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1. Introduction. Recently, the BELLE collaboration have presented evidence for the
observation of the decays BT — pty, B} — p%y and B} — w7y (and their charged
conjugates) [1]. Their observation based on an integrated luminosity of 140 fb™! lacks
the statistical significance in the individual channels, but combining the data in the three
decay modes and their charged conjugates yields a signal at 3.50 C.L. [1]:

Bewp B — (p,w) 7] = (1.870¢ £0.1) x 107°. (1)

This result updates the previous upper bounds [2] by the BELLE collaboration, while the
upper bound from the BABAR collaboration (at 90% C.L.) [3]:

Bew[B — (p,w) 7] < 1.9 x 107°, (2)

remains to be updated. The experimental averages given above are defined as:

BIB = (po)a] = 3 (B > )+ 2 (05 ) 4 B )]} )

and the world average [4] for the B-meson lifetime ratio:
T+ /7o = 1.086 £+ 0.017, (4)

has been used in arriving at the BELLE result (ll). This is the first observation of
the CKM-suppressed electromagnetic penguin b — dvy transition. The CKM-allowed
b — sv transition in the exclusive decays B — K*v was observed more than a decade
ago by the CLEO collaboration [5], followed by the observation of the inclusive decay
B — X v in 1994 [6]. Since then, data on these decay modes have been provided by
a number of experimental collaborations, and the current situation is summarized in
Table @ In getting the isospin-averaged branching ratio Beg,(B — K*v), we used the
following definition:

1 T
Bex(B = K*v) = 5 Beo( BT = K*T) + f Bexp( B = K™°9)1 (5)

and the world average () for the B-meson lifetime ratio. Table [l also contains the
measurements of the inclusive decay B — X,y branching fraction, the resulting ratio
of the exclusive-to-inclusive decay rates Reyp(K™y/X,7), for each experiment separately,
and their world averages, with the errors added in quadrature.

The measurements from BELLE and the upper limit from BABAR on the B —
(p,w)y decays given in (ll) and (H), respectively, can be combined with their respective
measurements of the B — K*v decay rates to yield the following ratios:

Rexp[(p, w)y/K77] < 0.047, (BABAR) (6)
Rexpl(p,w)y/ K9] = 0.042£0.013,  (BELLE) (7)

where Rexpl(p,w)y/K*Y] = Bexp[B — (p,w) 7]/ Bexp(B — K*v). In this paper, we do an
analysis of the two quantities in Eqs. () and (@) in the context of the SM.
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Table 1: The branching ratios averaged over the charge-conjugated modes (in units
of 107) of the exclusive decays BT — K*t~ and B} — K% and the inclusive decay
B — X,v taken from Refs. [4,7-10]. The averaged branchmg ratios defined in (H) and

the ratio of the exclusive-to-inclusive branching ratios Rex,(K*v/Xs7v) are also tabulated.

Fraction BABAR BELLE CLEO Average
Bexp(BT — K*t7) | 3.874£0.2840.26 | 4.25+£0.3140.24 | 3.761953 £ 0.28 | 4.03 £ 0.26
Bexp(BY — K*%) | 3.9240.2040.24 | 4.01 £ 0.21 4 0.17 | 4.5573:22 4 0.34 | 4.01 +0.20
Bexp(B — K*) 4.06 £ 0.26 4.30 £0.25 4.35 £ 0.62 4.20 £0.17
Bexp(B — Xs7) 38.8 £3.6757 35.5 432730t 01 1321443752 | 35.14£3.0
Rexp(K*v/Xs7) 0.105705%% 0.12170:519 0.13670952 0.117£0.012

2. Effective Hamiltonian. The starting point for the theoretical discussion of the
radiative b — dvy decays (equivalently B — pvy and B — w~y decays) is an effective
Hamiltonian obtained from the Standard Model (SM) by integrating out the heavy degrees
of freedom (the top quark and W#*-bosons). The resulting expression at the scale p =
O(my), where my, is the b-quark mass, is given by

it = C8 vV (1000 00 + 40 041 )

+Va Vi {CI(C)(/“L) OF (1) + €57 () OQ(M
— Va Vi [C5% (1) Oz () + C5™ (1) Os ()] + ...}

where G 1s the Ferml couphng constant, and only the dominant terms are shown. The
operators (’) 7 and (’)2 , (¢ =u,c), are the standard four-fermion operators:

O = (A7, (1=95)45) (37" (1=5)ba)s - O = (doru(1=75)a0) (257" (1=35)bs), (9)
and O; and Qg are the electromagnetic and chromomagnetic penguin operators, respec-
tively:

ey

{72

gsty
2

O; = (doyo™ (14 45)by) F, Os =

(doo™ (1 +75)T05b5) G, (10)

Here, e and g are the electric and colour charges, F,, and G, are the electromagnetic and
gluomc field strength tensors, respectively, 77 are the colour SU(N.) group generators,
and the quark colour indices a and 8 and gluonic colour index a are written explicitly.
Note that in the operators O7 and (’)8 the d- quark mass contributions are negligible and
therefore omitted. The coefficients C ( ) and C ( ) in Eq. (H) are the usual Wilson

coefficients corresponding to the operators Oﬁq) and (’)gq), while the coefficients C£T(p)



and Cg(y) include also the effects of the QCD penguin four-fermion operators which
are assumed to be present in the effective Hamiltonian (H) and denoted by ellipses there.
For details and numerical values of these coefficients, see [11] and reference therein. We
use the standard Bjorken-Drell convention [12] for the metric and the Dirac matrices;
in particular v5 = 17%y'9*+?, and the totally antisymmetric Levi-Civita tensor ¢,,,, is
defined as gg123 = +1.

For the b — sy decay (equivalently the B — K*v decays), the effective Hamilto-
nian H’7'* describing the b — s transition can be obtained by the replacement of the
quark field d, by s, in all the operators in Eqs. (H) and (E) and by replacing the CKM
factors ViV — ViV (¢ = u, e t) in Hig? (H). Noting that among the three fac-
tors Vi, V%, the combination V,, V5 is CKM suppressed, the corresponding contributions
to the decay amplitude can be safely neglected. Thus, within this approximation, unitar-
ity of the CKM matrix yields V,;V; = =V V%, the dependence on the CKM factors in the
effective Hamiltonian Hzf?s factorizes, and the CKM factor is taken as Vj,V,i. Note also
that the three CKM factors shown in H27¢ are of the same order of magnitude and, hence,
the matrix elements in the decays b — dy and B — (p,w)y have non-trivial dependence
on the CKM parameters.

3. Theoretical framework for the B — Vv decays. To get the matrix elements for
the B — V~ (V = K*, p,w) decays, we need to calculate the matrix elements (V~|O;|B),
where O; are the operators appearing in H’g* and H2Z¢. At the leading order in ay,

this involves only the operators O, (’)ﬁu) and Ogu), where the latter two are important
only for the B — (p,w)y decays. One also uses the terminology of the short-distance
and long-distance contributions, where the former characterizes the top-quark induced
penguin-amplitude and the latter includes the penguin amplitude from the u- and e-quark
intermediate states and also the so-called weak annihilation and W-exchange contribu-
tions. There are also other topologies, such as the annihilation penguin diagrams, which,
however, are small. For a recent discussion of the long-distance effects in B — V'~ decays
and references to earlier papers, see Ref. [13].

Including the O(a;) corrections, all the operators listed in (H) and (E) have to be
included. A convenient framework to carry out these calculations is the QCD factorization
framework [14] which allows to express the hadronic matrix elements in the schematic
form:

dk 1
(ValoB) = P74 [ S [dusnsbo T el (1)

where F'P=V are the transition form factors defined through the matrix elements of the
operator Oz, ¢p 4(ky) is the leading-twist B-meson wave-function with &y being a light-
cone component of the spectator quark momentum, ¢! (u) is the leading-twist light-cone
distribution amplitude (LCDA) of the transversely-polarized vector meson V, and w is
the fractional momentum of the vector meson carried by one of the two partons. The

quantities 7! and T!! are the hard-perturbative kernels calculated to order a,, with



the latter containing the so-called hard-spectator contributions. The factorization for-
mula () holds in the heavy quark limit, i.e., to order Aqep/Mp. This factorization
framework has been used to calculate the branching fractions and related quantities for
the decays B — K*v [15-17] and B — pv [15,17]. The isospin violation in the B — K*~y
decays in this framework have also been studied [18]. (For applications to B — K*v*, see
Refs. [16,19,20]). Very recently, the hard-spectator contribution arising from the chromo-
magnetic operator Og have also been calculated in next-to-next-to-leading order (NNLO)
in a; showing that the spectator interactions factorize in the heavy quark limit [21]. How-
ever, the numerical effect of the resummed NNLO contributions is marginal and we shall
not include this in our update.

In what follows we shall use the notations and results from Ref. [15], to which we
refer for detailed derivations, and point out the changes (and corrections) that we have
incorporated in this analysis. The branching ratio of the B — K™y decay corrected to
O(a;) can be written as follows [15]:

G%O‘H/tbvtﬂz 2

7% I * 2 m2(* ? e 2
Bl = k) = r DR gy 600 1= ] e v
& B

(12
where o is the fine-structure constant, my pope 1s the b-quark pole mass, and Mp and mp»
are the B- and K*-meson masses, respectively. The quantity f(LK*) is the soft part of
the QCD form factor T (¢?) in the B — K* transition, which is evaluated at ¢* = 0
in the HQET limit. For this study, we consider f(LK*) as a free parameter; its value will
be extracted from the current experimental data on B — K™y decays. Note that the
quantity f(f‘*) used here is normalized at the scale g = my pole of the pole b-quark mass.
The corresponding quantity in Ref. [19] is defined at the scale p = m;ps involving the
potential-subtracted (PS) b-quark mass [22, 23], which is numerically very close to the
pole mass used here.

The function C;O)eﬂ(/,c) in Eq. () is the Wilson coefficient of the electromagnetic
operator O in the leading order and the function AM(y) includes all the NLO corrections:

Ay = AQ () + A () + ADF (1), (13)

where A(Clg, AE,Q and Ag,)K* denote the O(ay) corrections in the Wilson coefficient C?H,
the b — sv vertex, and the hard-spectator contributions, respectively. Their explicit ex-
pressions are given in Eqs. (5.9), (5.10) and (5.11) of Ref. [15]. The values used in the
numerical analysis are collected in Table B Some comments on the input values are in
order. The top-quark mass (interpreted here as the pole mass) has been recently updated
and revised upwards by the Tevatron electroweak group [24], and the new world aver-
age Mipole = (178 £4.3) GeV is being used in our analysis. The product Vi, V%] of the
CKM matrix elements can be obtained from the estimate |V,| = 0.0412 + 0.0021 [25]
using the relation |V Vi ~ (1 — A?/2)|V.]|, which yields |V, V3| = 0.0402 £ 0.0020 for
A = 0.2224. The SU(3)-breaking effects in the K- and K*-meson LCDAs have been
recently re-estimated by Ball and Boglione [26]. In this update, the transverse decay



Table 2: Input quantities and their values used in the theoretical analysis. The values of
the masses, coupling constants and Aj; given in the first four rows are fixed, and those of
the others are varied in their indicated ranges to estimate theoretical uncertainties on the
various observables discussed in the text.

Parameter Value Parameter Value

My 80.423 GeV My 91.1876 GeV

Mg 5.279 GeV M+ 894 MeV

Gr 1.16639 x 107® GeV~=2 | « 1/137.036
Ozs(Mz) 0.1172 Ah 0.5 GeV

Mt pole (178.0 +£4.3) GeV M pole (4.65+0.10) GeV
Vi V7| (40.24£2.0) x 1070 |z = mo/my  0.27 +0.06

/5 (200 + 20) MeV FED (1 GeV) (182 +10) MeV
a7 (1 GeV) —0.3440.18 a5? (1 GeV) 0.13 +0.08

Al (1 GeV) (215 £0.50) GeV™l | gy (1 GeV) 14404

constant of the A ™-meson, fLK* has remained practically unchanged, but the Gegen-
bauer coefficients in the K*-meson leading-twist LCDA are effected significantly. The
two Gegenbauer moments a(fl*) and a(u*) used in the calculation of the hard-spectator
contributions are now larger in magnitude, have larger errors and, moreover, the first
Gegenbauer moment changes its sign. For Comparlson previously, these Coeﬂiaents were
estimated as a(n (1 GeV) = 0.20 £ 0.05 and au (1 GeV) = 0.04 £ 0.04. The effect of
these modifications on the QCD form factor T2"(0), as well as of some other technical
improvements [26], has not yet been worked out. Lastly, the first inverse moment Ag}_l_(/,e)
of the B-meson LCDA has also changed. In our previous analysis [15], we used the value
Ag}_l_(/,csp) = (3.0 £ 1.0) GeV~! where the error effectively includes the scale dependence
of the leading-twist light-cone B-meson wave-function ¢p 1 (k, ). In a recent paper by
Braun et al. [27], the scale dependence of this moment is worked out in the NLO with the
result: c

5t = 35ty {1 = S Do )~ (14)

T 2 o

where (asCp/m)In(u/po) < 1 and the quantities Ag}_l_(/,e) and op 4 (p) are defined as
follows:

dk
W5 = [ Tomalkn). o) =Apln /—1n—¢3+w> (15)

0

At the initial scale gg = 1 GeV of the evolution, the above quantities were estimated by
using the method of the Light-Cone-Sum-Rules (LCSR) and their values are presented
in Table B At the typical scale psp = /Apmppole = 1.52 GeV (here, A, = 0.5 GeV is

a typical hadronic scale) of the hard-spectator corrections, the first inverse moment is
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now estimated as: Ag}_l_(/,csp) = (2.04 £0.48) GeV~!. Note that, while overlapping within
errors with the previously used value, the updated estimate is substantially smaller as
well as the current error on this quantity is now reduced by a factor of two.

Updating the analysis presented in Ref. [15], and using the experimental results on
the branching ratios for the B — K*y and B — X,y decays given in Table [l the

phenomenological values of the soft part of the QCD form factor are: f(LK*O)(O) =0.28 &+

0.02, f(LK*i)(O) = 0.27£0.02 and f(LK*/XS)(O) = 0.25 £ 0.02 resulting from the B — K*0y
and BT — K*%y branching ratios and from the ratio Re,(K*y/X,7), respectively. The
QCD form factor TE"(0) differs from its soft part E(LK*)(O) by O(as) terms worked out in
Ref. [19], which in our notation is given in Eq. (5.13) of Ref. [15]. However, the updated
input parameters reduce this correction, yielding typically a correction of 2 — 4% only,
in contrast to about 8% previously. Thus, the QCD transition form factor T} (0) now
differs only marginally from its soft part, and is estimated as follows:

TE(0) = 0.27 £+ 0.02. (16)

The central value of the QCD form factor () extracted from the current data has re-
mained unchanged compared to the previous estimate T (0) = 0.2740.04 (see Eq. (5.25)
of Ref. [15]), but the error is now reduced by a factor 2, mostly due to the reduction of
the uncertainty on the input parameters. It remains an interesting and open theoretical
question if improved theoretical techniques for the calculation of the transition form factor
TE™(0) could accommodate this phenomenological result.

4. Results for B — (p,w)~ decays and comparison with the BELLE data. This
part is devoted to an update of the theoretical predictions for the B — py and B) — w~y
branching ratios, and their comparison with the BELLE data. Results for the direct and
mixing-induced CP-violating asymmetries in these decays, the isospin-violating ratio in
the B — pvy decays, and the SU(3)-violating ratio in the neutral B — p°y and BY — w~
decays are also presented.

4.1. Branching ratios. We now proceed to calculate numerically the branching
ratios for the B* — py, BY — p’ and BY — wy decays. The theoretical ratios
involving the decay widths on the r.h.s. of these equations can be written in the form:

Bu(B = py Via|* (Mg —m2)°
Ren(py/K™y) = Bt:EEB—> K*’i) =5 Vzd (MzB_—mzp)gC? [L+AR(p/K™)], (17)
5 B K
; Bin(B) = wy) 1| Vi|" (Mj—m2)® :
R K*y) = — == B el 2] 4 AR(w/K*)], (18
th(wﬁY/ 7) Bth(BS — [Xf*oﬁy) 2 ‘/755 (Mé _ m%y*)?) § [ (CU/ )] ( )

where m, and m,, are the masses of the p- and w-mesons, ¢ is the ratio of the transition
form factors, ¢ = TF(0)/TE"(0), which we have assumed to be the same for the p°- and w-
mesons, and S, = 1 and 1/2 for the p*- and p®-meson, respectively. To get the theoretical



Table 3: Input parameters and their values used to calculate the branching fractions in
the B — py and B} — w~y decays. The parameters entering in the B — K*~ part in
Eqgs. (B3 and (EJ) are given in Table @

Parameter  Value Parameter  Value

m, 771.1 MeV e, 782.57 MeV
971 Gev) (160 £ 10) MeV | aV)(1 GeV) 0.20 £0.10

¢ 0.85 £ 0.10 Vi V| (8.14+0.8) x 1073
) 40304007 | P =—% 40.03+0.01

p 0.17 £0.07 i 0.36 + 0.04

branching ratios for the decays B — py and B} — w7, the ratios (&) and (E3) should be
multiplied with the corresponding experimental branching ratio of the B — K™y decay.

The theoretical uncertainty in the evaluation of the Run(py/K*v) and Rn(wvy/K*y)
ratios is dominated by the imprecise knowledge of ¢ = T7(0)/T{"(0) characterizing the
SU(3) breaking effects in the QCD transition form factors. In the SU(3)-symmetry limit,
TY(0) = TE™(0), yielding ¢ = 1. The SU(3)-breaking effects in these form factors have
been evaluated within several approaches, including the LCSR and Lattice QCD. In the
earlier calculations of the ratios [15,28], the following ranges were used: ¢ = 0.7640.06 [15]
and ¢ = 0.76 £ 0.10 [28], based on the LCSR approach [29-33] which indicate substantial
SU(3) breaking in the B — K* form factors. There also exists an improved Lattice
estimate of this quantity, ( = 0.940.1 [34]. In the present analysis, we use ( = 0.85+0.10,
given in Table B together with the values of the other input parameters entering in the
calculation of the B — (p,w)~ decay amplitudes.

We now discuss the difference in the hadronic parameters involving the p° and w-
mesons. It is known that both mesons are the maximally mixed superpositions of the uu
and dd quark states: [p°) = (|dd) — |au))/v/2 and |w) = (|dd) + |@u))/v/2. Neglecting the
W-exchange contributions in the decays, the radiative decay widths are determined by
the penguin amplitudes which involve only the |dd) components of these mesons, leading
to identical branching ratios (modulo a tiny phase space difference). The W-exchange
diagrams from the (’)ﬁu) and (’)gu) operators (in our approach, we are systematically
neglecting the contributions from the penguin operators Os, ..., Og) yield contributions
equal in magnitude but OF];osite in signs. In the numerical analysis, the LCSR results:
c(f) = 40.03 £ 0.01 and ¢,” = —0.03 £ 0.01 [30], are used, where the smallness of these
numbers reflects both the colour-suppressed nature of the W-exchange amplitudes in
BY — (p°,w)~ decays, and the observation that the leading contributions in the weak
annihilation and W-exchange amplitudes arise from the radiation off the d-quark in the
BY-meson, which is suppressed due to the electric charge. The parameter G(A:t) entering in
B* — p*y and c(f) in the BY — p°y decay have been estimated in the factorization ap-
proximation for the weak annihilation (and W-exchange) contribution, but this is expected
to be a good approximation in the heavy quark limit, where the O(a;) non-factorizable
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Table 4: Updated theoretical estimates of the functions AR(p/K*) and AR(w/K*), and
the ratios of the branching ratios Ri,(py/K*y) and Ry (wy/K*y) defined in Eqs. ()
and (EJ), respectively. The third and fourth rows give the branching ratios Bn(B — pv)
and By,(B — wv) (in units of 107°) and direct CP asymmetries in the B — py and
BY — wvy decays, respectively.

B* = p*y By — p°y By — wy

AR | 0116 £0.099 | 0.093£0.073 | 0.092 £ 0.073
Ry | 0.0334 £ 0.0103 | 0.0164 £ 0.0049 | 0.0163 + 0.0049
B | 1.35+0.42 0.66 + 0.20 0.65 + 0.20
Ade | (—11.6 £3.3)% | (—9.4%29)% (—8.8T55)%

corrections are found to be suppressed in the chiral limit [13]. Moreover, their magnitudes
can be checked experimentally through the radiative decays B*¥ — (*1,v, as emphasized
in Ref. [13]. These and the other parameters needed for calculating the branching ratios
in the B — (p,w)~y decays are given in Table B where we have also given the default
ranges for |V V5| and the CKM-Wolfenstein parameters p and 77 obtained from the recent
fit of the CKM unitarity triangle [25].

The individual branching ratios By,(B — py) and By (B) — wy) and their ratios
Ren(py/K*y) and Ry(wy/K*y) with respect to the corresponding B — K™y branching
ratios are presented in Table [l Note that in our estimates there is practically no difference
between the B} — p%y and BY — w~ branching fractions, as the two differ only in the signs
of the weak-annihilation contributions in the decay amplitudes, but these contributions
given in terms of the parameters 5(;)) and 5(Aw) are small. Using the definition of the
weighted average (H), we get:

BB — (p,w)y] = (1.384£0.42) x 107°, (19)
Ral(p,w)v/K*y] = 0.033 £0.010, (20)

where the current experimental values of the B — K™~ branching ratios given in Table [l
have been used in arriving at the result (E). These theoretical estimates, carried out
in the context of the SM, are in the comfortable agreement with the current BELLE
measurements (H) and ().

4.2. CP-violating asymmetries. The direct CP-violating asymmetries in the
decay rates for Bt — pTy and B} — (p°,w)~ decays and their charged conjugates are
defined as follows:

Adis () = B(B~ = p~vy) — B(B* = p*)

P = B(B- = py) £ B(BY = pty)
~ B(B3 — p’y) — B(BJ — p°y)

Adlr 0 = 7d d 7 21
b (7) B(BY — p%v) + B(BY — p°) ()
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B(BY — wy) — B(B) = wy)
B(BY — wy) + B(B) = wy)’

Alt(wy) =

The explicit expressions for the first two of these asymmetries in terms of the individual
contributions in the decay amplitude can be found in Ref. [15] and the one for the last,
AdE (wy) may be obtained from AL (p ) by obvious replacements. Their updated values
in the SM, taking into account the parametric uncertainties and adding the various errors
in quadrature, are presented in Table ll The main contribution to the errors is coming
through the scale dependence and the uncertainty in the ¢- to b-quark mass ratio, which
is a NNLO effect. A complete NNLO calculation will certainly be required to reduce the
theoretical errors. It should be noted that the predicted direct CP-asymmetries in all
three cases are rather sizable (of order 10%) and negative. This differs from our earlier
estimates [15,28], worked out for AL (pEv) and AL (p ), where the explicit expressions
were erroneously typed and used in the numerical program with the incorrect overall sign.

The dependence of the direct CP-asymmetry on the CKM unitarity-triangle angle «
is presented in the left frame in Fig. [l We note that the CP-asymmetries are calculated
with the strong phases generated perturbatively in O(a;) in the QCD factorization ap-
proach. In particular, they do not include any non-perturbative rescattering contribution.
We recall that for the CP-asymmetries in non-leptonic decays, such as in B — 77, current
data point to the inadequacy of the perturbatively generated strong phases [25]. In radia-
tive decays B — (p,w)v, such long-distance effects enter via the penguin amplitudes Py),
which are the uwu-loop contributions involving the operators (’)Z(»u) (1=1,2), and Pc(i), the

corresponding cc-loop contributions involving the operators (’)Z(»c) [13]. They are included
in the estimates of the complete matrix elements to a given order [here, up to O(as)].
In the hadronic language, they can be modelled via the hadronic intermediate states,
such as BT — ptp? — pty, BT — Dt D0 — p*y ete. Their relative contribution
at the amplitude level was estimated for the decay B~ — p~v as |P./FP;| ~ 0.06 [13],
with |P,| < |P.]. A recent model-dependent estimate [35] of the long-distance contri-
bution in B® — p°y via the intermediate Dt D~ state, B® — DtD~ — p°y, puts the
relative contribution of the long-distance (LD) and short-distance (SD) contributions to
the decay widths as I'tp/I'sp =~ 0.3, using the lowest order result for I'sp. Taking into
account that the next-to-leading order contributions in I'sp, updated in this paper, result
in an enhancement by a factor of about 1.7, and noting further that the perturbative
charm-penguin contribution should be subtracted from I'yp to avoid double counting,
the remaining rescattering contributions are very likely below 10%. However, one can
not exclude an enhanced charm-penguin contribution at this rate and the CP-asymmetry
AdE (%) could beinfluenced from such long-distance contribution. Charm-penguin en-
hanced effects can be also tested in the Dalitz pair reaction B® — p%y* — p®eTe™ through
measurements of the Stoke’s vector components [35].

We now discuss the time-dependent (or mixing-induced) CP-asymmetry in the BY(¢) —
(p°,w)y and BY(t) — (p°,w) v decays. Below, the equations for the B}-meson decays into
the final state with the p°-meson are presented. Similar quantities for the decays with the

(w)

w-meson production can be obtained by the obvious replacement: 5(;)) — ey

10
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Figure 1: Left frame: The direct CP-violating asymmetries for the B — pvy and B) — w~
decays, defined in Eq. (E). Right frame: The mixing-induced CP-violating asymmetries
for the BY — p%y and B} — wy decays, defined in Eq. (E2).

The time-dependent CP-asymmetry in the decays of neutral BY-mesons and its CP-
conjugate involves the interference of the B — B% mixing and decay amplitudes and is
given by [36]:

agp(t) = —Chycos(AMgt) + 5, sin(AMyt), (22)

where AMy ~ 0.503 ps~! is the mass difference between the two mass eigenstates in the
BY— BY system. For getting explicit formulae for C',, and S,,, it is convenient to introduce
the quantity:

_ g ABI = ) OO A [OOTD 4 AT Fet

)\ = — = ” 23
T p ABY = %) ol A — 0O D)  Au) Fe-ia (%)

where p/q ~ exp(2i3) is the BY — BY mixing parameter and F' = R,/R; with R, =

Vor+n? and Ry = /(1 —p)2+ 72 In terms of A,,, the direct and mixing-induced
CP-violating asymmetries can be written as follows:
L — A ? _ 2Im(Ay,)

Cpy = _A%ifg(/oow (24)

R T
Thus, the direct CP-violating asymmetry C,, is expressed by Eq. (6.6) in Ref. [15] while
the mixing-induced CP-violating asymmetry S,, in NLO can be presented in the form:

2F sina [l — 2F5(£) cos a + (F@f))Q cos(2ar)] A% — 5§J)Ag)t

SNLO _ SLO .
” ” 11— 2F5(£) cos a + (Fes(f))Q]2 {0

11



2F5(£) sina (1 — Fas(f) cos )

SLO _
” 1 - 2F5(£) cos o + (F@f))z 7

(26)

where Ag)t and Aj, are the real parts of the NLO contributions to the decay amplitudes
entering Eq. (B3). It is easy to see that, neglecting the weak-annihilation contribution
(5(2) = 0), the mixing-induced CP-asymmetry vanishes in the leading order. However,
including the O(a5) contribution, this CP-asymmetry is non-zero.

The dependence on the CKM unitarity-triangle angle a of the mixing-induced CP-
asymmetry for the Bj}-meson modes considered is presented in Fig. [l (right frame). The
dashed lines show the dependence in the LO while the solid lines correspond to the NLO
result. Thus, fixing the parameters to their central values, one notices a marked effect from
the NLO corrections on both Sbwo and SLO. However, including the errors in the input
parameters, the resulting allowed values for S})\;LO and SSWLO are rather uncertain. This is
worked out by taking into account the SM range a = (92 + 11)° [25], and the numerical
values for these asymmetries in the leading order and including the O(a;) corrections are

as follows:
SO = (=2.7£1.0)%, SN0 =(0.173D)%, (27)
SO = (+27 £ 1.0)%,  SIO = (4.0550)%. (28)

Thus, the +10 ranges for the mixing-induced asymmetries in the SM are: —0.04 <
S})\;LO < 0.05 and —0.01 < SEIWLO < 0.09. They are too small to be measured in the near
future. Hence, the observation of a significant (and hence measurable) mixing-induced
CP-asymmetries S, and S5, would signal the existence of CP-violating phases beyond

the SM.

4.3. Isospin-violating ratio. The charge-conjugated isospin-violating ratio is de-
fined as follows:

I'(B* — p*y)

o= AT o)

[A-I—O 4 A_O] 7 A:I:O

—1. (29)

DN | —

The explicit NLO expression in terms of the vertex, hard-spectator and weak-annihilation
contributions to the decay amplitude can be found in Ref. [15]. The dependence of this
ratio on the angle a is shown in the left frame in Fig. @ With the improved input, the
updated result is:

A= (1.1%3.9%. (30)

Thus, the isospin violation in B — pvy decays is expected to be small in the SM. The
reason for this lies in the dependence A 5(Ai) cos v + O[(s(Ai))z, ag), and we have used
the current knowledge of the angle o from the CP-asymmetry in B — 77 decays and the
indirect unitarity fits, yielding o = (92 £+ 11)° [25].

12
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Figure 2: Left frame: The isospin-violating ratio A, defined in Eq. (E) for the de-
cays B — pvy, and the SU(3)-breaking ratio Al"/%)) defined in Eq. (Bl and involving
the B} — (p°,w)~ decays, plotted as functions of the CKM unitarity-triangle angle a.
Right frame: The ratio Ru[(p,w)y/K*v] plotted as a function of |Viq/Vis|. The current
experimental measurement with its +10 range is shown as the horizontal band. The solid
and dashed curves are the theoretical predictions in the SM and their £10 errors, respec-
tively. The vertical dotted lines show the SM-based best-fit interval for |V;;/Vi;| from the
CKM unitarity fits.

4.4. SU(3)-violating ratio. Another quantity of experimental interest is the ratio
AP/9) involving the B — (p,w)y decays. It can be defined as:

1
AR = 2 AR £ AR (31)
with
A/ = (M3 —m2)’ B(B] — p%y) — (Mg —m3)° B(B] — wy)
BT (MR —m2)B(BY = p%y) + (Mg —m2)? B(BY — wy)’
Al (Mg —m?2)’B(B] — p®y) — (M3 — mi)?’B(?S — wY)
B (ME —m2)?B(Bg — p%y) + (ME —m})? B(Bg — wy)

The weighted factors in Ag/w) are introduced to suppress the effect of the phase space

B
(p/w)

due to the difference in the p- and w-meson masses. The expression for AZ'2", derived in
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O(a;) order, is rather lengthy:

A(l)t . FAU’ A(l)t .
AR = Al L SR RS (1 anafy)  (s2)
, Cr7" [cosa — Fa 4]
9 {Ag)t — FAY,cosa F FA}LSiHOé}
OO —2Fe cosat (Fea)? + (FAca)] |
Alele) _ —2FAc |cosa — Fe] (33)

Lo ™ 1 _9Fz,cosa + (FEa)?+ (FAey)?
where 4 = (5(2) + 5(A°J))/2 and Aey = (5(2) — 5(A°J))/2. In our approximation, €4 = 0 and,
neglecting tiny corrections ~ (F'Acz4)?, the final expression is greatly simplified:

w 2FA€A off u
Al(\%o) = _W (C;O) — Ag)t) cos o + F' A} cos(2a)] . (34)
7

The dependence of this ratio on the angle « is shown in the left frame in Fig. Bl In the
SM, with the input parameters specified above, this ratio can be estimated as:

AV — (0.3 £3.9) x 1072, (35)

This value is an order of magnitude smaller than the isospin-violating ratio (Bl) in B — py
decays due to the suppression of the weak-annihilation contributions in the decays of the
neutral B-meson. In this case, the neglected subdominant long-distance contributions
may become important. They can be estimated in a model-dependent way. In any
case, the result in (E) should be improved by including the contributions of the penguin
operators and the NNLO corrections. The ratio A®/“) in the SM is also too small to be
measured. Both the ratios A and A/%) are sensitive tests of the SM, and as argued in
Refs. [28,37] for the isospin-violating ratio A, their measurements significantly different
from zero would reveal physics beyond the SM.

5. Determination of |Vi;/Vi| from Reg[(p,w)v/K*y]. To extract the value of
|Via/Vis| from the B — (K*,p,w)y decays, we use the ratio R[(p,w)~y/K*y], which
can be rewritten within the SM as follows:

Vid
Vis

2

¢ P =118 £ 0.10, (36)

Rul(p,w) v/ K] = v/

where the error in réﬁ/w) takes into account all the parametric uncertainties except in (

and |Vi;/Vis| which are treated as free variables. Applying this equation to the BABAR
upper limit (H) and the BELLE experimental range (H), the product (|Viy/Vis| can be
restricted as follows:

¢ |Via/Vis| > 0.19, (BABAR) (37)
C [Via/Vis| = 0.19 £+ 0.03, (BELLE) (38)
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where the bound is at 90% C.L., following from the BABAR data. At present, the error
in (BJ) is dominated by the experimental uncertainty. Using the range ¢ = 0.8540.10 for
the ratio of the transition form factors, one gets the following constraints on the CKM
matrix element ratio |Vig/Vil:

|Via/Vis| > 0.19, (BABAR) (39)
|Via/Vis| = 0.22 £ 0.05, (BELLE) (40)

where the lower limit from the BABAR data (l) corresponds to 90% C.L. In arriving at
these numbers, the theoretical and experimental errors were considered as uncorrelated.
Taking this correlation into account, the BELLE data yields the range 0.16 < |V;/Vis| <
0.29, which is much larger than but in agreement with the SM range |V;4/V;s| = 0.20£0.02.

The dependence of the ratio R [(p,w)y/K*y] on |Vig/Vis| is shown in the right frame
in Fig. B The solid curve corresponds to the central values of the input parameters, and
the dashed curves are obtained by taking into account the 1o errors on the individual
input parameters in Rp[(p,w)y/K*y] and adding the errors in quadrature. The current
measurement for this quantity is also shown in this figure. Experimental error is currently
large which renders the determination of |V;4/V;s| uncertain. However, in the long run,
with greatly increased statistics, the impact of the measurement of Reyp[(p,w)y/K*Y] on
the CKM phenomenology, in particular the profile of the unitarity triangle, will depend
largely on the theoretical accuracy of the ratio (. Note that using |V;4/Vis| = 0.20 £ 0.02,
the estimates (E) and (BEJ) result into the lower limit ¢ > 0.81 (at 90% C.L.) from
the BABAR data and the range 0.71 < ¢ < 1.19 from the BELLE measurement. These
inferences are not precise enough to distinguish among models of SU(3)-breaking. We hope
that with the first measurement of Reyp[(p,w)y/K*+] having been already posted [1], the
ratio ¢ will receive a renewed theoretical effort, in particular from the lattice community.

6. Current and potential impact of R.[(p,w)7/K*y] on the CKM unitarity
triangle. In this part we present the impact of the B — (p,w)~ branching ratio on
the CKM parameters p and 7. For this purpose, it is convenient to rewrite the ratio
Ral(p,w)v/K*v] in the form in which the dependence on the CKM-Wolfenstein parame-
ters p and 7 is made explicit:

N2 (Mf —m2)’

Bullp.1/ K9] = == G g 2000 1:287) + G0, 20) (41)
b A Z ) )

4 (M2 m[x )?
Here, the function G(p,7,) encodes both the LO and NLO contributions:

G(pyiie) =[1 = (1 =) g + (1 — )27 + 2Re [Go — p G () + (07 + 7°) Gale)],  (42)
and the functions G; (i = 0,1,2) are defined as follows:

Go = [AQr—AQWT] /o, (43)

sp
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Table 5: Values (in units of 107%) of the real and imaginary parts of the functions G;
(1 = 0,1,2), including the parametric uncertainties, are presented for three values of the
weak-annihilation parameter ¢ 4.

€4 Re Gy Im Gy Re G4 Im G Re Gy Im Gy
+0.30 | 4.63£3.89 | —0.48+1.50 | 3.50£7.90 | 6.20£4.09 | —1.84 £5.89 | 3.60 £ 3.3%
+0.03 | 4.63£3.89 | —0.48+1.50 | 10.80£5.96 | 9.01 £3.28 | 6.10+£4.23 | 9.18 £3.55
—0.03 | 4.63+3.89 | —0.48+1.50 | 12.43+5.69 | 9.64+3.13 | 7.86+4.06 | 10.42+ 3.60

Table 6: The input parameters used in the CKM-unitarity fits. Their explanation and
discussion can be found, for example, in Ref. [41]. The parameter 7; is evaluated at the

scale of MS mass m.(m.) = 1.30 GeV.

) 0.2224 £ 0.002 (fixed) Vo] (41.2£2.1) x 1073
Vi (3.90 £ 0.55) x 1073 Ak s 0.736 4 0.049
lex] (2.280 +0.13) x 1073 AMsp, (0.503 % 0.006) ps~*
M 1.32 4 0.32 12 0.57 £0.01
n3 0.47 +£0.05 me(m.) (1.25 4+ 0.10) GeV
mi(my) (168 £ 4) GeV By 0.86 £0.15
I8,/ Bs, (215 £ 11 £15%5;) MeV | nB 0.55 4 0.01
¢ 1.14 £ 0.03 £ 0.02705° 100 | Rexpl(p,w)v/ K] 0.042 £ 0.013
AMp, > 14.4 ps~! at 95% C.L.
Gh(e) = 26— [A* 4 AW jOLO (44)
Ga(e) = Go—[(1 —2) A%+ AW jOlOT (45)

Numerical values of the real and imaginary parts of the functions G; (1 = 0,1,2), and the
parametric uncertainties, are given in Table I The three rows in this table correspond
to the decays BT — p*v, BUBY) — p%y, and BY(BY) — wv, respectively. It should
be noted that the function G(p,n,c) (B0 is related with the dynamical function AR,
introduced in Ref. [15] to account for the weak-annihilation and NLO corrections, with:
G(p,7,¢) = R} (1 + AR).

To undertake the fits of the CKM parameters, we adopt a Bayesian analysis method.
Systematic and statistical errors are combined in quadrature. We add a contribution to the
x?-function for each of the input parameters presented in Table B Other input quantities
are taken from their central values given in the PDG review [38]. The lower bound on the
mass difference AMp_ in the B — B? system is implemented using the modified y2-method
(as described in the CERN CKM Workshop proceedings [39]), which makes use of the
amplitude technique [40]. The B, ¢+ B, oscillation probabilities are modified to have the
dependence P(B, — B,) o [1 + Acos(AMp_t)] and P(B, — Bs) o [1 — Acos(AMg_t)].
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Table 7: The 68% C.L. ranges for the CKM-Wolfenstein parameters, B, = +/p? + 12,

Ry = /(1 — p)? +n2, CP-violating phases, AMp, and R[(p,w)~/K*~] from the CKM-
unitarity fits.

A 0.2224 A 0.79 = 0.86

p 0.10 + 0.24 n 0.32 = 0.40

Ry 0.37 = 0.43 R, 0.83 = 0.98
sin(2a)  —0.44 = +0.30 a (81 = 103)°
sin(2) 0.69 = 0.78 8 (21.9 = 25.5)°
sin(27) 0.50 = 0.96 y (54 = T5)°
AMsp, (16.6 =+ 20.3) ps™' | R[(p,w)v/K*7] (2.3 = 4.3)%

The contribution to the y*-function is then:

*(AMp,) =2 [Erfc_l (3 Frfe - — A)] 2 (46)
X Bs - 2 \/§O'A 9

where A and o4 are the world average amplitude and error, respectively. The resulting
x?-function is then minimized over the following parameters: p, 7, A, BK, M, N2, 13,
me(me), mi(me), ng, fe,n/Bp,, £ Further details can be found in Ref. [41].

We present the output of the fits in Table B where we show the 68% C.L. ranges
for the CKM parameters A, p and 7, the angles of the unitarity triangle o, 5 and ~, as
well as sin(2¢;) with ¢, = «, 3,7, and AMp,. The allowed profile (at 95% C.L.) of the
unitarity triangle from the resulting fit is shown in Fig. B as shaded region. Here we also
show the 95% C.L. range of the ratio Rexp|(p,w)v/K*y] = Bexp|B — (p,w) Y]/ Bexp(B —
K*v), which is used as an input in the fits now. We find that the current measurement
of Rexpl(p,w)y/K*~] is in comfortable agreement with the fits of the CKM unitarity
triangle resulting from the measurements of the five quantities (R, ex, AMp,, AMg,,
and ayk.). The resulting contour in the p — 7 plane practically coincides with the shaded
region, and hence not shown. We conclude that due to the large experimental error
on Reopl(p,w)y/K*v], but also due to the significant theoretical errors, the impact of
the measurement of B — (p,w)y decays on the profile of the CKM unitarity triangle is
currently small. How this could change in future is illustrated by reducing the current
experimental error on Rep[(p,w)v/K*y] by a factor 3, which is a realistic hope for the
precision on this quantity from the B-factory experiments in a couple of years from now.
The resulting (95% C.L.) contours are shown as dashed-dotted curves, which result in
reducing the currently allowed p — 7 parameter space. This impact will be enhanced if
the theoretical errors, dominated by A(/(, are also brought under control.
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Figure 3: Allowed p — 7 regions following from the six measurements (R, ex, AMp,,
AMg,, ayi., and Reg[(p,w)v/K*7]), corresponding to 95% C.L., with the dot showing
the best-fit values. The shaded region shows the current profile. The two outer (solid)
curves give the 95% C.L. constraints in the p — 5 plane from the current measurement of
Respl(p,w) v/ K*7]. The inner (dashed-dotted) curves are the 95% C.L. constraints from
an assumed measurement of Re.[(p,w)~/K*y] having the current central value but the
error reduced by a factor 3. The contour shows the potential impact of this assumed

measurement in the p — 7 plane.

7. Summary We have studied the implication of the first measurement of the aver-
aged branching fraction Bey,[B — (p,w) 7] by the BELLE collaboration for the CKM phe-
nomenology in the SM. Updating the earlier theoretical calculations [15], carried out in the
QCD factorization framework, in which several input parameters have changed, we have
calculated the averaged branching ratios for the exclusive B — (K™, p,w)~y decays and
the ratio R [(p,w)v/K*7]. Using the CKM-Wolfenstein parameters p = 0.17 4 0.07 and
i = 0.36£0.04 from the unitarity fits [25], we find Bu[B — (p,w)7] = (1.3840.42) x 107°
and Ra[(p,w)v/K*y] = (3.3 £1.0)%, to be compared with the experimental numbers
Bep[B — (p,w)y] = (1.8758 £ 0.1) x 1075, and Rep[(p,w)v/K*y] = (4.2 £ 1.3)%,
respectively. We see a quantitative agreement between the SM and the BELLE mea-
surement in the radiative penguin b — d transitions. Leaving the CKM parameters p
and 7 as free, we determine (at 68% C.L.) 0.16 < |Viq/Vis| < 0.29 (at 68% C.L.), which
is in agreement with but less precise than the corresponding range from the CKM fits
|Via/Vis| = 0.20 £ 0.02 [25]. This is, however, expected to change as the experimental
precision on the branching ratios and Re[(p,w)~y/K*v] improves. We emphasize that
the measurement of Rey,[(p,w)y/K*7] provides the first direct determination of the ra-
tio |Via/Vis| in rare B-meson decays. We have also presented updated estimates of a
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number of the isospin-violating and SU(3)-violating ratios and CP-violating asymmetries
in the B — (p,w)y decays. Their measurements will either overconstrain the angle o of
the unitarity triangle, or they may lead to the discovery of physics beyond the SM in the
radiative b — dv decays.
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