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1. Introdu
tionTwisted K-theory has re
ently attra
ted mu
h attention in various areas in stringtheory and 
onformal �eld theory. The two main appli
ations that have 
rystalized sofar are the 
lassi�
ation of D-brane 
harges in ba
kgrounds with non-trivial NSNS 3-form
ux, as well as the beautiful result by Freed, Hopkins and Teleman (FHT) [1,2,3℄, whi
hidenti�es the Verlinde algebra for a 
ompa
t Lie group G with the twisted equivariant K-theory �KG(G). The main motivation for the present work was to set out and ask, whetherthere is a similar relation between twisted equivariant K-theory and the N = 2 
hiral ringfor 
oset 
onformal �eld theories. For 
oset models with groups (G;H) and 
ommon
entre Z, the relevant twisted equivariant K-theories are �KH=Z(G). We 
ompute theseK-theories in general, thus extending the results of [4℄, and show them to be of the samerank as the N = 2 
hiral ring of the 
oset model in question. However, interestingly,the produ
t de�ned on the K-theory di�ers from the one on 
hiral primaries. This newring-stru
ture will be referred to as the (K-theoreti
al) boundary ring, as it has a naturalinterpretation in terms of a produ
t stru
ture on (
lasses of) D-branes. This may have a
lose 
orresponden
e with the algebra of BPS states de�ned in [5,6℄. A CFT-dis
ussion ofthis produ
t will appear in [7℄, extending some of [8℄.In the 
ontext of D-branes in supersymmetri
 WZW and 
oset theories the identi�
a-tion of D-brane 
harges with twisted K-theory has been established in various instan
es.The 
ase of WZW models and the 
orresponding 
omputations of twisted K-theories for
ompa
t Lie groups is dis
ussed in [9,10,11,12,13,14,15,16,17,18,19℄. For some of theN = 2
oset models, namely the Grassmannian 
osets, the 
harge latti
es for the D-branes wereobtained in [20,8,21,22,23,24℄ and the relevant twisted, equivariant K-theories have been
omputed in [4℄. One task, whi
h will be a

omplished in the present paper is to gener-alize the 
omputation in [4℄ to all N = 2 Kazama-Suzuki 
oset models [25℄. Despite thesu

essful des
ription of D-brane 
harges in these theories by means of twisted K-theory,a 
on
eptual understanding of this relation still needs to be elu
idated. Some progress tothis end has been obtained for topologi
al theories in [26℄.On the other hand, the theorem by FHT [1,2,3℄ provides a 
on
rete 
orresponden
ebetween 
onformal �eld theoreti
al data, su
h as the Verlinde fusion ring, and topology.From a CFT (or rather TFT) point of view, the result by FHT on �KG(G) 
an be inter-preted as a statement about the D-brane 
harges in the G=G gauged WZW model, whi
his in fa
t topologi
al. The next simplest su
h theories are the Kazama-Suzuki models {1



whi
h are 
onformal, but have N = 2 worldsheet supersymmetry, and thus would allowfor a topologi
al twisting. The present paper provides a dis
ussion of these N = 2 
osetmodels in light of the results in [1,2,3℄. In summary we shall prove the followingTheorem. Let G be a simple, simply-
onne
ted, 
onne
ted Lie group and H a 
onne
ted,maximal rank subgroup of G, su
h that G=H is hermitian symmetri
. Let Z be the 
ommon
entre of G and H, whi
h is assumed to a
t without �xed points, and denote by R(G;H)
p the
hiral ring of the 
orresponding N = 2 
oset 
onformal �eld theory. Thenrank� �Kdim(G)H=Z (G)� �= rank�R(G;H)
p � ; (1:1)and the ring stru
ture on the K-theory is�Kdim(G)H=Z (G) �= � RHIk(G)�Z : (1:2)Here, �Kdim(G)H=Z (G) is the twisted H=Z-equivariant K-theory of G, where the a
tion of Hon G is by 
onjugation, RH denotes the H-representation ring, Ik(G) is the Verlinde idealof G and the Z-invariant part is taken on the RHS. The twisting � 2 H3H (G) is relatedto the level of the 
oset model by � = �[H℄, where [H℄ is the generator of H3H (G) and� = k + g_.Assuming the K-theory 
lassi�
ation of D-brane 
harges [27,28℄, a straight forward impli-
ation of the theorem is the followingCorollary. The 
harge latti
e for D-branes in the Kazama-Suzuki 
oset models asso
iatedto (G;H) is of the same rank as the N = 2 
hiral ring.As emphasized, the ring stru
ture on the K-theory is however somewhat di�erent from theone on the 
hiral ring, thus motivating theDe�nition. The (K-theoreti
al) boundary ring B(G;H)k of the N = 2 
oset model is de�nedas the ring in (1.2).The plan of this paper is as follows. In se
tion 2, we present our main result by 
omputingthe twisted equivariant K-theories relevant for all Kazama-Suzuki (KS) 
osets, generalizing[4℄, and prove that the ranks of the K-theory agrees in all instan
es with that of the 
hiralring. We provide the expli
it formulae for the ranks, in
luding the ranks of the Verlindealgebras (whi
h to our knowledge have not been expli
itly do
umented in the literature),the 
omputation of whi
h we provide in appendix A. A new boundary ring, motivatedby K-theory, is de�ned in se
tion 3, and its relation to the standard (bulk) 
hiral ring isdis
ussed. The 
onstru
tion of elements of the 
hiral ring as K-theory 
lasses using familiesof aÆne Dira
 operators is provided in se
tion 4 and we 
lose in se
tion 5 with dis
ussionsand outlook. 2



2. Twisted equivariant K-theory for Kazama-Suzuki modelsGKO 
oset models [29℄ (see also [30℄ for further referen
es) withN = 1 supersymmetryasso
iated to a 
ompa
t Lie group G and a maximal rank subgroupH, with 
orrespondingLie algebras g and h, have 
hiral algebraA = ĝk � bso(dim(g=h))1ĥk+h_g�h_h ; (2:1)and are known to be N = 2 supersymmetri
 if the right 
oset spa
e G=H is a hermitiansymmetri
 spa
e [25℄. The so-obtained Kazama-Suzuki (KS) 
oset models are thus 
lassi-�ed by the (irredu
ible) hermitian symmetri
 spa
es, whi
h fall into the following 
lasses[31,25℄: G HSU(n +m) SU(n) � SU(m)� U(1)SO(n+ 2) SO(n)� SO(2)SO(2n) SU(n)� U(1)Sp(2n) SU(n)� U(1)E6 SO(10)� U(1)E7 E6 � U(1)Table 1: Hermitian Symmetri
 Spa
es.Re
all, that G=H is hermitian symmetri
 i� the following 
ondition is satis�ed on theLie algebras: 
onsider the orthogonal de
omposition g = h � p, with [h; h℄ � h, then the
ondition reads [h; p℄ � p ; [p; p℄ = 0 ; (2:2)i.e., in parti
ular p is abelian. More generally the 
oset is K�ahler if [p; p℄ � p. Note, thatunder these 
ir
umstan
es, the maximal tori of G and H 
an be 
hosen to 
oin
ide.In the following we shall be interested in the 
orresponding twisted equivariant K-theories �KH(G). The K-theories in the 
ase of proje
tive 
osets SU(n + 1)=U(n) and3



generalized superparafermions SU(n+ 1)=U(1)n have been 
omputed in [4℄. The 
ompu-tation there relied on the group G being a 
onne
ted, simply-
onne
ted Lie group. The�rst step in order to generalize these K-theory 
omputations to all the 
oset models 
or-responding to the spa
es listed in table 1, is to note that for hermitian symmetri
 spa
esG=H [31℄(Theorem 4.6) G=H �= eG= eH ; (2:3)where eG denotes the 
overing group of G. In parti
ular, the 
osets based on SO(n) 
anbe repla
ed by the 
orresponding Spin(n) 
osets, and thus (2.3) allows to treat the K-theory 
omputation uniformly for all KS models, assuming that all the groups are simply-
onne
ted.In the following we shall always assume that G is a simple, simply-
onne
ted, 
on-ne
ted Lie group, and H a 
onne
ted, maximal rank subgroup of G. Under these 
ir
um-stan
es, we have shown in [4℄ that the twisted equivariant K-theories 
an be 
omputedusing the observation that �KH(G) = �KG(G �H GL) ; (2:4)where GL is a
ted upon by left-multipli
ation, whereas the a
tion on the remaining groupsis by 
onjugation. This yields by the equivariant K�unneth theorem�KH(G) = �KG(G) 
RG RH = RGIk(G) 
RG RH ; (2:5)where we invoked the result of Freed, Hopkins and Teleman [2,3℄�KG(G) = Vk(G) = RGIk(G) : (2:6)Vk denotes the Verlinde algebra\ and Ik(G) the Verlinde ideal of G at level k, whi
h isspe
i�ed by the twisting � . H a
ts upon G by the 
onjugation a
tion. Note that (2.6) isin fa
t an algebra isomorphism, where the produ
t on Vk is the fusion produ
t and on thetwisted K-theory side it is the Pontryagin produ
t [1,2,3℄. We shall dis
uss the indu
ed\ As 
oeÆ
ients in ZZ are used, the 
orre
t terminology is in fa
t ring instead of algebra.However, we shall 
ontinue to refer to this as the Verlinde algebra, making the 
oeÆ
ient ring/�eldexpli
it, when ne
essary. 4



produ
t stru
ture on �KH(G) in the next se
tion. Further, sin
e H is 
onne
ted and ofmaximal rank, RH is free as an RG-module [32℄, so that�KH(G) = RHIk(G) : (2:7)Thus, in order to determine the rank of the K-theory, we need to 
ompute the rank ofRH as an RG-module, as well as the rank of the Verlinde algebra. In order to a
quire theformer, we re
all that by [32℄ K(G=H) = RH 
RG ZZ ; (2:8)i.e., the rank of RH 
an be 
omputed via the untwisted K-theory of the symmetri
 spa
es(left-a
tion 
osets) in question. By a theorem of Atiyah and Hirzebru
h [33℄ (Theorem3.6) K(G=H) = ZZ jWGjjWH j ; (2:9)where WG denotes the Weyl group of G (a more detailed dis
ussion of these K-groups 
anbe found in [34℄). Thus we arrive at the �nal result�KH(G) = ZZdk(G) jWGjjWH j ; (2:10)where dk(G) = rank(Vk(G)) : (2:11)In order to a
quire a totally expli
it expression for the rank, we need to determine dk(G)in ea
h of the above 
ases. One 
an e.g. determine dk(G) 
ombinatorially. dk(G) is equalto the number of integrable highest weights at level k, i.e., it 
an be determined as thenumber of solutions to the inequality (�; �) � k ; (2:12)where � denotes the highest weight, and � the highest root. That is, one has to 
ount thenon-negative integer solutions for the Dynkin labels f�(i)g respe
ting the inequalitynXi=1 �(i)a_i � k ; (2:13)where a_i are the dual Coxeter labels. Doing the 
ombinatori
s, the details of whi
h weprovide in appendix A, implies table 2 in appendix A.5



Due to the non-trivial sele
tion rules in the KS 
oset theories, the relevant K-groupsthat should 
lassify the D-brane 
harges are in fa
t �KH=Z(G), where Z is the 
ommon
entre of G and H. We shall restri
t our attention to the 
ases, when Z a
ts without �xedpoints. As explained in [4℄, this redu
es the rank of the K-theory by a fa
tor equal tothe lengths, l(Z), of the orbits of Z a
ting on the geometri
 invariant theoreti
al (GIT)quotient H==H, so that �KH=Z(G) = ZZ dk(G)l(Z) jWGjjWH j : (2:14)Note that the 
harge latti
e is thus pre
isely of the same rank as the 
hiral ring of the KSmodels as determined in [35℄.3. N = 2 boundary rings from K-theoryIn view of the result (2.14) it is very tempting to 
onje
ture that the 
hiral ring of anN = 2 
oset model is given by a twisted, equivariant K-theory { mu
h like the Verlindealgebra is �KG(G). In this se
tion we will dis
uss this 
orresponden
e in some detail,and arrive at the 
on
lusion that the twisted K-theory de�nes a ring, whose underlyingZZ-module stru
ture is the same as the 
hiral ring (i.e., they have the same ranks), but theprodu
t stru
ture is di�erent.3.1. Proposal for an N = 2 boundary ringThe K-theory for the KS-
oset models naturally 
omes equipped with a produ
t stru
-ture. Tra
ing this through our 
omputations in the last se
tion, we see that this is theindu
ed ring stru
ture from �KG(G), whi
h by FHT is the Pontryagin produ
t on K-theory
lasses[ and agrees with the fusion produ
t in the Verlinde algebra of G.Let us assume the validity of the 
onje
tural one-to-one 
orresponden
e between K-theory 
lasses and 
lasses of D-branes (where the equivalen
e is say with respe
t to bound-ary RG 
ows). Put into this 
ontext, our K-theory 
omputation suggests to de�ne thefollowing (K-theoreti
al) boundary ringB(G;H)k := �Kdim(G)H=Z (G) �= (Vk(G) 
RG RH)Z ; (3:1)[ Note that this makes use of the produ
t on G in an essential way.6



where the Z-invariant part is taken on the RHS. We shall mostly abbreviate this as Bk.Let us stress, that this is di�erent from the 
hiral ring of the 
oset model. In parti
ular,(3.1) 
an be written as a quotient of the H-representation ring by the Verlinde ideal of GBk �= � RHIk(G)�Z : (3:2)The D-brane interpretation of this is twofold: �rstly, the K-theory 
harge latti
e seems tobe spanned already by the Cardy branes (labeled by 
hiral primaries). This is presum-ably due to the worldsheet N = 2 supersymmetry. An interesting exer
ise, whi
h mightelu
idate this point is to analyze the 
harges in the topologi
ally twisted Kazama-Suzukimodels. The se
ond point is, that the K-theory 
omes naturally with a produ
t stru
ture,whi
h therefore 
orresponds to a produ
t on equivalen
e 
lasses of D-branes. Having saidthis, the ring stru
ture should then in parti
ular a

ount for the 
harge relations, that 
anbe derived e.g. from a worldsheet point of view. A 
omplementary CFT dis
ussion of thismatter will appear in [7℄. For the SU(2)=U(1) 
oset model, the next se
tion will illustratethat the ring stru
ture does indeed respe
t the 
harge relations derived in [20℄.3.2. N = 2 super-minimal modelsThe simplest KS models are the super-minimal models/superparafermions, realizedin terms of SU(2)=U(1). Re
all that�KU(1)(SU(2)) = Ru(1)Ik(SU(2)) = ZZ[�; ��1℄hSymk+1(� + ��1) = 0i= 
1; �; ��1; � � � ; Symk+1(� + ��1) = 0� : (3:3)Here, Symn(x) denotes the symmetri
 polynomial of degree n in x and the generator,�, of RSU(2) has been de
omposed with respe
t to U(1), i.e., � = (� + ��1). For theboundary ring one needs to 
onsider �KU(1)=Z(SU(2)), i.e. take the invariant part underthe 
ommon 
entre Z = �1, whi
h a
ts on the representations as � 7! ��, thus removingthe odd powers of �. Hen
eBk = 
1; �2; ��2; � � � ; Symk+1(� + ��1) = 0� : (3:4)In parti
ular, the rank is k + 1 and does indeed agree with the one of the 
hiral ring.However, the relations in the latter are �k+1 = 0, whereas they are Symk+1(� + ��1) = 07



in the K-theory, so that the ring stru
tures di�er℄. For instan
e at k = 1 the relation reads�2 + 1 + ��2 = 0, whi
h does not fa
tor within the ring Bk.Note that if one 
onsiders only the homogeneous part in � of the Verlinde ideal, thatis in this 
ase the ideal J = h(� + ��1)k+1 = 0i, the resulting ring would agree with the
hiral ring. E.g. for k = 1, the relation is �2 + 2 + ��2 = 0, whi
h generates the sameideal as �4 + 2�2 + 1 = (�2 + 1)2 = 0. Thus, setting x = �2 + 1, we obtain the samerelation as in the 
hiral ring. Let us stress that this is however not what one obtains fromthe K-theory and thus in Bk. For level 1, the latter is the quantum deformation of the
hiral ring (whi
h is simply H�(CP 1)) with the deformation parameter set to �1. Thisobservation has in fa
t been made in [8℄ for the ring obtained from boundary interse
tionmatri
es of D-branes in KS models.Note also, that the boundary ring ni
ely en
odes the 
harge relations in the N = 2super-minimal models. Geometri
ally the (A-)branes are lines in the dis
 target spa
e [20℄.The shortest lines 
orrespond to the basis of the 
harge latti
e, with the relation that the
losed ring of shortest branes is trivial [20,36℄. This is pre
isely the relation in Bk, underthe identi�
ation of the short branes with the generators � l, l 2 2IN.RemarkWe should digress, and make a remark upon the relation of our results for the super-minimal models to the re
ent 
omputations in [37℄. The 
omputation of D-brane 
hargesin the N = 2 minimal models su(2)k=u(1) in the paper in question yielded B-brane 
hargesZZk+2 and as well as A-brane 
harges ZZk+1. This is not in 
ontradi
tion with the presentresults and the ones in [4℄, as the 
omputation in the latter is for the diagonal modu-lar invariant, whereas the 
omputation in [37℄ seems to be for a (�1)F orbifold thereof(see also 
omments on this matter in [38℄). A detailed dis
ussion of this point will ap-pear in a forth
oming paper [39℄. In brief, for modular invariants, whi
h are obtained assimple-
urrent extensions of the diagonal modular invariant, one has to in
orporate theadditional equivarian
e with respe
t to the simple-
urrent in the 
orresponding K-theory
omputation. For non-trivial a
tions on the fermions (i.e., on the so(2d)1 fa
tor), one hasadditional twist 
hoi
es apart from H3(X), and for instan
e the Hopkins K-groups K�[40℄ (see also [28,41℄) are relevant. An example of this has been worked out in [15℄.℄ I thank S. Fredenhagen for dis
ussions on this point.8



3.3. Boundary ring versus 
hiral ring: Level 1 dis
ussionIn [35,42℄ a geometri
al interpretation of the 
hiral ring has been given for level 1 KSmodels, based on simply-la
ed groups. There it was proven thatR(G;H)k=1 �= H�(G=H) ; (3:5)where the RHS is the 
ohomology ring for the right-a
tion 
oset spa
e. Let's see what ourproposal yields in this instan
e. Our twisted K-theory 
omputation results in�KH(G) �= Vk=1(G) 
RG K(G=H) : (3:6)Further note that for simply-la
ed groups, jZj = jVk=1(G)j. Taking the Z-equivarian
einto a

ount, we infer that rank(R(G;H)k=1 ) = rank( �KH=Z(G)) : (3:7)However the produ
t stru
ture on the 
hiral ring, whi
h in this 
ase is the wedge produ
ton the 
ohomology ring of G=H, di�ers from the one on�KH(G) �= � RHI1(G)�Z : (3:8)The reason is again that Z does not have a homogeneous a
tion on the generators of V1(G).Again, one sees that taking just the highest degree term in the relations for the Verlindeideal at level 1 would give rise to the 
hiral ring.3.4. Boundary ring versus 
hiral ring: Relation to fusion ringsIt was observed in [35,42℄, that the 
hiral ring of an N = 2 
oset model 
an be relatedto Verlinde algebras (i.e., fusion rings). This is most 
on
isely explained by Witten in [43℄.The 
hiral ring is obtained by quantizing the following phase spa
ePR = T � T=ZWH ; (3:9)where T is the maximal torus of G (and so also of H).On the other hand one 
an relate the 
hiral ring to the representation ring of H bynoting that [44℄ the Verlinde algebra for H is obtained by quantizing the spa
ePV = T � TWH : (3:10)9



This yields the key relation, that after quantization we obtainR(G;H)
p = �V~k(H)�Z ; (3:11)so that the 
hiral ring of the 
oset is (in fa
t only as a latti
e) isomorphi
 to the Z-invariantpart of a quotient of RH by an ideal, whi
h is not the Verlinde ideal of G. However, thisline of argument is to be taken with a grain of salt, as (3.11) only seems to hold as alatti
e isomorphism, one 
annot infer straight away that the produ
t on the RHS of (3.11)is di�erent from the 
hiral ring produ
t, e.g. by 
onsidering simple examples.3.5. Produ
t stru
tureLet us brie
y dis
uss the produ
t on the K-theory, without making use of the relationto RH. One 
an de�ne the Pontryagin produ
t on the K-theory 
lasses, yet again, in
omplete analogy to [1℄, namelympon : �KH=Z(G) 
 �KH=Z(G) ! �KH=Z(G) : (3:12)To establish this, 
onsider the multipli
ation on the group m : G � G ! G and assumethat the twisting respe
ts this, in the sense that m�(� ) fa
torizes over the two groups.Then by pushing forward along m indu
es the produ
t�KH=Z(G) 
RG �KH=Z(G) ! ���KH=Z�H=Z(G�G) ! �KH=Z(G�G) ; (3:13)where the �rst map is appli
ation of the K�unneth theorem. This is equivalent to theprodu
t, that we en
ountered in se
tion 2, whi
h we obtained by invoking the produ
t on�KG(G) of FHT, i.e., the produ
t on (3.1). On the other hand the produ
t on the 
hiralring represented in terms of 
oset �elds is the fusion produ
t indu
ed from the Verlindealgebras of G and H. More pre
isely, it is the fusion produ
t on pairs of primaries in Vk(G)and Vk+g_(H), respe
tively, modulo sele
tion and identi�
ation rules. In parti
ular this isdistin
t from (3.1). 10



4. The N = 2 
hiral ring and twisted equivariant K-theoryRe
all that the FHT theorem states the isomorphism�Kdim(G)G (G) �= Vk(G) ; (4:1)where � = k + h_ is the twist-
lass in H3G(G). The proof of this theorem in [3℄ is basedon 
onstru
ting the K-theory 
lasses from families of aÆne Dira
 operators on loop spa
e.In this se
tion we divert from the main thread of the paper and explain how a related
onstru
tion 
an be put forward for the 
hiral ring. Only at the end, we shall 
ommentagain on the relation to the boundary ring.As a motivation, �rst re
all the 
onstru
tion of the 
hiral ring in [35℄ for the N = 2
oset theory with 
hiral algebra (2.1). The essential ingredient is an index 
omputationfor the N = 2 super
harges (aÆne Dira
 operators), more pre
isely, the 
hiral primaries(or, by spe
tral 
ow, the RR ground states) are solutions toG�j' i = 0 ; (4:2)where the aÆne Dira
 operators are de�ned as (negle
ting for the present dis
ussion irrel-evant prefa
tors)G� = D/�Lĝ=Lĥ = �J���n ��n � 112 f�
����  ��n  ��m  �
�n�m� ; (4:3)where  � are adjoint fermions transforming under the so(2d)1 algebra, and the �'s aresummed over the positive roots of g=h. Note that for trivial h, D/+ is pre
isely the aÆneDira
 operator that enters the 
onstru
tion of the G=G twisted K-theory in [3℄. In fa
t,the zeroes of the aÆne Dira
 operator D/+ for both the WZW and 
oset models have been
omputed by Landweber in [45℄, in analogy to the analysis for �nite-dimensional Lie groupsby Kostant [46℄.The key idea of Mi
kelsson [47℄ and Freed-Hopkins-Teleman [3℄, whi
h provides thelink to twisted K-theory, is to 
ouple the Dira
-operator on Lg to an Lg�-valued gauge�eld. The kernel of the aÆne Dira
 operator on Lg is trivial, however the gauge-
oupledDira
 operator (in the following referred to as the FHT Dira
 family) has non-trivial kernel,to whi
h one 
an asso
iate a twisted K-theory 
lass on G.11



4.1. Review of Dira
-family 
onstru
tion for the Verlinde algebraFirst we review the Dira
-family 
onstru
tion for (4.1). Throughout this se
tion weshall adopt the 
onventions of [3℄. Consider the following (gauge-
oupled) family of aÆneDira
 operators D/ FHT� = D/Lg + i (�) ; (4:4)for � 2 Lg� (
f. (4.11) in [47℄, (11.2) in [3℄), where the aÆne Dira
 operator on Lg isde�ned by D/Lg = X�2�Lg0�J��n ��n � 112 X�;
2�Lg f
� �  �n  �m  �
�n�m1A : (4:5)Furthermore,  (�) denotes Cli�ord multipli
ation with this element of Cli�(Lg). D/ a
tson H�
SLg, where H� is an integrable highest weight representation of 
Lg, and S the spinrepresentation. The key properties of this family are: The Dira
 family (4.5) is equivariantunder the 
o-adjoint a
tion of LG. This 
an be mapped to the gauge a
tion of LG on thespa
e A of g-valued 
onne
tions on the 
ir
le by identifying the level k hyperplanes in 
Lg�kin the following fashion k�+Lg� ! Ak�+ � 7! ddt + �k : (4:6)Further, a
ting on a highest weight module H� 
 S, the kernel of D/ � is lo
alized on the
o-adjoint orbits, denoted OLg� , of � + �, � being the highest root. The kernels for ea
helement in OLg� are given by the image under the 
o-adjoint a
tion of the lowest-weightspa
e of H� 
 S, and give rise to a twisted, equivariant ve
tor bundle lo
alized on OLg� .From this data one 
an now 
onstru
t a twisted equivariant K-theory 
lass on G byusing (4.6): namely, the 
o-adjoint a
tion, say for the level 1 hyperplane �+ Lg� � 
Lg ispre
isely given by the gauge a
tion on a 
onne
tiong � (�; 1) = (adg(�) � dgg�1; 1) ; (4:7)for g 2 LG. Further, one 
an map a 
onne
tion in A to an element in G by utilizing theholonomy map Hol : A! G : (4:8)Then the 
o-adjoint a
tion, a.k.a. gauge a
tion, in (4.7) maps toHol(g � (�; 1)) = g(0)Hol(�)g(0)�1 : (4:9)12



In this way we 
an map the Dira
 family on Lg� to one on G, and the equivarian
e withrespe
t to LG maps to an equivarian
e with respe
t to the adjoint a
tion of G on itself. Insummary, this 
onstru
tion thus gives rise to a twisted K-theory 
lass on G, equivariantunder the adjoint a
tion of G.4.2. Dira
-family 
onstru
tion for the 
hiral ringSome related dis
ussions for H = T the maximal torus of G has appeared in [3℄,relating �KG(G) to �KT (T ). For our purposes, we 
ontinue to assume only that G issimply-
onne
ted and G=H is hermitian symmetri
, thus ensuring the existen
e of N = 2supersymmetry. Consider the aÆne Dira
 operator D/ � D/Lg=Lh = D/� + D/+ (
f. (4.3))a
ting on H� 
 SLp for H� an integrable highest weight representation of 
Lgk. Thisrepresentation 
an be de
omposed with respe
t to the subalgebra 
LhH� = M�2Lh�M��V� ; (4:10)where V� is a highest weight representation of 
Lh, M�� being the state spa
es of the 
osettheory. Note that for the 
ase of interest when G=H is hermitian symmetri
, the Dira
operator simpli�es drasti
ally, as p is 
ommutative, so that D/ = J �  .In [35℄ and [45℄ the kernel of D/ a
ting on H� 
 SLp is determined askerD/ Lg=Lh ��H�
SLp = M(�;�)2CV� 
SLp ; (4:11)where℄C = n(�; �) 2 Lg� � Lh� ; � + �̂h = �(� + �̂g) ; for some � 2 Ŵg=Ŵho : (4:12)The ring of 
hiral primaries R(G;H)
p 
ontains stri
tly speaking only a subset of the 
hiralprimaries in the kernel of the Dira
 operator. More pre
isely, it is generated by theprimaries in ker(D/ ), whi
h by (4.11) is identi�ed with the elements of C, modulo �eldidenti�
ations, whi
h reside in the 
ommon 
entre Z of G and H, i.e.,R
p = 
�(�;�) ; (�; �) 2 C�ÆZ : (4:13)℄ This is in fa
t the 
ondition for RR groundstates, whi
h we however shall use inter
hangeablywith 
hiral primaries, via spe
tral 
ow. More pre
isely the set of 
hiral primaries is (�; �) with�(�+ �g) = � + �g. So we should denote by C the set of 
oset weights satisfying this property.13



The following 
onstru
tion will show that for ea
h element inR
p there exists a twistedH-equivariant K-theory 
lass onH. Consider to begin with the 
omplex de�ned by D/ Lg=Lha
ting on H� 
 SLp. De�ne a family of Dira
 operators on Lh� asLh� ! End((H� 
 Sp;D/Lg=Lh))� 7! D/ �Lh ; (4:14)where we de�ned the (gauge-
oupled) family of Dira
 operatorsD/ �Lh = D/Lh + i (�) ; � 2 Lh� : (4:15)Taking the kernel of D/ �Lh on the 
omplex (H� 
Sp;D/Lg=Lh) amounts to de
omposing thekernel of D/Lg=Lh as a
ting on H�
S into 
Lh representations, meaning the de
omposition(4.11). So, this will result in a map from the Verlinde ring of �KG(G) to the one of H,i.e., �KG(G) ! � 0KH(H)� bLg� 7! X(�;�)2C� bLh� : (4:16)Note that the elements of the 
hiral ring 
an also be viewed as semi-in�nite Lie algebra
ohomology elements, as dis
ussed in [35℄. De
omposing Lp = Lp+ � Lp� su
h that[p�; p�℄ � p�, the kernel of D/Lg=Lh a
ting on H� 
 SLp iskerD/Lg=Lh��H�
SLp = H�(Lp�;H�) : (4:17)In this way one obtains a map from Vk(G) ! Vk+h_g�h_h (H), mapping pre
isely as in (4.16).5. Dis
ussions and OutlookIn summary, we have de�ned a boundary ring Bk for N = 2 
oset models (G;H) interms of the twisted equivariant K-theory �KH=Z(G). The rank of Bk agrees with that ofthe 
hiral ring of the 
oset model, however the produ
t stru
tures di�er. Both rings arequotients of the representation ring of H, with respe
t to the Verlinde ideals of G and ofH, at spe
i�
 levels, respe
tively.The present analysis is somewhat reminis
ent of the theorem by Freed-Hopkins-Teleman, whi
h identi�es the Verlinde algebra Vk(G) with the twisted equivariant K-theory�KG(G). Naively, one might have anti
ipated an isomorphism between �KH=Z(G) and the14




hiral ring, whi
h not only respe
ts the stru
ture as abelian groups, but also the produ
ts.This is however not the 
ase. More to the point, the present result suggests that theK-theory asso
iated to a parti
ular sigma-model gives rise to an algebra on 
lasses of D-branes. This may well tie in with the algebra of BPS states de�ned by Harvey and Moore[5,6℄. The natural interpretation of FHT in this light is, that for the topologi
al G=G 
osetmodel the D-brane 
harge relations obey the Verlinde algebra of G.It would be interesting to understand, what the pre
ise relation between Bk and the
hiral ring is, e.g., if one 
an be obtained as a deformation of the other, and possiblerelations to the quantum 
ohomology ring may be interesting to explore. The boundaryring in the 
ase of superminimal models, dis
ussed in se
tion 3.2, turned out to be adeformation of the 
hiral ring (by taking essentially only the highest degree 
omponent ofthe fusion ideal). In this 
ase, the boundary ring is a quantum deformed version of thebulk 
hiral ring. Two immediate questions arise: �rstly, whether this holds for all KS 
osetmodels, i.e., the boundary ring is given by a quantum (or otherwise) deformed bulk 
hiralring and se
ondly, whether this has any impli
ations upon twisted K-theory.One spin-o� of our results is the agreement of the rank of the 
harge latti
e of theD-branes with the rank of the 
hiral ring. This is a result that had been anti
ipatedalready in [4℄ and suggests that the Cardy boundary states provide a 
omplete basis forthe 
harge latti
e. One 
an in fa
t de�ne a produ
t on these Cardy boundary states (andthis will be dis
ussed in detail in [7℄), whi
h should then agree with the produ
t in theboundary ring Bk. Another interesting line of thought would be to study the D-branesin the topologi
ally twisted KS models in this light. Su
h a worldsheet derivation of theboundary ring, whether in the full CFT or in the topologi
ally twisted model, will 
ertainlysubstantiate the proposal put forward in this paper, and may help elu
idating the relationbetween boundary 
onformal �eld theory and K-theory.A
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Appendix A. Computation of the ranks of the Verlinde algebrasIn this appendix we shall prove expli
it formulae for the rank of the fusion ring dk(G)for the groups G appearing in table 1. For the groups in question, the relations, of whi
hfor �xed k one needs to enumerate the non-negative integral solutions for f�(i)g, areAn = SU(n+ 1) : nXi=1 �(i) � kDn = SO(2n) : �(1) +�(n�1) +�(n) + 2 n�2Xi=2 �(i) � kBn = SO(2n+ 1) : �(1) +�(n) + 2 n�1Xi=2 �(i) � kCn = Sp(2n) : nXi=1 �(i) � kE6 : �(1) +�(5) + 2(�(2) +�(4) +�(6)) + 3�(3) � kE7 : �(6) + 2(�(1) +�(5) +�(7)) + 3(�(2) +�(4)) + 4�(3) � k :(A.1)In summary we obtain table 2, where k is the level of the aÆne algebra 
orresponding toG, � 2 IN0 and n 2 IN. G k dk(G)An k �n+kk �Bn+2 2� �n+�+1n+1 �+ 4�n+�+1n+2 �Bn+2 2�+ 1 3�n+�+1n+1 �+ 4�n+�+1n+2 �Cn k �n+kk �Dn+3 2� �n+�+1n+1 �+ 8�n+�+2n+3 �Dn+3 2�+ 1 4�n+�+2n+2 �+ 8�n+�+2n+3 �E6 k (A.14)E7 k (A.17)Table 2: Ranks dk(G) of the Verlinde algebras Vk(G).16



The remainder of this appendix will give the derivations of the relations in table 2.For SU(n + 1) and Sp(2n) the argument is straight forward. To prove the assertion inthis 
ase one 
an pro
eed by indu
tion upon k. The 
ase k = 0 is trivially satis�ed. Theindu
tion step follows by usingdk�1(G) +�n+ k � 1k � = �n+ k � 1k � 1 �+�n+ k � 1k � = �n+ kk � = dk(G) ; (A.2)whi
h implies the required formula, as the number of partitions of k into n parts is �n+k�1k �.Next, we 
onsider G = Bn = SO(2n+1). By using the result of SU(2n+1) the rankof the fusion ring for SO(2n+ 1) (n � 3) isdk(SO(2n + 1)) = kX�(1)=0 k��(1)X�(n)=0�n� 2 + hk��(1)��(n)2 in� 2 � = kX�=0(� + 1)�n� 2 + �k��2 �n� 2 � :(A.3)Using kXl=0 �n+ ln � = �n+ 1 + kn+ 1 � ; kXl=0 l�n+ ln � = (n+ 1)�n+ k + 1n+ 2 � ; (A.4)one 
an sum these to obtain for even level 2kd2k(SO(2(N + 2) + 1))= �2(N + 1)�N + k + 1N + 2 �+ (2k + 1)�N + k + 1N + 1 �� 2(N + 1)�N + kN + 2�+ 2k�N + kN + 1�= �2N�N + k + 1N + 2 �+ (2k + 1)�N + k + 1N + 1 � : (A.5)This formula 
an be further simpli�ed straight-forwardly by e.g., expanding out one of thebinomial 
oeÆ
ientsd2k(SO(2(N + 2) + 1)) = �N + k + 1N + 1 �+ 4�N + k + 1N + 2 � : (A.6)For odd level 2k + 1 the rank is 
omputed byd2k+1(SO(2(N + 2) + 1)) = (4�+ 3)�N + �+ 1N + 1 �� 4(N + 1)�N + �+ 1N + 2 �= 3�N + �+ 1N + 1 �+ 4�N + �+ 1N + 2 � : (A.7)17



Next 
onsider Dn. We pro
eed analogously by 
omputingdk(SO(2n)) = kX�(1)=0 k��(1)X�(n)=0 k��(1)��(n)X�(n�1)=0 �n� 3 + hk��(1)��(n)��(n�1)2 in� 3 �= kX�=0 (� + 1)(� + 2)2 �n� 3 + �k��2 �n� 3 � : (A.8)In order to evaluate this, note thatkXl=0 l2�n+ ln � = (n+ 1)(n + 2)�n+ k + 2n+ 3 �� (n+ 1)2�n+ k + 1n+ 2 �= (n+ 1)(n + 2)�n+ k + 1n+ 3 �+ (n+ 1)�n+ k + 1n+ 2 � : (A.9)Evaluation of the sum (A.8) yields for even level k = 2�d2�(Dn+3) = kX�=0(2�� 2�+ 1)2�n+�n �= (2�+ 1)2�n+ �+ 1n+ 1 �� 4(n+ 1)�n+ �+ 2n+ 3 �� 4�(n+ 1)�n+ �+ 1n+ 2 �= �n+ �+ 1n+ 1 �+ 8�n+ �+ 2n+ 3 � : (A.10)For odd level the rank is 
omputed to bed2�+1(Dn+3) = kX�=0 4(�� �+ 1)2�n+�n �= 4(�+ 1)2�n+ �+ 1n+ 1 �� 4(n+ 1)�n+ �+ 2n+ 3 �� 4(�+ 1)(n+ 1)�n+ �+ 1n+ 2 �= 4�n+ �+ 2n+ 2 �+ 8�n+ �+ 2n+ 3 � : (A.11)The 
ase of E6 
an be derived by using the result for B5dk(E6) = kX�=0��k � �3 �+ 1� (d�(B5) � d��1(B5)) : (A.12)There are three 
ases to be 
onsidered: k = 3�, k = 3� + 1 and k = 3� + 2, for � 2 IN0.In ea
h of these 
ases we obtain the following sumsd3�+s(E6) = �X�=0(�� �+ 1) (d3�+s(B5)� d3��3+s(B5)) (A.13)18



=  �X�=0 d3�+s(B5)! � (�+ 1)ds�3(B5) ; s = 0; 1; 2 : (A.14)Note, that d�(G) = 0 for � < 0.For E7 one again pro
eeds stepwise. For �xed value of k4 = �(6)+2(�(1)+�(5)+�(7))one has k4X�(6)=0�3 + hk4��(6)2 i3 � ; (A.15)and for �xed k6 = �(6) + 2(�(1) +�(5) +�(7)) + 3(�(2) ++�(4))nk6 = k6X�(4)=0 k6��(4)X�(2)=0 h k6��(2)��(4)3 iX�(6)=0 0B� 3 + 24hk6��(2)��(4)3 i��(6)2 353 1CA (A.16)Iterating this pro
edure, we arrive atdk(E7) = kX�(3)=0n�(3) : (A.17)In summary we obtain table 2.Note that these multipli
ity formulae 
an also be extra
ted from the generating fun
-tion A(a1;���;an)(q) = (1� q)�1 nYi=1(1� qai)�1= 1Xk=0 dk(G)qk ; (A.18)whi
h 
ounts the non-negative integer solutions f�(i)g toa1�(1) + � � �+ an�(n) � k ; (A.19)where the 
hoi
e of group G determines the 
oeÆ
ients ai 2 IN0 as e.g. in (A.1).
19
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