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DESY-04-067hep-ph/0404xxxInterations of Reggeized Gluons in theM�obius RepresentationJ. BartelsUniversit�at HamburgII. Institut f�ur Theoretishe PhysikLuruper Chaussee 149, D-22761 Hamburg, Germany;L.N. Lipatov yPetersburg Nulear Physis InstituteGathina, 188 300 St.Petersburg, RussiaG.P. VaaINFN Bologna, Dipartimento di FisiaVia Irnerio 46, I-40126 Bologna, ItalyAbstratWe investigate onsequenes of the M�obius invariane of the BFKL Hamiltonian and ofthe triple Pomeron vertex. In partiular, we show that the triple Pomeron vertex in QCD,when restrited to the large N limit and to the spae of M�obius funtions, simpli�es andredues to the vertex used in the Balitsky-Kovhegov (BK) equation. As a result, the BKequation for the dipole density appears as a speial ase of the nonlinear evolution equationwhih sums the fan diagrams for BFKL Green's funtions in the M�obius representation.We also alulate the orretions O(1=(N2 � 1) to the triple Pomeron vertex in the spaeof M�obius funtions, and we present a generalization of the BK-equation in the next-to-leading order approximation in the 1=N expansion.(y) Humboldt Preistr�agerWork supported in part by INTAS and by the Russian Fund of Fundamental Investigations1



1 IntrodutionIt has been observed long time ago that the LO kernel of the BFKL equation [1℄ is invari-ant under M�obius transformations [2℄. The same invariane holds for the transition vertexof 2 ! 4 reggeized gluons [3℄. This symmetry, together with the fat that, in physialsattering proesses, the Green's funtions of reggeized gluons ouple to impat fatorsof olorless projetiles whih vanish as the momentum of any of the attahed reggeizedgluons goes to zero, leads to a freedom of rede�ning the Green's funtions of reggeizedgluons. In partiular, the Pomeron Green's funtions of two gluons in on�guration spae,f(�1;�2), an be rede�ned to have the property f(�;�) = 0. Funtions of this type willbe named as `being in the M�obius representation' or, alternatively, as `belonging to theM�obius spae of funtions'.In this paper we investigate some onsequenes of this M�obius representation for theinterations of reggeized gluons. After a brief review of the M�obius representation of solu-tions to the BFKL equation, we investigate the onnetion between the reggeon Green'sfuntions in the M�obius representation and the dipole piture [4℄. We then turn to theBKP equations [5℄, and, �nally, to the nonlinear equation of fan diagrams whih, inthe large N limit, is shown to oinide with the Balitsky-Kovhegov equation [6℄. Thisequation is urrently intensively studied in onnetion with saturation, and it has beenrederived in the framework of di�erent approahes [7℄.We also ompute the ontribution of the non planar part of the transition vertex of2 ! 4 reggeized gluons, whih is subleading in 1=N and leads to a new ontribution inthe nonlinear equation for fan diagrams. We onstrut a system of oupled equations inthe next-to-leading order approximation of the 1=N expansion.2 Review of the BFKL HamiltonianTo provide the onformal invariane of the BFKL equation [1℄ initially one should sub-stitute the Born t-hannel partial wave fBorn! (! = j � 1), whih is proportional to theprodut of two gluon Green funtions ln j�110j2 and ln j�220j2, by the funtion f (0)! of an-harmoni ratios [2℄ 1! ln j�110j2 ln j�220j2 ! f (0)! (�1;�2;�10;�20) ; (1)f (0)! (�1;�2;�10;�20) = 2! ln j�110j j�220jj�120j j�210j ln j�110j j�220jj�12j j�1020j ; (2)whih is invariant under the M�obius transformation�k ! a�k + b�k + d (3)for arbitrary omplex parameters a; b;  and d. We used here the omplex oordinates forthe initial (k = 1; 2) and �nal (k = 10; 20) gluons in the two-dimensional impat parameterspae � = (x; y) 2



�k = xk + iyk ; ��k = xk � iyk ; �kl = �k � �l : (4)Suh a substitution an be justi�ed by making use of the fat that the impat fators�(A;B) of olliding olourless partiles�Aq (�1;�2) = eiq(�1+�2)=2 Z d2k(2�)2 eik�12 �A(q2 + k; q2 � k) ; k = k1 � k22 ; (5)�Bq0(�10;�20) = e�iq0(�10+�20)=2 Z d2k(2�)2 e�ik�1020 �A(q02 + k; q02 � k) ; k = k1 � k22 : (6)entering in the expression for the sattering amplitude at high energies ps and �xedt = �q2 in the leading logarithmi approximation (LLA).A(s; t) = is Z �+i1��i1 d!2�i e!Y f!(t) ; Y = ln s ; (7)TA;B! = f!(t) Æ2(q � q0) = Z Yr=1;2;10;20 d2�r �Aq (�1;�2) f!(�1;�2;�10;�20) �Bq0(�10;�20) (8)satisfy the relations [2℄Z d2�1�A;Bq;q0 (�1;�2) = Z d2�2�A;Bq;q0 (�1;�2) = 0 : (9)These relations are onsequenes of gauge invariane of the impat fators. In the mo-mentum representation they simply read as follows:�(A;B)(0;k2) = �(A;B)(k1; 0) = 0 (10)The last property has the interpretation that the interation of a gluon with a smalltransverse momentum is proportional to the vanishing total olour harge of the ollidingpartile.Note, that in an aordane with Ref. [2℄ the partial wave TA;B! inludes the Æ-funtionÆ2(q� q0) orresponding to the momentum onservation in the ross hannel, and the im-pat fators �(A;B)(�1;�2) in the oordinate representation are obtained from the impatfators �(A;B)(k1;k2) in the momentum representation by the Fourier transformation.The partial wave f!(�1;�2;�10;�20) for the gluon-gluon sattering in LLA satis�esthe BFKL equation [1℄:f!(�1;�2;�10;�20) = f (0)! (�1;�2;�10;�20)� ��s2! H12 f!(�1;�2;�10;�20) ; (11)where ��s = �sN=�. The BFKL Hamiltonian H12 in the leading logarithmi approxima-tion (LLA) an be written in the operator form (see [12℄):H12 = ln jp1j2 + ln jp2j2 + 1p1p�2 ln j�12j2 p1p�2 + 1p�1p2 ln j�12j2 p�1p2 � 4	(1) ; (12)where 	(x) = d ln �(x)=dx, and we introdued the gluon holomorphi momenta3



pr = i ���r ; p�r = i ����r : (13)It is important that the BFKL equation is implied to be projeted to the lass offuntions e�(p1;p2) vanishing at p1 = 0 and p2 = 0 [2℄. Beause the funtionee�(p1;p2) = e�(p1;p2)H12 (14)also has the same properties, we onlude that the solution of the homogeneous BFKLequation E f(�1;�2) = H12 f(�1;�2) ; E = � 2��s ! : (15)is invariant under the substitutionf(�1;�2)! ~f(�1;�2) = f(�1;�2) + f (1)(�1) + f (2)(�2) ; (16)where f (r)(�r) are arbitrary funtions. One an use this freedom to impose the additionalonstraint on f!(�1;�2) ~f(�;�) = 0 ; (17)by hoosing f (i)(�i) = �1=2f(�i;�i). We de�ne the solutions having this property asfuntions belonging to the M�obius representation. This de�nition is in aordane withthe fat that in suh a lass of funtions the homogeneous BFKL equation is invariantunder M�obius transformations. Moreover, the onformal symmetry gives a possibility to�nd its solutions [2℄ in the form:Em;em(�1;�2) =  �12�10�20!m  ��12��10��20!em (18)where the onformal weights m and fm are equal tom = 12 + i� + n2 ; fm = 12 + i� � n2 (19)for the prinipal series of unitary representations. They parametrize the eigenvalues oftwo Casimir operators of the global onformal groupM2 fm;em = m(m� 1) fm;em ; M�2 fm;em = fm(fm� 1) fm;em ; (20)where M2 =  2Xr=1M r!2 = 2 (M1;M 2) = ��212�1�2 ; �r = ���r : (21)Here M r are the generators of the M�obius groupM3r = �r�r ; M+r = �r ; M�r = ��r�r : (22)4



If we hose f (0)! (�1;�2;�10;�20) as an inhomogeneous term of the BFKL equation, its so-lution is also onformally invariant [2℄ beause the iteration of f (0)! always gives funtionsbelonging to the M�obius representation.The BFKL Hamiltonian has the property of the holomorphi separability, [8℄H12 = h12 + h�12; h12 = 2Xr=1 ln pr + 1pr ln(�12) pr �	(1)! : (23)This representation is valid in the spae of M�obius funtions, where terms proportionalto Æ(2)(�12) (arising from r2 log j�j = 2�Æ(2)(�)) an be negleted. Alternatively, theholomorphi Hamiltonian h12 an be written in another operator form [12℄h12 = 2Xr=1 ln �12 + �12 ln(pr) 1�12 �	(1)! ; (24)where we have used the relationslog p = i� p + �(log p) 1� ; 1p (log �) p = � i� p + log � : (25)It means, that the total Hamiltonian H12 an be presented as followsH12 = 2 ln j�12j2 + j�12j2 ln jp1p2j2 1j�12j2 � 4	(1) ; (26)where terms proportional to Æ(2)(pi) have been negleted, sine physial amplitudes haveto be integrated with olourless impat fators. Finally, in the M�obius representation theHamiltonian of the BFKL equation an be written as the integral operator:H12 f!(�1;�2) = Z d2�3� j�12j2j�13j2 j�23j2 (f!(�1;�2)� f!(�1;�3)� f!(�2;�3)) : (27)Indeed, by introduing an intermediate ultraviolet regularization with Æ ! 0, we repro-due H12 in the above operator form, beauseZ d2�3� j�12j2�j�13j2 + Æ2� �j�23j2 + Æ2� = Z 10 dx j�12j2x(1� x) j�12j2 + Æ2 ' 2 ln j�12j2Æ2 ; (28)� j�12j2 Z d2�3� �j�23j2 + Æ2� f!(�1;�3)j�13j2 ' j�12j2 �ln (Æ2 jp2j2)� 2	(1)� f!(�1;�2)j�12j2 ;� j�12j2 Z d2�3� �j�13j2 + Æ2� f!(�2;�3)j�23j2 ' j�12j2 �ln (Æ2 jp1j2)� 2	(1)� f!(�1;�2)j�12j2 :(29)In this form, the BFKL Hamiltonian was presented �rst in the ontext of the dipole pi-ture [4℄ (see also [6℄). It is instrutive to trae, following the path of transformations fromeq. (12) and (23) to (24) and (26), the gluon reggeization and the real prodution terms5



(whih are onneted to eah other due to the bootstrap relation). Starting from (12), (23),we onsider the terms related to the reggeized gluon trajetory, log jprj2. The use of therelation eq. (25) takes us to the form j�12j2 ln jprj2 1j�12j2 (apart from the terms 1�12pr whihanel when ombined with the orresponding terms from the real prodution). Whenapplying the relation (29), these terms are identi�ed with those piees whih, in the dipoleapproah, are obtained from the real prodution. In the same way, those terms whih in(12), (23) are assoiated with the real prodution 1p1p�2 ln j�12j2 p1p�2 + 1p�1p2 ln j�12j2 p�1p2are transformed into the 2 ln j�12j2 term (taking into aount the anellation mentionedpreviously). Finally, thanks to the relation in eq. (28), one �nds that this term gives thevirtual (one loop) ontribution in the dipole piture. Thus, when going from the momen-tum spae representation of the BFKL Hamiltonian to the dipole piture, one observes a(partial) exhange of the virtual and real ontributions and of the U.V. and I.R. setors,whih orresponds to the duality transformation [9℄.3 The M�obius representation and the dipole pitureIn the dipole approah [4℄ one introdues the dipole distribution in a hadron as a funtionof the rapidity Y = ln s, N�1 ;�2. The BFKL equation is written in the form:dN�1;�2dY = � ��s2 Z d2�3� j�12j2j�13j2 j�23j2 �N�1;�2 �N�1;�3 �N�2;�3� : (30)N�1;�2 an be interpreted as the sattering amplitude of a olor dipole ( e.g. a quark-antiquark pair). It gives the possibility to alulate the total ross-setions �t at highenergies ps: �t = Z d2�1d2�2 Z 10 dx j p(�1;�2)j2 N�1;�2(Y ) : (31)Here  p(�1;�2;x) denotes the wave funtion of the olourless state of the projetile,being a omposite state of two quarks with transverse oordinates �1, �2 and longitudinalmomentum frations x, 1 � x.In order to illustrate the onnetion [10℄ between this ross setion formula and thedisussion presented above, we onsider, as an example, the elasti sattering of twovirtual photons with momentum transfer squared t = �q2. In leading order, the impatfator �� is simply given by a losed quark loop with the t-hannel gluons being attahedin all possible ways. Starting from Feynman diagrams in momentum spae und takingsuitable Fourier transforms one obtains the following form for the sattering amplitude(8) [11℄:T �� = is Z d2�1d2�2d2�01d2�02eiq(�1+�2)=2 Z 10 dx p2(�12; x)� p1(�12; x)~G(�1;�2;�10;�20;Y )e�iq(�01+�02)=2 Z 10 dx0 p02(�1020; x0)� p01(�1020; x0) ; (32)where p1, p10 (p2, p20) denote the transverse momenta of the inoming (outgoing) photons,x and x0 are the longitudinal momentum frations inside the impat fators.  p is the6



wave funtion of the virtual photon with transverse momentum p. Its dependene on thetransverse momentum is ontained in a phase fator: p(�; x) =  (�; x)ei(1�x)p�12 ; (33)where  (�; x) denotes the usual photon wave funtion used in the total ross setionformula. ~G stands for the following Fourier transform of the momentum spae BFKLGreen's funtion of reggeized gluons, G!(k1;k2;k01;k02;Y ):~G(�1;�2�10�20;Y ) = Z d2kd2k0eik�12 �1� e�i(k+q2 )�12��1 � ei(�k+q2 )�12�G(k + q2 ;�k + q2 ;k0 + q2 ;�k0 + q2 ;Y )e�ik�1020 �1 � ei(k+q2 )�1020��1� e�i(�k+q2 )�1020� : (34)This leads to the following identi�ation:N�1;�2 = Z d2�01d2�02 ~G(�1;�2;�10;�20;Y )e�iq(�01+�02)=2 Z 10 dx0 p02(�1020; x0)� p01(�1020; x0) :(35)In partiular, the dipole sattering amplitude N�1;�2 is not simply the Fourier transformof the momentum spae Green's funtion but ontains extra phase fators written in (34).These fators garantee that N�1;�2 vanishes as �12 tends to zero.Another way to see how the gauge freedom allows us move from one representation tothe other an be summarized in the following way, whih will be useful in the study of theresummed fan diagram struture. Let us all �IR the olletion of phase fators whih,in the impat fator of a photon whih splits in a q�q pair, ties the squared modulus ofthe wave funtion to the Green's funtion (in eq.(34), �IR stands for the phase fators inthe �rst line (upper impat fator) or in the lower line (lower impat fator)): these �IRfators are zero if one of the two gluon momenta vanishes, and it ontains subtrationterms with a Æ(2)(�12) behavior in the oordinate representation. We also introdue theoperator �UV , related to the transformation introdued in eq. (16) whih ontains termsproportional to Æ(2)(pi). Using a shorthand notation and omitting the spatial integrations,one may write: �G = j j2�IRG = j j2�IR�UVG = j j2�UVG = j j2 ~G ; (36)where �UV is hosen in order to kill the subtrations ontained in �IR.Results of this example an easily be generalized. It is possible to prove that thesolution of the Bethe-Salpeter equation for the Pomeron wave funtion f(�1;�2;Y ) in theM�obius representation oinides with the dipole distribution N�1;�2(Y ). Both funtionssatisfy the same BFKL equation, and they vanish at �1 = �2. An advantage of usingthe Pomeron wave funtion f(�1;�2;Y ) in the M�obius representation lies in the fat thatthe amplitude for the sattering of olorless partiles is expressed as a onvolution of theimpat fators �A;Bq (�1;�2) and the Green funtion f for reggeized gluon interations.The vanishing of f(�1;�2;Y ) at �1 = �2 means that, when performing the integrationover �1 and �2, in the impat fator �q(�1;�2) we an omit the terms proportional to7



Æ2(�12): these ontributions orrespond to those Feynman diagrams where the reggeizedgluons are attahed to the same quark or gluon line. As to the remaining Feynmandiagrams in whih the gluons are attahed to di�erent lines, their ontributions an beexpressed in terms of a olour density matrix 
p1p10 (�1;�2)�q(�;�0) �! 
p1p10 (�;�0) = (37)ei(�+�0)(p10�p1)=2Xn Z nYk=1 dxk d2�k2�  �p10Æ(1� nXk=1xk)Xi 6=l T ai T al Æ2(�i � �) Æ2(�l � �0) p1 :(38)The wave funtions  p1 and  p10 of the initial and �nal olourless partiles ontain theFok states with an arbitrary number n of gluons and quarks with longitudinal momentapxk and transverse oordinates �k. Due to the translational invariane they depend onlyon di�erenes of �k.The wave funtions  pr ontain also a dependene on olour degrees of freedom ofgluons and quarks. It is implied that the olour group generator T ai ats on the olourindies of the parton i and belongs to the orresponding representation of the olour groupalgebra SU(N). It means that only in the large-N limit, where in olor spae the gluonsan be visualized as being omposite quark-antiquark states, the olor density matrix isredued to the dipole density. Note that, in general, the integrals over the variables xkare divergent at small values and should be regularized in order to avoid double-ounting.Indeed, for the ase of gluons the integration over the small-x region is taken already intoaount in the BFKL resummation.In LLA it is natural to leave in the parton wave funtions for initial and �nal partilesonly the quark-antiquark omponent pr(�1;�2;x) = ei(�1+�2 ;pr)=2 pr(�12;x) : (39)Then the olor density matrix is simpli�ed
p1p10 (�;�0) = ei(�+�0)(p10�p1)=2 N2 � 12N Z 10 dx  �p2(� � �0;x) p1(� � �0;x) : (40)Therefore we obtain the dipole expressions disussed before.Thus, in the M�obius representation both the reggeon and the dipole pitures areompatible with eah other. In partiular, in the reggeon language the fat that those di-agrams where both reggeized gluons are attahed to the same quark or gluon line (impulseapproximation) give a vanishing ontribution makes it natural for the BFKL Pomeron tobe viewed as a Mandelstam ut. Indeed, for the Mandelstam ut the impat fator shouldontain only ontributions of non-planar diagrams with non-zero third spetral funtion�(s1; u1), whereas the diagrams of the impulse approximation do not ontain singularitiesin one of two hannels s1 or u1. Moreover, in QCD we an use the spae-time piture forvisualizing the Mandelstam ut as desribing two independent parton utuations, pro-dued by the high energy initial partile at t! �1, long before the ollision. The twoutuations onsist of large numbers of gluons whih in the rapidity interval 0 � y � ln sare distributed homogeneously. The softest partons of eah utuation interat simulta-neously with the target. In this piture one an alulate not only the behaviour of total8



ross-setions, but, taking into aount the AGK utting rules, also the distribution of theprodued partiles inside the BFKL Pomerons. An important advantage of the reggeonapproah over the dipole piture is the possibility of taking into aount the non-trivialphase struture of reggeon diagrams related to their signature fators. The satteringamplitudes onstruted in the framework of the reggeon alulus in QCD will satisfy therequirements of the t- and s- hannel unitarities. In partiular, s-hannel unitarity is in-orporated partly in the bootstrap relations for reggeon diagrams. In the dipole approah,both the bootstrap properties and t-hannel unitarity remain somewhat obsure.4 The BKP equations in the M�obius representationThe BFKL approah an be generalized to the ase of olourless omposite states on-struted from n reggeized gluons [5℄. The homogeneous BKP equation for the t-hannelpartial wave in LLA has the form (see [12℄)Ef = Hf ; H = X1�k�l�n T ak T al(�N)Hkl ; E = � 2��N! ; (41)where T ak are the olour group generators ating on olour indies of the gluon k. Thespetrum of energies E allows one to �nd the interepts ! of the olourless reggeon boundstates governing the orresponding ontribution � s! to the total ross-setion. The pairHamiltonian Hkl ating on the transverse oordinates of the reggeized gluons �k; ��k anbe written in the operator form [12℄Hkl = ln jpkj2 + ln jplj2 + 1pkp�l ln j�12j2 pkp�l + 1p�kpl ln j�klj2 p�kpl � 4	(1) : (42)Similar to the Pomeron ase the BKP equation is implied to be multiplied by a smoothfuntion e�. We will assume that this funtion has a property of vanishing at small gluonmomenta pr (r = 1; 2; :::; n). Similar to the Pomeron ase one an verify that this propertyis onserved during the BFKL evolution. Therefore we have the freedom to add to f alinear ombination of funtions whih do not depend on one of oordinates �r. This givesthe possibility to impose additional onstraints on the solution f . In general, this freedomis not enough to �nd a solution f whih vanishes at small relative oordinates �rl. Anexample is the Odderon solution onstruted from three reggeized gluons: some time agowe found a solution of the BKP equation f(�1;�2;�3), whih is symmetri under thepermutation �r  ! �l but does not vanish at �rl ! 0 [16℄. It is easy to see that byadding funtions whih do not depend on one of oordinates �s'(�1;�2;�3) = f(�1;�2;�3) + ~f (�1;�2) + ~f(�2;�3) + ~f(�3;�2) ; (43)it is not possible to ahieve '(�1;�2;�3) = 0 at �r = �l, beause f(�r;�r;�s) is notsymmetri to the transmutation �r  ! �s.Nevertheless, let us onsider the lass of solutions of the BKP equation, whih are zerowhen one of the relative oordinates �rl vanishes9



lim�rl!0 f = 0 : (44)We de�ne suh solutions as belonging to the (generalized) M�obius representation Thisde�nition is motivated by the fat, that for the funtions in the M�obius representationthe pair Hamiltonians Hkl ats in the same spae of funtions as in the Pomeron ase,and therefore it is M�obius invariant. The property f = 0 at �rl = 0 is ompatible withthe BFKL evolution.The fat, that in the M�obius representation the spae of funtions is universal, givesa possibility to �nd an upper boundary for the interepts ! of omposite states of nreggeized gluons using a variational approah (f. [13℄)! � n(n� 1)2 !BFKL ; (45)where !BFKL = ��s 4 ln 2 : (46)In order to obtain this bound we have used a rather rough estimate, requiring that theaverage value of eah pair Hamiltonian Hkl is larger than the minimal eigenvalue EBFKLof the BFKL Hamiltonian.In the M�obius representation the Hamiltonian H has the property of holomorphiseparability [8℄ H = h+ h� ; (47)where h = X1�k�l�n T ak T al(�N)hkl ; hkl = Xr=k;l ln(pr) + 1pr ln(�kl)pr �	(1)! : (48)However, the separability does not allow to simplify the BKP equation, beause h and h�do not ommute with eah other, due to the presene of the olour matries. Only in themulti-olour limit N !1 the olour struture is drastially simpli�ed [12℄. Indeed, fora general irreduible ase at N !1 eah gluon r interats with the neighbouring gluonsr+1 and r� 1, and the holomorphi and anti-holomorphi Hamiltonians h; h� ommutewith eah other: h = 12 X1�k�n hk;k+1 ; h� = 12 X1�k�n hk;k+1 ; [h; h�℄ = 0 : (49)Moreover, in the multi-olour limit there are many integrals of motion qr (r = 2; 3; :::; n)[14℄ qr = X1�i1�i2::::�ir�n �i1i2�i2i3 :::�iri1 pi1pi2 :::pir ; [qr; qs℄ = 0 ; [qr; h℄ = 0 ; (50)and the Hamiltonian h oinides with the Hamiltonian for an integrable Baxter spinmodel. 10



Figure 1: The fan diagram equation (the oupling of gluons to quark lines inludes a sumover all possibilities).5 Nonlinear equation for the fan diagramsLet us now write down the evolution equation whih sums the fan diagrams. To be de�nite,we onsider a simpli�ed model [15℄ of the elasti sattering of two quark-antiquark pairs(Fig.1): the upper (smaller) quark pair ouples to a single BFKL ladder 1, whereas thelower (larger) quark pair ouples to an arbitrary number of BFKL Pomerons (Fig.1).Both ouplings are taken to be of the eikonal type. As a onsequene, at the lowerquark pair the ouplings of the BFKL Green's funtions fatorize. When summing thefan diagrams, the transverse oordinates of the lower quark pair, �0, �00, are kept �xed.If 	(�1;�2;�0;�00;Y ) denotes the non-amputated two-gluon amplitude, the equation hasthe form: �	(�1;�2;�0;�00;Y )�Y = � ��s2 (H12	)(�1;�2;�0;�00; Y )���2s Z d2��d2��0d2��d2��0V(�1;�2;��;��0;��;��0)	(��;��0;�0;�00;Y )	(��;��0;�0;�00;Y ) ;(51)where H12 is the BFKL Hamiltonian, and V(�1;�2;��;��0;��;��0) denotes the onformalinvariant 2! 4 transition vertex of reggeized gluons [17, 3, 18℄. When supplemented withthe initial ondition:	(�1;�2;�0;�00;Y = 0) = �s �f (0)(�1;�2;�0;�00) + f (0)(�1;�2;�00;�0)� ; (52)where f (0) is proportional to the two gluon propagator in the M�obius representation, thisnonlinear equation sums the fan diagrams oupled to the lower quark-antiquark pair.1Note that, beause of the struture of the BFKL kernel and of the reggeization of the gluon, theoupling of a single BFKL Green's funtion to the q�q system ontains an arbitrary number of elementarygluon propagators being attahed to the quark lines.11



In order to obtain a physial sattering amplitude, we multiply 	 with suitable wavefuntions of external partiles and integrate over the transverse oordinates �1, �2, �0,�00. In the momentum spae the 2! 4 transition vertex was found [17℄ to onsist of threepiees:��2sV(q1;q2;k1;k2;k3;k4) = Æa1a2Æa3a4V (1234) + Æa1a3Æa2a4V (1324) + Æa1a4Æa2a3V (1423) ;(53)where we have introdued the short-hand notationV (1234) = V (q1;q2;k1;k2;k3;k4); (54)and the subsripts ai refer to the olor degrees of the reggeized gluons. Obviously, thevertex V is ompletely symmetri under the exhange of any two gluon lines i and j(i; j = 1; 2; 3; 4). Furthermore, the funtion V (1234) vanishes if one of the four momentaki goes to zero. A onvenient representation is the following:V (1234)D2 = 12g2hG(1; 2 + 3; 4) +G(2; 1 + 3; 4) +G(1; 2 + 4; 3) +G(2; 1 + 4; 3)�G(1 +2; 3; 4)�G(1 + 2; 4; 3)�G(1; 2; 3 + 4)�G(2; 1; 3 + 4)+G(1 + 2; 0; 3 + 4)i : (55)The funtion G(1; 2; 3) is the non-forward extension [18, 19℄ of the G-funtion introduedin [17℄. It ats on the (amputated) 2-gluon test funtions in the M�obius representationD2(q1;q2), and it onsists of two pieesG(k1;k2;k3) = G1(k1;k2;k3) +G2(k1;k2;k3) ; (56)The �rst term, G1, belongs to the diagrams desribing the emission of a real gluon,G1(k1;k2;k3) = g2N Z d2q1d2q2(2�)3 Æ2(q1 + q2 � k1 � k2 � k3)D2(q1;q2) (k2 + k3)2(q1 � k1)2q22 + (k1 + k2)2q21(q2 � k3)2 � k22(q1 � k1)2(q2 � k3)2 � (k1 + k2 + k3)2q21q22 ! ; (57)whereas the seond part is related to the virtual orretion present in the reggeized gluontrajetory: G2(k1;k2;k3) = � [!(k2)� !(k2 + k3)℄D2(k1;k2 + k3)� [!(k2)� !(k1 + k2)℄D2(k1 + k2;k3) : (58)The funtion G(k1;k2;k3) has the property to be zero for k1 = 0 or k3 = 0 (butnot for k2 = 0), so that one may easily see that the vertex V (k1;k2;k3;k4) ! 0 for anyki ! 0. This relation must be satis�ed by any gauge invariant desription of a t-hannel4-gluon state oupled to a olorless sattering projetile.The expression in the oordinate representation was given in [18, 19℄ and an bewritten in terms of two non-loal operators, A1 and A2. The operator A1 is de�ned asfollows: 12



G1(r1; r2; r3) = A1D2(r1; r3); (59)and it has the following form:A1 = g2N8�3 h2�Æ2(r23)�23(� ln r13)��23 + 2�Æ2(r12)�21(� ln r13)��21�2r12r23r212r223 � 2�(� ln r13)(Æ2(r12) + Æ2(r23))� 4�2Æ2(r12)Æ2(r23)(�1+�3)2��21 ��23 i : (60)Here rij = jrijj, �i = j�ij and  = ln(2=m) +  (1), and m is a gluon mass whih providesan infrared regulator.In order to transform G2 to oordinate spae, an ultraviolet regularization (with a pa-rameter �) is neessary due to the presene of the gluon trajetory terms. The dependeneon this regularization will disappear at the end. One obtainsG2(r1; r2; r3) = A2D2(r1; r3) ; (61)where the operator A2 is given byA2 = �g2N8�3 h 1r223 � 2�Æ2(r23)i+ Æ2(r23)!(�i�3)�g2N8�3 h 1r212 � 2�Æ2(r12)i+ Æ2(r12)!(�i�1) : (62)For the singular operators 1=r212 and 1=r223 one may use the ultraviolet regularization1r2 � 1r2 + �2 + 2�Æ2(r) ln � (63)with the understanding that � ! 0 at the end of the alulation. In the sum of the twooperators, A = A1 + A2, the terms ontaining lnm anel, thus the dependene on thegluon mass disappears, and G(r1; r2; r3) = AD2(r1; r3) is infrared stable.6 M�obius representation for the fan equationLet us now ompare the fan diagram equation (51) with the Balitsky-Kovhegov equation(BK-equation) [6℄:ddY Nx;y = ��s Z d2z2� jx� yj2jx� zj2 jy � zj2 �Nx;z +Ny ;z �Nx;y �Nx;zNy;z� : (64)We will show that, by taking N to be large and restriting ourselves to funtions in theM�obius representation, the nonlinear fan diagram equation (51) oinides with the BKequation.Beginning with the linear part of (51) whih has been disussed in setion 1, we makeuse of the freedom to add to the 	(�1;�2) 2 (whih in the dipole approah is a symmetri2From now on, for the funtion 	(�1;�2;�0;�00;Y ) we will simply write 	(�1;�2).13



funtion) a new funtion whih depends only on one of the two oordinates. Moreover wesale the result by a fator proportional to �s. We hoose~	(�1;�2) = B �	(�1;�2)� 12	(�1;�1)� 12	(�2;�2)� : (65)With this hoie we have ~	(�;�) = 0; (66)i.e. ~	 is in the M�obius representation. Later on, we will identify ~	 with the dipoledistribution, N , and we will determine the onstant B. The ondition (66) is the olortranspareny relation (CTR). We remind that the shift (65) is allowed beause of the`good' properties of the impat fator whih vanishes when either q1 = 0 or q2 = 0.Let us now turn to the non-linear term in (51). As mentioned before, the 2! 4 gluonvertex is zero, when one of momenta ki tends to zero at �xed q1 and q2. This meansthat after performing the Fourier transformation of the equation and swithing from themomenta ki (i = 1; :::; 4) to the oordinates ��, ��0, ��, and ��0 we are, again, allowedto add ontributions to 	(��;��0) whih lead to the ondition ~	(�;�) = 0. They anbe desribed by the projetor �UV used in eq. (36). As a result, we have rewritten thefan diagram equation for 	 into an equation for ~	 whih belongs to the M�obius spae offuntions.The �nal step now is the observation that, when projeting on olor singlet states in the(12) and (34) subsystems, for large N, only the �rst term of (53), V (1234), ontributes.When ating on funtions ~	(�1;�2) and ~	(�3;�4) whih are in the M�obius representation,the seond line of (55) does not ontribute. For the remaining terms of V (1234), the sumof the two operators A1 and A2 beomes simply�4g22 g2N8�3 �212�213�223 : (67)whih oinides with the nonlinear term in the BK-equation, if we hoose in eq. (65)B = 8���s: (68)Therefore, when identifyingN with our subtrated funtion (65), ~	, the Balitsky-Kovhegovequation follows from the fan diagram equation, provided we restrit ourselves to the lead-ing term at large N.Next one may ask what kind of ontribution is given by those terms in V(q1;q2;k1;k2;k3;k4),eq. (53), that we have negleted so far. In order to do that let us onsider, inside a fandiagram, the splitting from a ~	0 state to a ~	~	 state (we imagine that the subtration	 ! ~	 whih guarantees ~	(�;�) = 0 has already been done). From the alulationsshown in the appendix we derive the ontribution:2N2 � 1 Z d2�1d2�2�2sN� (�2 ~	0(�1;�2)j�12j4 Z d2�3 j�12j2j�13j2j�32j2 ~	(�1;�3) ~	(�3;�2)�+ ~	0(�1;�2)j�12j4 h��H12 ~	(�1;�2)i ~	(�1;�2) + ~	(�1;�2) h��H12 ~	(�1;�2)i++ " 1j�12j4�H12 ~	0(�1;�2)# ~	(�1;�2) ~	(�1;�2)) : (69)14



It is now ruial to reall the hermitian symmetry of the BFKL Hamiltonian H12 for thelast term, aording toZ d2�1d2�2 " 1j�12j4�H12 ~	0(�1;�2)# ~	2(�1;�2) = Z d2�1d2�2 ~	0(�1;�2)j�12j4 �H12 ~	2(�1;�2) :(70)Performing the saling by the fator B whih takes us from ~	 to the dipole distributionNx;y we �nd the simple form12 1N2 � 1 ��s Z d2z2� jx� yj2jx� zj2 jy � zj2 "�2Nx;zNz;y ++ 2 �Nx;z +Nz;y �Nx;y�Nx;y � �N2x;z +N2z;y �N2x;y� == ��s Z d2z2� jx� yj2jx� zj2 jy � zj2 "�12 1N2 � 1 �Nx;z +Nz;y �Nx;y�2# (71)The negative sign indiates that these large-NC orretions to the triple Pomeronvertex again lead to the saturation for evolution in rapidity. The fator 1=[2(N2 � 1)℄ =1=16 seems to suggest that this ontribution should not play a ruial role. Neverthelessa diret investigation would be interesting.It is important to note that, when going beyond the large N limit, there are otherorretions whih slightly ompliate the simple struture of the nonlinear fan diagramequation. They are due to the evolution of the olourless state of 2n reggeized gluonswith n > 1: for example, in leading order 1=N, the four-gluon state onsists of twononinterating Pomeron states. Eah interation between the Pomerons osts a suppressionof the order 1=(N2 �1), i.e. it is of the same order as the orretions to the triple Pomeronvertex disussed above. Therefore, a onsistent treatment of orretions beyond the large-N limit has to inlude these orretions to the Hamiltonian of the evolution of four gluonstate. As a �rst step, one an replae the single nonlinear evolution equation for ~	 by asystem of oupled equations, whih desribe the evolution of the two-gluon amplitude ~	and of the four-gluon Green's funtion G4. The equation for N reads:ddY Nx;y = ��s Z d2z2� jx� yj2jx� zj2 jy � zj2 �Nx;z +Ny ;z �Nx;y �N4(x;z;y;z;Y )�12 1N2 � 1 �Nx;z +Nz;y �Nx;y�2! (72)The argument struture of N4(�1;�2;�3;�4;Y ) indiates that the �rst pair of gluons atpositions �1, �2 are in a olor singlet; the same applies to the seond pair at �3, �4. Inleading order 1=N, N4(�1;�2;�3;�4;Y ) equals the produt N�1;�2N�3;�4 . To inlude the�rst orretion we writeN4(�1;�2;�3;�4;Y ) = N�1;�2N�3;�4 +�N4(�1;�2;�3;�4;Y ) (73)A seond equation for �N4 desribes the evolution of the four gluon Green's funtionwhere the �rst interation of the order 1=(N2 � 1) between the two dipole ross setions15



N is kept:ddY �N4(�1;�2;�3;�4;Y ) = � ��s2(N2 � 1) (H12 +H34) �N�1;�3N�2;�4 +N�1;�4N�2;�3�� ��s2 (H12 +H34)�N4(�1;�2;�3;�4;Y ) (74)When ombined with the integral kernel in eq.(72), �N4 an be interpreted as a O(1=N2C )loop-orretion to the triple Pomeron vertex in the spae of M�obius funtions. It wouldbe interesting to study further orretion terms of higher order in O(1=N2C ).7 ConlusionsIn this paper we have investigated some onsequenes of the M�obius invariane of theBFKL Hamiltonian. When ombined with the fat that Green's funtions of reggeizedgluons ouple to impat fators of olorless external states, this invariane allows to rede-�ne the two-gluon Green's funtion in suh a way that it vanishes as the two oordinatesof the gluons oinide. This property de�nes what we have named the `M�obius represen-tation'. For the triple Pomeron vertex we have shown that this M�obius representationleads to a very simple form of the interation kernel.The use of the M�obius representation also allows to study the onnetion betweenthe reggeon alulus in QCD (formulated in terms of t-hannel partial waves) and thedipole piture. The latter is now widely been used for studies of, for example, saturationphenomena in deep inelasti sattering and in heavy ion ollisions. An advantage ofstarting from the reggeon approah lies in the fat that it allows to go beyond the LOapproximation and beyond the large-N limit. As an example, we have studied the fandiagram equation. In the large-N limit it oinides with the BK equation. We thenhave omputed the 1=N2 suppressed orretions to the triple Pomeron vertex whih arenot ontained in the BK equation. Auray of the order 1=N2 requires to onsider alsoorretions in the evolution of the four gluon states; we propose a �rst modi�ation of theBK equation whih inludes these orretions.A few years ago the next-to-leading orretions (NLO) to the BFKL equation havebeen alulated in the framework of the reggeon approah [23℄. Therefore it is naturalto use these results in the M�obius representation and to study their role in the dipolepiture.8 AknowledgmentsG.P. Vaa and L.N. Lipatov wish to thank the II.Instit�ut f�ur Theoretishe Physik, Uni-versity Hamburg, and DESY for the warm hospitality.16



Appendix: The non planar ontribution of the triplePomeron vertexLet us reall the struture of the two non-planar ontributions to the vertex (53), V (1324)and V (1423). They have been studied previously in the ontext of the oupling of threepomeron states with de�nite onformal weights [20, 22, 21℄.Eah of them gives the same ontribution, whih an be derived from V (1324):V (1324)D2 = 12g2hG(1; 3 + 2; 4) +G(3; 1 + 2; 4) +G(1; 3 + 4; 2) +G(3; 1 + 4; 2)�G(1 +3; 2; 4)�G(1 + 3; 4; 2)�G(1; 3; 2 + 4)�G(3; 1; 2 + 4)+G(1 + 3; 0; 2 + 4)i : (75)First we note that, when oupling to olor singlet states in the systems (12) and (34), theseontributions are olor suppressed by a fator 1=(N2 �1). Moreover one an immediatelysee that, when onsidering, due to the gauge freedom, funtions ~	(�1;�2) in the M�obiusrepresentation, the seond and third terms give no ontribution. In the �rst and thefourth terms almost all the piees anel in the M�obius spae of funtions, and one is leftwith only two terms whih in oordinate spae have the form:� �2sN�(N2 � 1)  Æ(2)(�23) j�14j2j�13j2j�34j2 + Æ(2)(�14) j�13j2j�12j2j�23j2! (76)When integrated with the ~	 states. both piees give the same ontribution.As to the last term in (75), when looking at the struture of G it an be seen thatthe last term simply orresponds to a BFKL kernel ating on the amputated funtion D2.However, in our fan resummation the vertex ats on non-amputated funtions, and theterm an be written as: �2sN�(N2 � 1)Æ(2)(�13)Æ(2)(�24) 1j�12j4�H12 (77)whih ats on the single two gluon state before the splitting.Let us �nally onsider the remaining four terms of (75) (the �rst four terms in theseond line). Due to the fat that G is an operator ating on the two gluon state (and noton the four gluon state), it is onvenient to use an expression di�erent from the previousform of the operators A1 and A2.Namely, a diret investigation of, for example, �G(1 + 3; 2; 4) gives:�2sN�(N2 � 1)Æ(2)(�13) " j�14j2j�12j2j�24j2 � � log j�14j2Æ(2)(�34)# = �2sN�(N2 � 1)Æ(2)(�13)Z14;2: (78)Therefore it is easy to see that the ation of this part of the non planar vertex readsZ d2�1d2�4 �2sN�(N2 � 1) �	0(�1;�4)j�14j4 (Z d2�3 hZ14;3 ~	(�1;�3) + Z41;3 ~	(�3;�4)i ~	(�1;�4) ++ ~	(�1;�4) Z d2�3 hZ14;3 ~	(�1;�3) + Z41;3 ~	(�3;�4)i) : (79)17
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