(x)OCFT.
When the UV brane is introduced, the path integral has no restriction – effectively

the sources are promoted to dynamical fields that mix with the CFT, and the new dual 4D
Lagrangian is of the form

L = Lfundamental(φ(x)) + L0
CFT + λφ(x)O. (4.2)

The CFT and fundamental sector mix with each other. Through the mixing, spontaneous
breaking of conformal invariance in the CFT sector from VEVs of CFT operators, 〈O〉, is
communicated to the fundamental sector. The size of these VEVs corresponds in 5D to
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the position of the IR brane. Integrating out the CFT (or bulk, in the 5D picture) degrees
of freedom leads to an effective theory for the fundamental degrees of freedom in which
parameters of the EFT, like the Higgs mass squared term, are a function of y1. This y1
dependence can be such that the EFT crosses phase boundaries for symmetry breaking
transitions as y1 is varied.

In short, the 5D theory with two branes is dual to a 4D theory where a fundamental
and CFT sector are coupled to each other, and where the CFT is spontaneously broken by
operator VEVs. The coupling between the two allows a “CFT-induced criticality”, where
CFT operator VEVs induce instabilities in the fundamental sector. In 5D, the instabilities
leading to non-trivial VEVs are induced by varying the position of the IR brane.

In the case of using this picture as a model for electroweak physics, the effective
Higgs mass squared term is, in the 4D picture, a function of CFT operator VEVs. For
certain values of these VEVs, the effective mass squared may become negative, and induce
electroweak breaking. In 5D, the mass squared of the lowest lying state of the bulk Higgs
can become negative for ranges of y1, such that electroweak symmetry breaking is induced
by the radion VEV.

5 Conclusions

We have explored radius stabilization in the context of 5D models in warped space with
multiple scalar fields. General results for multi-scalar models are derived to all orders in
backreaction for 5D Einstein-Hilbert gravity. We suggest a holography-inspired approach
to the multi-scalar potential, and additionally derive a superpotential method for creating
static geometries with multiple bulk scalar fields.

Of particular interest given recent experimental results are the phenomenological im-
plications of Higgs fine tuning. We explored 5D models focusing on obtaining a hierarchy
between extra-dimensional excitations and the electroweak symmetry breaking scale. 5D
models with such a hierarchy are close to the critical point for the electroweak sector, and
thus, generically, the radion will be a dynamical degree of freedom that scans the Higgs
phase transition.

Three examples were presented where the radion scans the effective Higgs mass pa-
rameter across a symmetry breaking phase transition:

• A model with the Higgs on the IR brane, where a bulk Goldberger-Wise scalar couples
to the Higgs and scans its effective mass.

• A model with only a Higgs field in the bulk, where coupling to the radion arises
through geometrical backreaction.

• A model with both Higgs and a Goldberger-Wise scalar in the bulk.
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These three models cover a range of types of modulus-Higgs potential that give a hierarchy
between extra-dimensional resonances and the electroweak scale.

The models presented are an important step in understanding electroweak symmetry
breaking in the context of holographic composite Higgs models, particularly those where
the Higgs is light in comparison to the compositeness scale. An important message is
that the tuning of the Higgs itself has implications in terms of cosmology and collider
phenomenology through the manner of the Randall-Sundrum/electroweak early universe
physics and the low lying spectrum of scalar states.

The formalism we have developed for multi-scalar stabilization models is relevant for
all theories in which the Higgs emerges as a mode that is light in comparison with the
compactification scale. In general, the Higgs plays a non-trivial part in stabilization, and
this work helps further elucidate the connection between the compactification scale and
that of electroweak physics.
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useful conversations regarding the research presented here. The authors thank Cornell
University for hospitality throughout the duration of this project. JH thanks the Munich
Institute for Astro- and Particle Physics (MIAPP) of the DFG cluster of excellence “Origin
and Structure of the Universe” for a productive research environment during a portion
of this work. CE, JH, and GR were supported in part by the DOE under grant award
number DE-SC0009998. CE is supported by the Deutsche Forschungsgemeinschaft under
Germany’s Excellence Strategy – EXC 2121 “Quantum Universe” – 390833306.

A Derivative of the Radion Potential

In this Appendix, we derive Equation (2.10) for the derivative of the effective potential.
Before imposing any of the boundary conditions, we straightforwardly take the deriva-

tive of the effective potential with respect to y1:

dVeff

dy1
=
∑
i

e−4A
[
∂V0

∂φi

dφi
dy1
− 1

2A′

(
φ′i

dφ′i
dy1
− ∂V

∂φi

dφi
dy1

)]∣∣∣∣
y=y0

+
∑
i

e−4A
[
∂V1

∂φi

dφi
dy1

+ 1
2A′

(
φ′i

dφ′i
dy1
− ∂V

∂φi

dφi
dy1

)]∣∣∣∣
y=y1

− 4e−4A1
dA1

dy1
ṼIR − 4e−4A0

dA0

dy1
ṼUV.

(A.1)
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Imposing the bulk scalar equations of motion allows a substitution for ∂V/∂φi:

∂V

∂φi
= φ′′i − 4A′φ′i. (A.2)

Plugging this into the above derivative, we find:

dVeff

dy1
=
∑
i

e−4A
[(
∂V0

∂φi
− 2φ′i

)
dφi
dy1
− 1

2A′

(
φ′i

dφ′i
dy1
− φ′′i

dφi
dy1

)]∣∣∣∣
y=y0

+
∑
i

e−4A
[(
∂V0

∂φi
− 2φ′i

)
dφi
dy1

+ 1
2A′

(
φ′i

dφ′i
dy1
− φ′′i

dφi
dy1

)]∣∣∣∣
y=y1

− 4e−4A1
dA1

dy1
ṼIR − 4e−4A0

dA0

dy1
ṼUV.

(A.3)

The first terms in parentheses in each bracket would vanish if the boundary conditions
were imposed. The other terms in parentheses are Lagrange brackets with respect to the
variables A and y1 [30]. Let us see how that is the case. First, we identify the conjugate
momenta to φi:

πi = − ∂L
∂φ′i

= −√gg55φ′i = e−4Aφ′i, (A.4)

where the minus sign is irrelevant, and chosen for convenience. The Lagrange bracket for
the pair (A, y1) (at some arbitrary y-value) is:

{A, y1}φi,πi =
∑
i

∂πi
∂A

∂φi
∂y1
− ∂πi
∂y1

∂φi
∂A

=
∑
i

[
−4πi

∂φi
∂y1

+ 4πi
∂A

∂y1

∂φi
∂A

+ e−4A
(
∂φ′i
∂A

∂φi
∂y1
− ∂φ′i
∂y1

∂φi
∂A

)]
.

(A.5)

The first two terms cancel, and the rest (using dA = A′ dy) gives the remaining terms we
have in the brackets in the derivative of the effective potential.

The final derivative of the potential then is given by:

dVeff

dy1
= e−4A0

(
∂V0

∂φ0
− 2φ′0

)
dφ0

dy1
+ e−4A1

(
∂V1

∂φ1
+ 2φ′1

)
dφ1

dy1

+ {A, y1}φ0,πφ,0 − {A, y1}φ1,πφ,1

− 4e−4A1
dA1

dy1
ṼIR − 4e−4A0

dA0

dy1
ṼUV.

(A.6)

Translations in y are an example of canonical transformations on the coordinates [30], and
the Lagrange bracket is thus an invariant under shifts in y. Therefore the two Lagrange
bracket terms cancel against each other. The very last term is vanishing by choice of an
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overall metric scale factor: dA0/dy1 = 0. Imposing the scalar equations of motion on the
IR brane causes the second term to vanish. We are left with Equation (2.10).

B A Superpotential Method for Many Scalar Fields

It is well known that a method exists for constructing static geometries that satisfy all
boundary conditions and bulk equations of motion when there is a single scalar field.
The method posits a “superpotential” function of the scalar field φ, W (φ). For a given
superpotential, W , there is a unique bulk potential given by

V (φ) = 1
8

(
∂W

∂φ

)2

− κ2

6 W
2. (B.1)

Taking the y-derivative of the above equation and dividing by φ′ gives

∂V

∂φ
= 1

4φ′
∂W

∂φ

d
dy
∂W

∂φ
− κ2

3 W
∂W

∂φ
. (B.2)

From this, we see that if φ′ = 1
2
∂W
∂φ

, and A′ = κ2

6 W , this is equivalent to the scalar equation
of motion. The second of these two relations is required by Einstein’s equations, as its y
derivative must reproduce the relation A′′ = κ2

3 φ
′2.

If one starts with a given W , there must be a relation between W and the boundary
potentials for this bulk solution (which is first order) to solve the scalar boundary value
problem (which is second order). Additionally, the boundary potentials are constrained to
have the form

V0,1(φ) = ±W (φ0,1)±W ′(φ0,1)(φ− φ0,1) + higher order polynomial in (φ− φ0,1). (B.3)

With this procedure, one can start with any W , and create a static solution to the
geometry with any given y1. This procedure incorporates arbitrary backreaction. Stability
is not guaranteed (the radion may be tachyonic about these points), but this can be checked
by solving the mode expansion about the classical background determined by this method.

Using this method, one can also “go backwards”, starting with the (more fundamental)
V (φ), and then integrate the superpotential equation. It is non-linear, and typically no
analytic solutions are possible (with a limited number of exceptions). The rest of the story
proceeds in the same way, but the additional integration constant gives the freedom to
match arbitrary boundary potentials (although one must solve for y1, rather than positing
it from the get-go).

This procedure can be generalized to multiple scalar fields in the following way. Take
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a superpotential W ({φi}). This is achieved by defining the bulk potential as

V = 1
8
∑
i

(
∂W

∂φi

)2

− κ2

6 W
2 (B.4)

and taking

φ′i = 1
2
∂W

∂φi
and A′ = κ2

6 . (B.5)

One can now again take the y-derivative of the superpotential relation. The result is a
sum over all of the scalar field equations of motion after substituting the above relations,
showing that this procedure will generate solutions to the bulk equations of motion, for
any given W . The boundary conditions also must be satisfied, which will happen for the
following form of the boundary potentials:

V0,1(φ) = ±W
({
φ0,1
i

})
±
∑
i

∂W

∂φi

({
φ0,1
i

})(
φi − φ0,1

i

)
+ higher order polynomial in

(
φi − φ0,1

i

)
.

(B.6)

It is not clear that going in “reverse” is possible in the same way as in the case of a single
scalar field. That is, it seems unlikely that all solutions that stabilize the geometry with
more than one scalar come from superpotentials.
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