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tWe investigate 
onsequen
es of the M�obius invarian
e of the BFKL Hamiltonian and ofthe triple Pomeron vertex. In parti
ular, we show that the triple Pomeron vertex in QCD,when restri
ted to the large N
 limit and to the spa
e of M�obius fun
tions, simpli�es andredu
es to the vertex used in the Balitsky-Kov
hegov (BK) equation. As a result, the BKequation for the dipole density appears as a spe
ial 
ase of the nonlinear evolution equationwhi
h sums the fan diagrams for BFKL Green's fun
tions in the M�obius representation.We also 
al
ulate the 
orre
tions O(1=(N2
 � 1) to the triple Pomeron vertex in the spa
eof M�obius fun
tions, and we present a generalization of the BK-equation in the next-to-leading order approximation in the 1=N
 expansion.(y) Humboldt Preistr�agerWork supported in part by INTAS and by the Russian Fund of Fundamental Investigations1



1 Introdu
tionIt has been observed long time ago that the LO kernel of the BFKL equation [1℄ is invari-ant under M�obius transformations [2℄. The same invarian
e holds for the transition vertexof 2 ! 4 reggeized gluons [3℄. This symmetry, together with the fa
t that, in physi
als
attering pro
esses, the Green's fun
tions of reggeized gluons 
ouple to impa
t fa
torsof 
olorless proje
tiles whi
h vanish as the momentum of any of the atta
hed reggeizedgluons goes to zero, leads to a freedom of rede�ning the Green's fun
tions of reggeizedgluons. In parti
ular, the Pomeron Green's fun
tions of two gluons in 
on�guration spa
e,f(�1;�2), 
an be rede�ned to have the property f(�;�) = 0. Fun
tions of this type willbe named as `being in the M�obius representation' or, alternatively, as `belonging to theM�obius spa
e of fun
tions'.In this paper we investigate some 
onsequen
es of this M�obius representation for theintera
tions of reggeized gluons. After a brief review of the M�obius representation of solu-tions to the BFKL equation, we investigate the 
onne
tion between the reggeon Green'sfun
tions in the M�obius representation and the dipole pi
ture [4℄. We then turn to theBKP equations [5℄, and, �nally, to the nonlinear equation of fan diagrams whi
h, inthe large N
 limit, is shown to 
oin
ide with the Balitsky-Kov
hegov equation [6℄. Thisequation is 
urrently intensively studied in 
onne
tion with saturation, and it has beenrederived in the framework of di�erent approa
hes [7℄.We also 
ompute the 
ontribution of the non planar part of the transition vertex of2 ! 4 reggeized gluons, whi
h is subleading in 1=N
 and leads to a new 
ontribution inthe nonlinear equation for fan diagrams. We 
onstru
t a system of 
oupled equations inthe next-to-leading order approximation of the 1=N
 expansion.2 Review of the BFKL HamiltonianTo provide the 
onformal invarian
e of the BFKL equation [1℄ initially one should sub-stitute the Born t-
hannel partial wave fBorn! (! = j � 1), whi
h is proportional to theprodu
t of two gluon Green fun
tions ln j�110j2 and ln j�220j2, by the fun
tion f (0)! of an-harmoni
 ratios [2℄ 1! ln j�110j2 ln j�220j2 ! f (0)! (�1;�2;�10;�20) ; (1)f (0)! (�1;�2;�10;�20) = 2! ln j�110j j�220jj�120j j�210j ln j�110j j�220jj�12j j�1020j ; (2)whi
h is invariant under the M�obius transformation�k ! a�k + b
�k + d (3)for arbitrary 
omplex parameters a; b; 
 and d. We used here the 
omplex 
oordinates forthe initial (k = 1; 2) and �nal (k = 10; 20) gluons in the two-dimensional impa
t parameterspa
e � = (x; y) 2



�k = xk + iyk ; ��k = xk � iyk ; �kl = �k � �l : (4)Su
h a substitution 
an be justi�ed by making use of the fa
t that the impa
t fa
tors�(A;B) of 
olliding 
olourless parti
les�Aq (�1;�2) = eiq(�1+�2)=2 Z d2k(2�)2 eik�12 �A(q2 + k; q2 � k) ; k = k1 � k22 ; (5)�Bq0(�10;�20) = e�iq0(�10+�20)=2 Z d2k(2�)2 e�ik�1020 �A(q02 + k; q02 � k) ; k = k1 � k22 : (6)entering in the expression for the s
attering amplitude at high energies ps and �xedt = �q2 in the leading logarithmi
 approximation (LLA).A(s; t) = is Z �+i1��i1 d!2�i e!Y f!(t) ; Y = ln s ; (7)TA;B! = f!(t) Æ2(q � q0) = Z Yr=1;2;10;20 d2�r �Aq (�1;�2) f!(�1;�2;�10;�20) �Bq0(�10;�20) (8)satisfy the relations [2℄Z d2�1�A;Bq;q0 (�1;�2) = Z d2�2�A;Bq;q0 (�1;�2) = 0 : (9)These relations are 
onsequen
es of gauge invarian
e of the impa
t fa
tors. In the mo-mentum representation they simply read as follows:�(A;B)(0;k2) = �(A;B)(k1; 0) = 0 (10)The last property has the interpretation that the intera
tion of a gluon with a smalltransverse momentum is proportional to the vanishing total 
olour 
harge of the 
ollidingparti
le.Note, that in an a

ordan
e with Ref. [2℄ the partial wave TA;B! in
ludes the Æ-fun
tionÆ2(q� q0) 
orresponding to the momentum 
onservation in the 
ross 
hannel, and the im-pa
t fa
tors �(A;B)(�1;�2) in the 
oordinate representation are obtained from the impa
tfa
tors �(A;B)(k1;k2) in the momentum representation by the Fourier transformation.The partial wave f!(�1;�2;�10;�20) for the gluon-gluon s
attering in LLA satis�esthe BFKL equation [1℄:f!(�1;�2;�10;�20) = f (0)! (�1;�2;�10;�20)� ��s2! H12 f!(�1;�2;�10;�20) ; (11)where ��s = �sN
=�. The BFKL Hamiltonian H12 in the leading logarithmi
 approxima-tion (LLA) 
an be written in the operator form (see [12℄):H12 = ln jp1j2 + ln jp2j2 + 1p1p�2 ln j�12j2 p1p�2 + 1p�1p2 ln j�12j2 p�1p2 � 4	(1) ; (12)where 	(x) = d ln �(x)=dx, and we introdu
ed the gluon holomorphi
 momenta3



pr = i ���r ; p�r = i ����r : (13)It is important that the BFKL equation is implied to be proje
ted to the 
lass offun
tions e�(p1;p2) vanishing at p1 = 0 and p2 = 0 [2℄. Be
ause the fun
tionee�(p1;p2) = e�(p1;p2)H12 (14)also has the same properties, we 
on
lude that the solution of the homogeneous BFKLequation E f(�1;�2) = H12 f(�1;�2) ; E = � 2��s ! : (15)is invariant under the substitutionf(�1;�2)! ~f(�1;�2) = f(�1;�2) + f (1)(�1) + f (2)(�2) ; (16)where f (r)(�r) are arbitrary fun
tions. One 
an use this freedom to impose the additional
onstraint on f!(�1;�2) ~f(�;�) = 0 ; (17)by 
hoosing f (i)(�i) = �1=2f(�i;�i). We de�ne the solutions having this property asfun
tions belonging to the M�obius representation. This de�nition is in a

ordan
e withthe fa
t that in su
h a 
lass of fun
tions the homogeneous BFKL equation is invariantunder M�obius transformations. Moreover, the 
onformal symmetry gives a possibility to�nd its solutions [2℄ in the form:Em;em(�1;�2) =  �12�10�20!m  ��12��10��20!em (18)where the 
onformal weights m and fm are equal tom = 12 + i� + n2 ; fm = 12 + i� � n2 (19)for the prin
ipal series of unitary representations. They parametrize the eigenvalues oftwo Casimir operators of the global 
onformal groupM2 fm;em = m(m� 1) fm;em ; M�2 fm;em = fm(fm� 1) fm;em ; (20)where M2 =  2Xr=1M r!2 = 2 (M1;M 2) = ��212�1�2 ; �r = ���r : (21)Here M r are the generators of the M�obius groupM3r = �r�r ; M+r = �r ; M�r = ��r�r : (22)4



If we 
hose f (0)! (�1;�2;�10;�20) as an inhomogeneous term of the BFKL equation, its so-lution is also 
onformally invariant [2℄ be
ause the iteration of f (0)! always gives fun
tionsbelonging to the M�obius representation.The BFKL Hamiltonian has the property of the holomorphi
 separability, [8℄H12 = h12 + h�12; h12 = 2Xr=1 ln pr + 1pr ln(�12) pr �	(1)! : (23)This representation is valid in the spa
e of M�obius fun
tions, where terms proportionalto Æ(2)(�12) (arising from r2 log j�j = 2�Æ(2)(�)) 
an be negle
ted. Alternatively, theholomorphi
 Hamiltonian h12 
an be written in another operator form [12℄h12 = 2Xr=1 ln �12 + �12 ln(pr) 1�12 �	(1)! ; (24)where we have used the relationslog p = i� p + �(log p) 1� ; 1p (log �) p = � i� p + log � : (25)It means, that the total Hamiltonian H12 
an be presented as followsH12 = 2 ln j�12j2 + j�12j2 ln jp1p2j2 1j�12j2 � 4	(1) ; (26)where terms proportional to Æ(2)(pi) have been negle
ted, sin
e physi
al amplitudes haveto be integrated with 
olourless impa
t fa
tors. Finally, in the M�obius representation theHamiltonian of the BFKL equation 
an be written as the integral operator:H12 f!(�1;�2) = Z d2�3� j�12j2j�13j2 j�23j2 (f!(�1;�2)� f!(�1;�3)� f!(�2;�3)) : (27)Indeed, by introdu
ing an intermediate ultraviolet regularization with Æ ! 0, we repro-du
e H12 in the above operator form, be
auseZ d2�3� j�12j2�j�13j2 + Æ2� �j�23j2 + Æ2� = Z 10 dx j�12j2x(1� x) j�12j2 + Æ2 ' 2 ln j�12j2Æ2 ; (28)� j�12j2 Z d2�3� �j�23j2 + Æ2� f!(�1;�3)j�13j2 ' j�12j2 �ln (Æ2 jp2j2)� 2	(1)� f!(�1;�2)j�12j2 ;� j�12j2 Z d2�3� �j�13j2 + Æ2� f!(�2;�3)j�23j2 ' j�12j2 �ln (Æ2 jp1j2)� 2	(1)� f!(�1;�2)j�12j2 :(29)In this form, the BFKL Hamiltonian was presented �rst in the 
ontext of the dipole pi
-ture [4℄ (see also [6℄). It is instru
tive to tra
e, following the path of transformations fromeq. (12) and (23) to (24) and (26), the gluon reggeization and the real produ
tion terms5



(whi
h are 
onne
ted to ea
h other due to the bootstrap relation). Starting from (12), (23),we 
onsider the terms related to the reggeized gluon traje
tory, log jprj2. The use of therelation eq. (25) takes us to the form j�12j2 ln jprj2 1j�12j2 (apart from the terms 1�12pr whi
h
an
el when 
ombined with the 
orresponding terms from the real produ
tion). Whenapplying the relation (29), these terms are identi�ed with those pie
es whi
h, in the dipoleapproa
h, are obtained from the real produ
tion. In the same way, those terms whi
h in(12), (23) are asso
iated with the real produ
tion 1p1p�2 ln j�12j2 p1p�2 + 1p�1p2 ln j�12j2 p�1p2are transformed into the 2 ln j�12j2 term (taking into a

ount the 
an
ellation mentionedpreviously). Finally, thanks to the relation in eq. (28), one �nds that this term gives thevirtual (one loop) 
ontribution in the dipole pi
ture. Thus, when going from the momen-tum spa
e representation of the BFKL Hamiltonian to the dipole pi
ture, one observes a(partial) ex
hange of the virtual and real 
ontributions and of the U.V. and I.R. se
tors,whi
h 
orresponds to the duality transformation [9℄.3 The M�obius representation and the dipole pi
tureIn the dipole approa
h [4℄ one introdu
es the dipole distribution in a hadron as a fun
tionof the rapidity Y = ln s, N�1 ;�2. The BFKL equation is written in the form:dN�1;�2dY = � ��s2 Z d2�3� j�12j2j�13j2 j�23j2 �N�1;�2 �N�1;�3 �N�2;�3� : (30)N�1;�2 
an be interpreted as the s
attering amplitude of a 
olor dipole ( e.g. a quark-antiquark pair). It gives the possibility to 
al
ulate the total 
ross-se
tions �t at highenergies ps: �t = Z d2�1d2�2 Z 10 dx j p(�1;�2)j2 N�1;�2(Y ) : (31)Here  p(�1;�2;x) denotes the wave fun
tion of the 
olourless state of the proje
tile,being a 
omposite state of two quarks with transverse 
oordinates �1, �2 and longitudinalmomentum fra
tions x, 1 � x.In order to illustrate the 
onne
tion [10℄ between this 
ross se
tion formula and thedis
ussion presented above, we 
onsider, as an example, the elasti
 s
attering of twovirtual photons with momentum transfer squared t = �q2. In leading order, the impa
tfa
tor �
� is simply given by a 
losed quark loop with the t-
hannel gluons being atta
hedin all possible ways. Starting from Feynman diagrams in momentum spa
e und takingsuitable Fourier transforms one obtains the following form for the s
attering amplitude(8) [11℄:T 
�
� = is Z d2�1d2�2d2�01d2�02eiq(�1+�2)=2 Z 10 dx p2(�12; x)� p1(�12; x)~G(�1;�2;�10;�20;Y )e�iq(�01+�02)=2 Z 10 dx0 p02(�1020; x0)� p01(�1020; x0) ; (32)where p1, p10 (p2, p20) denote the transverse momenta of the in
oming (outgoing) photons,x and x0 are the longitudinal momentum fra
tions inside the impa
t fa
tors.  p is the6



wave fun
tion of the virtual photon with transverse momentum p. Its dependen
e on thetransverse momentum is 
ontained in a phase fa
tor: p(�; x) =  (�; x)ei(1�x)p�12 ; (33)where  (�; x) denotes the usual photon wave fun
tion used in the total 
ross se
tionformula. ~G stands for the following Fourier transform of the momentum spa
e BFKLGreen's fun
tion of reggeized gluons, G!(k1;k2;k01;k02;Y ):~G(�1;�2�10�20;Y ) = Z d2kd2k0eik�12 �1� e�i(k+q2 )�12��1 � ei(�k+q2 )�12�G(k + q2 ;�k + q2 ;k0 + q2 ;�k0 + q2 ;Y )e�ik�1020 �1 � ei(k+q2 )�1020��1� e�i(�k+q2 )�1020� : (34)This leads to the following identi�
ation:N�1;�2 = Z d2�01d2�02 ~G(�1;�2;�10;�20;Y )e�iq(�01+�02)=2 Z 10 dx0 p02(�1020; x0)� p01(�1020; x0) :(35)In parti
ular, the dipole s
attering amplitude N�1;�2 is not simply the Fourier transformof the momentum spa
e Green's fun
tion but 
ontains extra phase fa
tors written in (34).These fa
tors garantee that N�1;�2 vanishes as �12 tends to zero.Another way to see how the gauge freedom allows us move from one representation tothe other 
an be summarized in the following way, whi
h will be useful in the study of theresummed fan diagram stru
ture. Let us 
all �IR the 
olle
tion of phase fa
tors whi
h,in the impa
t fa
tor of a photon whi
h splits in a q�q pair, ties the squared modulus ofthe wave fun
tion to the Green's fun
tion (in eq.(34), �IR stands for the phase fa
tors inthe �rst line (upper impa
t fa
tor) or in the lower line (lower impa
t fa
tor)): these �IRfa
tors are zero if one of the two gluon momenta vanishes, and it 
ontains subtra
tionterms with a Æ(2)(�12) behavior in the 
oordinate representation. We also introdu
e theoperator �UV , related to the transformation introdu
ed in eq. (16) whi
h 
ontains termsproportional to Æ(2)(pi). Using a shorthand notation and omitting the spatial integrations,one may write: �G = j j2�IRG = j j2�IR�UVG = j j2�UVG = j j2 ~G ; (36)where �UV is 
hosen in order to kill the subtra
tions 
ontained in �IR.Results of this example 
an easily be generalized. It is possible to prove that thesolution of the Bethe-Salpeter equation for the Pomeron wave fun
tion f(�1;�2;Y ) in theM�obius representation 
oin
ides with the dipole distribution N�1;�2(Y ). Both fun
tionssatisfy the same BFKL equation, and they vanish at �1 = �2. An advantage of usingthe Pomeron wave fun
tion f(�1;�2;Y ) in the M�obius representation lies in the fa
t thatthe amplitude for the s
attering of 
olorless parti
les is expressed as a 
onvolution of theimpa
t fa
tors �A;Bq (�1;�2) and the Green fun
tion f for reggeized gluon intera
tions.The vanishing of f(�1;�2;Y ) at �1 = �2 means that, when performing the integrationover �1 and �2, in the impa
t fa
tor �q(�1;�2) we 
an omit the terms proportional to7



Æ2(�12): these 
ontributions 
orrespond to those Feynman diagrams where the reggeizedgluons are atta
hed to the same quark or gluon line. As to the remaining Feynmandiagrams in whi
h the gluons are atta
hed to di�erent lines, their 
ontributions 
an beexpressed in terms of a 
olour density matrix 
p1p10 (�1;�2)�q(�;�0) �! 
p1p10 (�;�0) = (37)ei(�+�0)(p10�p1)=2Xn Z nYk=1 dxk d2�k2�  �p10Æ(1� nXk=1xk)Xi 6=l T ai T al Æ2(�i � �) Æ2(�l � �0) p1 :(38)The wave fun
tions  p1 and  p10 of the initial and �nal 
olourless parti
les 
ontain theFo
k states with an arbitrary number n of gluons and quarks with longitudinal momentapxk and transverse 
oordinates �k. Due to the translational invarian
e they depend onlyon di�eren
es of �k.The wave fun
tions  pr 
ontain also a dependen
e on 
olour degrees of freedom ofgluons and quarks. It is implied that the 
olour group generator T ai a
ts on the 
olourindi
es of the parton i and belongs to the 
orresponding representation of the 
olour groupalgebra SU(N
). It means that only in the large-N
 limit, where in 
olor spa
e the gluons
an be visualized as being 
omposite quark-antiquark states, the 
olor density matrix isredu
ed to the dipole density. Note that, in general, the integrals over the variables xkare divergent at small values and should be regularized in order to avoid double-
ounting.Indeed, for the 
ase of gluons the integration over the small-x region is taken already intoa

ount in the BFKL resummation.In LLA it is natural to leave in the parton wave fun
tions for initial and �nal parti
lesonly the quark-antiquark 
omponent pr(�1;�2;x) = ei(�1+�2 ;pr)=2 pr(�12;x) : (39)Then the 
olor density matrix is simpli�ed
p1p10 (�;�0) = ei(�+�0)(p10�p1)=2 N2
 � 12N
 Z 10 dx  �p2(� � �0;x) p1(� � �0;x) : (40)Therefore we obtain the dipole expressions dis
ussed before.Thus, in the M�obius representation both the reggeon and the dipole pi
tures are
ompatible with ea
h other. In parti
ular, in the reggeon language the fa
t that those di-agrams where both reggeized gluons are atta
hed to the same quark or gluon line (impulseapproximation) give a vanishing 
ontribution makes it natural for the BFKL Pomeron tobe viewed as a Mandelstam 
ut. Indeed, for the Mandelstam 
ut the impa
t fa
tor should
ontain only 
ontributions of non-planar diagrams with non-zero third spe
tral fun
tion�(s1; u1), whereas the diagrams of the impulse approximation do not 
ontain singularitiesin one of two 
hannels s1 or u1. Moreover, in QCD we 
an use the spa
e-time pi
ture forvisualizing the Mandelstam 
ut as des
ribing two independent parton 
u
tuations, pro-du
ed by the high energy initial parti
le at t! �1, long before the 
ollision. The two
u
tuations 
onsist of large numbers of gluons whi
h in the rapidity interval 0 � y � ln sare distributed homogeneously. The softest partons of ea
h 
u
tuation intera
t simulta-neously with the target. In this pi
ture one 
an 
al
ulate not only the behaviour of total8




ross-se
tions, but, taking into a

ount the AGK 
utting rules, also the distribution of theprodu
ed parti
les inside the BFKL Pomerons. An important advantage of the reggeonapproa
h over the dipole pi
ture is the possibility of taking into a

ount the non-trivialphase stru
ture of reggeon diagrams related to their signature fa
tors. The s
atteringamplitudes 
onstru
ted in the framework of the reggeon 
al
ulus in QCD will satisfy therequirements of the t- and s- 
hannel unitarities. In parti
ular, s-
hannel unitarity is in-
orporated partly in the bootstrap relations for reggeon diagrams. In the dipole approa
h,both the bootstrap properties and t-
hannel unitarity remain somewhat obs
ure.4 The BKP equations in the M�obius representationThe BFKL approa
h 
an be generalized to the 
ase of 
olourless 
omposite states 
on-stru
ted from n reggeized gluons [5℄. The homogeneous BKP equation for the t-
hannelpartial wave in LLA has the form (see [12℄)Ef = Hf ; H = X1�k�l�n T ak T al(�N
)Hkl ; E = � 2��
N
! ; (41)where T ak are the 
olour group generators a
ting on 
olour indi
es of the gluon k. Thespe
trum of energies E allows one to �nd the inter
epts ! of the 
olourless reggeon boundstates governing the 
orresponding 
ontribution � s! to the total 
ross-se
tion. The pairHamiltonian Hkl a
ting on the transverse 
oordinates of the reggeized gluons �k; ��k 
anbe written in the operator form [12℄Hkl = ln jpkj2 + ln jplj2 + 1pkp�l ln j�12j2 pkp�l + 1p�kpl ln j�klj2 p�kpl � 4	(1) : (42)Similar to the Pomeron 
ase the BKP equation is implied to be multiplied by a smoothfun
tion e�. We will assume that this fun
tion has a property of vanishing at small gluonmomenta pr (r = 1; 2; :::; n). Similar to the Pomeron 
ase one 
an verify that this propertyis 
onserved during the BFKL evolution. Therefore we have the freedom to add to f alinear 
ombination of fun
tions whi
h do not depend on one of 
oordinates �r. This givesthe possibility to impose additional 
onstraints on the solution f . In general, this freedomis not enough to �nd a solution f whi
h vanishes at small relative 
oordinates �rl. Anexample is the Odderon solution 
onstru
ted from three reggeized gluons: some time agowe found a solution of the BKP equation f(�1;�2;�3), whi
h is symmetri
 under thepermutation �r  ! �l but does not vanish at �rl ! 0 [16℄. It is easy to see that byadding fun
tions whi
h do not depend on one of 
oordinates �s'(�1;�2;�3) = f(�1;�2;�3) + ~f (�1;�2) + ~f(�2;�3) + ~f(�3;�2) ; (43)it is not possible to a
hieve '(�1;�2;�3) = 0 at �r = �l, be
ause f(�r;�r;�s) is notsymmetri
 to the transmutation �r  ! �s.Nevertheless, let us 
onsider the 
lass of solutions of the BKP equation, whi
h are zerowhen one of the relative 
oordinates �rl vanishes9



lim�rl!0 f = 0 : (44)We de�ne su
h solutions as belonging to the (generalized) M�obius representation Thisde�nition is motivated by the fa
t, that for the fun
tions in the M�obius representationthe pair Hamiltonians Hkl a
ts in the same spa
e of fun
tions as in the Pomeron 
ase,and therefore it is M�obius invariant. The property f = 0 at �rl = 0 is 
ompatible withthe BFKL evolution.The fa
t, that in the M�obius representation the spa
e of fun
tions is universal, givesa possibility to �nd an upper boundary for the inter
epts ! of 
omposite states of nreggeized gluons using a variational approa
h (
f. [13℄)! � n(n� 1)2 !BFKL ; (45)where !BFKL = ��s 4 ln 2 : (46)In order to obtain this bound we have used a rather rough estimate, requiring that theaverage value of ea
h pair Hamiltonian Hkl is larger than the minimal eigenvalue EBFKLof the BFKL Hamiltonian.In the M�obius representation the Hamiltonian H has the property of holomorphi
separability [8℄ H = h+ h� ; (47)where h = X1�k�l�n T ak T al(�N
)hkl ; hkl = Xr=k;l ln(pr) + 1pr ln(�kl)pr �	(1)! : (48)However, the separability does not allow to simplify the BKP equation, be
ause h and h�do not 
ommute with ea
h other, due to the presen
e of the 
olour matri
es. Only in themulti-
olour limit N
 !1 the 
olour stru
ture is drasti
ally simpli�ed [12℄. Indeed, fora general irredu
ible 
ase at N
 !1 ea
h gluon r intera
ts with the neighbouring gluonsr+1 and r� 1, and the holomorphi
 and anti-holomorphi
 Hamiltonians h; h� 
ommutewith ea
h other: h = 12 X1�k�n hk;k+1 ; h� = 12 X1�k�n hk;k+1 ; [h; h�℄ = 0 : (49)Moreover, in the multi-
olour limit there are many integrals of motion qr (r = 2; 3; :::; n)[14℄ qr = X1�i1�i2::::�ir�n �i1i2�i2i3 :::�iri1 pi1pi2 :::pir ; [qr; qs℄ = 0 ; [qr; h℄ = 0 ; (50)and the Hamiltonian h 
oin
ides with the Hamiltonian for an integrable Baxter spinmodel. 10



Figure 1: The fan diagram equation (the 
oupling of gluons to quark lines in
ludes a sumover all possibilities).5 Nonlinear equation for the fan diagramsLet us now write down the evolution equation whi
h sums the fan diagrams. To be de�nite,we 
onsider a simpli�ed model [15℄ of the elasti
 s
attering of two quark-antiquark pairs(Fig.1): the upper (smaller) quark pair 
ouples to a single BFKL ladder 1, whereas thelower (larger) quark pair 
ouples to an arbitrary number of BFKL Pomerons (Fig.1).Both 
ouplings are taken to be of the eikonal type. As a 
onsequen
e, at the lowerquark pair the 
ouplings of the BFKL Green's fun
tions fa
torize. When summing thefan diagrams, the transverse 
oordinates of the lower quark pair, �0, �00, are kept �xed.If 	(�1;�2;�0;�00;Y ) denotes the non-amputated two-gluon amplitude, the equation hasthe form: �	(�1;�2;�0;�00;Y )�Y = � ��s2 (H12	)(�1;�2;�0;�00; Y )���2s Z d2��d2��0d2��d2��0V(�1;�2;��;��0;��;��0)	(��;��0;�0;�00;Y )	(��;��0;�0;�00;Y ) ;(51)where H12 is the BFKL Hamiltonian, and V(�1;�2;��;��0;��;��0) denotes the 
onformalinvariant 2! 4 transition vertex of reggeized gluons [17, 3, 18℄. When supplemented withthe initial 
ondition:	(�1;�2;�0;�00;Y = 0) = �s �f (0)(�1;�2;�0;�00) + f (0)(�1;�2;�00;�0)� ; (52)where f (0) is proportional to the two gluon propagator in the M�obius representation, thisnonlinear equation sums the fan diagrams 
oupled to the lower quark-antiquark pair.1Note that, be
ause of the stru
ture of the BFKL kernel and of the reggeization of the gluon, the
oupling of a single BFKL Green's fun
tion to the q�q system 
ontains an arbitrary number of elementarygluon propagators being atta
hed to the quark lines.11



In order to obtain a physi
al s
attering amplitude, we multiply 	 with suitable wavefun
tions of external parti
les and integrate over the transverse 
oordinates �1, �2, �0,�00. In the momentum spa
e the 2! 4 transition vertex was found [17℄ to 
onsist of threepie
es:��2sV(q1;q2;k1;k2;k3;k4) = Æa1a2Æa3a4V (1234) + Æa1a3Æa2a4V (1324) + Æa1a4Æa2a3V (1423) ;(53)where we have introdu
ed the short-hand notationV (1234) = V (q1;q2;k1;k2;k3;k4); (54)and the subs
ripts ai refer to the 
olor degrees of the reggeized gluons. Obviously, thevertex V is 
ompletely symmetri
 under the ex
hange of any two gluon lines i and j(i; j = 1; 2; 3; 4). Furthermore, the fun
tion V (1234) vanishes if one of the four momentaki goes to zero. A 
onvenient representation is the following:V (1234)D2 = 12g2hG(1; 2 + 3; 4) +G(2; 1 + 3; 4) +G(1; 2 + 4; 3) +G(2; 1 + 4; 3)�G(1 +2; 3; 4)�G(1 + 2; 4; 3)�G(1; 2; 3 + 4)�G(2; 1; 3 + 4)+G(1 + 2; 0; 3 + 4)i : (55)The fun
tion G(1; 2; 3) is the non-forward extension [18, 19℄ of the G-fun
tion introdu
edin [17℄. It a
ts on the (amputated) 2-gluon test fun
tions in the M�obius representationD2(q1;q2), and it 
onsists of two pie
esG(k1;k2;k3) = G1(k1;k2;k3) +G2(k1;k2;k3) ; (56)The �rst term, G1, belongs to the diagrams des
ribing the emission of a real gluon,G1(k1;k2;k3) = g2N
 Z d2q1d2q2(2�)3 Æ2(q1 + q2 � k1 � k2 � k3)D2(q1;q2) (k2 + k3)2(q1 � k1)2q22 + (k1 + k2)2q21(q2 � k3)2 � k22(q1 � k1)2(q2 � k3)2 � (k1 + k2 + k3)2q21q22 ! ; (57)whereas the se
ond part is related to the virtual 
orre
tion present in the reggeized gluontraje
tory: G2(k1;k2;k3) = � [!(k2)� !(k2 + k3)℄D2(k1;k2 + k3)� [!(k2)� !(k1 + k2)℄D2(k1 + k2;k3) : (58)The fun
tion G(k1;k2;k3) has the property to be zero for k1 = 0 or k3 = 0 (butnot for k2 = 0), so that one may easily see that the vertex V (k1;k2;k3;k4) ! 0 for anyki ! 0. This relation must be satis�ed by any gauge invariant des
ription of a t-
hannel4-gluon state 
oupled to a 
olorless s
attering proje
tile.The expression in the 
oordinate representation was given in [18, 19℄ and 
an bewritten in terms of two non-lo
al operators, A1 and A2. The operator A1 is de�ned asfollows: 12



G1(r1; r2; r3) = A1D2(r1; r3); (59)and it has the following form:A1 = g2N
8�3 h2�Æ2(r23)�23(
� ln r13)��23 + 2�Æ2(r12)�21(
� ln r13)��21�2r12r23r212r223 � 2�(
� ln r13)(Æ2(r12) + Æ2(r23))� 4�2Æ2(r12)Æ2(r23)(�1+�3)2��21 ��23 i : (60)Here rij = jrijj, �i = j�ij and 
 = ln(2=m) +  (1), and m is a gluon mass whi
h providesan infrared regulator.In order to transform G2 to 
oordinate spa
e, an ultraviolet regularization (with a pa-rameter �) is ne
essary due to the presen
e of the gluon traje
tory terms. The dependen
eon this regularization will disappear at the end. One obtainsG2(r1; r2; r3) = A2D2(r1; r3) ; (61)where the operator A2 is given byA2 = �g2N
8�3 h 1r223 � 2�
Æ2(r23)i+ Æ2(r23)!(�i�3)�g2N
8�3 h 1r212 � 2�
Æ2(r12)i+ Æ2(r12)!(�i�1) : (62)For the singular operators 1=r212 and 1=r223 one may use the ultraviolet regularization1r2 � 1r2 + �2 + 2�Æ2(r) ln � (63)with the understanding that � ! 0 at the end of the 
al
ulation. In the sum of the twooperators, A = A1 + A2, the terms 
ontaining lnm 
an
el, thus the dependen
e on thegluon mass disappears, and G(r1; r2; r3) = AD2(r1; r3) is infrared stable.6 M�obius representation for the fan equationLet us now 
ompare the fan diagram equation (51) with the Balitsky-Kov
hegov equation(BK-equation) [6℄:ddY Nx;y = ��s Z d2z2� jx� yj2jx� zj2 jy � zj2 �Nx;z +Ny ;z �Nx;y �Nx;zNy;z� : (64)We will show that, by taking N
 to be large and restri
ting ourselves to fun
tions in theM�obius representation, the nonlinear fan diagram equation (51) 
oin
ides with the BKequation.Beginning with the linear part of (51) whi
h has been dis
ussed in se
tion 1, we makeuse of the freedom to add to the 	(�1;�2) 2 (whi
h in the dipole approa
h is a symmetri
2From now on, for the fun
tion 	(�1;�2;�0;�00;Y ) we will simply write 	(�1;�2).13



fun
tion) a new fun
tion whi
h depends only on one of the two 
oordinates. Moreover wes
ale the result by a fa
tor proportional to �s. We 
hoose~	(�1;�2) = B �	(�1;�2)� 12	(�1;�1)� 12	(�2;�2)� : (65)With this 
hoi
e we have ~	(�;�) = 0; (66)i.e. ~	 is in the M�obius representation. Later on, we will identify ~	 with the dipoledistribution, N , and we will determine the 
onstant B. The 
ondition (66) is the 
olortransparen
y relation (CTR). We remind that the shift (65) is allowed be
ause of the`good' properties of the impa
t fa
tor whi
h vanishes when either q1 = 0 or q2 = 0.Let us now turn to the non-linear term in (51). As mentioned before, the 2! 4 gluonvertex is zero, when one of momenta ki tends to zero at �xed q1 and q2. This meansthat after performing the Fourier transformation of the equation and swit
hing from themomenta ki (i = 1; :::; 4) to the 
oordinates ��, ��0, ��, and ��0 we are, again, allowedto add 
ontributions to 	(��;��0) whi
h lead to the 
ondition ~	(�;�) = 0. They 
anbe des
ribed by the proje
tor �UV used in eq. (36). As a result, we have rewritten thefan diagram equation for 	 into an equation for ~	 whi
h belongs to the M�obius spa
e offun
tions.The �nal step now is the observation that, when proje
ting on 
olor singlet states in the(12) and (34) subsystems, for large N
, only the �rst term of (53), V (1234), 
ontributes.When a
ting on fun
tions ~	(�1;�2) and ~	(�3;�4) whi
h are in the M�obius representation,the se
ond line of (55) does not 
ontribute. For the remaining terms of V (1234), the sumof the two operators A1 and A2 be
omes simply�4g22 g2N
8�3 �212�213�223 : (67)whi
h 
oin
ides with the nonlinear term in the BK-equation, if we 
hoose in eq. (65)B = 8���s: (68)Therefore, when identifyingN with our subtra
ted fun
tion (65), ~	, the Balitsky-Kov
hegovequation follows from the fan diagram equation, provided we restri
t ourselves to the lead-ing term at large N
.Next one may ask what kind of 
ontribution is given by those terms in V(q1;q2;k1;k2;k3;k4),eq. (53), that we have negle
ted so far. In order to do that let us 
onsider, inside a fandiagram, the splitting from a ~	0 state to a ~	~	 state (we imagine that the subtra
tion	 ! ~	 whi
h guarantees ~	(�;�) = 0 has already been done). From the 
al
ulationsshown in the appendix we derive the 
ontribution:2N2
 � 1 Z d2�1d2�2�2sN
� (�2 ~	0(�1;�2)j�12j4 Z d2�3 j�12j2j�13j2j�32j2 ~	(�1;�3) ~	(�3;�2)�+ ~	0(�1;�2)j�12j4 h��H12 ~	(�1;�2)i ~	(�1;�2) + ~	(�1;�2) h��H12 ~	(�1;�2)i++ " 1j�12j4�H12 ~	0(�1;�2)# ~	(�1;�2) ~	(�1;�2)) : (69)14



It is now 
ru
ial to re
all the hermitian symmetry of the BFKL Hamiltonian H12 for thelast term, a

ording toZ d2�1d2�2 " 1j�12j4�H12 ~	0(�1;�2)# ~	2(�1;�2) = Z d2�1d2�2 ~	0(�1;�2)j�12j4 �H12 ~	2(�1;�2) :(70)Performing the s
aling by the fa
tor B whi
h takes us from ~	 to the dipole distributionNx;y we �nd the simple form12 1N2
 � 1 ��s Z d2z2� jx� yj2jx� zj2 jy � zj2 "�2Nx;zNz;y ++ 2 �Nx;z +Nz;y �Nx;y�Nx;y � �N2x;z +N2z;y �N2x;y� == ��s Z d2z2� jx� yj2jx� zj2 jy � zj2 "�12 1N2
 � 1 �Nx;z +Nz;y �Nx;y�2# (71)The negative sign indi
ates that these large-NC 
orre
tions to the triple Pomeronvertex again lead to the saturation for evolution in rapidity. The fa
tor 1=[2(N2
 � 1)℄ =1=16 seems to suggest that this 
ontribution should not play a 
ru
ial role. Neverthelessa dire
t investigation would be interesting.It is important to note that, when going beyond the large N
 limit, there are other
orre
tions whi
h slightly 
ompli
ate the simple stru
ture of the nonlinear fan diagramequation. They are due to the evolution of the 
olourless state of 2n reggeized gluonswith n > 1: for example, in leading order 1=N
, the four-gluon state 
onsists of twononinterating Pomeron states. Ea
h intera
tion between the Pomerons 
osts a suppressionof the order 1=(N2
 �1), i.e. it is of the same order as the 
orre
tions to the triple Pomeronvertex dis
ussed above. Therefore, a 
onsistent treatment of 
orre
tions beyond the large-N
 limit has to in
lude these 
orre
tions to the Hamiltonian of the evolution of four gluonstate. As a �rst step, one 
an repla
e the single nonlinear evolution equation for ~	 by asystem of 
oupled equations, whi
h des
ribe the evolution of the two-gluon amplitude ~	and of the four-gluon Green's fun
tion G4. The equation for N reads:ddY Nx;y = ��s Z d2z2� jx� yj2jx� zj2 jy � zj2 �Nx;z +Ny ;z �Nx;y �N4(x;z;y;z;Y )�12 1N2
 � 1 �Nx;z +Nz;y �Nx;y�2! (72)The argument stru
ture of N4(�1;�2;�3;�4;Y ) indi
ates that the �rst pair of gluons atpositions �1, �2 are in a 
olor singlet; the same applies to the se
ond pair at �3, �4. Inleading order 1=N
, N4(�1;�2;�3;�4;Y ) equals the produ
t N�1;�2N�3;�4 . To in
lude the�rst 
orre
tion we writeN4(�1;�2;�3;�4;Y ) = N�1;�2N�3;�4 +�N4(�1;�2;�3;�4;Y ) (73)A se
ond equation for �N4 des
ribes the evolution of the four gluon Green's fun
tionwhere the �rst intera
tion of the order 1=(N2
 � 1) between the two dipole 
ross se
tions15



N is kept:ddY �N4(�1;�2;�3;�4;Y ) = � ��s2(N2
 � 1) (H12 +H34) �N�1;�3N�2;�4 +N�1;�4N�2;�3�� ��s2 (H12 +H34)�N4(�1;�2;�3;�4;Y ) (74)When 
ombined with the integral kernel in eq.(72), �N4 
an be interpreted as a O(1=N2C )loop-
orre
tion to the triple Pomeron vertex in the spa
e of M�obius fun
tions. It wouldbe interesting to study further 
orre
tion terms of higher order in O(1=N2C ).7 Con
lusionsIn this paper we have investigated some 
onsequen
es of the M�obius invarian
e of theBFKL Hamiltonian. When 
ombined with the fa
t that Green's fun
tions of reggeizedgluons 
ouple to impa
t fa
tors of 
olorless external states, this invarian
e allows to rede-�ne the two-gluon Green's fun
tion in su
h a way that it vanishes as the two 
oordinatesof the gluons 
oin
ide. This property de�nes what we have named the `M�obius represen-tation'. For the triple Pomeron vertex we have shown that this M�obius representationleads to a very simple form of the intera
tion kernel.The use of the M�obius representation also allows to study the 
onne
tion betweenthe reggeon 
al
ulus in QCD (formulated in terms of t-
hannel partial waves) and thedipole pi
ture. The latter is now widely been used for studies of, for example, saturationphenomena in deep inelasti
 s
attering and in heavy ion 
ollisions. An advantage ofstarting from the reggeon approa
h lies in the fa
t that it allows to go beyond the LOapproximation and beyond the large-N
 limit. As an example, we have studied the fandiagram equation. In the large-N
 limit it 
oin
ides with the BK equation. We thenhave 
omputed the 1=N2
 suppressed 
orre
tions to the triple Pomeron vertex whi
h arenot 
ontained in the BK equation. A

ura
y of the order 1=N2
 requires to 
onsider also
orre
tions in the evolution of the four gluon states; we propose a �rst modi�
ation of theBK equation whi
h in
ludes these 
orre
tions.A few years ago the next-to-leading 
orre
tions (NLO) to the BFKL equation havebeen 
al
ulated in the framework of the reggeon approa
h [23℄. Therefore it is naturalto use these results in the M�obius representation and to study their role in the dipolepi
ture.8 A
knowledgmentsG.P. Va

a and L.N. Lipatov wish to thank the II.Instit�ut f�ur Theoretis
he Physik, Uni-versity Hamburg, and DESY for the warm hospitality.16



Appendix: The non planar 
ontribution of the triplePomeron vertexLet us re
all the stru
ture of the two non-planar 
ontributions to the vertex (53), V (1324)and V (1423). They have been studied previously in the 
ontext of the 
oupling of threepomeron states with de�nite 
onformal weights [20, 22, 21℄.Ea
h of them gives the same 
ontribution, whi
h 
an be derived from V (1324):V (1324)D2 = 12g2hG(1; 3 + 2; 4) +G(3; 1 + 2; 4) +G(1; 3 + 4; 2) +G(3; 1 + 4; 2)�G(1 +3; 2; 4)�G(1 + 3; 4; 2)�G(1; 3; 2 + 4)�G(3; 1; 2 + 4)+G(1 + 3; 0; 2 + 4)i : (75)First we note that, when 
oupling to 
olor singlet states in the systems (12) and (34), these
ontributions are 
olor suppressed by a fa
tor 1=(N2
 �1). Moreover one 
an immediatelysee that, when 
onsidering, due to the gauge freedom, fun
tions ~	(�1;�2) in the M�obiusrepresentation, the se
ond and third terms give no 
ontribution. In the �rst and thefourth terms almost all the pie
es 
an
el in the M�obius spa
e of fun
tions, and one is leftwith only two terms whi
h in 
oordinate spa
e have the form:� �2sN
�(N2
 � 1)  Æ(2)(�23) j�14j2j�13j2j�34j2 + Æ(2)(�14) j�13j2j�12j2j�23j2! (76)When integrated with the ~	 states. both pie
es give the same 
ontribution.As to the last term in (75), when looking at the stru
ture of G it 
an be seen thatthe last term simply 
orresponds to a BFKL kernel a
ting on the amputated fun
tion D2.However, in our fan resummation the vertex a
ts on non-amputated fun
tions, and theterm 
an be written as: �2sN
�(N2
 � 1)Æ(2)(�13)Æ(2)(�24) 1j�12j4�H12 (77)whi
h a
ts on the single two gluon state before the splitting.Let us �nally 
onsider the remaining four terms of (75) (the �rst four terms in these
ond line). Due to the fa
t that G is an operator a
ting on the two gluon state (and noton the four gluon state), it is 
onvenient to use an expression di�erent from the previousform of the operators A1 and A2.Namely, a dire
t investigation of, for example, �G(1 + 3; 2; 4) gives:�2sN
�(N2
 � 1)Æ(2)(�13) " j�14j2j�12j2j�24j2 � � log j�14j2Æ(2)(�34)# = �2sN
�(N2
 � 1)Æ(2)(�13)Z14;2: (78)Therefore it is easy to see that the a
tion of this part of the non planar vertex readsZ d2�1d2�4 �2sN
�(N2
 � 1) �	0(�1;�4)j�14j4 (Z d2�3 hZ14;3 ~	(�1;�3) + Z41;3 ~	(�3;�4)i ~	(�1;�4) ++ ~	(�1;�4) Z d2�3 hZ14;3 ~	(�1;�3) + Z41;3 ~	(�3;�4)i) : (79)17



The integral operator depending on the kernel Z ij;k in the two lines are simply BFKLkernel operators and 
an be written asZ d2�3 hZ14;3 ~	(�1;�3) + Z41;3 ~	(�3;�4)i = ��H14 ~	(�1;�4) : (80)This form follows from the relation (29). We therefore 
on
lude that the non planar vertex
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