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1. IntrodutionTwisted K-theory has reently attrated muh attention in various areas in stringtheory and onformal �eld theory. The two main appliations that have rystalized sofar are the lassi�ation of D-brane harges in bakgrounds with non-trivial NSNS 3-formux, as well as the beautiful result by Freed, Hopkins and Teleman (FHT) [1,2,3℄, whihidenti�es the Verlinde algebra for a ompat Lie group G with the twisted equivariant K-theory �KG(G). The main motivation for the present work was to set out and ask, whetherthere is a similar relation between twisted equivariant K-theory and the N = 2 hiral ringfor oset onformal �eld theories. For oset models with groups (G;H) and ommonentre Z, the relevant twisted equivariant K-theories are �KH=Z(G). We ompute theseK-theories in general, thus extending the results of [4℄, and show them to be of the samerank as the N = 2 hiral ring of the oset model in question. However, interestingly,the produt de�ned on the K-theory di�ers from the one on hiral primaries. This newring-struture will be referred to as the (K-theoretial) boundary ring, as it has a naturalinterpretation in terms of a produt struture on (lasses of) D-branes. This may have alose orrespondene with the algebra of BPS states de�ned in [5,6℄. A CFT-disussion ofthis produt will appear in [7℄, extending some of [8℄.In the ontext of D-branes in supersymmetri WZW and oset theories the identi�a-tion of D-brane harges with twisted K-theory has been established in various instanes.The ase of WZW models and the orresponding omputations of twisted K-theories forompat Lie groups is disussed in [9,10,11,12,13,14,15,16,17,18,19℄. For some of theN = 2oset models, namely the Grassmannian osets, the harge latties for the D-branes wereobtained in [20,8,21,22,23,24℄ and the relevant twisted, equivariant K-theories have beenomputed in [4℄. One task, whih will be aomplished in the present paper is to gener-alize the omputation in [4℄ to all N = 2 Kazama-Suzuki oset models [25℄. Despite thesuessful desription of D-brane harges in these theories by means of twisted K-theory,a oneptual understanding of this relation still needs to be eluidated. Some progress tothis end has been obtained for topologial theories in [26℄.On the other hand, the theorem by FHT [1,2,3℄ provides a onrete orrespondenebetween onformal �eld theoretial data, suh as the Verlinde fusion ring, and topology.From a CFT (or rather TFT) point of view, the result by FHT on �KG(G) an be inter-preted as a statement about the D-brane harges in the G=G gauged WZW model, whihis in fat topologial. The next simplest suh theories are the Kazama-Suzuki models {1



whih are onformal, but have N = 2 worldsheet supersymmetry, and thus would allowfor a topologial twisting. The present paper provides a disussion of these N = 2 osetmodels in light of the results in [1,2,3℄. In summary we shall prove the followingTheorem. Let G be a simple, simply-onneted, onneted Lie group and H a onneted,maximal rank subgroup of G, suh that G=H is hermitian symmetri. Let Z be the ommonentre of G and H, whih is assumed to at without �xed points, and denote by R(G;H)p thehiral ring of the orresponding N = 2 oset onformal �eld theory. Thenrank� �Kdim(G)H=Z (G)� �= rank�R(G;H)p � ; (1:1)and the ring struture on the K-theory is�Kdim(G)H=Z (G) �= � RHIk(G)�Z : (1:2)Here, �Kdim(G)H=Z (G) is the twisted H=Z-equivariant K-theory of G, where the ation of Hon G is by onjugation, RH denotes the H-representation ring, Ik(G) is the Verlinde idealof G and the Z-invariant part is taken on the RHS. The twisting � 2 H3H (G) is relatedto the level of the oset model by � = �[H℄, where [H℄ is the generator of H3H (G) and� = k + g_.Assuming the K-theory lassi�ation of D-brane harges [27,28℄, a straight forward impli-ation of the theorem is the followingCorollary. The harge lattie for D-branes in the Kazama-Suzuki oset models assoiatedto (G;H) is of the same rank as the N = 2 hiral ring.As emphasized, the ring struture on the K-theory is however somewhat di�erent from theone on the hiral ring, thus motivating theDe�nition. The (K-theoretial) boundary ring B(G;H)k of the N = 2 oset model is de�nedas the ring in (1.2).The plan of this paper is as follows. In setion 2, we present our main result by omputingthe twisted equivariant K-theories relevant for all Kazama-Suzuki (KS) osets, generalizing[4℄, and prove that the ranks of the K-theory agrees in all instanes with that of the hiralring. We provide the expliit formulae for the ranks, inluding the ranks of the Verlindealgebras (whih to our knowledge have not been expliitly doumented in the literature),the omputation of whih we provide in appendix A. A new boundary ring, motivatedby K-theory, is de�ned in setion 3, and its relation to the standard (bulk) hiral ring isdisussed. The onstrution of elements of the hiral ring as K-theory lasses using familiesof aÆne Dira operators is provided in setion 4 and we lose in setion 5 with disussionsand outlook. 2



2. Twisted equivariant K-theory for Kazama-Suzuki modelsGKO oset models [29℄ (see also [30℄ for further referenes) withN = 1 supersymmetryassoiated to a ompat Lie group G and a maximal rank subgroupH, with orrespondingLie algebras g and h, have hiral algebraA = ĝk � bso(dim(g=h))1ĥk+h_g�h_h ; (2:1)and are known to be N = 2 supersymmetri if the right oset spae G=H is a hermitiansymmetri spae [25℄. The so-obtained Kazama-Suzuki (KS) oset models are thus lassi-�ed by the (irreduible) hermitian symmetri spaes, whih fall into the following lasses[31,25℄: G HSU(n +m) SU(n) � SU(m)� U(1)SO(n+ 2) SO(n)� SO(2)SO(2n) SU(n)� U(1)Sp(2n) SU(n)� U(1)E6 SO(10)� U(1)E7 E6 � U(1)Table 1: Hermitian Symmetri Spaes.Reall, that G=H is hermitian symmetri i� the following ondition is satis�ed on theLie algebras: onsider the orthogonal deomposition g = h � p, with [h; h℄ � h, then theondition reads [h; p℄ � p ; [p; p℄ = 0 ; (2:2)i.e., in partiular p is abelian. More generally the oset is K�ahler if [p; p℄ � p. Note, thatunder these irumstanes, the maximal tori of G and H an be hosen to oinide.In the following we shall be interested in the orresponding twisted equivariant K-theories �KH(G). The K-theories in the ase of projetive osets SU(n + 1)=U(n) and3



generalized superparafermions SU(n+ 1)=U(1)n have been omputed in [4℄. The ompu-tation there relied on the group G being a onneted, simply-onneted Lie group. The�rst step in order to generalize these K-theory omputations to all the oset models or-responding to the spaes listed in table 1, is to note that for hermitian symmetri spaesG=H [31℄(Theorem 4.6) G=H �= eG= eH ; (2:3)where eG denotes the overing group of G. In partiular, the osets based on SO(n) anbe replaed by the orresponding Spin(n) osets, and thus (2.3) allows to treat the K-theory omputation uniformly for all KS models, assuming that all the groups are simply-onneted.In the following we shall always assume that G is a simple, simply-onneted, on-neted Lie group, and H a onneted, maximal rank subgroup of G. Under these irum-stanes, we have shown in [4℄ that the twisted equivariant K-theories an be omputedusing the observation that �KH(G) = �KG(G �H GL) ; (2:4)where GL is ated upon by left-multipliation, whereas the ation on the remaining groupsis by onjugation. This yields by the equivariant K�unneth theorem�KH(G) = �KG(G) 
RG RH = RGIk(G) 
RG RH ; (2:5)where we invoked the result of Freed, Hopkins and Teleman [2,3℄�KG(G) = Vk(G) = RGIk(G) : (2:6)Vk denotes the Verlinde algebra\ and Ik(G) the Verlinde ideal of G at level k, whih isspei�ed by the twisting � . H ats upon G by the onjugation ation. Note that (2.6) isin fat an algebra isomorphism, where the produt on Vk is the fusion produt and on thetwisted K-theory side it is the Pontryagin produt [1,2,3℄. We shall disuss the indued\ As oeÆients in ZZ are used, the orret terminology is in fat ring instead of algebra.However, we shall ontinue to refer to this as the Verlinde algebra, making the oeÆient ring/�eldexpliit, when neessary. 4



produt struture on �KH(G) in the next setion. Further, sine H is onneted and ofmaximal rank, RH is free as an RG-module [32℄, so that�KH(G) = RHIk(G) : (2:7)Thus, in order to determine the rank of the K-theory, we need to ompute the rank ofRH as an RG-module, as well as the rank of the Verlinde algebra. In order to aquire theformer, we reall that by [32℄ K(G=H) = RH 
RG ZZ ; (2:8)i.e., the rank of RH an be omputed via the untwisted K-theory of the symmetri spaes(left-ation osets) in question. By a theorem of Atiyah and Hirzebruh [33℄ (Theorem3.6) K(G=H) = ZZ jWGjjWH j ; (2:9)where WG denotes the Weyl group of G (a more detailed disussion of these K-groups anbe found in [34℄). Thus we arrive at the �nal result�KH(G) = ZZdk(G) jWGjjWH j ; (2:10)where dk(G) = rank(Vk(G)) : (2:11)In order to aquire a totally expliit expression for the rank, we need to determine dk(G)in eah of the above ases. One an e.g. determine dk(G) ombinatorially. dk(G) is equalto the number of integrable highest weights at level k, i.e., it an be determined as thenumber of solutions to the inequality (�; �) � k ; (2:12)where � denotes the highest weight, and � the highest root. That is, one has to ount thenon-negative integer solutions for the Dynkin labels f�(i)g respeting the inequalitynXi=1 �(i)a_i � k ; (2:13)where a_i are the dual Coxeter labels. Doing the ombinatoris, the details of whih weprovide in appendix A, implies table 2 in appendix A.5



Due to the non-trivial seletion rules in the KS oset theories, the relevant K-groupsthat should lassify the D-brane harges are in fat �KH=Z(G), where Z is the ommonentre of G and H. We shall restrit our attention to the ases, when Z ats without �xedpoints. As explained in [4℄, this redues the rank of the K-theory by a fator equal tothe lengths, l(Z), of the orbits of Z ating on the geometri invariant theoretial (GIT)quotient H==H, so that �KH=Z(G) = ZZ dk(G)l(Z) jWGjjWH j : (2:14)Note that the harge lattie is thus preisely of the same rank as the hiral ring of the KSmodels as determined in [35℄.3. N = 2 boundary rings from K-theoryIn view of the result (2.14) it is very tempting to onjeture that the hiral ring of anN = 2 oset model is given by a twisted, equivariant K-theory { muh like the Verlindealgebra is �KG(G). In this setion we will disuss this orrespondene in some detail,and arrive at the onlusion that the twisted K-theory de�nes a ring, whose underlyingZZ-module struture is the same as the hiral ring (i.e., they have the same ranks), but theprodut struture is di�erent.3.1. Proposal for an N = 2 boundary ringThe K-theory for the KS-oset models naturally omes equipped with a produt stru-ture. Traing this through our omputations in the last setion, we see that this is theindued ring struture from �KG(G), whih by FHT is the Pontryagin produt on K-theorylasses[ and agrees with the fusion produt in the Verlinde algebra of G.Let us assume the validity of the onjetural one-to-one orrespondene between K-theory lasses and lasses of D-branes (where the equivalene is say with respet to bound-ary RG ows). Put into this ontext, our K-theory omputation suggests to de�ne thefollowing (K-theoretial) boundary ringB(G;H)k := �Kdim(G)H=Z (G) �= (Vk(G) 
RG RH)Z ; (3:1)[ Note that this makes use of the produt on G in an essential way.6



where the Z-invariant part is taken on the RHS. We shall mostly abbreviate this as Bk.Let us stress, that this is di�erent from the hiral ring of the oset model. In partiular,(3.1) an be written as a quotient of the H-representation ring by the Verlinde ideal of GBk �= � RHIk(G)�Z : (3:2)The D-brane interpretation of this is twofold: �rstly, the K-theory harge lattie seems tobe spanned already by the Cardy branes (labeled by hiral primaries). This is presum-ably due to the worldsheet N = 2 supersymmetry. An interesting exerise, whih mighteluidate this point is to analyze the harges in the topologially twisted Kazama-Suzukimodels. The seond point is, that the K-theory omes naturally with a produt struture,whih therefore orresponds to a produt on equivalene lasses of D-branes. Having saidthis, the ring struture should then in partiular aount for the harge relations, that anbe derived e.g. from a worldsheet point of view. A omplementary CFT disussion of thismatter will appear in [7℄. For the SU(2)=U(1) oset model, the next setion will illustratethat the ring struture does indeed respet the harge relations derived in [20℄.3.2. N = 2 super-minimal modelsThe simplest KS models are the super-minimal models/superparafermions, realizedin terms of SU(2)=U(1). Reall that�KU(1)(SU(2)) = Ru(1)Ik(SU(2)) = ZZ[�; ��1℄hSymk+1(� + ��1) = 0i= 
1; �; ��1; � � � ; Symk+1(� + ��1) = 0� : (3:3)Here, Symn(x) denotes the symmetri polynomial of degree n in x and the generator,�, of RSU(2) has been deomposed with respet to U(1), i.e., � = (� + ��1). For theboundary ring one needs to onsider �KU(1)=Z(SU(2)), i.e. take the invariant part underthe ommon entre Z = �1, whih ats on the representations as � 7! ��, thus removingthe odd powers of �. HeneBk = 
1; �2; ��2; � � � ; Symk+1(� + ��1) = 0� : (3:4)In partiular, the rank is k + 1 and does indeed agree with the one of the hiral ring.However, the relations in the latter are �k+1 = 0, whereas they are Symk+1(� + ��1) = 07



in the K-theory, so that the ring strutures di�er℄. For instane at k = 1 the relation reads�2 + 1 + ��2 = 0, whih does not fator within the ring Bk.Note that if one onsiders only the homogeneous part in � of the Verlinde ideal, thatis in this ase the ideal J = h(� + ��1)k+1 = 0i, the resulting ring would agree with thehiral ring. E.g. for k = 1, the relation is �2 + 2 + ��2 = 0, whih generates the sameideal as �4 + 2�2 + 1 = (�2 + 1)2 = 0. Thus, setting x = �2 + 1, we obtain the samerelation as in the hiral ring. Let us stress that this is however not what one obtains fromthe K-theory and thus in Bk. For level 1, the latter is the quantum deformation of thehiral ring (whih is simply H�(CP 1)) with the deformation parameter set to �1. Thisobservation has in fat been made in [8℄ for the ring obtained from boundary intersetionmatries of D-branes in KS models.Note also, that the boundary ring niely enodes the harge relations in the N = 2super-minimal models. Geometrially the (A-)branes are lines in the dis target spae [20℄.The shortest lines orrespond to the basis of the harge lattie, with the relation that thelosed ring of shortest branes is trivial [20,36℄. This is preisely the relation in Bk, underthe identi�ation of the short branes with the generators � l, l 2 2IN.RemarkWe should digress, and make a remark upon the relation of our results for the super-minimal models to the reent omputations in [37℄. The omputation of D-brane hargesin the N = 2 minimal models su(2)k=u(1) in the paper in question yielded B-brane hargesZZk+2 and as well as A-brane harges ZZk+1. This is not in ontradition with the presentresults and the ones in [4℄, as the omputation in the latter is for the diagonal modu-lar invariant, whereas the omputation in [37℄ seems to be for a (�1)F orbifold thereof(see also omments on this matter in [38℄). A detailed disussion of this point will ap-pear in a forthoming paper [39℄. In brief, for modular invariants, whih are obtained assimple-urrent extensions of the diagonal modular invariant, one has to inorporate theadditional equivariane with respet to the simple-urrent in the orresponding K-theoryomputation. For non-trivial ations on the fermions (i.e., on the so(2d)1 fator), one hasadditional twist hoies apart from H3(X), and for instane the Hopkins K-groups K�[40℄ (see also [28,41℄) are relevant. An example of this has been worked out in [15℄.℄ I thank S. Fredenhagen for disussions on this point.8



3.3. Boundary ring versus hiral ring: Level 1 disussionIn [35,42℄ a geometrial interpretation of the hiral ring has been given for level 1 KSmodels, based on simply-laed groups. There it was proven thatR(G;H)k=1 �= H�(G=H) ; (3:5)where the RHS is the ohomology ring for the right-ation oset spae. Let's see what ourproposal yields in this instane. Our twisted K-theory omputation results in�KH(G) �= Vk=1(G) 
RG K(G=H) : (3:6)Further note that for simply-laed groups, jZj = jVk=1(G)j. Taking the Z-equivarianeinto aount, we infer that rank(R(G;H)k=1 ) = rank( �KH=Z(G)) : (3:7)However the produt struture on the hiral ring, whih in this ase is the wedge produton the ohomology ring of G=H, di�ers from the one on�KH(G) �= � RHI1(G)�Z : (3:8)The reason is again that Z does not have a homogeneous ation on the generators of V1(G).Again, one sees that taking just the highest degree term in the relations for the Verlindeideal at level 1 would give rise to the hiral ring.3.4. Boundary ring versus hiral ring: Relation to fusion ringsIt was observed in [35,42℄, that the hiral ring of an N = 2 oset model an be relatedto Verlinde algebras (i.e., fusion rings). This is most onisely explained by Witten in [43℄.The hiral ring is obtained by quantizing the following phase spaePR = T � T=ZWH ; (3:9)where T is the maximal torus of G (and so also of H).On the other hand one an relate the hiral ring to the representation ring of H bynoting that [44℄ the Verlinde algebra for H is obtained by quantizing the spaePV = T � TWH : (3:10)9



This yields the key relation, that after quantization we obtainR(G;H)p = �V~k(H)�Z ; (3:11)so that the hiral ring of the oset is (in fat only as a lattie) isomorphi to the Z-invariantpart of a quotient of RH by an ideal, whih is not the Verlinde ideal of G. However, thisline of argument is to be taken with a grain of salt, as (3.11) only seems to hold as alattie isomorphism, one annot infer straight away that the produt on the RHS of (3.11)is di�erent from the hiral ring produt, e.g. by onsidering simple examples.3.5. Produt strutureLet us briey disuss the produt on the K-theory, without making use of the relationto RH. One an de�ne the Pontryagin produt on the K-theory lasses, yet again, inomplete analogy to [1℄, namelympon : �KH=Z(G) 
 �KH=Z(G) ! �KH=Z(G) : (3:12)To establish this, onsider the multipliation on the group m : G � G ! G and assumethat the twisting respets this, in the sense that m�(� ) fatorizes over the two groups.Then by pushing forward along m indues the produt�KH=Z(G) 
RG �KH=Z(G) ! ���KH=Z�H=Z(G�G) ! �KH=Z(G�G) ; (3:13)where the �rst map is appliation of the K�unneth theorem. This is equivalent to theprodut, that we enountered in setion 2, whih we obtained by invoking the produt on�KG(G) of FHT, i.e., the produt on (3.1). On the other hand the produt on the hiralring represented in terms of oset �elds is the fusion produt indued from the Verlindealgebras of G and H. More preisely, it is the fusion produt on pairs of primaries in Vk(G)and Vk+g_(H), respetively, modulo seletion and identi�ation rules. In partiular this isdistint from (3.1). 10



4. The N = 2 hiral ring and twisted equivariant K-theoryReall that the FHT theorem states the isomorphism�Kdim(G)G (G) �= Vk(G) ; (4:1)where � = k + h_ is the twist-lass in H3G(G). The proof of this theorem in [3℄ is basedon onstruting the K-theory lasses from families of aÆne Dira operators on loop spae.In this setion we divert from the main thread of the paper and explain how a relatedonstrution an be put forward for the hiral ring. Only at the end, we shall ommentagain on the relation to the boundary ring.As a motivation, �rst reall the onstrution of the hiral ring in [35℄ for the N = 2oset theory with hiral algebra (2.1). The essential ingredient is an index omputationfor the N = 2 superharges (aÆne Dira operators), more preisely, the hiral primaries(or, by spetral ow, the RR ground states) are solutions toG�j' i = 0 ; (4:2)where the aÆne Dira operators are de�ned as (negleting for the present disussion irrel-evant prefators)G� = D/�Lĝ=Lĥ = �J���n ��n � 112 f�����  ��n  ��m  ��n�m� ; (4:3)where  � are adjoint fermions transforming under the so(2d)1 algebra, and the �'s aresummed over the positive roots of g=h. Note that for trivial h, D/+ is preisely the aÆneDira operator that enters the onstrution of the G=G twisted K-theory in [3℄. In fat,the zeroes of the aÆne Dira operator D/+ for both the WZW and oset models have beenomputed by Landweber in [45℄, in analogy to the analysis for �nite-dimensional Lie groupsby Kostant [46℄.The key idea of Mikelsson [47℄ and Freed-Hopkins-Teleman [3℄, whih provides thelink to twisted K-theory, is to ouple the Dira-operator on Lg to an Lg�-valued gauge�eld. The kernel of the aÆne Dira operator on Lg is trivial, however the gauge-oupledDira operator (in the following referred to as the FHT Dira family) has non-trivial kernel,to whih one an assoiate a twisted K-theory lass on G.11



4.1. Review of Dira-family onstrution for the Verlinde algebraFirst we review the Dira-family onstrution for (4.1). Throughout this setion weshall adopt the onventions of [3℄. Consider the following (gauge-oupled) family of aÆneDira operators D/ FHT� = D/Lg + i (�) ; (4:4)for � 2 Lg� (f. (4.11) in [47℄, (11.2) in [3℄), where the aÆne Dira operator on Lg isde�ned by D/Lg = X�2�Lg0�J��n ��n � 112 X�;2�Lg f� �  �n  �m  ��n�m1A : (4:5)Furthermore,  (�) denotes Cli�ord multipliation with this element of Cli�(Lg). D/ atson H�
SLg, where H� is an integrable highest weight representation of Lg, and S the spinrepresentation. The key properties of this family are: The Dira family (4.5) is equivariantunder the o-adjoint ation of LG. This an be mapped to the gauge ation of LG on thespae A of g-valued onnetions on the irle by identifying the level k hyperplanes in Lg�kin the following fashion k�+Lg� ! Ak�+ � 7! ddt + �k : (4:6)Further, ating on a highest weight module H� 
 S, the kernel of D/ � is loalized on theo-adjoint orbits, denoted OLg� , of � + �, � being the highest root. The kernels for eahelement in OLg� are given by the image under the o-adjoint ation of the lowest-weightspae of H� 
 S, and give rise to a twisted, equivariant vetor bundle loalized on OLg� .From this data one an now onstrut a twisted equivariant K-theory lass on G byusing (4.6): namely, the o-adjoint ation, say for the level 1 hyperplane �+ Lg� � Lg ispreisely given by the gauge ation on a onnetiong � (�; 1) = (adg(�) � dgg�1; 1) ; (4:7)for g 2 LG. Further, one an map a onnetion in A to an element in G by utilizing theholonomy map Hol : A! G : (4:8)Then the o-adjoint ation, a.k.a. gauge ation, in (4.7) maps toHol(g � (�; 1)) = g(0)Hol(�)g(0)�1 : (4:9)12



In this way we an map the Dira family on Lg� to one on G, and the equivariane withrespet to LG maps to an equivariane with respet to the adjoint ation of G on itself. Insummary, this onstrution thus gives rise to a twisted K-theory lass on G, equivariantunder the adjoint ation of G.4.2. Dira-family onstrution for the hiral ringSome related disussions for H = T the maximal torus of G has appeared in [3℄,relating �KG(G) to �KT (T ). For our purposes, we ontinue to assume only that G issimply-onneted and G=H is hermitian symmetri, thus ensuring the existene of N = 2supersymmetry. Consider the aÆne Dira operator D/ � D/Lg=Lh = D/� + D/+ (f. (4.3))ating on H� 
 SLp for H� an integrable highest weight representation of Lgk. Thisrepresentation an be deomposed with respet to the subalgebra LhH� = M�2Lh�M��V� ; (4:10)where V� is a highest weight representation of Lh, M�� being the state spaes of the osettheory. Note that for the ase of interest when G=H is hermitian symmetri, the Diraoperator simpli�es drastially, as p is ommutative, so that D/ = J �  .In [35℄ and [45℄ the kernel of D/ ating on H� 
 SLp is determined askerD/ Lg=Lh ��H�
SLp = M(�;�)2CV� 
SLp ; (4:11)where℄C = n(�; �) 2 Lg� � Lh� ; � + �̂h = �(� + �̂g) ; for some � 2 Ŵg=Ŵho : (4:12)The ring of hiral primaries R(G;H)p ontains stritly speaking only a subset of the hiralprimaries in the kernel of the Dira operator. More preisely, it is generated by theprimaries in ker(D/ ), whih by (4.11) is identi�ed with the elements of C, modulo �eldidenti�ations, whih reside in the ommon entre Z of G and H, i.e.,Rp = 
�(�;�) ; (�; �) 2 C�ÆZ : (4:13)℄ This is in fat the ondition for RR groundstates, whih we however shall use interhangeablywith hiral primaries, via spetral ow. More preisely the set of hiral primaries is (�; �) with�(�+ �g) = � + �g. So we should denote by C the set of oset weights satisfying this property.13



The following onstrution will show that for eah element inRp there exists a twistedH-equivariant K-theory lass onH. Consider to begin with the omplex de�ned by D/ Lg=Lhating on H� 
 SLp. De�ne a family of Dira operators on Lh� asLh� ! End((H� 
 Sp;D/Lg=Lh))� 7! D/ �Lh ; (4:14)where we de�ned the (gauge-oupled) family of Dira operatorsD/ �Lh = D/Lh + i (�) ; � 2 Lh� : (4:15)Taking the kernel of D/ �Lh on the omplex (H� 
Sp;D/Lg=Lh) amounts to deomposing thekernel of D/Lg=Lh as ating on H�
S into Lh representations, meaning the deomposition(4.11). So, this will result in a map from the Verlinde ring of �KG(G) to the one of H,i.e., �KG(G) ! � 0KH(H)� bLg� 7! X(�;�)2C� bLh� : (4:16)Note that the elements of the hiral ring an also be viewed as semi-in�nite Lie algebraohomology elements, as disussed in [35℄. Deomposing Lp = Lp+ � Lp� suh that[p�; p�℄ � p�, the kernel of D/Lg=Lh ating on H� 
 SLp iskerD/Lg=Lh��H�
SLp = H�(Lp�;H�) : (4:17)In this way one obtains a map from Vk(G) ! Vk+h_g�h_h (H), mapping preisely as in (4.16).5. Disussions and OutlookIn summary, we have de�ned a boundary ring Bk for N = 2 oset models (G;H) interms of the twisted equivariant K-theory �KH=Z(G). The rank of Bk agrees with that ofthe hiral ring of the oset model, however the produt strutures di�er. Both rings arequotients of the representation ring of H, with respet to the Verlinde ideals of G and ofH, at spei� levels, respetively.The present analysis is somewhat reminisent of the theorem by Freed-Hopkins-Teleman, whih identi�es the Verlinde algebra Vk(G) with the twisted equivariant K-theory�KG(G). Naively, one might have antiipated an isomorphism between �KH=Z(G) and the14



hiral ring, whih not only respets the struture as abelian groups, but also the produts.This is however not the ase. More to the point, the present result suggests that theK-theory assoiated to a partiular sigma-model gives rise to an algebra on lasses of D-branes. This may well tie in with the algebra of BPS states de�ned by Harvey and Moore[5,6℄. The natural interpretation of FHT in this light is, that for the topologial G=G osetmodel the D-brane harge relations obey the Verlinde algebra of G.It would be interesting to understand, what the preise relation between Bk and thehiral ring is, e.g., if one an be obtained as a deformation of the other, and possiblerelations to the quantum ohomology ring may be interesting to explore. The boundaryring in the ase of superminimal models, disussed in setion 3.2, turned out to be adeformation of the hiral ring (by taking essentially only the highest degree omponent ofthe fusion ideal). In this ase, the boundary ring is a quantum deformed version of thebulk hiral ring. Two immediate questions arise: �rstly, whether this holds for all KS osetmodels, i.e., the boundary ring is given by a quantum (or otherwise) deformed bulk hiralring and seondly, whether this has any impliations upon twisted K-theory.One spin-o� of our results is the agreement of the rank of the harge lattie of theD-branes with the rank of the hiral ring. This is a result that had been antiipatedalready in [4℄ and suggests that the Cardy boundary states provide a omplete basis forthe harge lattie. One an in fat de�ne a produt on these Cardy boundary states (andthis will be disussed in detail in [7℄), whih should then agree with the produt in theboundary ring Bk. Another interesting line of thought would be to study the D-branesin the topologially twisted KS models in this light. Suh a worldsheet derivation of theboundary ring, whether in the full CFT or in the topologially twisted model, will ertainlysubstantiate the proposal put forward in this paper, and may help eluidating the relationbetween boundary onformal �eld theory and K-theory.AknowledgmentsI am grateful to Stefan Fredenhagen for important disussions. Thanks also to VolkerBraun, Greg Moore and Constantin Teleman for interesting omments, as well as AxelKleinshmidt and Christian Stahn for mathematial advie related to the appendix. Hos-pitality of the IH�ES during the \Workshop avant Strings" and of DAMTP, Cambridge, isgratefully aknowledged. This work is partially supported by the European RTN ProgramHPRN-CT-2000-00148. 15



Appendix A. Computation of the ranks of the Verlinde algebrasIn this appendix we shall prove expliit formulae for the rank of the fusion ring dk(G)for the groups G appearing in table 1. For the groups in question, the relations, of whihfor �xed k one needs to enumerate the non-negative integral solutions for f�(i)g, areAn = SU(n+ 1) : nXi=1 �(i) � kDn = SO(2n) : �(1) +�(n�1) +�(n) + 2 n�2Xi=2 �(i) � kBn = SO(2n+ 1) : �(1) +�(n) + 2 n�1Xi=2 �(i) � kCn = Sp(2n) : nXi=1 �(i) � kE6 : �(1) +�(5) + 2(�(2) +�(4) +�(6)) + 3�(3) � kE7 : �(6) + 2(�(1) +�(5) +�(7)) + 3(�(2) +�(4)) + 4�(3) � k :(A.1)In summary we obtain table 2, where k is the level of the aÆne algebra orresponding toG, � 2 IN0 and n 2 IN. G k dk(G)An k �n+kk �Bn+2 2� �n+�+1n+1 �+ 4�n+�+1n+2 �Bn+2 2�+ 1 3�n+�+1n+1 �+ 4�n+�+1n+2 �Cn k �n+kk �Dn+3 2� �n+�+1n+1 �+ 8�n+�+2n+3 �Dn+3 2�+ 1 4�n+�+2n+2 �+ 8�n+�+2n+3 �E6 k (A.14)E7 k (A.17)Table 2: Ranks dk(G) of the Verlinde algebras Vk(G).16



The remainder of this appendix will give the derivations of the relations in table 2.For SU(n + 1) and Sp(2n) the argument is straight forward. To prove the assertion inthis ase one an proeed by indution upon k. The ase k = 0 is trivially satis�ed. Theindution step follows by usingdk�1(G) +�n+ k � 1k � = �n+ k � 1k � 1 �+�n+ k � 1k � = �n+ kk � = dk(G) ; (A.2)whih implies the required formula, as the number of partitions of k into n parts is �n+k�1k �.Next, we onsider G = Bn = SO(2n+1). By using the result of SU(2n+1) the rankof the fusion ring for SO(2n+ 1) (n � 3) isdk(SO(2n + 1)) = kX�(1)=0 k��(1)X�(n)=0�n� 2 + hk��(1)��(n)2 in� 2 � = kX�=0(� + 1)�n� 2 + �k��2 �n� 2 � :(A.3)Using kXl=0 �n+ ln � = �n+ 1 + kn+ 1 � ; kXl=0 l�n+ ln � = (n+ 1)�n+ k + 1n+ 2 � ; (A.4)one an sum these to obtain for even level 2kd2k(SO(2(N + 2) + 1))= �2(N + 1)�N + k + 1N + 2 �+ (2k + 1)�N + k + 1N + 1 �� 2(N + 1)�N + kN + 2�+ 2k�N + kN + 1�= �2N�N + k + 1N + 2 �+ (2k + 1)�N + k + 1N + 1 � : (A.5)This formula an be further simpli�ed straight-forwardly by e.g., expanding out one of thebinomial oeÆientsd2k(SO(2(N + 2) + 1)) = �N + k + 1N + 1 �+ 4�N + k + 1N + 2 � : (A.6)For odd level 2k + 1 the rank is omputed byd2k+1(SO(2(N + 2) + 1)) = (4�+ 3)�N + �+ 1N + 1 �� 4(N + 1)�N + �+ 1N + 2 �= 3�N + �+ 1N + 1 �+ 4�N + �+ 1N + 2 � : (A.7)17



Next onsider Dn. We proeed analogously by omputingdk(SO(2n)) = kX�(1)=0 k��(1)X�(n)=0 k��(1)��(n)X�(n�1)=0 �n� 3 + hk��(1)��(n)��(n�1)2 in� 3 �= kX�=0 (� + 1)(� + 2)2 �n� 3 + �k��2 �n� 3 � : (A.8)In order to evaluate this, note thatkXl=0 l2�n+ ln � = (n+ 1)(n + 2)�n+ k + 2n+ 3 �� (n+ 1)2�n+ k + 1n+ 2 �= (n+ 1)(n + 2)�n+ k + 1n+ 3 �+ (n+ 1)�n+ k + 1n+ 2 � : (A.9)Evaluation of the sum (A.8) yields for even level k = 2�d2�(Dn+3) = kX�=0(2�� 2�+ 1)2�n+�n �= (2�+ 1)2�n+ �+ 1n+ 1 �� 4(n+ 1)�n+ �+ 2n+ 3 �� 4�(n+ 1)�n+ �+ 1n+ 2 �= �n+ �+ 1n+ 1 �+ 8�n+ �+ 2n+ 3 � : (A.10)For odd level the rank is omputed to bed2�+1(Dn+3) = kX�=0 4(�� �+ 1)2�n+�n �= 4(�+ 1)2�n+ �+ 1n+ 1 �� 4(n+ 1)�n+ �+ 2n+ 3 �� 4(�+ 1)(n+ 1)�n+ �+ 1n+ 2 �= 4�n+ �+ 2n+ 2 �+ 8�n+ �+ 2n+ 3 � : (A.11)The ase of E6 an be derived by using the result for B5dk(E6) = kX�=0��k � �3 �+ 1� (d�(B5) � d��1(B5)) : (A.12)There are three ases to be onsidered: k = 3�, k = 3� + 1 and k = 3� + 2, for � 2 IN0.In eah of these ases we obtain the following sumsd3�+s(E6) = �X�=0(�� �+ 1) (d3�+s(B5)� d3��3+s(B5)) (A.13)18



=  �X�=0 d3�+s(B5)! � (�+ 1)ds�3(B5) ; s = 0; 1; 2 : (A.14)Note, that d�(G) = 0 for � < 0.For E7 one again proeeds stepwise. For �xed value of k4 = �(6)+2(�(1)+�(5)+�(7))one has k4X�(6)=0�3 + hk4��(6)2 i3 � ; (A.15)and for �xed k6 = �(6) + 2(�(1) +�(5) +�(7)) + 3(�(2) ++�(4))nk6 = k6X�(4)=0 k6��(4)X�(2)=0 h k6��(2)��(4)3 iX�(6)=0 0B� 3 + 24hk6��(2)��(4)3 i��(6)2 353 1CA (A.16)Iterating this proedure, we arrive atdk(E7) = kX�(3)=0n�(3) : (A.17)In summary we obtain table 2.Note that these multipliity formulae an also be extrated from the generating fun-tion A(a1;���;an)(q) = (1� q)�1 nYi=1(1� qai)�1= 1Xk=0 dk(G)qk ; (A.18)whih ounts the non-negative integer solutions f�(i)g toa1�(1) + � � �+ an�(n) � k ; (A.19)where the hoie of group G determines the oeÆients ai 2 IN0 as e.g. in (A.1).
19
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