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Abstract

In electroweak baryogenesis the baryon asymmetry of the universe is created during the
electroweak phase transition. The quantum transport equations governing the dynamics of
the plasma particles can be derived in the vev-insertion approximation, which treats the vev-
dependent part of the particle masses as a perturbation. We calculate the next-to-leading
order (NLO) contribution to the CP-violating source term and CP-conserving relaxation
rate, corresponding to Feynman diagrams for the self-energies with four mass insertions. We
consider both a pair of Weyl fermions and a pair of complex scalars, that scatter off the
bubble wall. We find: (i) The NLO correction becomes large for O(1) couplings. If only
the Standard Model (SM) Higgs obtains a vev during the phase transition, this implies the
vev-insertion approximation breaks down for top quarks. (ii) The resonant enhancement of
the source term and relaxation rate, that exists at leading order in the limit of degenerate
thermal masses for the fermions/scalars, persists at NLO.
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1 Introduction

In electroweak baryogenesis (EWB) the baryon asymmetry of the universe is created during
the electroweak phase transition. The scenario requires new physics at the electroweak scale,
in particular an extension of the standard model (SM) scalar sector to obtain a strong first-
order phase transition, and new sources of CP violation beyond those present in the CKM
matrix. A major motivation to study EWB in detail is that it can be probed by experiment,
for instance by collider searches for new scalars [1–4], precision Higgs studies [5, 6], and CP-
odd collider observables [7–11]. Particularly tight constraints on new sources of CP violation
come from measurements of the electric dipole moment [12–17]. In addition, gravitational waves
produced during the phase transition may be measured by LISA or other future gravitational
wave observatories [18,19].

To draw definite conclusions on the viability of EWB scenarios, accurate theoretical predic-
tions are needed, which are currently somewhat lacking. Although no comprehensive comparison
of different theoretical approaches exists, it has been shown for specific models that predictions
may vary by more than an order of magnitude [20]. The computation is hampered by the non-
equilibrium, non-perturbative, and finite-temperature aspects of the process. The starting point
for a quantum treatment of EWB is the closed-time-path formalism at finite temperature. The
dynamics of the phase space densities of plasma quanta are described by the Kadanoff-Baym
equations [21–23]. Unfortunately, these equations are complicated, and a series of approxima-
tions – which are not always controlled – are needed to make progress.

We will focus on the vev-insertion approximation (VIA) method [24–26]. To derive a set of
transport equations for the plasma particles that are simple enough to solve (numerically), the
following main approximations are made: (i) The bubble dynamics is treated as slow compared
to the typical time-scale of the plasma excitations. (ii) Quantum coherence effects are neglected,
which allows to rewrite the Kadanoff-Baym equations in terms of number densities rather than
phase-space densities. (iii) It is assumed that Fick’s first law can be used to incorporate diffusion.
And finally, (iv) the effective mass of the relevant plasma particles, which is spacetime-dependent
in the bubble wall background, is treated as a perturbation.

The VIA method derives its name from the last approximation, as it corresponds to an
expansion in the number of vev-insertions, that is, insertions of the two-point coupling, in the
Feynman diagrams for the particles scattering in the bubble background. In this paper, we
will determine the validity of this expansion, by calculating the next-to-leading order (NLO)
correction to the CP-odd and -even rates for fermion/scalar interactions with the bubble wall.
We will consider both a left- and right-handed fermion pair with a Yukawa-type interaction
with the Higgs field, and a pair of complex scalars – also denoted by left and right – with a
left-right-mixing coupling to the Higgs.

The transport equation for the right-handed field is of the form

∂µj
µ
R = Scp� − Γ+(µR + µL)− Γ−(µR − µL)− ΓH(µR − µL − c µH) + ... . (1)

Similar equations exist for the left-handed field and for the Higgs boson. Here jµR is the number
current for the right-handed particles (the zeroth component corresponds to the number density
of particles minus antiparticles), µi the chemical potential of particle i, and c depends on the

coupling to the Higgs field. The CP-violating term Scp� sources the creation of a non-zero number
density of right-handed particles, and it originates from interactions with the bubble wall. All
other rates on the right-hand side of the equation conserve CP, and they give rise to washout
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of the number density. The relaxation rates Γ± encode interactions with the bubble wall, ΓH
interactions with the Higgs quanta, and the ellipses stand for all possible other interactions. A
net chiral density in front of the bubble wall is transformed into a net baryon asymmetry by
weak sphaleron transitions.

We will calculate the CP-even rates Γ± and the CP-odd source term Scp� to NLO in the vev-
insertion expansion. They arise from the scatterings of the fermions/scalars with the bubble
wall, mediated by the vev-dependent two-point coupling, ff (ϕb) and fs(ϕb) for fermions and
scalars respectively, with ϕb the bubble wall Higgs background. Let’s focus on the fermions.
Based on naive dimensional analysis one would expect the NLO correction to be suppressed by
a factor |ff |2/T 2

N , with TN the temperature at bubble nucleation. However, it is not obvious
that this estimate is accurate as there are other scales in the problem, such as the thermal decay
widths ΓT of the particles. In fact, at leading-order in VIA the dominant rate and source term
are both resonantly enhanced in the limit that the field-independent (thermal) masses for the

left- and righthanded particles are degenerate, and then scale as Scp�,Γ− ∝ 1/ΓT . Moreover, as
we will show, since the correction can be order one for the top quark, it is important to check for
possible numerical factors in the expansion parameter. It should be noted that the vev-insertion
expansion is not a loop expansion and thus there are no factors of (4π) appearing.

The NLO expressions generically have a complicated form, but simplify enormously in the
limit of degenerate masses for the left- and right-handed particles, which is a good approximation
for the top quark. We then find that the ratio of the NLO to LO contribution for fermions is
(Γ+ vanishes in the mass degenerate limit):

|Γ−|nlo
|Γ−|lo

=
|Scp�|nlo
|Scp�|lo

∼
|ff |2m2

T

8T 2
NΓ2

T

∼
|ff |2

8αT 2
N

, (2)

with mT the thermal mass, and α the QCD (electroweak) coupling for fermions with strong
(electroweak) interactions. For scalars the enhancement factor also depends on the thermal
width, and is given explicitly in eqs. (94) and (102). For quarks eq. (2) is of the order of the
naive estimate |ff |2/T 2

N . The couplings fi are model dependent, and the validity of the vev-
insertion approximation should be checked per model. In set-ups where only the SM Higgs is
non-zero along the bubble wall |ff | ≈ yfϕb with yf the SM Yukawa coupling, and thus VIA
breaks down for a pair of top quarks, but works well for all other SM fermions.

We further find that in the degenerate mass limit the NLO correction is just a multiplicative
factor. The resonant condition of the leading order source term and relaxation rate is not shifted
or otherwise affected, and is a robust result.

This paper is organized as follows. In the next section, we briefly summarize the relevant
formalism. We first introduce the fermionic and scalar set-up and define the two-point coupling
ff and fs in section 2.1. Section 2.2 recaps the Feynman rules and propagator relations relevant
for the calculation of the source terms in the CTP formalism, and section 2.3 gives the transport
equations in the vev-insertion approximation. To calculate the source terms, multiple contour
integrals need to be performed. To set the notation, we give the master integrals in section 2.4.
In section 3 we review the leading order calculation for both the CP-violating and -conserving
source terms. In section 4 the calculation is extended to the next-to-leading order contribution.
We will provide all the calculational details. Readers only interested in the final results can go
from section 2.3 straight to section 5 where we summarize the outcome of the NLO calculation,
and discuss the implications.
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2 Set-up, formalism and notation

In this section we introduce the set-up, and recap the formalism to calculate the source Scp� and
wash-out rates Γ± in the transport equation (1) from Feynman diagrams. The leading order
and next-to-leading order calculation is then presented in the next sections.

2.1 Model

We consider a two-flavor1 system consisting of either a pair of chiral fermions (ψL, ψR) or a
pair of complex scalars (φL, φR), and we are interested in their dynamics during the electroweak
phase transition. In the high temperature expansion the thermal masses of the particles are field
independent, and they are included in the free Lagrangian, and thus appear in the propagators
defined in section 2.2. Scalars can in addition have a flavor diagonal constant mass term; this
possibility can be included by substituting everywhere m2

T → m2
T +M2 with M the bare mass.

CP-violation resides in left-right mixing couplings to the Higgs field, which in the bubble wall
background generates a field-dependent mass for the fermions/scalars. This mass is treated as
a perturbation in the vev-insertion approximation (VIA), and included in the interaction La-
grangian. The Higgs vev can be parametrized as 〈H†H〉 = 1

2ϕ
2
b(x

µ), with ϕb(x
µ) the space-time

dependent bounce solution (in multi-Higgs models, we are interested in the linear combination
of Higgs vevs that enters the bounce solution for tunneling). We can then write the two-point
interaction for the fermions and scalars as

Lint
f ⊃ −

ff (ϕb)√
2

ψ̄LψR + h.c., Lint
s ⊃ −fs(ϕb)φ

†
LφR + h.c., (3)

with fi and i = f, s the CP-violating field-dependent mass term. It describes the scattering of the
plasma particles off the bubble wall. The interaction violates CP, and particles and antiparticles
scatter differently, provided Im(f∗i ḟi) 6= 0. In explicit models, this can be achieved if two
(or more) different interactions with complex couplings contribute to fi, as then the relative
phase cannot be rotated away in the bubble background. For example, CP-violation (CPV)
can arise in a two-Higgs doublet model from interference between couplings to the two Higgs
fields [28–35]. Alternatively, in an effective field theory approach it can come from interference
between SM Yukawa and dimension-six effective interactions [13, 16, 36, 37]. When we discuss
the implications of our work in section 5 we will focus on the case where (ψL, ψR) are the
chiralities of a single SM fermion, e.g. the left- and right-handed top quark, but the results
can be straightforwardly generalized to set-ups where the CP-violating interaction is between
particles from different families [38, 39]. For the scalar set-up the coupling fs can both be
linear in the Higgs field (plus possible higher dimensional terms), as happens in supersymmetric
models [26], and quadratic [40].

For our considerations, the origin of the mass term is not important, and we work with the
phenomenological parametrization in eq. (3).

2.2 CTP formalism and Wightman functions

We use the formalism of [26], and our metric is (+,−,−,−, ).
1In this work “flavor” means L,R (as in Ref. [27]).
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The evolution of the plasma quanta during the electroweak phase transition is described
using the finite-temperature, non-equilibrium Closed Time Path (CTP) or Schwinger-Keldysh
formalism [41–43]. For an extensive introduction to the CTP formalism, see e.g. [23].

All integrals and derivatives are performed along a closed path, that can be split into a
plus-branch from the initial time (which for initial thermal equilibrium can be taken to minus
infinity) to some finite time t, and a minus-branch going backwards. There are then four Green
functions, depending on the branch that the time arguments of the fields are located on. The
interactions connect fields on the same branch; the Feynman rule is that every mass insertion
gives a factor −if js for the scalar theory, with j = ± denoting the branch, and a factor −if jf/

√
2

for the fermionic theory. Since the minus branch runs backward in time the coupling picks up
an additional sign

f+
i = −f−i ≡ fi. (4)

Scalars For scalars the Wightman functions are defined as

G−+(x, y) = G>(x, y) = 〈φ(x)φ†(y)〉, G+−(x, y) = G<(x, y) = 〈φ†(y)φ(x)〉 , (5)

where we have suppressed the labels L,R on the fields and Wightman functions. Since the
thermal masses are flavor diagonal, and the off-diagonal mass term is treated as a perturbation,
all Green functions are diagonal in flavor space. The time- and anti-time-ordered propagators
are

G++(x, y) = Gt(x, y) = Θ(x0 − y0)G−+(x, y) + Θ(y0 − x0)G+−(x, y),

G−−(x, y) = Gt̄(x, y) = Θ(x0 − y0)G+−(x, y) + Θ(y0 − x0)G−+(x, y), (6)

with Θ(x) the Heaviside step function. Under complex conjugation the Green functions trans-
form as

(G−+
xy )† = G−+

yx , (G+−
xy )† = G+−

yx , (G++
xy )† = G−−yx , (G−−xy )† = G++

yx , (7)

where we introduced the notation Gxy = G(x, y).
Explicitly, the Wightman functions are given by

Gλ(x, y) =

∫
k
e−ik·(x−y)gλs (k0, µ)ρ(k0, ~k) , (8)

with λ =>,< and
∫
k =

∫
d4k/(2π)4. We will also use the notation

∫
~k

=
∫

d3~k/(2π)3 and∫
k0 =

∫
dk0/(2π). The spectral density is

ρ(k0,~k) =
i

2ωk

[
1

k0 − E∗
− 1

k0 + E
− 1

k0 − E
+

1

k0 + E∗

]
, (9)

with
E = ωk + iΓT , E∗ = ωk − iΓT . (10)

We include the (leading order) thermal corrections in the propagators and take ω2
k = ~k2 +m2

T (T )
with mT and ΓT the thermal mass and width respectively. We neglect deviations from thermal
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equilibrium for the thermal distribution functions, and expand in small chemical potential:

g>s (k0, µ) = 1 + ns(k0 − µ) = 1 + ns(k0)− µhs(k0)

T
+O(µ2),

g<s (k0, µ) = ns(k0 − µ) = ns(k0)− µhs(k0)

T
+O(µ2), (11)

with the Bose-Einstein distribution and its derivative given by

ns(x) =
1

(ex/T − 1)
, hs(x) = Tn′s(x) = − ex/T

(ex/T − 1)2
. (12)

Fermions The fermionic Wightman functions are defined via

S−+(x, y) = S>(x, y) = 〈ψ(x)ψ̄(y)〉, S+−(x, y) = S<(x, y) = 〈ψ̄(y)ψ(x)〉 , (13)

where we suppressed both spinor and flavor indices. The time-ordered propagators are defined
by equivalent relations to the scalar ones eq. (6). The hermiticity properties are

(S−+
xy )† = γ0S−+

yx γ
0 , (S+−

xy )† = γ0S+−
yx γ

0 , (S++
xy )† = γ0S−−yx γ

0 , (S−−xy )† = γ0S++
yx γ

0. (14)

The explicit form of the Wightman function is

Sλ(x, y) =

∫
k
e−ik·(x−y)gλf (k0, µ)ρ(k0, ~k) (/k +mT ) , (15)

with the spectral density again given by eq. (9), and mT the thermal mass. For future reference
we introduce the notation

Sλ(x, y)
∣∣
Tr(m)=0

=

∫
k
e−ik·(x−y)gλf (k0, µi)ρ(k0, ~k) (/k) , (16)

that is, the subscript Tr(m) = 0 indicates that the mass term in the last factor of eq. (15) is set
to zero. The thermal distribution functions for fermions are

g>f (k0, µi) = 1− nf (k0 − µi) = 1− nf (k0) +
µhf (k0)

T
+O(µ2) ,

g<f (k0, µi) = −nf (k0 − µi) = −nf (k0) +
µhf (k0)

T
+O(µ2) , (17)

with the Fermi-Dirac distribution and its derivative given by

nf (x) =
1

(ex/T + 1)
, hf (x) = Tn′f (x) = − ex/T

(ex/T + 1)2
. (18)

2.3 Transport equations

The transport equations can be derived directly from the Schwinger-Dyson equations [25,26], or
equivalently, from the Kadanoff-Baym equations [44]. The latter approach makes transparant
that only the leading order terms in the derivative expansion are included, i.e., that it is assumed
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that the bubble wall dynamics is slow compared to the typical timescale of the plasma excitations
which is set by the temperature. The result for scalars is

∂µj
µ
s (x) =

∫
d3y

∫ x0

−∞
dy0

[
Π−+
xy G

+−
yx −Π+−

xy G
−+
yx −G−+

xy Π+−
yx +G+−

xy Π−+
yx

]
, (19)

with Πλ
xy ≡ Πλ(x, y) the self-energy. In the diffusion approximation jµ = (n,−D~∇n) with D

the diffusion constant. Neglecting the bubble wall curvature, the transport equations reduce
to ordinary differential equations for the number densities of plasma particles. The transport
equation for a Dirac fermion current is

∂µj
µ
f (x) = −

∫
d3y

∫ x0

−∞
dy0 Tr

[
Σ−+
xy S

+−
yx − Σ+−

xy S
−+
yx − S−+

xy Σ+−
yx + S+−

xy Σ−+
yx

]
, (20)

with Σλ
xy the self-energy. Apart from the overall sign and the trace over spinor space, this has

the same form as the scalar transport eq. (19).
The transport equations can be simplified using the hermiticity properties. The self-energies

satisfy the same type of relations as the propagators in eqs. (7) and (14)

(Π−+
xy )† = Π−+

yx , (Π+−
xy )† = Π+−

yx , (Σ−+
xy )† = γ0Σ−+

yx γ
0, (Σ+−

xy )† = γ0Σ+−
yx γ

0. (21)

We will verify this explicitly for the LO and NLO contributions in the next two sections.
We will always calculate the transport equation for the right-handed particle, the correspond-

ing one for the left-handed particle then follows from ∂µj
µ
L,i = −∂µjµR,i with i = f, s for fermions

respectively scalars. Putting back the flavor indices, and using the hermiticity properties of the
self-energy, this becomes

∂µj
µ
R,s(x) =

∫
d4yΘxy 2Re[Π−+

R,xyG
+−
R,yx −Π+−

R,xyG
−+
R,yx] = Scp

s + Scp�
s ,

∂µj
µ
R,f (x) = −

∫
d4yΘxy 2Re Tr[Σ−+

R,xyS
+−
R,yx − Σ+−

R,xyS
−+
R,yx] = Scp

f + S
cp�
f , (22)

with Θxy = Θ(x0 − y0). In the expression on the right-hand-side we split the current in a

CP-conserving source Scp
i ≡ Scp

R,i and a CP-violating source S
cp�
i ≡ S

cp�
R,i, and to avoid notational

clutter we have dropped the flavor index. The relaxation rate extracted from the CP-conserving
source term for the right-handed particles is2

Scp
i = −Γ+

i (µR + µL)− Γ−i (µR − µL) ≡ −Γ+
i µ

+ − Γ−i µ
− , (23)

where we suppressed the scalar/fermion index. Equations (22) and (23) are the master equations
to calculate the source terms and rates.

We can expand the scalar self-energy in the coupling fs:

Πλ = Πλ
R,lo + Πλ

R,lno + ..., Σλ = Σλ
R,lo + Σλ

R,nlo + .... (24)

The LO and NLO Feynman diagrams for the self-energy of the right-handed scalar are shown
in fig. 1. Note that it is an expansion in the coupling fs, that is, in the number of vev inser-
tions, not a loop expansion. The LO term is Πλ

R,lo = O(f2
s ), the NLO term Πλ

R,nlo = O(f4
s ),

and the ellipses denote O(f6
s ). An analogous expansion holds for the fermionic self-energies.

Consequently, we can also expand the source terms as SI = SIlo + SInlo + ... with I = CP, cp�.

2The rescaled relaxation rate that usually appears in the transport equations found in the literature is Γ±M =
6
T2 Γ±. If the fermions/scalars are (s)quarks there is an additional Nc color factor.
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⊗ ⊗

+ −φL

φR φR

Π>
R = +

+ ±φL ± ±φR ± −φL

⊗ ⊗ ⊗ ⊗

φR φR

+ ...

Figure 1: Feynman diagrams for the LO and NLO contributions to the self-energy Π>
R. The legs

with ⊗ symbols denote vev insertions ϕb, and the plus/minus signs at the vertices indicate the
coupling f±s . The diagrams for the fermionic self-energy Σ>

R have the same structure with the
replacement φL,R → ψL,R.

2.4 Contour integral

To calculate the source terms we will have to perform multiple contour integrals. Here we
introduce the master integrals, which also serve to set the notation. The integrals are of the
form

I± =

∫ ∞
0

du0ξI(u0)

∫
k0

e±ik
0u0ρ(k0)g(k0). (25)

For the scalar model g(k0) = gλ(k0) the thermal distribution function eq. (11), for the fermionic
model g(k0) denotes the thermal distribution function eq. (17) times a k0-dependent trace factor.
The function ξI in the calculation of the CP-conserving and CP-violating source respectively is

ξcp(x) = 1, ξcp�(x) = x . (26)

For I+ the contour is closed in the upper half plane where the spectral function ρ(k0) has two
poles U(k). The contour for I− is closed in the lower half plane with poles at D(k), with

U(k) = {U1(k), U2(k)} = {Ek,−E∗k}, D(k) = {D1(k), D2(k)} = {−Ek, E∗k}. (27)

Then

I+ =

∫ ∞
0

du0ξI(u0)

∫
k0

eik
0u0ρ(k0)g(k0) = −

∫ ∞
0

du0ξI(u0)
∑
U

(
(−1)F eik

0u0g(k0)

2ωk

)
,

I− =

∫ ∞
0

du0ξI(u0)

∫
k0

e−ik
0u0ρ(k0)g(k0) =

∫ ∞
0

du0ξI(u0)
∑
D

(
(−1)F e−ik

0u0g(k0)

2ωk

)
,

(28)

where we introduced the notation ΣU = Σk0=U(k) = Σk0={U1,U2} and similarly for ΣD. Further
F = 1 for the k0 = ±E poles, and F = 0 for the k0 = ±E∗ poles, as the former pick up an
extra minus sign from the residue. If there are several contour integrals over k0

i the notation is
generalized to ΣDU = Σk01=DΣk02=U , etc. The sign is then denoted by (−1)

∑
Fi .

The final u0-integral converges as Im(k0) cuts off the integral at u0 →∞ and∫ ∞
0

du0e±ik
0u0 = ± i

k0
,

∫ ∞
0

du0 u0e±ik
0u0 = − 1

k2
0

. (29)
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The LO and NLO source terms require two and four contour integrals respectively. It will
be useful to divide the summation over the poles into “opposite” halves, as these contributions
either add or subtract. For example, consider the double sum ΣDU . If one term in the summation
is (k0

1, k
0
2) = (Da, Ub) then we define the opposite term as (Dā, Ub̄) with ā = 1 if a = 2 and ā = 2

if a = 1. In this way we split the summation in halves, which we denote by∑
DU

=
∑
DU

+
∑
DU

, (30)

where the 2nd sum on the right-hand-side contains all the opposites of the terms in the first sum
(which of the pair of opposites is in DU is arbitrary). We can then use the relations Ua = −U∗ā
and similar for D to simplify relations.

3 Leading order source terms

In this section we review the LO calculation of the CP-conserving and -violating source terms
appearing in the transport equation for the right-handed fermion/scalar.

Scalars At leading order the self-energy of the right-handed scalar, given by the Feynman
diagram in fig. 1, is

Πλ
R,lo(x, y) = −(−if−x )(−if+∗

y )GλL,xy = −fxf∗yGλL,xy , (31)

where we used the notation GλL,xy = GλL(x, y), fx = f(x) etc, and λ ∈ {>, <}. We suppressed
the label for scalars on fs. To get the final expression we used eq. (4). As fxf

∗
y = (fyf

∗
x)∗, and

the Green’s functions obey eq. (7), it follows that eq. (21) is satisfied as well. From eq. (22), the
transport equation at LO is

∂µj
µ
R = Scp

lo + S
cp�
lo = −2

∫
d4yΘxy Re

[
fxf

∗
y

(
G>L,xyG

<
R,yx −G

<
L,xyG

>
R,yx

)]
, (32)

with

Scp
lo = −2

∫
d4yΘxy Re[fxf

∗
y ]Re

[
G>L,xyG

<
R,yx −G

<
L,xyG

>
R,yx

]
,

S
cp�
lo = 2

∫
d4yΘxy Im[fxf

∗
y ]Im

[
G>L,xyG

<
R,yx −G

<
L,xyG

>
R,yx

]
. (33)

Fermions The self-energy for the right-handed fermion at leading order is

Σλ
R,lo(xy) = −1

2
fxf

∗
yPRS

λ
L,xyPL (34)

with PL,R the left- and right-handed projection operators. Substituting in the transport eq. (22),
and inserting the propagators eq. (15), the trace is of the form

Tr [PL( /k1 +m1)PR( /k2 +m2)] = Tr [PL /k1PR /k2] =
1

2
Tr [ /k1 /k2] . (35)
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Hence, we can neglect the mass-term in the trace and work with the propagators defined in
eq. (16). Following the same steps as for the scalar case, the result for the CP and CPV source
is

Scp
lo =

∫
d4yΘxy Re[fxf

∗
y ]ReTr

[
S>L,xyS

<
R,yx − S

<
L,xyS

>
R,yx

]
Tr(m)=0

,

S
cp�
lo = −

∫
d4yΘxy Im[fxf

∗
y ]ImTr

[
S>L,xyS

<
R,yx − S

<
L,xyS

>
R,yx

]
Tr(m)=0

. (36)

3.1 Derivative expansion

Let’s start with the CP-conserving source term. At leading order in the derivative expansion,
valid when the bubble wall background changes slowly compared to timescales set by the tem-
perature, we can approximate Re[fxf

∗
y ] ≈ |f(x)|2 and take it out of the integral for the CP-even

source in eqs. (33) and (36). Now insert the explicit form of the propagators eqs. (8) and (16).
The integration over spatial coordinates can readily be done, and gives a delta function that
sets all spatial momenta equal. We further introduce a new time coordinate u = x0 − y0, such
that the theta function becomes Θ(u) and we only have to integrate over positive time values.
Then

Scp
lo = −2s|f |2Re

∫ ∞
0

du

∫
k1

∫
k02

e−i(k
0
1−k02)uc+−(k0

i )ρL(k1)ρR(k2)trlo(ki)
∣∣∣
~ki=~k

, (37)

with
c+−(k0

i ) ≡ c+−(k0
1, k

0
2) = g>(k0

1, µL)g<(k0
2, µR)− g<(k0

1, µL)g>(k0
2, µR). (38)

The momentum k0
1 corresponds to the left-handed particle with chemical potential µL, the

momentum k0
2 to the right-handed particle with chemical potential µR. Equation (37) is valid

for scalars as well as fermions. For scalars s = 1 and the trace factor is trivial trlo(ki) = 1,
f = fs, and the distribution functions gλ depend on the Bose-Einstein distributions eq. (11).
For fermions s = −1,

trlo(ki) =
1

4
Tr( /k1 /k2) = (k0

1k
0
2 − ~k2). (39)

f = ff , and the distribution functions gλ depend on the Fermi-Dirac distributions eq. (17).
To calculate the CP-violating source term in eqs. (33) and (36) we expand the coupling

lim
y→x

(
fxf

∗
y − fyf∗x

)
= 2iIm (f(x)∂µf(x)∗) (y − x)µ ≡ 2i(y − x)0δ , (40)

where in the last step we only included the time-derivative term as the spatial part cancels in
the source integral because of spatial isometry, and we defined δ = Im

(
f(x)ḟ(x)∗

)
. The source

term becomes

S
cp�
lo = −2sδ Im

∫ ∞
0

duu

∫
k1

∫
k02

e−i(k
0
1−k02)uc+−(k0

i )ρL(k1)ρR(k2)trlo(ki)
∣∣∣
~k=~ki

, (41)

which again applies to both scalars and fermions.
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3.2 Contour/k0
i Integrals

The integrals in the CP-conserving and violating source terms eqs. (37) and (41) can be written

as Scp
lo = −2s|f |2Re

∫
~k
J cp
lo and S

cp�
lo = −2sδ Im

∫
~k
J cp�
lo , with

J Ilo =

∫ ∞
0

du ξI(u)

∫
k01

∫
k02

e−i(k
0
1−k02)uc+−(k0

i )ρL(k1)ρR(k2)trlo(ki)
∣∣∣
~k=~ki

, (42)

and ξcp = 1 and ξcp�(u) = u as in eq. (26). To do the contour integrals we close the contour for
k0

1 below and for k0
2 above the real axis. There are two poles per integral, giving rise to four

residue terms in total. Using eqs. (28) and (29) the result is

J Ilo = − 1

4ωLωR

∫
du ξI(u)

∑
DU

[
(−1)

∑
Fie−i(k

0
1−k02)uc+−trlo

]
=

1

4ωLωR

∑
DU

i

[
(−1)

∑
Fic+−trlo(ki)

k0
1 − k0

2

ΞI(k0
i )

]
, (43)

with

Ξcp(k0
i ) = 1, Ξcp�(k0

i ) =
−i

k0
1 − k0

2

. (44)

Now expand c+− = c+−
0 + c+−

1 +O(µ2
i ) in small chemical potentials using eqs. (11) and (17),

with the 0th order term c+−
0 independent of µi and the the 1st order term c+−

1 linear in µi.
Using the Bose-Einstein and Fermi-Dirac distributions for scalars and fermions respectively, we
get

c+−
0 (k0

1, k
0
2) = −s(n(k0

1)− n(k0
2)),

c+−
1 (k0

1, k
0
2) =

s

2T

[
µ+
(
h(k0

1)− h(k0
2)
)
− µ−

(
h(k0

1) + h(k0
2)
)]
, (45)

with s = 1 for scalars and s = −1 for fermions, and µ± = µR ± µL. The summation in eq. (43)
can be divided into the poles (a, b) ∈ DU and the opposite pairs (ā, b̄) ∈ DU , as discussed in
section 2.4, where we introduced the notation that (a, b) denotes k0

1 = Da, k
0
2 = Ub. Then

c+−
0

∣∣
(ā,b̄)

= −(c+−
0 )∗

∣∣
(a,b)

, c+−
1

∣∣
(ā,b̄)

= (c+−
1 )∗

∣∣
(a,b)

, (46)

where we used g>(−k0, 0) = −g<(k0, 0) and h(−k0) = h(k0). This can be used to simplify J Ilo.

3.3 Relaxation rate

For the CP-conserving source it follows that the leading order term in the µ-expansion cancels.
The summation in eq. (43) is over A0 = (−1)

∑
Fic+−

0 trlo/(k0
1 − k0

2) with A0|(ā,b̄) = A∗0|(a,b), and
thus

Re
[
i
∑
DU

A0

]
= Re

[
i
(∑
DU

A0 +
∑
DU

A0

)]
= Re

[
i
∑
DU

(A0 +A∗0)
]

= 0 . (47)

At first order in the chemical potential the summation is over A1 = (−1)
∑
Fic+−

1 trlo/(k0
1 − k0

2)
with A1|(ā,b̄) = −A∗1|(a,b), and we get instead

Re
[
i
∑
DU

A1

]
= Re

[
i
∑
DU

(A1 −A∗1)
]

= −2Im
[∑
DU

A1

]
. (48)
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Putting it all together, we find for the CP conserving source (setting k0
1 = k0

L and k0
2 = k0

R for
the left- and right-handed particle respectively)

Scp
lo = −2s|f |2

∫
~k

Re[Jlo] = s|f |2Im

∫
~k

1

ωLωR

∑
DU

[
(−1)

∑
Fic+−

1 (k0
i )tr

lo(ki)

k0
L − k0

R

]
, (49)

from which we extract the relaxation rates (see eq. (23))

Γ±lo = ∓|f |
2

2T
Im

∫
~k

1

ωLωR

∑
DU

[
(−1)

∑
Fi
(
h(k0

L)∓ h(k0
R)
)

trlo

k0
L − k0

R

]
. (50)

As the final step, we sum over the poles in DU which we choose (k0
1, k

0
2) = (E∗L, ER), (−EL, ER),

where for the first combination (−1)
∑
Fi = −1 and for the second (−1)

∑
Fi = 1. The relaxation

rate becomes

Γ±lo = ±|f |
2

2T
Im

∫
~k

1

ωLωR

[
(h(E∗L)∓ h(ER))

E∗L − ER
trlo1 +

(h(EL)∓ h(ER))

EL + ER
trlo2

]
, (51)

with for scalars trloi = 1, and for fermions

trlo1 = trlo
∣∣
{k01=E∗L,k

0
2=ER}

= (E∗LER − ~k2), trlo2 = trlo
∣∣
{k01=−EL,k02=ER}

= −(ELER + ~k2) ,

(52)

with trlo given in eq. (39).

3.4 CP-violating source

Because of the non-trivial Ξcp�-factor in eq. (43) for the CP-violating source, the leading order

term in the µ-expansion already contributes. Indeed (iA0Ξcp�)|(ā,b̄) = (iA0Ξcp�)∗|(a,b) and

Im
[
i
∑
DU

A0Ξcp�] = Im
[∑
DU

(
(iA0Ξcp�)− (iA0Ξcp�)∗

)]
= 2Im

[∑
DU

(iA0Ξcp�)
]
. (53)

Putting it all together, then

S
cp�
lo = −2sδ Im

∫
~k
[J cp�

lo ] = −sδ Im

∫
~k

1

ωLωR

∑
DU

[
(−1)

∑
Fic+−

0 trlo(ki)

(k0
1 − k0

2)2

]

= δ Im

∫
~k

1

ωLωR

∑
DU

[
(−1)

∑
Fi(n(k0

L)− n(k0
R))trlo(ki)

(k0
L − k0

R)2

]
. (54)

Choosing to sum over (k0
1, k

0
2) = (E∗L, ER), (−EL, ER) we get the final result

S
cp�
lo = −δ Im

∫
~k

1

ωLωR

[
n(E∗L)− n(ER)

(E∗L − ER)2
trlo1 +

n(EL) + n(ER) + s

(EL + ER)2
trlo2

]
, (55)

with trloi defined in eq. (52). In the second term between square brackets, the term ∝ s in
the numerator diverges, also in the zero-temperature limit; it can be removed by adding a
counterterm and is absent in the renormalized theory [45].
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4 Next-to-leading order source terms

In this section we calculate the source terms in the transport equation eq. (22) at NLO. The
self-energy at this order is given by the second Feynman diagram in fig. 1. It is still a tree
level diagram, but now with four mass insertions. The NLO diagram thus represents the next
order contribution in the coupling expansion, and is O(|f |2) suppressed with respect to the LO
diagram.

Although the extra mass insertions complicate the calculation of the relevant integrals, since
the self-energy diagram remains tree level, all steps in the calculation are essentially the same
as for the LO calculation.

Scalars Let’s start with the scalar set-up. The self-energy of the right-handed scalar at NLO
is

Π−+
R,nlo(x, y) = −

∑
a1,a2=±

∫
d4z1d4z2

(
f−x f

a1∗
z1 fa2z2 f

+∗
y

)
G−a1L,xz1

Ga1a2R,z1z2
Ga2+
L,z2y

=

∫
d4z1d4z2

(
fxf

∗
z1fz2f

∗
y

) [
G−+
L,xz1

G++
R,z1z2

G++
L,z2y

+G−−L,xz1G
−−
R,z1z2

G−+
L,z2y

−G−+
L,xz1

G+−
R,z1z2

G−+
L,z2y

−G−−L,xz1G
−+
R,z1z2

G++
L,z2y

]
, (56)

where we summed over all possible ±-signs for the internal vertices. Using eq. (7) it follows that
(Π−+

R,nlo(x, y))† = Π−+
R,nlo(y, x). We can then extract the CP-conserving and -violating source

terms from eq. (22)

Scp
nlo = 2

∫
d4y

∫
d4z1d4z2 Θxy Re[fxf

∗
z1fz2f

∗
y ] Re(Î1 + Î2),

S
cp�
nlo = −2

∫
d4y

∫
d4z1d4z2 Θxy Im[fxf

∗
z1fz2f

∗
y ] Im(Î1 + Î2), (57)

with

Î1 =
[
G−+
L,xz1

G++
R,z1z2

G++
L,z2y

+G−−L,xz1G
−−
R,z1z2

G−+
L,z2y

−G−+
L,xz1

G+−
R,z1z2

G−+
L,z2y

−G−−L,xz1G
−+
R,z1z2

G++
L,z2y

]
G+−
R,yx ,

Î2 = −
[
G++
L,xz1

G++
R,z1z2

G+−
L,z2y

+G+−
L,xz1

G−−R,z1z2G
−−
L,z2y

−G++
L,xz1

G+−
R,z1z2

G−−L,z2y −G
+−
L,xz1

G−+
R,z1z2

G+−
L,z2y

]
G−+
R,yx . (58)

Fermions The self-energy for the right-handed fermion at NLO is

Σ−+
R,nlo(x, y) = −1

4

∑
a1,a2=±

∫
d4z1d4z2

(
f−x f

a1∗
z1 fa2z2 f

+∗
y

)
PRS

−a1
L,xz1

PLS
a1a2
R,z1z2

PRS
a2+
L,z2y

PL, (59)

which has the property that
(

Σ−+
R,nlo(x, y)

)†
= γ0Σ−+

R,nlo(y, x)γ0. When used in the transport

equation eq. (20), the trace of the ΣS and SΣ-terms is respectively

Tr [PR( /k1 +m)PL( /k2 +m)PR( /k3 +m)PL( /k4 +m)] = Tr [PR /k1 /k2 /k3 /k4]→ 1

2
Tr [ /k1 /k2 /k3 /k4] ,

Tr [( /k1 +m)PR( /k2 +m)PL( /k3 +m)PR( /k4 +m)PL] = Tr [PL /k1 /k2 /k3 /k4]→ 1

2
Tr [ /k1 /k2 /k3 /k4] . (60)
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The last expression holds since the spatial integration gives a set of delta functions that set
~ki = ~kj . We can then use that Tr

[
γ5 /k1 /k2 /k3 /k4

]
= −2εµρκσk

µ
1 k

ρ
2k

κ
3k

σ
4 = 0.

The source terms for fermions are then analogous to those for the scalars

Scp
nlo = −1

4

∫
d4y

∫
d4z1d4z2 Θxy Re[fxf

∗
z1fz2f

∗
y ] Re Tr[Î1 + Î2]Tr(m)=0 ,

S
cp�
nlo =

1

4

∫
d4y

∫
d4z1d4z2 Θxy Im[fxf

∗
z1fz2f

∗
y ] Im Tr[Î1 + Î2]Tr(m)=0 , (61)

with Î1, Î2 as in eq. (58) with the replacement Gxy → Sxy.

4.1 Derivative expansion

Let’s start again with the CP-conserving source. To lowest order in the derivative expansion
fxf

∗
z1fz2f

∗
y ≈ |f(x)|4, and it can be taken out of the integrals for the CP even source in eqs. (57)

and (61). Now we express all time and anti-time ordered propagators in terms of the Wightman
functions using eq. (6), and insert the explicit expressions for the latter eqs. (8) and (16). The
integration over spatial momenta and coordinates sets all spatial momenta equal. The CP-even
source becomes

Scp
nlo = 2s|f |4Re

∫
dz0

1dz0
2dz0

3

∫
~k

∫
k01 ,k

0
2 ,k

0
3 ,k

0
4

ρL(k1)ρR(k2)ρL(k3)ρR(k4) (62)

× e−ik
0
1(x0−z01)−ik02(z01−z02)−ik03(z02−z03)−ik04(z03−x0)

∑
i1,i2,i3,i4=±

θi1i2i3i4(zi) ci1i2i3i4(k0
i ) trnlo

∣∣∣
~ki=~k

.

The particles with momenta k1, k3 are left-handed, those with momenta k2, k4 right-handed.
Here ci1i2i3i4 denotes the combination of distribution functions

ci1i2i3i4 = gi1L (k0
1)gi2R (k0

2)gi3L (k0
3)gi4R (k0

4)− gī1L (k0
1)gī2R (k0

2)gī3L (k0
3)gī4R (k0

4), (63)

with ij = ± and īj is + if ij is −, and vice versa. g
ij
L,R(k0

i ) = g>L,R(k0
i ) when ij = + and

g
ij
L,R(k0

i ) = g<L,R(k0
i ) when ij = − . Further θi1i2i3i4 are the time-dependent coefficients, which

are a combination of Θ-functions

θ++++ = 0, θ+−−− = Θxz3Θz3z2Θz2z1 , (64)

θ−+−− = −Θxz3Θxz1Θz3z2 , θ++−− = Θxz3 (Θz3z2Θz1z2 −Θz3z2Θz1x) ,

θ−−+− = Θxz3Θxz1Θz1z2 , θ+−+− = Θxz3 (Θz1xΘz1z2 + Θz2z3Θz2z1 − 1) ,

θ−++− = Θxz3 (Θxz1Θz2z1 −Θxz1Θz2z3) , θ+++− = Θxz3 (Θz1z2Θz2z3 + Θz1xΘz2z1 −Θz1xΘz2z3) .

For scalars s = 1 and trnlo = 1, while for fermions s = −1 and the trace factor now becomes

trnlo ≡ 1

8
Tr [ /k1 /k2 /k3 /k4] =

1

2
[(k1 · k2)(k3 · k4)− (k1 · k3)(k2 · k4) + (k1 · k4)(k2 · k3)] , (65)

with ki · kj = k0
i k

0
j − ~k2.

For the CP-violating source we expand

lim
y,z1,z2→x

Im[fxf
∗
z1fz2f

∗
y ] ' −δ|f |2(x− y − z1 + z2)0 . (66)
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Integrating over spatial momenta, the CPV source terms in eqs. (57) and (61) are

S
cp�
nlo = 2s|f |2δ Im

∫
dz0

1dz0
2dz0

3 (x− y − z1 + z2)0

∫
~k

∫
k01 ,k

0
2 ,k

0
3 ,k

0
4

ρL(k1)ρR(k2)ρL(k3)ρR(k4)

× e−ik
0
1(x0−z01)−ik02(z01−z02)−ik03(z02−z03)−ik04(z03−x0)

∑
i1,i2,i3,i4=±

θi1i2i3i4(zi) ci1i2i3i4(k0
i ) trnlo

∣∣∣
~k=~ki

,

(67)

and trnlo, θi1i2i3i4 , ci1i2i3i4 the same as for the CP-even source given in eqs. (63) to (65).

4.2 Contour/k0
i Integrals

The integrals in the CP-conserving and -violating source terms eqs. (62) and (67) can be written

as Scp
nlo = 2s|f |4Re

∫
~k
J cp
nlo, and S

cp�
nlo = 2s|f |2δIm

∫
~k
J cp�
nlo, with

J Inlo =

∫
dz0

1dz0
2dz0

3 ξ
I(x0 − z0

3 − z0
1 + z0

2)

∫
k01 ,k

0
2 ,k

0
3 ,k

0
4

ρL(k1)ρR(k2)ρL(k3)ρR(k4)

× e−ik
0
1(x0−z01)−ik02(z01−z02)−ik03(z02−z03)−ik04(z03−x0)

∑
i1,i2,i3,i4=±

θi1i2i3i4(zi) ci1i2i3i4(k0
i ) trnlo

∣∣∣
~ki=~k

≡
∑
J Ii1i2i3i4 . (68)

We will work out two example terms J Ii1i2i3i4 in eq. (68) explicitly; all other terms can be

evaluated in a similar way, and the final result is in eq. (74) below. Let’s start with the J I+−−−
integral, which is relatively straightforward to integrate. First, define new time coordinates
u = x0 − z0

3 , v = z0
2 − z0

1 , w = z0
3 − z0

2 such that the theta-functions become Θ(u)Θ(v)Θ(w),
and the integration is only over positive times. The contour integrals over k0

i can now be done,
closing the k0

2, k
0
3, k

0
4 contour in the upper half plane with poles k0

i ∈ U(k0
i ) = {Eki ,−E∗ki}, and

k0
1 in the lower half plane with poles k0

1 ∈ D(k0
1) = {−Ek1 , E∗k1}. The contour integral then has

an overal minus sign.

J I+−−−

=

∫ ∞
0

dudvdw ξI(u+ v)

∫
k01 ,k

0
2 ,k

0
3 ,k

0
4

ρ1ρ2ρ3ρ4 eik
0
4u+ik02v+ik03w−ik01(u+v+w)c+−−− trnlo

= −
∑

DUUU

Fc+−−−

∫
dudvdw ξI(u+ w) eiu(k04−k01)+iv(k02−k01)+iw(k03−k01)

=
∑

DUUU

iFc+−−− ΞIDUUU
(k0

2 − k0
1)(k0

3 − k0
1)(k0

4 − k0
1)
, (69)

with

F =
(−1)

∑
Fi

24ω2
Lω

2
R

trnlo . (70)

For the CP even integral ξcp = Ξcp
DUUU = 1, for the CP odd integral Ξ

cp�
DUUU is given in eq. (76)

below. In the last line of eq. (69) we did the u, v, w integration using eq. (29). For the summation
over poles we used the notation defined in section 2.4.
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To evaluate all terms in eq. (68) it is sometimes necessary to split the integration interval
using theta-functions, and to do further coordinate transformations. Consider J I++−−, which
consists of two terms, see eq. (64). To do the contour integral for the first we use 1 = Θ(u− v+
w) + Θ(−u+ v − w) to split the k0

1 integral; the result is

J I++−−

= −
∑

UDUU

Fc++−−

∫ ∞
0

dudvdw ξI(u− v)e−ik
0
1(u−v+w)−ik02v+ik03w+ik04uΘ(−u+ v − w)

+
∑

DDUU

Fc++−−

∫ ∞
0

dudvdw ξI(u− v)e−ik
0
1(u−v+w)−ik02v+ik03w+ik04uΘ(u− v + w)

+
∑

UDUU

Fc++−−

∫ ∞
0

dudvdw ξI(−v − w)eik
0
1v−ik02(u+v+w)+ik03w+ik04u . (71)

In the first term we can make the transformation v′ = v − u− w∫ +∞

−∞
dudvdwΘ(u)Θ(v)Θ(w)Θ(v − u− w)ξI(u− v)f(u, v, w)

=

∫ +∞

−∞
dudv′dwΘ(u)Θ(w)Θ(v′)ξI(−v′ − w)f(u, v′, w) , (72)

and it follows that the first and third term in eq. (71) cancel. To calculate the remaining term,
use 1 = Θ(w − v) + Θ(v − w). In the first term do the coordinate transformation u′ = u, v′ =
v, w′ = w − v and in the second use u = u′ + v′, v = v′ + w′, w = w′. Then

J I++−− =
∑

DDUU

Fc++−−

∫ ∞
0

du′dv′dw′
(
ξI(u′ − v′)eik04u′−ik02v′+ik03(w′+v′)−ik01(u′+w′) (73)

+ ξI(u′ − w′)eik04(u′+v′)−ik02(v′+w′)+ik03w
′−ik01u′

)
=

∑
DDUU

Fc++−−

( −i
(k0

4 − k0
1)(k0

3 − k0
2)(k0

3 − k0
1)

+
−i

(k0
4 − k0

1)(k0
4 − k0

2)(k0
3 − k0

2)

)
ΞIDDUU ,

with ΞIDDUU given in eq. (76) below.
In this way we can evaluate all terms in J Inlo. The result is

J Inlo =
∑

DUUU

iF ΞIDUUUADUUU (−c+−−− + c−+−− − c−++− + c+−+−)

+
∑

DDDU

iF ΞIDDDUADDDU (c−−+− − c+−+− − c−++− + c+++−)

+
∑

DDUU

iF ΞIDDUUADDUU (−c−+−− + c++−− + c−−+− − c+−+−) , (74)

with F defined in eq. (70) and

ADUUU =
1

(k0
1 − k0

2)(k0
1 − k0

3)(k0
1 − k0

4)
,

ADDDU =
1

(k0
4 − k0

1)(k0
4 − k0

2)(k0
4 − k0

3)
,

ADDUU =
1

(k0
1 − k0

3)(k0
1 − k0

4)(k0
2 − k0

3)
+

1

(k0
4 − k0

1)(k0
4 − k0

2)(k0
2 − k0

3)
. (75)
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For the CP conserving source Ξcp
i = 1 are trivial, while for the CP violating source

Ξ
cp�
DUUU =

−i(2k0
1 − k0

2 − k0
4)

(k0
1 − k0

2)(k0
1 − k0

4)
, Ξ

cp�
DDDU =

i(2k0
4 − k0

1 − k0
3)

(k0
4 − k0

1)(k0
4 − k0

3)
, Ξ

cp�
DDUU =

i(k0
1 − k0

2 + k0
3 − k0

4)

(k0
2 − k0

3)(k0
1 − k0

4)
.

(76)
The c-factors in eq. (74) can be rewritten in terms of the distribution functions

(−c+−−− + c−+−− − c−++− + c+−+−) = −c+−(k0
1, k

0
2) = −(g>1 g

<
2 − g<1 g>2 ) ,

(c−−+− − c+−+− − c−++− + c+++−) = c+−(k0
3, k

0
4) = (g>3 g

<
4 − g<3 g>4 ) ,

(−c−+−− + c++−− + c−−+− − c+−+−) = c+−(k0
3, k

0
2) = (g>3 g

<
2 − g<3 g>2 ) , (77)

where we used that (g>i − g
<
i ) = 1. The c+−-terms defined in eq. (38) are expanded in small

chemical potential as in eq. (45).

4.3 Relaxation rate

For the CP conserving source, the leading order term in the small µ expansion cancels, just as
for the LO calculation. To see this, divide the summation in (a1, a2, a3, a4) ∈ DUUU and the
opposite half (ā1, ā2, ā3, ā4) ∈ DUUU , as discussed in section 2.4. For zero chemical potential
the first term in eq. (74) is proportional to

Re
[
i
∑

DUUU

FADUUUc0,+−
]

= Re
[
i
∑

DUUU

(
FADUUUc0,+− +

∑
DUUU

FADUUUc0,+−
)]

= Re
[
i
∑

DUUU

(
FADUUUc0,+− + (FADUUUc0,+−

)∗)]
= 0 , (78)

where we used that for zero chemical potential g>(−k0) = −g<(k0). Similarly, the other terms
in J cp

nlo vanish at leading order. Hence, the first contribution comes from the term linear in
the chemical potential. We can again divide the summation into two halves, and using that
h(−k0) = h(k0) now they add:

Re
[
i
∑

DUUU

FADUUUc1,+−
]

= −2Im
[ ∑
DUUU

iFADUUUc1,+−
]
. (79)

Putting it all together we find that

Scp
nlo = 2s|f |4Re

∫
~k
J cp
nlo

=
4|f |4

T
Im

∫
~k

[ ∑
DUUU

FADUUU (µ1h(k1)− µ2h(k2))−
∑

DDDU

FADDDU (µ3h(k3)− µ4h(k4))

−
∑

DDUU

FADDUU (µ3h(k3)− µ2h(k2))
]
, (80)

with µ1 = µ3 = µL and µ2 = µ4 = µR.
We first do the sum over the k0

i appearing in the h-functions. For the first term, we choose
the set DUUU = (1, 1, a3, a4), (2, 1, a3, a4) = (E∗L, ER, a3, a4), (−EL, ER, a3, a4) with a3, a4 un-
constrained. The remaining sum is over the poles in k0

3 = k0
L and k0

4 = k0
R. Similarly, for
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the second term we choose DDDU = (a1, a2, E∗L, ER), (a1, a2,−EL, ER), and for the third term
DDUU = (a1,−ER,−E∗L, a4), (a1,−ER, EL, a4).

We write

Γ±nlo = ±|f |
2

2T
Im

∫
~k

1

ωLωR

[
∆cp

1

(h(E∗L)∓ h(ER))

E∗L − ER
trlo1 + ∆cp

2

(h(EL)∓ h(ER))

EL + ER
trlo2

]
, (81)

where we factored out the leading order trace factors trloi defined in eq. (52). The coefficients
∆cp
i are

4ωLωR
|f |2

∆cp
1 =

∑
UU

(−1)
∑
Fitrnlo1a

(E∗L − k0
L)(E∗L − k0

R)
+
∑
DD

(−1)
∑
Fitrnlo1a

(ER − k0
L)(ER − k0

R)

+
∑
DU

(−1)
∑
Fitrnlo1b

(k0
L − k0

R)

( −1

E∗L + k0
L

+
1

k0
R + ER

)
,

4ωLωR
|f |2

∆cp
2 =

∑
UU

(−1)
∑
Fitrnlo2a

(EL + k0
L)(EL + k0

R)
+
∑
DD

(−1)
∑
Fitrnlo2a

(ER − k0
L)(ER − k0

R)

+
∑
DU

(−1)
∑
Fitrnlo2b

(k0
L − k0

R)

( 1

EL − k0
L

+
1

k0
R + ER

)
, (82)

with trnloi = 1 for scalars, and for fermions

trlo1 trnlo1a = trnlo|{k01=E∗L,k
0
2=ER}, trlo1 trnlo1b = trnlo|{k01=−E∗L,k

0
2=−ER},

trlo2 trnlo2a = trnlo|{k01=−EL,k02=ER}, trlo2 trnlo2b = trnlo|{k01=EL,k02=−ER} . (83)

with trnlo given in eq. (65).
Finally we do the summation over the remaining poles in k0

L,R. We find ∆cp ≡ ∆cp
1 = ∆cp

2

for both scalars and fermions with

∆cp = − |f |2

4ωLωR

4 (Im(EL) + Im(ER))2 Re(EL)Re(ER)

|EL + ER|2|EL − E∗R|2Im(EL)Im(ER)
t̃r

nlo

= −|f |2 (ΓL + ΓR)2

ΓLΓR ((ΓL + ΓR)2 + (ωL − ωR)2) ((ΓL + ΓR)2 + (ωL + ωR)2)
t̃r

nlo
. (84)

For scalars t̃r
nlo

= 1 while for fermions

t̃r
nlo

= −1

2

(
~k2 −

ΓL(ω2
R + Γ2

R) + ΓR(ω2
L + Γ2

L)

ΓL + ΓR

)
. (85)

4.4 CP violating source

Since there is an extra factor Ξcp� in J cp�
nlo in eq. (74), the leading order term in the small chemical

potential expansion contributes for the CP-violating source. Just as in the LO calculation we
can effectively set µi = 0. The summation over poles can again be divided into opposite halves,
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which add. The result is then

S
cp�
nlo = 4|f |2δIm

∫
~k

1

24ω2
Lω

2
R

[ ∑
DUUU

(−1)
∑
Fitrnlo(n(k0

1)− n(k0
2))(2k0

1 − k0
2 − k0

4)

(k0
1 − k0

2)2(k0
1 − k0

3)(k0
1 − k0

4)2

+
∑

DDDU

(−1)
∑
Fitrnlo(n(k0

3)− n(k0
4))(2k0

4 − k0
1 − k0

3)

(k0
4 − k0

1)2(k0
4 − k0

2)(k0
4 − k0

3)2

+
∑

DDUU

(−1)
∑
Fitrnlo(n(k0

3)− n(k0
2))(k0

1 − k0
2 + k0

3 − k0
4)

(k0
2 − k0

3)2(k0
1 − k0

4)2

( 1

k0
1 − k0

3

− 1

k0
4 − k0

2

)]
. (86)

We sum over k0
i appearing in the number densities n; we make he same choices as for the

CP-conserving source in the previous subsection. We can then write

S
cp�
nlo = −δ

∫
~k

1

ωLωR
Im

[
∆

cp�
1

n(E∗L)− n(ER)

(E∗L − ER)2
trlo1 + ∆

cp�
2

n(EL) + n(ER) + s

(EL + ER)2
trlo2

]
, (87)

with

4ωLωR
|f |2

∆
cp�
1 =

∑
UU

(−1)
∑
Fitrnlo1a (2E∗L − ER − kR)

(E∗L − k0
L)(E∗L − k0

R)2
+
∑
DD

(−1)
∑
Fitrnlo1a (2ER − kL − E∗L)

(ER − k0
L)2(ER − k0

R)

+
∑
DU

(−1)
∑
Fitrnlo1b (kL + ER − E∗L − kR)

(k0
L − k0

R)2

( 1

E∗L + k0
L

− 1

k0
R + ER

)
,

4ωLωR
|f |2

∆
cp�
2 =

∑
UU

(−1)
∑
Fitrnlo2a (2EL + ER + k0

R)

(EL + k0
L)(EL + k0

R)2
+
∑
DD

(−1)
∑
Fitrnlo2a (2ER − k0

L + EL)

(ER − k0
R)(ER − k0

L)2

+
∑
DU

(−1)
∑
Fitrnlo2b (kL + ER + EL − kR)

(k0
L − k0

R)2

( 1

EL − k0
L

+
1

k0
R + ER

)
. (88)

We can do the final summation over poles in ∆
cp�
i , but unlike the CP conserving case where

some terms cancel and the final result is reasonably simple, the result cannot be written in a

concise way. What is more, we now find ∆
cp�
1 6= ∆

cp�
2 and also ∆

cp�
i is generically complex. The

NLO contribution can thus no longer be written as a simple additive factor in the integrand.

5 Results and discussion

In this section we summarize the main results for the NLO calculation, and discuss the impli-
cations.

5.1 Relaxation rate

The full relaxation rate up to NLO is

Γ± = ±|f |
2

2T
Im

∫
~k

1

ωLωR

[
(h(E∗L)∓ h(ER))

E∗L − ER
trlo1 +

(h(EL)∓ h(ER))

EL + ER
trlo2

]
(1 + ∆cp) , (89)

with the NLO contribution captured by ∆cp given in eqs. (84) and (85). The rate Γ− is domi-
nated by the first term in the square brackets, which has a resonance in small thermal widths for
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degenerate masses. In this limit the expression for the rate and the NLO correction simplifies
considerably, and we can derive analytical expressions.

To see the resonance, we write m2
L = m2

R+ δm2 and expand in small mass difference |δm2| �
m2
L. The first term between square brackets in the expression for Γ− in eq. (89) becomes

Im
[h(E∗L) + h(ER)

E∗L − ER

]
=

h(ωL)

ΓL

(
1 +

(
δm2

4ΓLωL

)2 ) +O
(

ΓL
ωL

,
δm2

ω2
L

)
, (90)

where we additionally approximated ΓR ≈ ΓL, and in the denominator assumed ΓL � T as is
appropriate for a perturbatively generated thermal width. If in addition |δm2| � 4ΓLT , the
mass difference in the denominator can be neglected. This is an excellent approximation for the
quarks. On the other hand, for leptons the δm2-term in the denominator in eq. (90) dominates.
Since δm2 � T 2 this term is still enhanced compared to the 2nd term between square brackets in
eq. (89), but the parametric dependence of the resonance is different. The second term between
brackets in Γ− and both terms in Γ+ do not have this resonant structure and are subdominant.
Indeed, expanding in small mass difference gives

Im
[h(E∗L)− h(ER)

E∗L − ER

]
= O

(
ΓL
ωL

,
δm2

ω2
L

)
, Im

[h(EL)∓ h(ER)

EL + ER

]
= O

(
ΓL
ωL

,
δm2

ω2
L

)
. (91)

It thus follows that the rate Γ− is resonantly enhanced in the degenerate mass limit. The
NLO contribution ∆cp is an additive factor to the integrand, and thus also to the resonant
factor in the integrand; it does not affect or shift the resonance structure itself up to O(ΓL

ωL
, δm

2

ω2
L

)

corrections.
To estimate the NLO contribution to Γ− we will for simplicity consider the exactly degenerate

case, a good approximation for quarks, and write

mT ≡ mL = mR, ΓT ≡ ΓL = ΓR , ωT ≡ ωL = ωR , (92)

with thermal width Γ2
T � T 2. Then

∆cp = − |f |2

4Γ2
T (ω2

T + Γ2
T )

t̃r
nlo ≈ − |f |2

4Γ2
Tω

2
T

t̃r
nlo

. (93)

The traces are trivial for scalars, and trlo1 = 2 t̃r
nlo

= (m2
T + Γ2

T ) for fermions. Putting it all
together we get for scalars and fermions respectively

Γ−s =
|fs|2

2T

∫
~k

1

ω2
T

[
hs(ωT )

ΓT
+ ...

](
1− |fs|2

4ω2
TΓ2

T

+ ...
)
,

Γ−f =
|ff |2

2T

∫
~k

1

ω2
T

[hf (ωT )(m2
T + Γ2

T )

ΓT
+ ...

](
1−
|ff |2(m2

T + Γ2
T )

8ω2
TΓ2

T

+ ...
)
, (94)

where the ellipses denote O(ΓL
ωL
, δm

2

ω2
L

) corrections. When the NLO contribution dominates and

|∆cp
i | > 1, the relaxation rate becomes negative, an unphysical result, signalling the breakdown

of the vev-insertion approximation. This is expected to be cured when the full tower of the
higher order terms in the coupling expansion is added, which amounts to a resummation of the
spacetime-dependent mass.
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Whether the VIA expansion is valid depends on the details of the model. To get some insight

we estimate the thermal mass and width as m2
T ∼ αT 2, ΓT ∼ αT , with α = g2

4π with g the
largest relevant (gauge) coupling. The integral in eq. (94) is dominated by momenta ωT ∼ T .

Let’s first look at scalars. In supersymmetric set-ups, the interaction with the Higgs is
typically trilinear and we parametrize |fs| = 1√

2
Asϕb. The relaxation rate is maximized in the

broken phase with ϕb = ϕN , the Higgs vev at nucleation. For a strong first order phase transition
we need ϕN/TN & 1, with TN the nucleation temperature. During the phase transition we then
find

|∆cp
s | ∼

A2
sϕ

2
N

8α2T 4
N

∼ 1

8α2

A2
s

T 2
N

. (95)

For neutralinos the thermal corrections are set by the weak gauge interactions and α ≈ 0.03.
The NLO contribution is important unless the trilinear coupling is significantly smaller than the
electroweak scale As < O(0.1)TN . We conclude that VIA breaks down in these type of SUSY
models.

For fermions with a Yukawa type Higgs interaction we parametrize |ff | ≈ ỹfϕb. Possible
corrections from higher order Higgs interactions, although maybe essential for CP-violation, can
be neglected in |ff |. If only the SM Higgs field obtains a vev during the phase transition then
ỹf = yf equals the SM Yukawa coupling. We estimate

|∆cp
f | ≈

|ỹf |2ϕ2
N

8T 2
Nα

∼
|ỹf |2

8α
. (96)

For quarks with strong interactions 8α ∼ 1 and we find that for ỹf ∼ 1 the NLO contribution
becomes important. If the phase transition is aligned with the SM Higgs direction and ỹf = yf ,
the perturbative expansion breaks down for the top quark which has yt = 1; the calculation is
well in the perturbative regime for all other quarks. For larger values of ϕN/TN , though this
is hard to achieve in actual phase transitions, the vev-insertion approximation breaks down for
smaller values of ỹf .

Going beyond the degenerate mass limit requires a numerical evaluation of eqs. (51), (81)
and (89). For this we choose the representative values ϕN = TN = 100 GeV. For the thermal
masses of the (up-type) quarks and leptons we use [46]3

m2
q,L = T 2

(
g2

1

288
+

3g2
2

32
+
g2

3

6
+
ỹ2
f

16

)
, m2

q,R = T 2

(
g2

1

18
+
g2

3

6
+
ỹ2
f

8

)
, (97)

m2
l,L = T 2

(
g2

1

32
+

3g2
2

32
+
ỹ2
f

16

)
, m2

l,R = T 2

(
g2

1

8
+
ỹ2
f

8

)
, (98)

where g1, g2 and g3 denote the U(1), SU(2) and SU(3)-gauge couplings respectively. For the
thermal widths, we use [47]

Γq =
4

3
αsT ≈ 0.16T , Γl,L = αwT ≈

T

30
, Γl,R =

3

2
αw tan2 θwT ≈

T

70
, (99)

for quarks, left-handed and right-handed leptons respectively.

3The mass of the doublet mq,L is taken as the average of the up- and down quark mass, and we have neglected
the small contribution from the down quark.
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Figure 2: Ratio of the NLO and LO contributions to the relaxation rate Rcp ≡ |Γ−
nlo|/|Γ−

lo|
and source term Rcp� ≡ |Scp�

nlo|/|S
cp�
lo |, evaluated deep in the broken phase. The blue (red) line

shows Rcp for quarks (leptons), and the dashed orange and green lines show Rcp� for quarks and

leptons respectively. The black line shows the estimate of Rcp and Rcp� for quarks in the mass
degenerate limit, corresponding to eq. (94) and eq. (102) with ∆cp,∆cp� estimated by eq. (96).
We take ϕN = 100GeV and T = 100GeV .

In fig. 2 we show the ratio of the NLO and LO contribution to the relaxation rate Rcp ≡
|Γ−

nlo|/|Γ−
lo| deep into the broken phase (where ϕb → ϕN ) as a function of the Yukawa couplings

for quarks and leptons in red and blue respectively. The estimate of eq. (94), with eq. (96) for
the quarks in the mass degenerate limit is shown in black and matches the full result up to a
factor O(1.5). The good agreement between the numerical and analytical calculations confirms
that the relaxation rate is dominated by the resonance. We indeed find that the (absolute value
of the) NLO result for quarks becomes comparable to the LO result for ỹf � 1.

For leptons the ratio Rcp is approximately a factor 8 larger than for quarks for the same
coupling, and as a result the VIA breaks down already at smaller coupling ỹf = O(0.1). Non-
perturbativity is never an issue for leptons if the bounce is along the SM direction, but may still
be in other set-ups that have ỹf � yf . As discussed above, for leptons the exactly degenerate
limit eq. (92) and thus the estimate eq. (94) is not a a good approximation, but we can neverthe-
less understand why Rcp is larger. For quarks the NLO correction eq. (99) is enhanced by α−1,
with α the QCD coupling constant. For leptons we similarly expect that the NLO correction
scales with inverse powers of α, now arising from inverse powers of δm2 rather than the thermal
width. For leptons, though, the thermal corrections are set by the weak interactions and α is
the weak coupling constant, giving a larger enhancement.
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5.2 CP violating source

Adding the LO and NLO contribution to the CP-violating source term gives

Scp� = −δ Im

∫
~k

1

ωLωR
Im

[
n(E∗L)− n(ER)

(E∗L − ER)2
trlo1 (1 + ∆

cp�
1 ) +

n(EL) + n(ER)

(EL + ER)2
trlo2 (1 + ∆

cp�
2 )

]
,

(100)

where we removed the divergent term by normal ordering, and with the coefficients ∆
cp�
i given

in eqs. (83) and (88). Just as for the relaxation rate, the first term is resonantly enhanced in
the degenerate mass limit

Im
[n(E∗L)− n(ER)

(E∗L − ER)2

]
=
h(wT )

2T ΓT
+O

(
ΓT
ωT

)
, Im

[n(EL) + n(ER)

(EL + ER)2

]
= O

(
ΓT
ωT

)
. (101)

Unlike the relaxation rate, ∆
cp�
1 6= ∆

cp�
2 and Im[∆

cp�
i ] 6= 0, and the NLO contribution is in

general not simply an additive part in the integrand. However, the resonant term only depends

on ∆
cp�
1 which is a real factor in the mass degenerate limit eq. (92). In particular, we then find

Scp�
s = − δs

2T

∫
~k

1

ω2
T

(hs(wT )

ΓT
+ ...

)(
1 +

|fs|2

4ω2
TΓ2

T

+ ...
)
,

S
cp�
f = −

δf
2T

∫
~k

1

ω2
T

(hf (wT )m2
T

ΓT
+ ...

)(
1 +
|ff |2m2

T

8ω2
TΓ2

T

+ ...
)
, (102)

where the ellipses denote O(ΓL
ωL
, δm

2

ω2
L

) corrections. Apart from the overall sign the corrections are

exactly the same as for the relaxation rate eq. (94). For fermions the VIA approximation thus
also breaks down for the calculation of the CP-odd source for couplings ỹ = O(1) for quarks.

Figures 2 and 3 show the numerical results for the source. In fig. 2 we plot the ratio Rcp� ≡
|Scp�

NLO|/|S
cp�
LO| for quarks (dashed orange) and leptons (dashed green) as a function of the coupling

ỹf . Not surprisingly giving our estimate in the degenerate limit, the ratio is nearly identical
to RCP for the relaxation rates. Although the source terms is space-time dependent and varies
over the bubble wall, this cancels out in the ratio Rcp� which is evaluated deep in the broken
phase. In fig. 3 we plot the LO and NLO contribution across the bubble wall for a quark
for two different choices of the Yukawa coupling. For this plot we took the bubble profile
ϕb(z) = ϕN

2 (1 + tanh z/Lw). The CP-violation stems from a complex dimension-6 Yukawa-like

interaction and ff = ỹfϕb(1+iϕ2/Λ2) with Λ the cutoff scale. Evaluating the ∆cp� with ϕb = ϕN
gives a good estimate for the size of the NLO correction in the z-region where the source peaks.

5.3 Discussion

To summarize, we have shown that the NLO contribution to the relaxation rates and source
terms is small as long as |fs|/T 2

N . α for scalars and |ff |/TN .
√
α for fermions, with α the

QCD (electroweak) coupling for scalars/fermions with strong (only electroweak) interactions.
For larger effective couplings |fi| the vev-insertion approximation breaks down.

Focussing on specific implementations, in a supersymmetric setup with CP violation in the
neutralino sector, this implies that VIA breaks down for trilinear couplings |fs| ≈ Asϕb for
As > O(0.1)TN . For fermions with a Yukawa type couplings |ff | ≈ ỹfϕb the breakdown happens
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Figure 3: z-dependence of the LO (solid lines) and NLO (dashed lines) source terms for a quark
with ỹf = 0.1 (red) and ỹf = 1 (blue). We use the bubble wall profile ϕb(z) = ϕN/2(1 +
tanh z/Lw), with Lw = 10/T ϕN = TN = 100GeV and |ff | ≈ ỹfϕb. CP-violation stems from
a dimension-6 operator as in Refs. [13, 16, 36, 37], giving δ = 3ỹ2fvwϕ

3
bϕ

′
b/Λ

2, where the prime
denotes a derivative with respect to z, we take Λ = 1TeV and bubble wall velocity vw = 0.05.

for ỹf > O(1) for quarks, and ỹf > O(0.1) for leptons. This means in particular that if
only the SM Higgs field obtains a vev during the phase transition, the source terms cannot be
reliably computed for the top quark, but a baryogenesis scenario with CP violation in the lepton
sector [38, 39,46–49] is under calculational control.

We finally note that the resonant behavior of the relaxation rate and source term is preserved
at next-to-leading order.
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