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Abstract The extreme value dependence of regularly varying stationary time series
can be described by the spectral tail process. Drees, Segers and Warchoł [Extremes
18(3): 369–402, 2015] proposed estimators of the marginal distributions of this pro-
cess based on exceedances over high deterministic thresholds and analyzed their
asymptotic behavior. In practice, however, versions of the estimators are applied
which use exceedances over random thresholds like intermediate order statistics. We
prove that these modified estimators have the same limit distributions. This finding
is corroborated in a simulation study, but the version using order statistics performs
a bit better for finite samples.
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1 Introduction

By now the statistical analysis of the univariate tail behavior of stationary time series
is well established. However, in many situations understanding dependence between
extreme observations is as important as the marginal extreme value behavior. For
example, large losses to a financial investment pose a more serious risk if they tend
to occur in clusters. Likewise, several consecutive days of high precipitation may
result in a larger flooding than a single day of heavy rainfall even if the latter is more
extreme.

Despite its practical importance, inference on the dependence structure between
extreme observations is much less developed than marginal analysis. In the frame-
work of regularly varying stationary time series, Basrak and Segers (2009) intro-
duced (spectral) tail processes as a neat way to describe the dependence structure in
extreme regions.
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Throughout the paper, we suppose that (Xt)t∈Z is a stationary real-valued time
series such that all finite-dimensional marginal distributions are regularly varying.
This is equivalent to the assumption that, for each s, t ∈ Z, s 6 t, there exists a non-
degenerate measure µs,t on (Rt−s+1,Bt−s+1) such that

lim
u→∞

P{u−1(Xs, . . . ,Xt) ∈ A}
P{|X0|> u} = µs,t(A)

for all µs,t -continuity sets A that are bounded away from 0. Basrak and Segers (2009)
proved that a stationary time series is regularly varying if and only if there exists a
so-called tail process (Yt)t∈Z such that

P
(
u−1(Xs, . . . ,Xt) ∈ · | |X0|> u

)
 P

{
(Ys, . . . ,Yt) ∈ ·

}

as u→∞ for all s6 06 t, with denoting weak convergence. Then P{|Y0|> x}=
x−α for all x > 1 and some α > 0, the index of regular variation. Moreover, the so-
called spectral tail process Θt := Yt/|Y0|, t ∈ Z, is independent of |Y0|. This process,
which is also obtained as the limit of the conditional self-normalized process

P
(
|X0|−1(Xs, . . . ,Xt) ∈ · | |X0|> u

)
 P

{
(Θs, . . . ,Θt) ∈ ·

}
, (1.1)

captures the serial extreme value dependence of the time series (Xt)t∈Z.
Unlike (Xt)t∈Z, the spectral tail process is not stationary. However, it exhibits

a peculiar structure which can be described by the so-called time change formula
(Basrak and Segers, 2009, Theorem 3.1): for all i,s, t ∈ Z with s6 06 t and for all
measurable functions f : Rt−s+1→ R satisfying f (ys, . . . ,yt) = 0 whenever y0 = 0,
we have

E
[

f (Θs−i, . . . ,Θt−i)
]
= E

[
f
( Θs

|Θi|
, . . . ,

Θt

|Θi|
)
|Θi|α 1{Θi 6= 0}

]
, (1.2)

provided the expectations exist.
If one wants to infer on the distribution of (Θt)t∈Z it is natural to interpret conver-

gence (1.1) as an approximation for a sufficiently high threshold u = un and replace
the unknown conditional probability by an empirical counterpart. For example, if
one wants to estimate the cdf of Θt at x ∈ R for some lag t ∈ Z, this approach leads
to the so-called forward estimator

F̂( f ,Θt )
n,un (x) :=

∑n
i=11{Xi+t/|Xi|6 x, |Xi|> un}

∑n
i=11{|Xi|> un}

(1.3)

(assuming that X1, . . . ,Xn+t have been observed). Drees et al. (2015) and Davis et al.
(2018) have shown that in certain situations more efficient estimators can be con-
structed by using the time change formula. From (1.2), one may conclude

P{Θt 6 x}=
{

1−E
[
|Θ−t |α1{Θ0/|Θ−t |> x}

]
if x> 0,

E
[
|Θ−t |α 1{Θ0/|Θ−t |6 x}

]
if x < 0
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=

{
1− limu→∞ E

[
|X−t/X0|α1{X0/|X−t |> x} | |X0|> u

]
if x> 0,

limu→∞ E
[
|X−t/X0|α1{X0/|X−t |6 x} | |X0|> u

]
if x < 0

(1.4)

(Davis et al., 2018, Lemma 2.1). Again, by interpreting the limit as an approxima-
tion and replacing the conditional expectations by empirical analogs, we obtain the
backward estimator

F̂(b,Θt )
n,un (x) :=





1− ∑n
i=1 |Xi−t/Xi|α̂n,un1{Xi/|Xi−t |> x, |Xi|> un}

∑n
i=11{|Xi|> un}

if x> 0,

∑n
i=1 |Xi−t/Xi|α̂n,un1{Xi/|Xi−t |6 x, |Xi|> un}

∑n
i=11{|Xi|> un}

if x < 0.

(1.5)
Here α̂n,un is a suitable estimator of the index of regular variation based on the ex-
ceedances over the threshold un, e.g., the Hill-type estimator

α̂n,un :=
∑n

i=11{|Xi|> un}
∑n

i=1 log(|Xi|/un)1{|Xi|> un}
. (1.6)

Typically the backward estimator is more accurate than the forward estimator if
|x| is not too small. In particular, Drees et al. (2015) have shown that its asymptotic
variance is always smaller for |x|> 1 when α is known, the tail process is Markovian
and the threshold un is chosen as a quantile F←(1−tn) of the marginal cdf with tn ↓ 0
at a suitable rate. (Here and in the following F denotes the cdf of |X0| and F← its
generalized inverse.) Drees et al. (2015) and Davis et al. (2018) also compared the
performance of both estimators for finite sample sizes in a simulation study. How-
ever, while the asymptotic results have been proved when the estimators are based on
exceedances over a deterministic threshold un = F←(1− tn), in the simulation study
empirical quantiles, that is, order statistics, have been used. Similarly, Davis et al.
(2018) proved consistency of certain bootstrap versions of the forward and back-
ward estimators when the thresholds un are deterministic, but they used a version
with random thresholds to construct confidence intervals in the simulations. This
leaves a gap between the mathematical analysis on the one hand and the procedure
commonly applied in practice on the other hand.

It is the main aim of the present paper to close this gap. While it is plausible
that there is a close relationship between the performance of both versions of the
aforementioned estimators (using a deterministic respectively a random threshold),
it is a priori not clear whether they have the same limit distribution. In a somewhat
comparable situation, Drees et al. (2004) examined the asymptotic behavior of the
maximum likelihood estimators of a scale parameter and the extreme value index
in a generalized Pareto model fitted to the exceedances over a large order statistic,
which had been previously studied by Smith (1987) for exceedances over a high
deterministic threshold. There it turned out that using order statistics instead of true
quantiles as thresholds does not influence the asymptotic behavior of the estimator of
the extreme value index, but the limit distribution of the scale estimator is different
in both approaches.
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In the present setting, we show in Section 2 that under suitable conditions the
limit behavior of neither the forward nor the backward estimator nor the correspond-
ing bootstrap estimator is altered by using random instead of deterministic thresh-
olds. In Section 3 we demonstrate in a small simulation study that while indeed
the distribution of versions of the estimators using quantiles resp. order statistics
behave similarly, the version based on exceedances over order statistics often per-
forms slightly better for finite sample sizes. Appendix A contains tables with true
values to be estimated in the simulation study. To deal with random thresholds, we
must strengthen some of the conditions used by Davis et al. (2018). In Appendix
B, we verify these more restrictive conditions for solutions of stochastic recurrence
equations. All proofs are deferred to Appendix C. While the general approach using
empirical process theory is the same as used by Davis et al. (2018), the proof of
asymptotic equicontinuity of certain empirical processes is much more challenging
in the present setting.

2 Asymptotic results

Under suitable conditions, the joint asymptotic normality of the processes of forward
and backward estimators (1.3) and (1.5) has been shown by Drees et al. (2015) and
Davis et al. (2018). However, in practice usually some data dependent threshold ûn
is used instead of the deterministic sequence un. Here we prove that these processes
converge to the same limits if the random threshold is a consistent estimator of the
deterministic sequence in the sense that

Sn :=
ûn

un
→ 1 in probability. (2.1)

The most prominent examples are order statistics ûn = Xn−kn:n where un and kn are
related via kn = bnF̄(un)c (with F̄ denoting the survival function of |X1|) and un =
F←(1− kn/n).

For ease of presentation, in this section we assume that non-negative random
variables X1−t̃ , . . . ,Xn+t̃ have been observed (i.e., n+ 2t̃ is the actual sample size),
but our results easily carry over to real-valued observations. Here t̃ > 0 denotes the
maximal lag we are interested in. We define versions of the forward and backward
estimators of the cdf F(Θt ) of Θt for |t| 6 t̃ based on the exceedances over ûn as
follows:

F̂( f ,Θt )
n,ûn

(x) :=
∑n

i=11{Xi+t/|Xi|6 x, |Xi|> ûn}
∑n

i=11{|Xi|> ûn}
, (2.2)

F̂(b,Θt )
n,ûn

(x) := 1− ∑n
i=1 |Xi−t/Xi|α̂n,ûn1{Xi/|Xi−t |> x, |Xi|> ûn}

∑n
i=11{|Xi|> ûn}

(2.3)

where α̂n,ûn is defined as in (1.6) with ûn instead of un.
For the asymptotic analysis, we follow the approach used by Davis et al. (2018).

The forward and backward estimators can be represented in terms of certain empiri-
cal processes, so-called generalized tail array sums. However, here we introduce an
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additional parameter s (belonging to some neighborhood of 1) which is multiplied
with the given deterministic threshold un; evaluating the processes at s = Sn then
leads to the estimators with random threshold.

The asymptotic behavior of such empirical processes has been studied by Drees
and Rootzén (2010) for β -mixing time series. To be more concrete, for some ε > 0,
let

Xn,i = u−1
n (Xi−t̃ , . . . ,Xi+t̃)1{Xi > (1− ε)un}, 16 i6 n. (2.4)

Then all estimators under consideration can be expressed in terms of sums of the
type ∑n

i=1 ψ(Xn,i) for functions ψ : [0,∞)2t̃+1→ [0,∞) of the following types:

φ0,s(z) := log+
( z0

s

)
= log

( z0

s

)
1{z0 > s}, (2.5)

φ1,s(z) := 1{z0 > s}, (2.6)

φ t
2,x,s(z) := 1

{ zt

z0
> x, z0 > s

}
, (2.7)

φ t
3,y,s(z) :=

( z−t

z0

)α
1
{ z0

z−t
> y, z−t > 0, z0 > s

}
, (2.8)

with z = (z−t̃ , . . . ,zt̃) ∈ [0,∞)2t̃+1 and log+ x := (logx)1{x > 1}. For example,
F̂( f ,Θt )

n,ûn
(x) = 1−∑n

i=1 φ t
2,x,Sn

(Xn,i)/∑n
i=1 φ t

1,Sn
(Xn,i), provided Sn > 1− ε , which, ac-

cording to (2.1), holds with probability tending to 1.
Davis et al. (2018) established joint asymptotic normality of the suitably stan-

dardized generalized tail array sums for fixed s = 1. The additional index s ∈
[1− ε,1+ ε] (for some small ε > 0) can easily be incorporated in most parts of
the asymptotic analysis of the generalized tail array sums. However, verifying the
entropy condition needed to prove process convergence becomes a challenging task,
while it is trivial for the one parameter families of linearly ordered functions consid-
ered by Davis et al. (2018). To tackle this problem, we must strengthen condition
(C) of Davis et al. (2018) and adapt some of the other conditions as follows. Let

vn := P{X0 > un}

and
βn,k := sup

16l6n−k−1
E
[

sup
B∈Bn

n,l+k+1

∣∣∣P(B |Bl
n,1)−P(B)

∣∣∣
]
,

with B j
n,i denoting the σ -field generated by (Xn,l)i6l6 j. We assume that there exist

sequences ln,rn→ ∞ and some x0 > 0 such that the following conditions hold:

(A(x0)) The cdf of Θt , F(Θt ), is continuous on [x0,∞), for |t| ∈ {1, . . . , t̃}.

(B) As n→ ∞, we have ln→ ∞, ln = o(rn), rn = o((nvn)
1/2), rnvn→ 0, and

βn,lnn/rn→ 0.

Without condition (A(x0)) one cannot expect uniform convergence of the estimators.
Condition (B) imposes restrictions on the rate at which vn tends to 0 and thus on the
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rate at which un tends to ∞. Often, the β -mixing coefficients decay geometrically,
i.e., βn,k = O(ηk) for some η ∈ (0,1). Then one may choose ln = O(logn), and
Condition (B) is fulfilled for a suitably chosen rn if (logn)2/n = o(vn) and vn =
o(1/(logn)).

(C) For all 06 j 6 k 6 rn, there exist

sn(k)> E
[

max
{

log
( X0

(1− ε)un

)
,1{X0 > (1− ε)un

}

×max
{

log
( Xk

(1− ε)un

)
,1{Xk > (1− ε)un}

}∣∣∣X0 > (1− ε)un

]

(2.9)

s̃n( j,k)> P
(
X j > (1− ε)un,Xk > (1− ε)un | X0 > (1− ε)un

)
(2.10)

such that s∞(k) = limn→∞ sn(k) and s̃∞( j,k) = limn→∞ s̃n( j,k) exist, and
limn→∞ ∑rn

k=1 sn(k) = ∑∞
k=1 s∞(k) < ∞ and limn→∞ ∑16 j6k6rn s̃n( j,k) =

∑16 j6k<∞ s̃∞( j,k)< ∞ hold.

Moreover, there exists δ > 0 such that

rn

∑
k=1

(
E
[(

log+
( X0

(1− ε)un

)
log+

( Xk

(1− ε)un

))1+δ ∣∣∣X0 > (1− ε)un

])1/(1+δ )

= O(1), n→ ∞. (2.11)

Note that condition (C) could be stated with sn(k) and s̃n( j,k) equal to the cor-
responding conditional probability resp. expectation. Then the existence of limits
s∞(k) and s̃∞( j,k) is guaranteed by regular variation. However, it is often difficult
to prove that the sums over sn(k), resp. s̃n( j,k) converge to the corresponding sums
of these limits. In contrast, it may be quite easy to bound the conditional probabili-
ties and expectations by simple expressions and prove convergence of the resulting
sums. Drees et al. (2015) and Davis et al. (2018) discussed techniques to verify
weaker versions of the conditions (2.9) and (2.11) for specific time series models.
We prove in Appendix B that the more restrictive condition (C) is fulfilled by solu-
tions to stochastic recurrence equations under mild assumptions.

These conditions suffice to prove convergence of the processes of generalized tail
array sums centered by their respective means. To replace these means by their limits
in terms of the spectral process, we need additional conditions which ensure that the
bias of the forward, the backward and the Hill type estimators are asymptotically
negligible: for all |t| ∈ {1, . . . , t̃} and all sequences sn→ 1 one has

sup
x∈[x0,∞)

∣∣∣P
( Xt

X0
6 x

∣∣∣ X0 > snun

)
−F(Θt )(x)

∣∣∣= o((nvn)
−1/2), (2.12)

sup
y∈[y0,∞)

∣∣∣1−E
[(X−t

X0

)α
1{X0/X−t > y}

∣∣∣ X0 > snun

]
−F(Θt )(y)

∣∣∣= o((nvn)
−1/2),

(2.13)
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∣∣∣E[log(X0/(snun)) | X0 > snun]−1/α
∣∣∣= o((nvn)

−1/2). (2.14)

Note that the convergence of the left hand sides to 0 follows from our basic as-
sumptions. Here, we require that this convergence is sufficiently fast which usually
implies an upper bound on the rate at which nvn tends to ∞ (or, equivalently, that the
threshold un tends to ∞ sufficiently fast).

Theorem 2.1 Let (Xt)t∈Z be a stationary, regularly varying time series. If the con-
ditions (2.1), (A(x0)), (B), (C) and (2.12)–(2.14) are fulfilled for some x0 > 0 and
some y0 ∈ [x0,∞)∩ (0,∞), then

(nvn)
1/2

((
F̂( f ,Θt )

n,ûn
(xt)−F(Θt )(xt)

)
xt∈[x0,∞)(

F̂(b,Θt )
n,ûn

(yt)−F(Θt )(yt)
)

yt∈[y0,∞)

)

|t|∈{1,...,t̃}

 
(

(Z(φ t
2,xt ,1)− F̄(Θt )(xt)Z(φ1,1))xt∈[x0,∞)(

Z(φ t
3,yt ,1)− F̄(Θt )(yt)Z(φ1,1)+Zα(yt)

)
yt∈[y0,∞)

)

|t|∈{1,...,t̃}
(2.15)

with
Zα(yt) = (α2Z(φ0,1)−αZ(φ1,1))E

[
(logΘt)1{Θt > yt}

]
,

where Z is the centered Gaussian process, indexed by functions defined in (2.5)–
(2.8), whose covariance function is given in (C.1), and F̄(Θt ) := 1−F(Θt ) denotes
the survival function of Θt .

A detailed representation of the relevant covariances is given in the Supplement.
The limit process is exactly the same as for the forward and backward estimator

based on the exceedances over the deterministic threshold un, derived by Davis et al.
(2018). So, retrospectively, it is justified that Davis et al. (2018) used order statistics
Xn−kn:n as thresholds ûn instead of un = F←(1− kn/n), since the following lemma
shows that, under the conditions used in Theorem 2.1, order statistics indeed fulfill
(2.1).

Lemma 2.2 Let (kn)n∈N be an intermediate sequence, that is kn→∞ and kn/n→ 0.
If condition (B) holds and there are sn(k) > P

(
Xk > (1− ε)un | X0 > (1− ε)un

)

such that s∞(k) = limn→∞ sn(k) exists, and limn→∞ ∑rn
k=1 sn(k) = ∑∞

k=1 s∞(k) < ∞,
then Xn−kn:n/F←(1− kn/n)→ 1 in probability.

Note that the existence of the constants sn(k) follows from assumption (2.9) in con-
dition (C). The consistency of intermediate order statistics is also an immediate con-
sequence of Theorem 2.1 of Drees (2003), which has been proved under somewhat
different conditions.

Multiplier block bootstrap

The covariance function of the limit process in Theorem 2.1 is too complex to be
directly used for the construction of confidence regions for F(Θt )(x). Therefore, we
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resort to a resampling method. Davis et al. (2018) proposed two bootstrap schemes:
the stationary block bootstrap as used in Davis et al. (2012) and the multiplier block
bootstrap as used in Drees (2015). The multiplier block bootstrap versions of the
forward and backward estimator are given by

F̂∗( f ,Θt )
n,un (x) :=

∑mn
j=1(1+ξ j)∑i∈I j 1{Xi+t/|Xi|6 x, |Xi|> un}

∑mn
j=1(1+ξ j)∑i∈I j 1{|Xi|> un}

,

F̂∗(b,Θt )
n,un (x) := 1−

∑mn
j=1(1+ξ j)∑i∈I j |

Xi−t
Xi
|α̂∗n,un1{Xi/|Xi−t |> x, |Xi|> un}

∑mn
j=1(1+ξ j)∑i∈I j 1{|Xi|> un}

for x> 0, with

α̂∗n,un :=
∑mn

j=1(1+ξ j)∑i∈I j 1{|Xi|> un}
∑mn

j=1(1+ξ j)∑i∈I j log(|Xi|/un)1{|Xi|> un}
,

where ξ j, j ∈ N, are (bounded) iid random variables independent of (Xt)t∈Z with
E[ξ j] = 0 and var(ξ j) = 1, and I j = {( j− 1)rn + 1, . . . , jrn}. Davis et al. (2018)
proved that these multiplier block bootstrap versions are consistent when the thresh-
olds un are deterministic and suitable chosen. (The validity of the stationary block
bootstrap versions of the forward and backward estimator was not established.) In
simulations, both bootstrap methods were applied with order statistics as threshold.
The approximation of the error distribution obtained by multiplier block bootstrap
turned out to be much more accurate than that of the stationary bootstrap. Here we
will give an asymptotic justification for using multiplier block bootstrap with random
instead of deterministic thresholds.

For the sake of brevity, we focus on estimators of F(Θt )(x) for a fixed x > x0.
By Pξ we denote probabilities w.r.t. ξ = (ξ j) j∈N, i.e., conditional probabilities given
(Xn,i)16i6n.

Theorem 2.3 Let ξ j, j ∈ N, be bounded iid random variables with E[ξ j] = 0 and
var(ξ j) = 1 independent of (Xt)t∈Z. Then, under the conditions of Theorem 2.1, for
all x> x0, y> y0,

sup
r,s∈R2t̃

∣∣∣Pξ

[
(nvn)

1/2(F̂∗( f ,Θt )
n,ûn

(x)− F̂( f ,Θt )
n,ûn

(x)
)
6 rt ,

(nvn)
1/2(F̂∗(b,Θt )

n,ûn
(y)− F̂(b,Θt )

n,ûn
(y)
)
6 st ,∀|t| ∈ {1, . . . , t̃}

]

−Pξ

[
(nvn)

1/2(F̂( f ,Θt )
n,ûn

(x)−F(Θt )(x)
)
6 rt ,

(nvn)
1/2(F̂(b,Θt )

n,ûn
(y)−F(Θt )(y)

)
6 st ,∀|t| ∈ {1, . . . , t̃}

]∣∣∣→ 0

in probability.

This result shows that the approach to constructing confidence intervals used in
the simulations of Davis et al. (2018) is mathematically sound.
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3 Simulations

In this section, we compare the finite-sample behavior of the estimators of the sur-
vival function of the tail spectral process at lag t based on the exceedances over
deterministic thresholds and exceedances over the corresponding order statistics, re-
spectively. Specifically, we examine the forward estimator (SFE) 1− F̂( f ,Θt )

n,u (x) de-
fined in (1.3) and the backward estimator (SBE) 1− F̂(b,Θt )

n,u (x) of P{Θt > x} given in
(1.5). Here u is either a theoretical quantile F←(1−k/n) or the corresponding order
statistic Xn−k:n. We focus on the differences between the estimators for the different
types of thresholds. A detailed comparison of the finite-sample performance of the
forward and the backward estimator with random threshold is given in Davis et al.
(2018). To keep the presentation short, here we report detailed results only for lag
t = 1 and x ∈ {1/2,1}. Further results are given in the supplementary material.

We consider two classes of time series models: GARCH(1,1) time series and
Markovian time series. Recall that the GARCH(1,1) model is given by

Xt = σtεt with σ2
t = α0 +α1X2

t−1 +β1σ2
t−1,

t ∈ Z, where α0 ∈ (0,∞), α1,β1 ∈ [0,∞), and εt , t ∈ Z, are iid innovations. Under
suitable conditions, the GARCH(1,1) time series are regularly varying (Basrak et al.,
2002, Theorem 3.1) and β -mixing (Andersen, 2009, Theorem 8). The innovations
are chosen either standard normal (leading to the so-called nGARCH model) or stan-
dardized t-distributed with 4 degrees of freedom (denoted by tGARCH). Moreover,
we use the parameters α0 = 0.1, α1 = 0.14 and β1 = 0.84. This choice results in a
tail index α of about 4.02 in the nGARCH case and 2.6 for the tGARCH model.

The distribution of the forward spectral tail process (Θt)t∈N is given in Propo-
sition 6.2 of Ehlert et al. (2015). In particular the marginals can be represented as
follows:

L (Θt) = L

(
ε̃t

|ε̃0|
t

∏
i=1

(α1ε̃2
t−i +β1)

1/2
)

(3.1)

for all t ∈ N, where ε̃t , t ∈ N0, are independent and, except for ε̃0, distributed as ε1.
The random variable ε̃0 has density h(x) = g(x)|x|α/E[|ε0|α ], x∈R, with g denoting
the density of ε1 and α the index of regular variation of (Xt)t∈Z.

The distribution of a stationary Markovian time series is determined by its one-
dimensional marginal distribution and the copula of two consecutive observations
(X0,X1). Such a time series is regularly varying if the one-dimensional marginal dis-
tribution has a density and is regularly varying with balanced tails, and the copula
satisfies certain regularity conditions locally at the corners of its domain [0,1]2. The
forward spectral process (Θt)t≥0 is then a geometric random walk which is deter-
mined by the copula of (X0,X1), the tail index α of the marginal distribution and the
relative weight of the left and right tails. See (Drees et al., 2015, Proposition 5.1) for
details.
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We simulated Markovian time series with Student’s t-distribution Ft,ν with ν = 4
degrees of freedom as marginal and either a copula of a bivariate t-distribution

Ct
ν ,ρ(u,v) =

∫ F←t,ν (u)

−∞

∫ F←t,ν (v)

−∞

1
2π(1−ρ2)1/2

(
1+

x2−2ρxy+ y2

ν(1−ρ2)

)−(ν+2)/2

dx dy,

with ν = 4 degrees of freedom and ρ ∈ {0.25,0.5,0.75}, or a Gumbel-Hougaard
copula

Cgum
ϑ (u,v) = exp

(
−[(− logu)ϑ +(− logv)ϑ ]1/ϑ

)

with ϑ ∈ {1.2,1.5,2.0}. For brevity’s sake, here we report detailed results only for
the former model with ρ = 0.25, referred to as tCopula model in what follows. Its
index of regular variation is α = 4; the distribution of Θ1 is given in (Drees et al.,
2015, Example A.1).

To investigate the performance of the forward and backward estimator, we gen-
erate 1000 GARCH(1,1) time series of length n = 2000 for each of the models. The
forward and backward estimators are based on theoretical quantiles (TQ) of |X0| at
level β ∈{0.9,0.95} resp. on the corresponding order statistics (OS). Since no closed
form of the marginal distribution is available for the GARCH models, we calculate
the quantile of |X0| via Monte Carlo simulations. More precisely, it is approximated
by the average of the bmβc-th order statistics of |X1|, . . . , |Xm| of a time series of
length m = 108, obtained in 100 Monte Carlo simulations. The empirical standard
deviation of these 100 realisations divided by

√
100 gives an estimate of the standard

deviation of this approximation of the true quantile (see Table 1).
The true probabilities P{Θ1 > x} (reported in Table 2) were calculated numeri-

cally. In addition, in Table 3 we give the so-called pre-asymptotic quantities

pβ (x) := P
(

X1

|X0|
> x

∣∣∣∣ |X0|> F←(β )
)

and

eβ (x) := E
[∣∣∣∣

X−1

X0

∣∣∣∣
1/aβ

1{X0/|X−1|> x}
∣∣∣∣ |X0|> F←(β )

]
with

aβ := E
[

log
(
|X0|/F←(β )

) ∣∣∣ |X0|> F←(β )
]

for x ∈ {1/2,1} and β ∈ {0.9,0.95}. Note that the Hill-type estimator based on
exceedances over a true quantile is an empirical counterpart to aβ , and the forward
and the backward estimators can be considered empirical counterparts to pβ (x) and
eβ (x), respectively. One might thus expect that the estimates are concentrated around
the corresponding pre-asymptotic values rather than the limit probability P{Θ1 >
x}. These values can be calculated numerically for the Markovian copula models,
whereas for the GARCH(1,1) model we again resorted to Monte Carlo simulations
with the same design as used for the approximation of the true quantiles (but with
times series of length m = 107).

Each of the following figures, which visualize our main findings, comprise four
plots. The two upper plots correspond to the forward estimator, the lower plots show
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Fig. 1 Q-Q plots of the forward (top) and backward (bottom) estimator of P{Θ1 > 1} using OS as
threshold compared with TQ as threshold in the nGARCH model; left: 90% level; right: 95% level. The
dashed red line is the main diagonal.

results for the backward estimator. On the left hand side the results for the estimators
based on exceeances over the theoretical resp. empirical 90% quantile are displayed,
while the plots on the right hand side correspond to the 95% level.

Figure 1 shows Q-Q plots of the estimators of P{Θ1 > 1} ≈ 0.0549 based on
theoretical quantiles vs the one based on order statistics in the nGARCH model.
Overall, the Q-Q plots are close to the main diagonal, which confirms our asymptotic
results. However, for small values the points usually lie below the main diagonal.
This means that the estimators based on exceedances over theoretical quantiles tend
to underestimate the true value more severely. A closer inspection of the simulation
results reveals that this effect mainly occurs when few absolute observations exceed
the quantile, which leads to an unreliable estimate of the TQ-version (whereas the
number of exceedances is fixed in the OS-version). Indeed, in particular for β =
0.95, in some simulations the TQ-versions of the estimators are very close to 0.

Note that the discrete nature of the x-coordinates of the points in the upper plots
is due to the fact that the forward estimator based on the exceedances over Xn−k:n can
assume only values in {i/k | 06 i6 k}. This is also obvious from the corresponding
empirical cdfs shown in Figure 2. The solid black vertical line indicates the proba-
bility P{Θ1 > 1}, whereas the dash-dotted black line shows the pre-asymptotic val-
ues pβ (1) (for the forward estimator) resp. eβ (1) (for the backward estimator). As
expected, the cdfs are approximately centered at the corresponding pre-asymptotic
values.

These graphs again show that the estimators which are based on theoretical quan-
tiles tend to underestimate the true value more often. However, due to the difference
between the pre-asymptotic value and their limit, all estimators usually overestimate
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Fig. 2 Empirical cdfs of the forward (top) and backward (bottom) estimators of P{Θ1 > 1} using TQ
(dashed red line) and OS (solid blue line) as thresholds in the nGARCH model. The solid black verti-
cal line indicates the probability P{Θ1 > 1}, whereas the dash-dot black vertical line indicates the pre-
asymptotic values pβ (1) in the upper two plots and eβ (1) in the lower two plots.

Fig. 3 Q-Q plots of the forward (top) and backward (bottom) estimator of P{Θ1 > 1/2} using OS as
threshold compared with TQ as threshold in the nGARCH model; left: 90% level; right: 95% level. The
dashed red line is the main diagonal.

the asymptotic value. Furthermore, as already reported in Davis et al. (2018), the
backward estimator of P{Θt > 1} performs better than the forward estimator.

Figure 3 displays Q-Q plots for the estimators of P{Θ1 > 1/2}. By and large,
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Fig. 4 Q-Q plots of the forward (top) and backward (bottom) estimator of P{Θ1 > 1/2} in the tCopula
model with ρ = 0.25 using OS as threshold compared with TQ as threshold; left: 90% level; right: 95%
level. The dashed red line is the main diagonal.

the same effects occur as in Figure 1. In addition, in some cases the TQ-version
of the backward estimator strongly overestimates the true value; in one simulation
with β = 0.95, it even gives an estimate larger than 1. This is again mainly due to
simulations when relatively few observations exceed the quantile in absolute value.
Indeed, for x = 1/2, the forward estimator is preferable in the nGARCH model.

The results for the tGARCH model and for lags t ∈ {3,5} are qualitatively the
same. For this reason, they are not shown here.

Next we investigate the estimators of P{Θ1 > 1/2} ≈ 0.1831 in the Markovian
tCopula model with ρ = 0.25. The Q-Q plots of the TQ-versions vs the OS-versions
(Figure 4) are even closer to the main diagonal than in the GARCH(1,1) models, with
only minor fluctuations around the main diagonal for large values of the backward
estimator. The results for estimators of P{Θ1 > 1/2} in the other Markovian copula
models and for larger lags look similar.

So far we have compared the distributions of the two versions of forward resp.
backward estimators, which according to Theorem 2.1 have the same asymptotic be-
havior. Except for some differences in the tails, the distributions were close together
also for finite sample sizes. Therefore, it suggests itself to examine whether there is
a closer relationship between both version, in that for each simulation both versions
give similar estimates, or that the difference between both versions is typically of
smaller order than the variability of each of the estimators.

In Figure 5 we plot the estimates of P{Θ1 > 1/2} based on exceedances over TQ
vs the estimates based on exceedances over OS in the usual format for the tCopula
model with ρ = 0.25. Although the relationship between the realizations of both
versions is obviously weaker than the relation between the order statistics (shown
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Fig. 5 Forward (top) resp. backward (bottom) estimator of P{Θ1 > 1/2} in tCopula model with ρ =
0.25 using TQ as threshold vs estimator using OS as threshold; left: 90% level; right: 95% level. The
dashed red line is the main diagonal.

in Figure 4), the estimator based on exceedances over a random threshold seems
quite an accurate predictor for the estimator based on exceedances over a theoretical
quantile. Indeed, the variance of the difference of both versions is merely between
6.5% (for the forward estimator to the 90% level) and 11.4% (for the backward
estimator to the 95% level) of the variance of the TQ-version.
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Appendix A: Tables

β
model 0.9 0.95
nGARCH 3.3931 (1.6×10−4) 4.3695 (2.7×10−4)
tGARCH 2.6349 (1.5×10−4) 3.7005 (2.7×10−4)
Copula 2.1318 2.7764

Table 1 Approximate theoretical quantiles F←(β ), for β = 90% or 95% (with estimated standard devia-
tions in parentheses). In the copula model F←(β ) is completely determined by the marginal t4 distribu-
tion.

model P{Θ1 > 1} P{Θ1 > 1/2}
nGARCH 0.0549 0.2022
tGARCH 0.0450 0.1415
tCopula with ρ = 0.25 0.0445 0.1831

ρ = 0.50 0.0662 0.2623
ρ = 0.75 0.1096 0.3929

gumCopula with θ = 1.2 0.0546 0.2145
θ = 1.5 0.1031 0.3756
θ = 2.0 0.1464 0.4688

Table 2 Probabilities P{Θ1 > 1} and P{Θ1 > 1/2} in each model.

model nGARCH tGARCH
β 0.9 0.95 0.9 0.95

pβ (1) SFE with OS 0.0763 (3×10−5) 0.0683 (5×10−5) 0.0663 (3×10−5) 0.0575 (4×10−5)
eβ (1) SBE with OS 0.0740 (3×10−5) 0.0669 (5×10−5) 0.0704 (3×10−5) 0.0610 (4×10−5)
pβ (1/2) SFE with OS 0.2283 (4×10−5) 0.2189 (6×10−5) 0.1820 (4×10−5) 0.1668 (6×10−5)
eβ (1/2) SBE with OS 0.2300 (7×10−5) 0.2188 (10−4) 0.1842 (5×10−5) 0.1681 (9×10−5)

Table 3 Estimated pβ (x) and eβ (x) for x ∈ {1,1/2} (with estimated standard deviations in parentheses).

Appendix B: Stochastic Recurrence Equations

Consider the stochastic recurrence equation

Xt =CtXt−1 +Dt , t ∈ Z, (B.1)

where (Ct ,Dt), t ∈ Z, is a sequence of iid [0,∞)2-valued random variables. It is
well known that there exists a unique strictly stationary causal solution, provided
E[logC1]< 0 and E[log+ D1]<∞ (Basrak et al., 2002, Cor. 2.2). In addition, assume
that the distribution of C1 is not concentrated on a lattice and that there exists α > 0
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such that E[Cα
1 ] = 1, E[Cα

1 log+C1] < ∞ and E[Dα
1 ] < ∞. Then the time series is

regularly varying with index α (Basrak et al., 2002, Rem. 2.5, Cor. 2.6).
Drees et al. (2015) have shown that condition (B) holds for suitably chosen (loga-

rithmically increasing) rn, provided (logn)2/n = o(vn) and vn = o(1/ logn), and that
a milder version of condition (C) is satisfied. Here, we will show that our strength-
ened condition (C) is fulfilled, too, if we assume in addition that r1+2δ

n vn = O(1).
Let Πi, j :=∏ j

l=i Cl and Vi, j :=∑ j
l=i Πl+1, jDl . Iterating (B.1) yields Xk =∏ j+1,k X j+

Vj+1,k. Define un,ε = (1− ε)un and vn,ε := P{X0 > un,ε}.
Consider g : R → R with 0 6 g(x) 6 axτ + b for some a,b > 0, τ ∈ (0,α)

and all x ∈ R. Using the Potter bounds, one can show that the random variables
g(X0/u)1{X0 > u}/P{X0 > u}, u > u0, are uniformly integrable. Hence, for suffi-
ciently large u,

E[g(X0/u)1{X0 > u}]6 2E[g(Y0)]P{X0 > u}. (B.2)

Under the above conditions, one has ρ := E[Cξ
1 ] < 1 for any ξ ∈ (0,α). Thus,

by the generalized Markov inequality and the independence of the random variables
Cl ,

P{Π j+1,k > un,ε/(2t)}6 ρk− j(2t/un,ε)
ξ . (B.3)

Inequality (B.2), V1,k 6 Xk and the Potter bounds imply

E[(X0/un,ε)
ξ1{X0 > un,ε/2}]6 21+α vn,ε E[Y ξ

0 ], (B.4)

P{V1,k > un,ε/2}6 P{Xk > un,ε/2}6 21+α vn,ε (B.5)

for all k ∈ N and sufficiently large n. Moreover, it was shown in (Drees et al., 2015,
Example A.3) that there exists a constant c > 0 such that

P{min{X0,Xk}> u}6 cP{X0 > u}(P{X0 > u}+ρk), (B.6)

P{Π1,kX0 > u/2,X0 > u}6 2ξ+1ρkE[Y ξ
0 ]P{X0 > u} (B.7)

for all k ∈ N and all u sufficiently large.
By independence of (Vj+1,k,Π j+1,k) and (X0,X j), one has

P{min{X0,X j,Xk}> un,ε}6 P{min{X0,X j}> un,ε ,Vj+1,k > un,ε/2}
+P{min{X0,X j}> un,ε ,Π j+1,kX j > un,ε/2}

= P{min{X0,X j}> un,ε}P{Vj+1,k > un,ε/2}

+
∫

(un,ε ,∞)2
P{Π j+1,k > un,ε/(2t)} P(X0,X j)(d(s, t))

6 c21+α v2
n,ε(vn,ε +ρ j)

+ρk− j2ξ E[(X j/un,ε)
ξ1{min{X0,X j}> un,ε}]

where in the last step we have used (B.3), (B.5) and (B.6). Using (a+b)ξ ≤ 2ξ (aξ +
bξ ) for all a,b > 0, (B.4), (B.7), V1, j 6 X j and the independence of X0 and V1, j, we



Estimators for Spectral Tail Processes 17

can bound the last expected value as follows:

E[(X j/un,ε)
ξ1{min{X0,X j}> un,ε}]

6 2ξ E
[(
(Π1, jX0/un,ε)

ξ +(V1, j/un,ε)
ξ )1{X0 > un,ε ,Π1, jX0 +V1, j > un,ε}

]

6 2ξ E
[
(Π1, jX0/un,ε)

ξ1{X0 > un,ε}+(V1, j/un,ε)
ξ1{X0 > un,ε ,V1, j > un,ε/2}

+(V1, j/un,ε)
ξ1{X0 > un,ε ,V1, j 6 un,ε/2,Π1, jX0 > un,ε/2}

)]

6 2ξ
[
ρ jE

[
(X0/un,ε)

ξ1{X0 > un,ε/2}
]
+ vn,ε E

[
(X j/un,ε)

ξ1{X j > un,ε/2}
]

+2−ξ P{X0 > un,ε ,Π1, jX0 > un,ε/2}
]

6 2ξ
[
(ρ j + vn,ε)21+α vn,ε E[Y ξ

0 ]+2ρ jvn,ε E[Y ξ
0 ]
]
.

To sum up, we have shown that

P{min{X0,X j,Xk}> un,ε}
6 c21+α v2

n,ε(vn,ε +ρ j)+ρk− j22ξ+1E[Y ξ
0 ]vn,ε((2α +1)ρ j +2α vn,ε).

This yields

P(min{X j,Xk}> un,ε | X0 > un,ε)6C(v2
n,ε + vn,ε(ρ j +ρk− j)+ρk) =: s̃n( j,k)

for a suitable constant C > 0. Now, note that s̃n( j,k)→Cρk =: s̃∞( j,k) for all j6 k,
and

∑
16 j6k6rn

s̃n( j,k) =C
( rn(rn +1)

2
v2

n,ε + vn,ε

rn−1

∑
l=0

(rn− l)ρ l

+ vn,ε

rn

∑
j=1

(rn− j+1)ρ j +
rn

∑
k=1

kρk
)

→C
∞

∑
k=1

kρk = ∑
16 j6k<∞

s̃∞( j,k)< ∞,

because rnvn,ε → 0. Thus, condition (2.10) is fulfilled.
Next, we verify condition (2.9) which is equivalent to

lim
L→∞

limsup
n→∞

rn

∑
j=L+1

E
[
ψ(u−1

n,ε X0)ψ(u−1
n,ε Xk)

∣∣ X0 > un,ε
]
= 0 (B.8)

for ψ(x) = max{logx,1{x > 1}}. This can be done by direct calculations, but here
we give a more elegant proof using general results for Markov processes under the
additional assumptions that the time series is aperiodic and irreducible. This is e.g.
true if (C1,D1) is absolutely continuous; see Buraczewski et al. (2016), Proposition
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2.2.1 and Lemma 2.2.2. According to Lemma 4.3 of Kulik et al. (2018), convergence
(B.8) holds when conditions (i)–(vi) in Assumption 2.1 of this paper are fulfilled.
Since (Xt)t∈Z is a regularly varying Markov chain, condition (i) and (ii) are trivial.
The arguments given in subsection 5.2 of Mikosch and Wintenberger (2013) show
that the Lyapunov drift condition (iii) holds with V (x) = 1+ |x|p for any p ∈ (0,α).
The small set condition (iv) follows from subsection 2.2 of this paper in combination
with Theorem 9.4.10 and Corollary 14.1.6 of Douc et al. (2018). With the above
choice of V , condition (v) is obvious. Using (B.2) and the Potter bounds one may
conclude, for all s > 0,

E[V (X0)1{X0 > sun,ε}] = E
[
X p

0 1{X0 > sun,ε}
]
+P{X0 > sun,ε}

6
(
2(sun,ε)

pE[Y p
0 ]+1

)
P{X0 > sun,ε}

6C
(
(sun,ε)

p +1
)
s−α+η vn,ε

for some η with arbitrarily small modulus (η is positive when s > 1 and negative for
s ∈ (0,1)) and sufficiently large C > 0, n ∈ N. Thus

limsup
n→∞

1
up

n,ε vn,ε
E[V (X0)1{X0 > sun,ε}]6 limsup

n→∞
C
(
sp +u−p

n,ε
)
s−α+η

=Cs−α+p+η < ∞

such that condition (vi) is also satisfied. Hence, condition (2.9) is fulfilled.
It remains to prove (2.11). Since to all p > 0 there exists cp > 0 such that

(log+ x)1+δ 6 cpxp1{x > 1}, it suffices to show that, for some p, p̃ > 0,

rn

∑
k=1

(
E
[( Xk

un,ε

)p( X0

un,ε

)p̃
1{Xk > un,ε}

∣∣∣ X0 > un,ε

])1/(1+δ )
(B.9)

is bounded. By induction, one can conclude from the drift condition that to all p ∈
(0,α) there exist β ∈ (0,1) and b > 0 such that E[X p

k | X0 = y]6 β kyp +b/(1−β )
(Douc et al., 2018, Prop. 14.1.8). Hence

E
[( Xk

un,ε

)p( X0

un,ε

)p̃
1{Xk > un,ε}

∣∣∣ X0 > un,ε

]

6 v−1
n,ε

∫ ∞

un,ε
u−(p+p̃)

n,ε E[X p
k | X0 = y]yp̃ PX0(dy)

6 β kE
[( X0

un,ε

)p+p̃ ∣∣∣ X0 > un,ε

]
+

b
1−β

u−p
n,ε E

[( X0

un,ε

)p̃ ∣∣∣ X0 > un,ε

]

6 2β kE[Y p+p̃
0 ]+

2b
1−β

u−p
n,ε E[Y p̃

0 ]

for sufficiently large n, by (B.2), provided p+ p̃ < α . Choose p ∈ (α(1+ δ )/(1+
2δ ),α) and p̃ > 0 sufficiently small such that p+ p̃ < α . Then (B.9) can be bounded
by a multiple of ∑rn

k=1 β k/(1+δ )+ rnu−p/(1+δ )
n,ε . By the regular variation of X0 with in-

dex α and the choice of p, one has u−p/(1+δ )
n,ε = o(v1/(1+2δ )

n,ε ). Thus, (B.9) is bounded
if r1+2δ

n vn,ε is bounded.
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Appendix C: Proofs

Lemma C.1 If condition (2.10) from (C) holds, then

E
[( rn

∑
i=1

1{Xi > (1− ε)un}
)3]

= O(rnvn).

Proof Let vn,ε = P{X0 > (1−ε)un}. By regular variation and stationarity of (Xt)t∈Z

E
[( rn

∑
i=1

1{Xi > (1− ε)un}
)3]

=
rn

∑
i, j,k=1

P{min{Xi,X j,Xk}> (1− ε)un}

6 rnvn,ε +6
rn−1

∑
k=1

k

∑
j=1

(
1− k

rn

)
P{min{X0,X j,Xk}> (1− ε)un}

6 rnvn,ε +6rnvn,ε ∑
16 j6k6rn−1

s̃n( j,k)

= O(rnvn).

2

Taking up the notation of Drees and Rootzén (2010), we consider the empirical pro-
cess Z̃n defined by

Z̃n(ψ) := (nvn)
−1/2

n

∑
i=1

(ψ(Xn,i)−E[ψ(Xn,i)]),

where ψ is one of the functions φ0,s,φ1,s,φ t
2,x,s or φ t

3,y,s (defined in (2.5)–(2.8)). The
asymptotic normality of the Hill estimator and our main Theorem 2.1 can be derived
from the following result about the process convergence of Z̃n.

Proposition C.2 Let (Xt)t∈Z be a stationary, regularly varying process with index
α > 0. Suppose that the conditions (A(x0)), (B) and (C) are fulfilled for some x0 > 0.
Then, for all y0 ∈ [x0,∞)∩ (0,∞), the sequence of processes (Z̃n(ψ))ψ∈Φ with index
set

Φ :=
{

φ0,s,φ1,s,φ t
2,x,s,φ

t
3,y,s | s ∈ [1− ε,1+ ε],x> x0,y> y0, |t| ∈ {1, . . . , t̃}

}

converges weakly in l∞(Φ) to a centered Gaussian process Z with covariance func-
tion given by

cov(Z(ψ1),Z(ψ2)) = E[ψ1(Ȳ0)ψ2(Ȳ0)]+
∞

∑
k=1

(E[ψ1(Ȳ0)ψ2(Ȳk)]+E[ψ1(Ȳk)ψ2(Ȳ0)])

(C.1)

=
∞

∑
k=−∞

E[ψ1(Ȳ0)ψ2(Ȳk)]

for ψ1,ψ2 ∈Φ, where Ȳk := (Yk−t̃ , . . . ,Yk+t̃)1{Yk > 1}.
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Proof Weak convergence of the finite-dimensional distributions of (Z̃n(ψ))ψ∈Φ can
be established as in the proof of Proposition B.1 of Drees et al. (2015). Note that
here the threshold (1− ε)un is used instead of un, while the components of Xn,i are
standardized with un. Moreover, we standardize the process using vn = P{X0 > un}
instead of P{X0 > (1− ε)un} = (1− ε)−α vn(1+ o(1)). Therefore, we obtain as
limiting covariance function

cov(Z(ψ1),Z(ψ2)) = (1− ε)−α
(

E[ψ1((1− ε)Ȳ0)ψ2((1− ε)Ȳ0)]

+
∞

∑
k=1

(E[ψ1((1− ε)Ȳ0)ψ2((1− ε)Ȳk)]+E[ψ1((1− ε)Ȳk)ψ2((1− ε)Ȳ0)])
)
.

Now recall that Yk =Y0Θk for a Pareto random variable Y0 independent of the spectral
process. Since P{(1−ε)Y0 > 1}= (1−ε)α , Y0 has the same distribution as (1−ε)Y0
conditionally on {(1− ε)Y0 > 1}, and ψi(y−t̃ , . . . ,yt̃) vanishes if y0 6 1, one has

E
[
ψ1((1− ε)Ȳ0)ψ2((1− ε)Ȳk)

]
= E

[
ψ1((1− ε)Y0(Θt)|t|6t̃)ψ2((1− ε)Y0(Θk+t)|t|6t̃)

]

= (1− ε)α E
[
ψ1(Y0(Θt)|t|6t̃)ψ2(Y0(Θk+t)|t|6t̃)

]

= (1− ε)α E
[
ψ1(Ȳ0)ψ2(Ȳk)

]
.

Now, the asserted representation (C.1) is obvious. The second representation can be
similarly concluded from the equation

E
[ rn

∑
i=1

ψ1(Xn,i)
rn

∑
j=1

ψ2(Xn, j)
]
= rn

rn−1

∑
k=1−rn

(
1− |k|

rn

)
E
[
ψ1(Xn,0)ψ2(Xn,k)

]
.

To prove asymptotic equicontinuity of the processes (and thus their weak conver-
gence), we apply Theorem 2.10 of Drees and Rootzén (2010). To this end, we must
verify the conditions (D1), (D2’), (D3), (D5) and (D6) of this paper. Except for con-
dition (D6), all assumptions of the theorem can be established by similar arguments
as in the proof of Proposition B.1 of Drees et al. (2015).

It remains to prove that the following condition holds:
(D6)

lim
δ↓0

limsup
n→∞

P∗
{∫ δ

0

√
logN(ε0,Φ,dn)dε0 > τ

}
= 0 ∀τ > 0.

Here P∗ denotes he outer probability, and the (random) covering number
N(ε0,Φ,dn) is the minimum number of balls with radius ε0 w.r.t.

dn(ψ1,ψ2) :=
(

1
nvn

mn

∑
j=1

( rn

∑
i=1

ψ1(T ∗n, j,i)−ψ2(T ∗n, j,i
)2
)1/2

,

needed to cover Φ, T ∗n, j = (T ∗n, j,i)1≤i≤rn denote iid copies of (Xn,i)1≤i≤rn (defined in
(2.4)) and mn := bn/rnc.
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Note that this condition can be verified separately for the sets of functions {φ0,s |
s ∈ [1− ε,1+ ε]}, {φ1,s | s ∈ [1− ε,1+ ε]}, Φt

2 := {φ t
2,x,s |x ∈ [x0,∞),s ∈ [1−ε,1+

ε]} and Φt
3 := {φ t

3,y,s | y∈ [y0,∞),s∈ [1−ε,1+ε]} for |t| ∈ {1, . . . , t̃}. For the former
two function classes, (D6) easily follows from the linear order of the functions in s;
see (Drees and Rootzén, 2010, Example 3.8) for details. It is much more challenging
to verify (D6) for the remaining two families. We give details of the proof only for
the class Φt

3, but the arguments readily carry over to Φt
2.

Since this most crucial part of the proof is rather involved, we first give a brief
outline. In a first step, we use VC theory to bound the covering number of the family
of functions f (r,t)3,y,s :

(
[0,∞)(2t̃+1)

)r→ R,

f (r,t)3,y,s(z1, . . . ,zr) :=
r

∑
i=1

φ t
3,y,s(zi) =

r

∑
i=1

( zi,−t

zi,0

)α
1{zi ∈V t

y,s},

with zi = (zi,−t̃ , . . . ,zi,t̃) for fixed r (see (C.2)). Then we show that by choosing r
equal to the (random) minimum number (denoted by Rn,ε0 ) such that the maximal
possible contribution of clusters of length larger than r to the distance dn is less than
ε0/2, one can bound the covering number N(ε0,Φt

3,dn) by some function of Rn,ε0
(cf. (C.3)). Finally, Condition (D6) follows if one shows that, with large probability,
Rn,ε0 grows only polynomially in ε−1

0 .
First note that the function φ t

3,y,s does not vanish on the set V t
y,s := {(x−t̃ , . . . ,xt̃)∈

[0,∞)2t̃+1 | x0/x−t > y, x−t > 0, x0 > s}. We now show that the subgraphs M(r,t)
y,s :={

(λ ,z1, . . . ,zr)∈R×([0,∞)(2t̃+1))r | λ < f (r,t)3,y,s(z1, . . . ,zr)
}

of f (r,t)3,y,s form a VC class.

To this end, consider an arbitrary set A = {(λ (l),x(l)1 , . . . ,x(l)r ) | 1 6 l 6 m} ⊂ R×
[0,∞)r(2t̃+1) of m points. For 1 6 i 6 r, 1 6 l 6 m, define lines
{(x(l)i,0/x(l)i,−t ,s) | s ∈ [1− ε,1+ ε]} and {(y,x(l)i,0) | y ∈ [y0,∞)}, that divide the set
[y0,∞)× [1− ε,1+ ε] into at most (mr+ 1)2 rectangles. If (y,s),(ỹ, s̃) ∈ [y0,∞)×
[1− ε,1+ ε] belong to the same rectangle then the symmetric difference V t

y,s M V t
ỹ,s̃

does not contain any of the points x(l)i , 1 6 i 6 r, 1 6 l 6 m. Hence, the equality
f (r,t)3,y,s(x

(l)
1 , . . . ,x(l)r ) = f (r,t)3,ỹ,s̃(x

(l)
1 , . . . ,x(l)r ) holds for all 1 6 l 6 m, and the intersec-

tions A∩Mt
y,s and A∩Mt

ỹ,s̃ are identical. Thus, (Mt
y,s)y∈[y0,∞),s∈[1−ε,1+ε] can pick at

most (mr+ 1)2 different subset of A. If m > 4logr and r is sufficiently large then
m− 2log2 m > 3logr > log2(4r2) which implies 2m > 4m2r2 > (mr+ 1)2. Hence,
the family of subgraphs (Mt

y,s)y∈[y0,∞),s∈[1−ε,1+ε] cannot shatter A, which shows that

the VC-index of F
(r,t)
3 := { f (r,t)3,y,s | y ∈ [y0,∞),s ∈ [1− ε,1+ ε]} is less than 4logr

if r is sufficiently large. By Theorem 2.6.7 of van der Vaart and Wellner (1996), we
have

N
(

δ
(∫

G2
r dQ

)1/2
,F

(r,t)
3 ,L2(Q)

)
6 K1r16δ−K2 logr (C.2)

for all small δ > 0, all probability measures Q on ([0,∞)(2t̃+1))r such that
∫

G2
r dQ >

0, and suitable universal constants K1,K2 > 0 with Gr = f (r,t)3,y0,1−ε denoting the enve-

lope function of F
(r,t)
3 .
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In the second step we show that the terms pertaining to blocks with more than r
non-vanishing summands do not contribute too much to dn(φ t

3,y,s,φ
t
3,ỹ,s̃), if we let r

tend to infinity in a suitable way.
Denote the number of independent blocks with at most r non-zero entries by

Nn,r := ∑mn
j=11{H(T ∗n, j) 6 r} with H(z) = ∑rn

i=11{zi,0 > 1− ε}, z ∈ ([0,∞)(2t̃+1))rn .
For these blocks, define vectors T̃ ∗n, j of length r which contain all non-zero values of
T ∗n, j, augmented by r−H(T ∗n, j) zeros. Let

Qn,r :=
1

Nn,r

mn

∑
j=1

1{H(T ∗n, j)6 r}εT̃ ∗n, j
,

with εT the Dirac measure with mass 1 in T . We can bound the squared distance
between φ t

3,y,s and φ t
3,ỹ,s̃ as follows:

d2
n(φ

t
3,y,s,φ

t
3,ỹ,s̃) =

1
nvn

mn

∑
j=1

( rn

∑
i=1

φ t
3,y,s(T

∗
n, j,i)−φ t

3,ỹ,s̃(T
∗

n, j,i)
)2

6 Nn,r

nvn

∫
( f (r,t)3,y,s− f (r,t)3,ỹ,s̃)

2 dQn,r +
1

nvn

mn

∑
j=1

G2
rn(T

∗
n, j)1{H(T ∗n, j)> r}

for all r ∈ N. In particular,

d2
n(φ

t
3,y,s,φ

t
3,ỹ,s̃)6

Nn,Rn,ε0

nvn

∫
( f

(Rn,ε0 ,t)
3,y,s − f

(Rn,ε0 ,t)
3,ỹ,s̃ )2 dQn,Rn,ε0

+
ε2

0
2

with

Rn,ε0 := min
{

r ∈ N
∣∣∣ 1

nvn

mn

∑
j=1

G2
rn(T

∗
n, j)1{H(T ∗n, j)> r}< ε2

0
2

}
.

If
∫
( f

(Rn,ε0 ,t)
3,y,s − f

(Rn,ε0 ,t)
3,ỹ,s̃ )2 dQn,Rn,ε0

6 nvnε2
0/(2Nn,Rn,ε0

) =: ε2
1 then d2

n(φ t
3,y,s,φ

t
3,ỹ,s̃)6

ε2
0 ; that is, for vectors (y,s),(ỹ, s̃) such that f

(Rn,ε0 ,t)
3,y,s and f

(Rn,ε0 ,t)
3,ỹ,s̃ belong to some

ε1-ball w.r.t. L2(Qn,Rn,ε0
), the corresponding functions φ t

3,y,s and φ t
3,ỹ,s̃ belong to the

same ε0-ball w.r.t. dn. This implies N(ε0,Φt
3,dn) 6 N(ε1,F

(Rn,ε0 ,t)
3 ,L2(Qn,Rn,ε0

)).
Note that ∫

G2
Rn,ε0

dQn,Rn,ε0
6

y−2α
0 R2

n,ε0

Nn,Rn,ε0

mn

∑
j=1

1{H(T ∗n, j)> 0}.

Using (C.2), we conclude that Φt
3 can be covered by

N(ε0,Φt
3,dn)6 K1R16

n,ε0

(
ε2

1∫
G2

Rn,ε0
dQn,Rn,ε0

)−K2(logRn,ε0 )/2

6 K1R16
n,ε0


 ε0yα

0
2Rn,ε0

(
mn

∑
j=1

1{H(T ∗n, j)> 0}
2nvn

)− 1
2


−K2 logRn,ε0
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balls with radius ε0 w.r.t. dn. Since by Chebyshev’s inequality and regular variation

P
{ mn

∑
j=1

1{H(T ∗n, j)> 0}> 2nvn

}
6 mnrnP{X0 > (1− ε)un}

(nvn)2 → 0,

we conclude

N(ε0,Φt
3,dn)6 K1R16

n,ε0

(
ε0yα

0
2Rn,ε0

)−K2 logRn,ε0
(C.3)

with probability tending to 1.
It remains to show that Rn,ε0 does not increase too fast as ε0 tends to 0. To this

end, we decompose the unit interval into intervals (2−(l+1),2−l ], l ∈ N0. Check that
by Markov’s inequality and Lemma C.1

P
{ 1

nvn

mn

∑
j=1

G2
rn(T

∗
n, j)1{H(T ∗n, j)> Mε−3

0 }>
ε2

0
2

for some 0 < ε0 6 1
}

6
∞

∑
l=0

P
{ 1

nvn

mn

∑
j=1

G2
rn(T

∗
n, j)1{H(T ∗n, j)> M23l}> 2−2(l+1)

2

}

6
∞

∑
l=0

22l+3E
[y−2α

0
nvn

mn

∑
j=1

H2(T ∗n, j)1{H(T ∗n, j)> M23l}
]

6
∞

∑
l=0

22l+3 mny−2α
0

nvn

E[H3(T ∗n,1)]

M23l

6 K3

M

∞

∑
l=0

2−l

< η

for some constant K3 depending on y0, and M > 2K3/η . Hence Rn,ε0 6Mε−3
0 with

probability greater than 1−η , so that by (C.3)
∫ δ

0
(logN(ε0,Φ3,dn))

1/2 dε0 6
∫ δ

0
(K4 +K5| logε0|+K6 log2 ε0)

1/2 dε0

for suitable constants K4,K5,K6 > 0. Now condition (D6) is obvious. 2

Lemma C.3 If the conditions (2.1), A(x0), (B), (C) and (2.14) hold, then

(nvn)
1/2(α̂n,ûn −α) αZ(φ1,1)−α2Z(φ0,1)

where Z is the same centered Gaussian process as in Proposition C.2.

Proof For s ∈ [1− ε,1+ ε], define

αn,s :=
1

E[log(X0/(sun)) | X0 > sun]
and α̃n,s :=

∑n
i=1 φ1,s(Xn,i)

∑n
i=1 φ0,s(Xn,i)

(C.4)
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and processes Vn(s) := (nvn)
1/2(α̃n,s−αn,s) and V (s) := sα(αZ(φ1,s)−α2Z(φ0,s)).

Note that, by (2.1), Sn → 1 in probability, and so α̂n,ûn = α̃n,Sn with probability
tending to 1. In view of (2.14), (nvn)

1/2(α̂n,ûn −α) =Vn(Sn)+oP(1).
By similar arguments as in proof of Lemma 4.4 of Drees et al. (2015), one can

conclude from Proposition C.2 that Vn  V (w.r.t. the supremum norm) and that
V has continuous sample paths almost surely. Using Slutsky’s lemma, we obtain
(Vn,Sn) (V,1), and by Skorohod’s theorem, there are versions for which the con-
vergence holds almost surely. It follows that

|Vn(Sn)−V (1)|6 sup
s∈[1−ε,1+ε]

|Vn(s)−V (s)|+ |V (Sn)−V (1)| → 0

almost surely, from which the assertion is obvious. 2

Proof of Theorem 2.1 The assertion follows from arguments along the line of reason-
ing used in the proof of Theorem 4.5 in Drees et al. (2015) with similar modifications
as employed in the proof of Lemma C.3. 2

Proof of Lemma 2.2 Fix an arbitrary δ ∈ (0,ε) and choose some a+δ ∈ (0,1− (1+
δ )−α) and a−δ ∈ (0,(1−δ )−α −1). Then, by regular variation of F←, we have

(1+δ )F←(1− kn/n)> F←(1− (1−a+δ )kn/n),

(1−δ )F←(1− kn/n)< F←(1− (1+a−δ )kn/n)

for sufficiently large n, and hence F̄
(
(1 + δ )F←(1− kn/n)

)
< (1− a+δ )kn/n and

F̄
(
(1− δ )F←(1− kn/n)

)
> (1 + a−δ )kn/n. Let un = F←(1− kn/n) so that vn =

(1+o(1))kn/n by the regular variation of F̄ (Bingham et al., 1987, Th. 1.5.12). The
proof of Prop. C.2 shows that Z̃n(φ1,s) converge weakly to a normal distribution,
because φ1,s is almost surely continuous w.r.t. L (Ȳ0). Thus,

P
{ Xn−kn:n

F←(1− kn/n)
> 1+δ

}

= P
{ n

∑
i=1

1
{

Xi > (1+δ )F←(1− kn/n)
}
> kn

}

= P
{

Z̃n(φ1,1+δ )> (nvn)
−1/2(kn−nP{X0 > (1+δ )F←(1− kn/n)}

)}

6 P
{

Z̃n(φ1,1+δ )>
a+δ
2

k1/2
n

}
→ 0.

Analogously, one obtains

P
{ Xn−kn:n

F←(1− kn/n)
> 1−δ

}
> P

{
Z̃n(φ1,1−δ )>−a−δ k1/2

n

}
→ 1.

Now let δ tend to 0 to conclude the assertion. 2
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Proof of Theorem 2.3 First note that, by Corollary 3.9 of Drees and Rootzén (2010),
the asymptotic behavior of the processes Z̃n is not changed if one replaces n with
rnmn. One may easily conclude that, up to terms of the order oP((nvn)

−1/2), the
estimators F̂( f ,Θt )

n,sun , F̂(b,Θt )
n,sun and α̃n,s (defined in (C.4)) do not change either. Hence,

w.l.o.g. we assume that n = mnrn.
The crucial observation to establish consistency of the bootstrap version is that

the bootstrap processes

Z∗n(ψ) := (nvn)
−1/2

mn

∑
j=1

ξ j ∑
i∈I j

(
ψ(Xn,i)−Eψ(Xn,i)

)

converge to the same limit Z as Zn, both unconditionally and conditionally given
Xn,1, . . . ,Xn,n; see Drees (2015), Corollary 2.7. Define

α̃∗n,s :=
∑mn

j=1(1+ξ j)∑i∈I j φ1,s(Xn,i)

∑mn
j=1(1+ξ j)∑i∈I j φ0,s(Xn,i)

,

and Vn(s) := (nvn)
1/2(α̃∗n,s−α̃n,s). By similar calculations as in the proof of Theorem

3.3 of Davis et al. (2018), one obtains Vn V with V (s) := sα(αZ(φ1,s)−α2Z(φ0,s))
denoting the limit process in Lemma C.3. Since V has a.s. continuous sample paths,
Sn→ 1 in probability and α̂∗n,ûn

= α̃∗n,Sn
and α̂n,ûn = α̃n,Sn with probability tending to

1, the convergence (nvn)
1/2(α̂∗n,ûn

− α̂n,ûn) =Vn(Sn)+oP(1) V (1) follows readily.
Now one may argue as in the proof of Theorem 3.3 of Davis et al. (2018) to

verify the assertion. To this end, one must replace un with ûn = Snun everywhere.
For example, equation (6.10) of Davis et al. (2018) now becomes

mn

∑
j=1

ξ j ∑
i∈I j

1{Xi > Snun}= (nvn)
1/2Zn,ξ (φ1,Sn)+ rn

mn

∑
j=1

ξ jP{X0 > sun}|s=Sn ,

where the last term is of stochastic order rnm1/2
n vn = o((nvn)

1/2). Thus

mn

∑
j=1

(1+ξ j) ∑
i∈I j

1{Xi > Snun}=
n

∑
i=1

1{Xi > Snun}+OP
(
(nvn)

1/2). (C.5)

Since, by the law of large numbers, ∑n
i=11{Xi > sun}= nP{X0 > sun}(1+oP(1)) for

all fixed s ∈ [1− ε,1+ ε] and Sn→ 1 in probability, a standard argument shows that
the right hand side of (C.5) equals nvn(1+ oP(1)), and the proof can be concluded
as in Davis et al. (2018). 2
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References

T. G. Andersen. Stationarity, mixing, distributional properties and moments of
garch(p,q)-processes. In T. G. Andersen, R. A. Davis, J.-P. Kreiß, and T. Mikosch,
editors, Handbook of Financial Time Series, pages 43–70. Springer Verlag, 2009.

B. Basrak and J. Segers. Regularly varying multivariate time series. Stochastic
Processes and their Applications, 119(4):1055–1080, 2009.

B. Basrak, R. A. Davis, and T. Mikosch. Regular variation of garch processes.
Stochastic Processes and their Applications, 99(1):95–115, 2002.

N. H. Bingham, C. M. Goldie, and J. L. Teugels. Regular Variation. Encyclopedia
of Mathematics and its Applications. Cambridge University Press, 1987.

Dariusz Buraczewski, Ewa Damek, and Thomas Mikosch. Stochastic Models with
Power–Law Tails: The Equation X = AX +B. Springer Series in Operations Re-
search and Financial Engineering. Springer, 2016.

R. A. Davis, T. Mikosch, and I. Cribben. Towards estimating extremal serial de-
pendence via the bootstrapped extremogram. Journal of Econometrics, 170(1):
142–152, 2012.

R. A. Davis, H. Drees, J. Segers, and M. Warchoł. Inference on the tail process with
application to financial time series modeling. Journal of Econometrics, 205(2):
508–525, 2018.

R. Douc, E. Mouline, P. Priouret, and P. Soulier. Markov Chains. Springer Series in
Operations Research and Financial Engineering. Springer, 2018.

H. Drees. Extreme quantile estimation for dependent data, with applications to fi-
nance. Bernoulli, 9(4):617–657, 2003.

H. Drees. Bootstrapping Empirical Processes of Cluster Functionals with Applica-
tion to Extremograms. arXiv:1511.00420, 2015.

H. Drees and H. Rootzén. Limit theorems for empirical processes of cluster func-
tionals. The Annals of Statistics, 38(4):2145–2186, 2010.

H. Drees, A. Ferreira, and L. de Haan. On maximum likelihood estimation of the
extreme value index. The Annals of Applied Probability, 14(3):1179–1201, 2004.

H. Drees, J. Segers, and M. Warchoł. Statistics for tail processes of markov chains.
Extremes, 18(3):369–402, 2015.

A. Ehlert, U. Fiebig, A. Janßen, and M. Schlather. Joint extremal behavior of hidden
and observable time series with applications to garch processes. Extremes, 18(1):
109–140, 2015.



Estimators for Spectral Tail Processes 27

R. Kulik, P. Soulier, and O. Wintenberger. The tail empirical process of regularly
varying functions of geometrically ergodic markov chains. arXiv:1511.04903v2,
2018.

T. Mikosch and O. Wintenberger. The cluster index of regularly varying sequences
with applications to limit theory for functions of multivariate markov chains.
Probability Theory and Related Fields, 159, 2013.

R. L. Smith. Estimating tails of probability distributions. The Annals of Statistics,
15(3):1174–1207, 1987.

A. W. van der Vaart and J. Wellner. Weak Convergence and Empirical Processes:
With Applications to Statistics. Springer Series in Statistics. Springer, 1996.



Peak-over-Threshold Estimators of Spectral Tail Processes:
Random vs Deterministic Thresholds

Supplement: covariances and further simulation results

Holger Drees Miran Knežević
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In this supplement, we present the explicit covariance function of the limit process in Theorem 2.1 and give
further results from the simulation study in Section 3.

Covariances
Using formula (C.1) of Proposition C.2, we will calculate the covariances of the limit process in Theorem 2.1 of
the manuscript. Recall that the limit process is composed of

Z(t)
f w(x) := Z(φ t

2,x,1)− F̄(Θt )(x)Z(φ1,1),

Z(t)
bw(y) := Z(φ t

3,y,1)− F̄(Θt )(y)Z(φ1,1)+Zα(y)

with
Zα(y) = (α2Z(φ0,1)−αZ(φ1,1))E[log(Θt)1{Θt > y}].

Let x,x∗ ∈ [x0,∞), y,y∗ ∈ [y0,∞), and t, t∗ ∈ {−t̃, . . . , t̃}\{0}. Then, we have

var(Z(φ1,1)) = 1+2
∞

∑
k=1

P{Y0Θk > 1},

cov(Z(φ1,1),Z(φ0,1)) = α−1 +
∞

∑
k=1

(E[log(Y0)1{Y0Θk > 1}]+E[log+(Y0Θk)]),

cov(Z(φ1,1),Z(φ t
2,x,1)) = F̄(Θt )(x)+

∞

∑
k=1

(
P{Θt > x,Y0Θk > 1}+P

{Θk+t

Θk
> x,Y0Θk > 1

})
,

cov(Z(φ1,1),Z(φ t
3,y,1)) = E[Θα

−t1{Θ−t < y−1}]

+
∞

∑
k=1

(
E[Θα

−t1{Θ−t < y−1,Y0Θk > 1}]+E
[(Θk−t

Θk

)α
1
{Θk−t

Θk
< y−1,Y0Θk > 1

}])
,

var(Z(φ0,1)) = 2α−2 +2
∞

∑
k=1

E[log(Y0) log+(Y0Θk)],

cov(Z(φ0,1),Z(φ t
2,x,1)) = α−1F̄(Θt )(x)

+
∞

∑
k=1

(
E[log+(Y0Θk)1{Θt > x,Y0Θk > 1}]+E

[
log(Y0)1

{Θk+t

Θk
> x,Y0Θk > 1

}])
,

cov(Z(φ0,1),Z(φ t
3,y,1)) = α−1E[Θα

−t1{Θ−t < y−1}]+
∞

∑
k=1

(
E[Θα

−t log+(Y0Θk)1{Θ−t < y−1,Y0Θk > 1}]

+E
[(Θk−t

Θk

)α
log(Y0)1

{Θk−t

Θk
< y−1,Y0Θk > 1

}])
,

cov(Z(φ t
2,x,1),Z(φ

t∗
2,x∗,1)) = P{Θt > x,Θt∗ > x∗}

+
∞

∑
k=1

(
P
{

Θt > x,
Θk+t∗

Θk
> x∗,Y0Θk > 1

}
+P
{Θk+t

Θk
> x,Θt∗ > x∗,Y0Θk > 1

})
,
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cov(Z(φ t
2,x,1),Z(φ

t∗
3,y∗,1)) = E[Θα

−t∗1{Θ−t∗ < (y∗)−1,Θt > x}]

+
∞

∑
k=1

(
E
[
Θα
−t∗1

{
Θ−t∗ < (y∗)−1,

Θk+t

Θk
> x,Y0Θk > 1

}]

+E
[(Θk−t∗

Θk

)α
1
{Θk−t∗

Θk
< (y∗)−1,Θt > x,Y0Θk > 1

}])
,

cov(Z(φ t
3,y,1),Z(φ

t∗
3,y∗,1)) = E[Θα

−tΘ
α
−t∗1{Θ−t < y−1,Θ−t∗ < (y∗)−1}]

+
∞

∑
k=1

(
E
[
Θα
−t

(Θk−t∗

Θk

)α
1
{

Θ−t < y−1,
Θk−t∗

Θk
< (y∗)−1,Y0Θk > 1

}]

+E
[(Θk−t

Θk

)α
Θα
−t∗1

{Θk−t

Θk
< y−1,Θ−t∗ < (y∗)−1,Y0Θk > 1

}])
.

The expected values containing Y0 can also be expressed in terms of the spectral process only, using that Y0 is
standard Pareto random variable independent of the spectral process (Θk)k∈Z. For example, with Fubini’s theorem
we obtain

E[log+(Y0Θk)] = E
[
α
∫ ∞

1
log+(yΘk)y−(α+1) dy

]
= E

[
− y−α(log(yΘk)+α−1)

∣∣∣
∞

max{1,1/Θk}

]

= E
[

min{1,Θα
k }
(

log+ Θk +α−1)]= E[log+ Θk]+α−1E[min{1,Θα
k }].

The covariance function of the limit process can be written as follows:

cov(Z(t)
f w(x),Z

(t∗)
f w (x∗)) = P{Θt > x,Θt∗ > x∗}− F̄(Θt )(x)F̄(Θt∗ )(x∗)

+
∞

∑
k=1

(
P
{

Θt > x,
Θk+t∗

Θk
> x∗,Y0Θk > 1

}
+P
{Θk+t

Θk
> x,Θt∗ > x∗,Y0Θk > 1

})

− F̄(Θt∗ )(x∗)
∞

∑
k=1

(
P{Θt > x,Y0Θk > 1}+P

{Θk+t

Θk
> x,Y0Θk > 1

})

− F̄(Θt )(x)
∞

∑
k=1

(
P{Θt∗ > x∗,Y0Θk > 1}+P

{Θk+t∗

Θk
> x∗,Y0Θk > 1

})
,

cov(Z(t)
f w(x),Z

(t∗)
bw (y∗))

= E[Θα
−t∗1{Θ−t∗ < (y∗)−1,Θt > x}]

+
∞

∑
k=1

(
E
[
Θα
−t∗1

{
Θ−t∗ < (y∗)−1,

Θk+t

Θk
> x,Y0Θk > 1

}]

+E
[(Θk−t∗

Θk

)α
1
{Θk−t∗

Θk
< (y∗)−1,Θt > x,Y0Θk > 1

}])

− F̄(Θt∗ )(y∗)
∞

∑
k=1

(
P{Θt > x,Y0Θk > 1}+P

{Θk+t

Θk
> x,Y0Θk > 1

}
−2F̄(Θt )(x)P{Y0Θk > 1}

)

− F̄(Θt )(x)
[

E[Θα
−t∗1{Θ−t∗ < (y∗)−1}]

+
∞

∑
k=1

(
E[Θα

−t∗1{Θ−t∗ < (y∗)−1,Y0Θk > 1}]+E
[(Θk−t∗

Θk

)α
1
{Θk−t∗

Θk
< (y∗)−1,Y0Θk > 1

}])]

+E[log(Θt∗)1{Θt∗ > y∗}]

×
[

α2
( ∞

∑
k=1

(
E[log(Y0Θk)1{Θt > x,Y0Θk > 1}]+E

[
log(Y0)1

{Θk+t

Θk
> x,Y0Θk > 1

}]))

−α
(

F̄(Θt )(x)+
∞

∑
k=1

(
P{Θt > x,Y0Θk > 1}+P

{Θk+t

Θk
> x,Y0Θk > 1

}))]

− F̄(Θt )(x)E[log(Θt∗)1{Θt∗ > y∗}]

×
[

α2
( ∞

∑
k=1

(
E[log(Y0)1{Y0Θk > 1}]+E[log+(Y0Θk)]

))
−α

(
1+2

∞

∑
k=1

P{Y0Θk > 1}
)]

and
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cov(Z(t)
bw(y),Z

(t∗)
bw (y∗))

= E[Θα
−tΘ

α
−t∗1{Θ−t < y−1,Θ−t∗ < (y∗)−1}]

+
∞

∑
k=1

(
E
[
Θα
−t

(Θk−t∗

Θk

)α
1
{

Θ−t < y−1,
Θk−t∗

Θk
< (y∗)−1,Y0Θk > 1

}]

+E
[(Θk−t

Θk

)α
Θα
−t∗1

{Θk−t

Θk
< y−1,Θ−t∗ < (y∗)−1,Y0Θk > 1

}])

−
(
F̄(Θt∗ )(y∗)+αE[log(Θt∗)1{Θt∗ > y∗}]

)(
E[Θα

−t1{Θ−t < y−1}]

+
∞

∑
k=1

(
E[Θα

−t1{Θ−t < y−1,Y0Θk > 1}]+E
[(Θk−t

Θk

)α
1
{Θk−t

Θk
< y−1,Y0Θk > 1

}]))

−
(
F̄(Θt )(y)+αE[log(Θt)1{Θt > y}]

)(
E[Θα

−t∗1{Θ−t∗ < (y∗)−1}]

+
∞

∑
k=1

(
E[Θα

−t∗1{Θ−t∗ < (y∗)−1,Y0Θk > 1}]+E
[(Θk−t∗

Θk

)α
1
{Θk−t∗

Θk
< (y∗)−1,Y0Θk > 1

}]))

+ F̄(Θt )(y)F̄(Θt∗ )(y∗)
(

1+2
∞

∑
k=1

P{Y0Θk > 1}
)

+E[log(Θt∗)1{Θt∗ > y∗}]
[

α2
(

α−1E[Θα
−t1{Θ−t < y−1}]

+
∞

∑
k=1

(
E[Θα

−t log(Y0Θk)1{Θ−t < y−1,Y0Θk > 1}]+E
[(Θk−t

Θk

)α
log(Y0)1

{Θk−t

Θk
< y−1,Y0Θk > 1}

]))]

+E[log(Θt)1{Θt > y}]
[

α2
(

α−1E[Θα
−t∗1{Θ−t∗ < (y∗)−1}]

+
∞

∑
k=1

(
E[Θα

−t∗ log(Y0Θk)1{Θ−t∗ < (y∗)−1,Y0Θk > 1}]

+E
[(Θk−t∗

Θk

)α
log(Y0)1

{Θk−t∗

Θk
< (y∗)−1,Y0Θk > 1}

]))]

−
[

F̄(Θt )(y)E[log(Θt∗)1{Θt∗ > y∗}]+ F̄(Θt∗ )(y∗)E[log(Θt)1{Θt > y}]

+2αE[log(Θt) log(Θt∗)1{Θt > y}1{Θt∗ > y∗}]
]
×
[

α2
(

α−1

+
∞

∑
k=1

(E[log(Y0)1{Y0Θk > 1}]+E[log+(Y0Θk)])
)
−α

(
1+2

∞

∑
k=1

P{Y0Θk > 1}
)]

+E[log(Θt) log(Θt∗)1{Θt > y}1{Θt∗ > y∗}]

×
[

α4
(

2α−2 +2
∞

∑
k=1

E[log(Y0) log+(Y0Θk)]
)
−α2

(
1+2

∞

∑
k=1

P{Y0Θk > 1}
)]

.
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Further simulation results
Here, we compare the distribution of our estimators of P{Θt > x} based on exceedances over quantiles F←(1−
k/n) and over the corresponding order statistics Xn−k:n, respectively. In the nGARCH, tGARCH, gumCopula (with
θ ∈ {1.2,1.5,2}) and tCopula (with ρ ∈ {0.25,0.5,0.75}) models described in Section 3 of the manuscript, we
consider lags t ∈ {1,5} and arguments x ∈ {1/2,1}. The sample sizes, number of simulations and the lay-out of
figures are the same as in the manuscript. In each figure, Q-Q plots of the forward estimator are shown in the top
row, while the bottom row shows results for backward estimator. In the left column, the theoretical resp. empirical
quantile to the 90% level is used as threshold, and the right plots correspond to the 95% level. The main diagonal
is indicated by a dashed red line.

Figures 1 and 2 show the Q-Q plots for the estimators of P{Θ5 > 1} resp. P{Θ5 > 1/2}, i.e. they are counter-
parts to Figures 1 and 3 of the manuscript for lag 5 instead of 1. Indeed, the corresponding plots look very similar.
In particular, most points lie quite close to the main diagonal, but the version based on exceedances over order
statistics performs a bit better in that extreme estimation errors occur more rarely.

Figure 3–6 show the Q-Q plots in the tGARCH model with x ∈ {1/2,1} and lags t ∈ {1,5}. Overall, the plots
are similar to the ones for the nGARCH model, but the strong overestimation by the backward estimator based on
exceedances over the true quantile, which occurred in a few simulations in the nGARCH model, is not observed
here.

Figures 7 and 8 compare both versions of the estimators of the probabilities P{Θ5 > 1/2} and P{Θ5 > 1},
respectively, in the tCopula model with ρ = 0.25, while Figures 8–10 display Q-Q plots for the estimators of
P{Θ5 > 1} in the tCopula model with ρ = 0.25, ρ = 0.5 and ρ = 0.75, respectively, that is, in models with
increasing serial dependence. The difference between the distributions of both versions is even smaller than in
the GARCH models. In fact, in all settings, the distributions of both versions of the backward estimator are
almost identical, whereas, roughly speaking, the forward estimator based on exceedances over order statistics is
a discretized version of the TQ-version. Note that the discrete nature of the distribution of the OS-version of
the forward estimator becomes the more pronounced the weaker the dependence is (and hence the smaller the
probabilities to be estimated) since then there are fewer values the estimator can attain near the true probability.

Finally, we consider the gumCopula model. Figures 11–13 show the Q-Q plots for the estimators of P{Θ1 > 1}
for model parameter θ = 1.2, 1.5 and 2, respectively; so again the serial dependence is increasing. Moreover,
Figures 14 and 15 show the results for θ = 2 and the probabilities P{Θ1 > 1/2} resp. P{Θ5 > 1/2}. Overall, the
results are similar as for the tCopula model. However, in some settings (in particular for lag 5 and a high threshold)
the points lie below the diagonal in the right tail, i.e. here the TQ-version performs sometimes slightly better than
the OS-version.

To sum up, for all constellations under consideration the distribution of both versions of the forward and the
backward estimators, based either on exceedances over true quantiles or over order statistics, are similar. Often,
the version using true quantiles tends to underestimate the true value more strongly than the version based on order
statistics when both estimators yield too small values, whereas the findings are mixed if both versions overestimate
the true values.

4



Fig. 1 Comparison of estimators of P{Θ5 > 1} in the nGARCH model

Fig. 2 Comparison of estimators of P{Θ5 > 1/2} in the nGARCH model
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Fig. 3 Comparison of estimators of P{Θ1 > 1} in the tGARCH model

Fig. 4 Comparison of estimators of P{Θ1 > 1/2} in the tGARCH model
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Fig. 5 Comparison of estimators of P{Θ5 > 1} in the tGARCH model

Fig. 6 Comparison of estimators of P{Θ5 > 1/2} in the tGARCH model
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Fig. 7 Comparison of estimators of P{Θ5 > 1/2} in the tCopula model with ρ = 0.25

Fig. 8 Comparison of estimators of P{Θ5 > 1} in the tCopula model with ρ = 0.25
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Fig. 9 Comparison of estimators of P{Θ5 > 1} in the tCopula model with ρ = 0.5

Fig. 10 Comparison of estimators of P{Θ5 > 1} in the tCopula model with ρ = 0.75
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Fig. 11 Comparison of estimators of P{Θ1 > 1} in the gumCopula model with θ = 1.2

Fig. 12 Comparison of estimators of P{Θ1 > 1} in the gumCopula model with θ = 1.5
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Fig. 13 Comparison of estimators of P{Θ1 > 1} in the gumCopula model with θ = 2

Fig. 14 Comparison of estimators of P{Θ1 > 1/2} in the gumCopula model with θ = 2
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Fig. 15 Comparison of estimators of P{Θ5 > 1/2} in the gumCopula model with θ = 2
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