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DESY 04-062 April 2004Dilaton Destabilizationat High TemperatureW. Buhm�uller, K. Hamaguhi, O. Lebedev, M. RatzDeutshes Elektronen-Synhrotron DESY, 22603 Hamburg, GermanyAbstratMany ompati�ations of higher{dimensional supersymmetri theories haveapproximate vauum degeneray. The assoiated moduli �elds are stabilized bynon{perturbative e�ets whih break supersymmetry. We show that at �nite tem-perature the e�etive potential of the dilaton aquires a negative linear term. Thisdestabilizes all moduli �elds at suÆiently high temperature. We ompute the or-responding ritial temperature whih is determined by the sale of supersymmetrybreaking, the �{funtion assoiated with gaugino ondensation and the urvatureof the K�ahler potential, Trit �pm3=2MP (3=�)3=4K 00�1=4. For realisti models we�nd Trit � 1011{1012GeV, whih provides an upper bound on the temperature ofthe early universe. In ontrast to other osmologial onstraints, this upper boundannot be irumvented by late{time entropy prodution.



1 IntrodutionCompati�ations of higher{dimensional supersymmetri theories generially on-tain moduli �elds, whih are related to approximate vauum degeneray. In manymodels these �elds aquire masses through ondensation of fermion pairs [1℄, whihbreaks supersymmetry. Generially, gaugino ondensation models su�er from thedilaton `run{away' problem [2℄, whih an be solved, for example, by multiplegaugino ondensates [3℄ or non{perturbative string orretions [4, 5℄.Moduli play an important role in the e�etive low energy theory. Their valuesdetermine geometry of the ompati�ed spae as well as gauge and Yukawa ou-plings. Their masses, determined by supersymmetry breaking, are muh smallerthan the ompati�ation sale. Hene, moduli an have important e�ets at lowenergies. Cosmologially, they an ause the `moduli problem' [6, 7℄, in partiulartheir osillations may dominate the energy density during nuleosynthesis, whih isin onit with the suessful BBN preditions. For an exponentially steep dilatonpotential, like the one generated by gaugino ondensation, there is also the prob-lem that during the osmologial evolution the dilaton (S) may not settle in theshallow minimum at Re S � 2, but rather overshoot and run away to in�nity [8℄.These problems an be ured in several ways (f. [9℄).In this paper we shall disuss a new osmologial impliation of the dilatondynamis, the existene of a ritial temperature Trit whih represents an upperbound on allowed temperatures in the early universe. If exeeded, the dilatonwill run to the minimum at in�nity, whih orresponds to the unphysial ase ofvanishing gauge ouplings. The existene of a ritial temperature is a onsequeneof a negative linear term in the dilaton e�etive potential whih is generated by�nite{temperature e�ets in gauge theories [10℄. This shifts the dilaton �eld tolarger values and leads to smaller gauge ouplings at high temperature. As we shallsee, this e�et eventually destabilizes the dilaton, and subsequently all moduli,at suÆiently high temperatures. In the following we shall alulate the ritialtemperature Trit beyond whih the physially required minimum at Re S � 2disappears.There an be additional temperature{dependent ontributions to the dilatone�etive potential oming from the dilaton oupling to other salar �elds [11℄.These ontributions are model dependent and usually have a destabilizing e�eton the dilaton, at least in heteroti string models [12℄. Our results for the ritialtemperature an therefore be understood as onservative upper bounds on theallowed temperatures in the early universe.The paper is organized as follows. In Se. 2 we review the dependene of the freeenergy on the gauge oupling in SU(N) gauge theories. As we shall see, one{looporretions already yield the qualitative behaviour of the full theory. In Se. 3 westudy the dilaton potential at �nite temperature and derive the ritial temperature2



Trit for the most ommon models of dilaton stabilization. Se. 4 is then devoted tothe disussion of osmologial impliations, the generality of the obtained resultsis disussed in Se. 5, and the appendix gives some details on entropy produtionin dilaton deays.2 Gauge ouplings at high temperatureThe free energy of a supersymmetri SU(N) gauge theory with Nf matter multi-plets in the fundamental representation readsF(g; T ) = ��2T 424 n�0 + �2g2 + O(g3)o ; (1)with g and T being the gauge oupling and temperature, respetively. The zerothorder oeÆient, �0 = N2 + 2NNf � 1, ounts the number of degrees of freedom,and the one{loop oeÆient �2 is given by (f. [13℄)�2 = � 38�2 (N2 � 1)(N + 3Nf) : (2)It is very important that �2 is negative. Hene, gauge interations inrease the freeenergy, at least in the weak oupling regime. Consequently, if the gauge ouplingis given by the expetation value of some salar �eld (dilaton) and therefore isa dynamial quantity, temperature e�ets will drive the system towards weakeroupling [10℄.In reality, gauge ouplings are not small, e.g., g ' 1=p2 at the GUT sale.Thus, higher order terms in the free energy are relevant. These ould hange thequalitative behaviour of the free energy with respet to the gauge oupling. Forinstane, in the ase of a pure SU(N) theory, the positive g3 term overrides thenegative g2 term for N � 3. The knowledge of higher order terms is therefore ne-essary. These an be alulated perturbatively up to order g6 ln(1=g), where theexpansion in the oupling breaks down due to infrared divergenes [13℄. The non{perturbative ontribution an be alulated by means of lattie gauge theory. Fornon{supersymmetri gauge theories with matter in the fundamental representationthe free energy has been alulated up to g6 ln(1=g) [14℄. Comparison with numer-ial lattie QCD results shows that already the g2 term has the orret qualitativebehaviour, i.e., gauge interations indeed inrease the free energy. Furthermore, ifterms up to order g5 are taken into aount, perturbation theory and lattie resultsare quantitatively onsistent, even for ouplings g = O(1) [14℄.To demonstrate this behaviour, we onsider the free energy of a non{supersymmetri gauge theory as a funtion of N and Nf using the results ofRef. [14℄ and earlier work [15℄. As disussed, it is suÆient to trunate the per-turbative expansion at order g5. We will be interested in the free energy in the3
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B (b) N = 10.Figure 1: The oeÆient B (f. Eq. (3)) for SU(N) gauge theory withNf avours;g0 = 1=p2.viinity of a �xed oupling g0,g = g0 + Æg ;F(g; T )T 4 = A(g0) + B(g0) Æg+ O(Æg2) : (3)For our purposes, it is suÆient to keep the dominant linear termO(Æg) and neglethigher order ontributions O(Æg2), whih have the same sign. Fig. 1(a) displays theoeÆient B as a funtion of N with Nf = 0. Analogously, Fig. 1(b) shows thedependene of B on the number of matter multiplets Nf with N = 10. Obviously,B is positive and inreases with the number of olours and avours. This behaviourhas to be the same for all non{Abelian gauge groups. The oeÆient B will be evenlarger in supersymmetri theories due to gauginos and salars.3 Dilaton potential at �nite temperatureIn this setion, we disuss how �nite temperature e�ets modify the dilaton e�etivepotential. This disussion applies to many string ompati�ations although detailsare model dependent. The major feature of the following analysis is that the dilatonpotential has a minimum at ReS � 2 whih is separated from another minimumat ReS !1 by a �nite barrier (see Fig. 2). This is a rather generi situation.It is well known that gaugino ondensation models generially su�er from thedilaton `run{away' problem. That is, the minimum of the supergravity salar po-tential is at S !1, i.e., zero gauge oupling. The two most popular ways to retifythis problem in the framework of the heteroti string use multiple gaugino onden-sates [3,16℄ and non{perturbative orretions to the K�ahler potential [17,18℄. Thesemehanisms produe a loal minimum at ReS � 2. As �nite temperature e�etsdue to thermalized gauge and matter �elds drive the dilaton towards weaker ou-pling, this minimum an turn into a saddle point, in whih ase the dilaton would4
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0Figure 2: Typial potential for dilaton stabilization (solid urve). A minimum atS = Smin ' 2 is separated from the other minimum at S !1 by a �nite barrier.For illustration, we also plot a typial run{away potential (dashed urve).again run away. This puts a onstraint on the allowed temperatures in the earlyuniverse.If the hidden setor is thermalized (f. [9℄), suh onstraints are meaningfulas long as the temperature is below the gaugino ondensation sale, � � 1013{1014GeV. Otherwise, by analogy with QCD, it is expeted that the gaugino on-densate evaporates and the dilaton potential vanishes.The ritial temperature is obtained as follows. The stabilization mehanismsgenerate a loal minimum of the dilaton potential at ReS � 2, immediately fol-lowed by a loal maximum, with a separation ÆReS = O(10�2). Beyond thisloal maximum, the potential monotonously dereases to the other minimum atReS ! 1. Sine the dilaton interation rate �S � T 3=M2P is muh smaller thanthe Hubble parameter, the dilaton �eld is not in thermal equilibrium. It playsthe role of a bakground �eld for partiles with gauge interations sine its valuedetermines the gauge oupling,ReS = 1g2 : (4)As a onsequene, the omplete e�etive potential of the dilaton �eld is the sumof the zero{temperature potential V and the free energy F of partiles with gaugeinterations,VT (ReS) = V (ReS) + F(g = 1=pReS; T ) : (5)As the temperature inreases, the loal minimum and maximum of VT merge intoa saddle point at ReSrit. This de�nes the ritial temperature Trit. ReSrit and5



Trit are determined by the two equations1V 0(ReSrit) + F 0(1=pReSrit; Trit) = 0 ; (6)V 00(ReSrit) + F 00(1=pReSrit; Trit) = 0 ; (7)where `prime' denotes di�erentiation with respet to ReS.We are only interested in the loal behaviour of the potential around ReSmin '2, where we an expand the free energy F(g; T ) as in Eq. (3) withÆg = � ÆReS2(ReSmin)3=2 : (8)This produes a linear term in ReS with a negative slope proportional to the fourthpower of the temperature,F(g = 1=pReS; T ) = A T 4 � ÆReS 1� T 4 +O((ÆReS)2) ; (9)where ��1 = B2(ReSmin)3=2 : (10)Note, that validity of the linear approximation is based on the relation (4) betweenthe gauge oupling and the dilaton �eld. In ase of an arbitrary funtion g =g(ReS) it does not neessarily hold.In the linear approximation the equations for the ritial value of the dilaton�eld and the ritial temperature beome (f. (6), (7), (9)),V 00(ReSrit) = 0 ; (11)Trit = �� V 0���ReSrit�1=4 : (12)At Srit, whih lies between Smin and Smax, the slope of the zero{temperaturedilaton potential is maximal. It is ompensated by the negative slope of the freeenergy at the ritial temperature Trit. For temperatures above Trit the dilatonis driven to the minimum at in�nity where the gauge oupling vanishes.We an now proeed to alulating the ritial temperature in raetrak andK�ahler stabilization models. In what follows, we will assume zero vauum energy,whih an be arranged by adding a onstant to the salar potential. The hiddensetor often ontains non{simple gauge groups, e.g. in the ase of nontrivial Wilsonlines. Then gaugino ondensation an our in eah of the simple fators [3℄. Giventhe right gauge groups and matter ontent, the resulting superpotential an lead todilaton stabilization at the realisti value of S [16℄. For simpliity, we shall restritourselves to the ase of two gaugino ondensates.1In the ase of more than one solution, the maximal Trit is the ritial temperature.6



The starting point is the superpotential of gaugino ondensation2,W (S; T ) = �(T )�6 
(S) ; (13)where � is the Dedekind �{funtion and
(S) = d1 exp�� 3S2�1�+ d2 exp�� 3S2�2� : (14)T is the overall T{modulus parametrizing the size of the ompati�ed dimensions.We assume that ondensates form for two groups, SU(N1) and SU(N2), with M1and M2 matter multiplets in the fundamental and anti{fundamental representa-tions. The parameters di and the �{funtions �i are then given by (i = 1; 2),�i = 3Ni �Mi16�2 ; (15)di = �13Mi �Ni� �32�2 e�3(Mi�Ni)=(3Ni�Mi) �13Mi�Mi=(3Ni�Mi) : (16)Together with the K�ahler potentialK = K(S + �S)� 3 ln (T + T ) ; (17)the superpotential for gaugino ondensation yields the salar potential [16℄,V = j�(T )j�12(2ReT )3 eK � 1KS �S j
S +KS
j2 +�3(ReT )2�2 j bG2j2 � 3� j
j2� ; (18)where subsripts denote di�erentiation with respet to the spei�ed arguments,and the funtion bG2 is de�ned via the Dedekind �{funtion asbG2 = �� �ReT + 4� �0(T )�(T )� : (19)It is well known that the T{modulus settles at a value T � 1 in Plank units,independently of the ondensing gauge groups [16℄. Further, in the ase of twoondensates, minimization in ImS simply leads to opposite signs for the two on-densates in 
. From Eq. (18) we then obtain a salar potential whih only dependson x � ReS, the real part of the dilaton �eld,V (x) = a eK  4K00 �
0 + 12K 0
�2 � b 
2! ; (20)where a ' b ' 3 and
(x) = d1 exp�� 3x2�1�� d2 exp�� 3x2�2� : (21)The dilaton is stabilized at a point xmin where the �rst derivative of the potential,V 0 = 2a eK �
0 + 12K 0
���
0 + 12K 0
��4K 0K 00 � 2K 000K 002�+ 4K00
00 ��K 02K00 + b� 2� 
� ; (22)2For simpliity, we neglet the Green{Shwarz term whih would be an unneessary ompliation inour analysis. 7



vanishes, and the dilaton mass term is positive,m2S = 2 V 00K00 ����xmin > 0 : (23)In the following we shall determine the ritial temperature for two models ofdilaton stabilization. The sales of dilaton mass and ritial temperature are setby the gravitino mass,m23=2 = eKjW j2 ���xmin = a eK j
j2 ���xmin ; (24)and the sale of supersymmetry breaking, MSUSY = pm3=2, measured in Plankunits.3.1 Critial temperature for raetrak modelsConsider �rst the ase with the standard K�ahler potential,K(S + �S) = � ln (S + �S) ; (25)and two gaugino ondensates, the so-alled `raetrak models'. The �rst derivativeof the salar potential (20) then beomesV 0 = 2a eK �
0 + 12K 0
�� 4K 00
00 � (b� 1) 
� : (26)It has been shown [16℄ that the loal minimum is determined by the vanishing ofthe �rst fator, (2 x
0(x)� 
(x))jxmin = 0.We now have to evaluate (26) at the point of zero urvature, V 00 = 0. Di�eren-tiation by x brings down a power of 3=(2�) � 1. Away from the extrema, whereanellations our, we therefore have the following hierarhy,j
j � j
0j � j
00j � j
000j : (27)This implies for the �rst and seond derivative of the potential,V 0 ' 2a eK 4K 00 
0
00 ; (28)V 00 ' 2a eK 4K 00 �
002+ 
0
000� : (29)For the slope of the potential at the ritial point one then obtains the onvenientexpressionV 0���xrit ' �2a eK 4K 00 (
0)2
000
00 : (30)For xmin < x < xmax one has
0 � � 32�max 
 ; 
000 � � 32�min 
00 ; (31)8
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(b) T = Trit.Figure 3: Dilaton potential for (N1; N2) = (7; 8) and (M1;M2) = (8; 15). (a):T = 0, (b): T = Trit. In (b) the dilaton independent term AT 4rit has beensubtrated (f. Eq. (9)).where �max (�min) is the larger (smaller) of the two �{funtions. This yields forthe slope of the potentialV 0���xrit � 2a eK 4K 00 � 32�max�2� 32�min�
2 : (32)Sine 
 does not vary signi�antly between xmin and xrit, one �nally obtains(f. (24)),V 0���xrit � 1K00 � 3�max�2 � 3�min� m23=2 : (33)Using Eq. (12) we an now write down the ritial temperature. Note thatin raetrak models �min and �max are usually very similar. Introduing � =(�min�2max)1=3, one obtainsTrit � pm3=2 � 3��3=4� �K 00�1=4 : (34)We have determined Trit also numerially. The result agrees with Eq. (34) withina fator � 2. The fator pm3=2 appears sine the sale of the salar potential is setby m23=2. The �{funtion fator orrets for the steepness of the salar potential,whereas (�=K 00)1=4 = O(1). With m3=2 � 100GeV, � � 0:1 and MP = 2:4 �1018GeV, one obtainsTrit � 1011GeV ; (35)9



as a typial value of the ritial temperature.A straightforward alulation yields for the dilaton massmS ' 9�1�2 1K00 m3=2 : (36)As a result, the dilaton mass is muh larger than the gravitino mass and lies in therange of hundreds of TeV. This fat will be important for us later when we disussthe S{modulus problem.3.2 Critial temperature for K�ahler stabilizationAs a seond example we onsider dilaton stabilization through non{perturbativeorretions to the K�ahler potential. In this ase a single gaugino ondensate issuÆient [17, 18℄. Like instanton ontributions, suh orretions are expeted tovanish in the limit of zero oupling and also to all orders of perturbative expansion.A ommon parametrization of the non{perturbative orretions readseK = eK0 + eKnp ;eKnp =  xp=2 e�qpx ; (37)with K0 = � ln(2x), x = ReS, and parameters subjet to K 00 > 0 and p; q > 0.For a single gaugino ondensate, one has
 = d exp��3x2�� ; (38)where 3=(2�) = 8�2=N and d = �N=(32�2e) for a ondensing SU(N) group withno matter. Note that the salar potential is independent of ImS.The salar potential and its derivative are given by the simple expressionsV (x) = a eK 
2  1K 00 �K 0 � 3��2 � b! ; (39)V 0(x) = a eK 
2 �K 0 � 3�� 1K 00 �K0 � 3��2� K 000(K 00)2 �K 0 � 3��� b+ 2� : (40)It has been shown [19,17℄ that realisti minima are assoiated with the singularityat K00 = 0. That is, by tuning the parameters ; p; q it is possible to adjust K00 = 0at some value x where the potential then blows up. By perturbing the parametersslightly, one obtains a �nite potential with positive but small K 00, and the singu-larity smoothed out into a �nite bump. The bump is loated approximately at thepoint of minimal K 00, and the loal minimum of the potential at x � 2 lies verylose to it, with a separation Æx = O(10�2).For realisti ases, K 0(x � 2)� 3=�, and the extrema of the potential aroundx � 2 are assoiated with the zeros of the last braket in Eq. (40). As explained10
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(b) T = Trit.Figure 4: Dilaton potential for K�ahler stabilization.  = 5:7391, p = 1:1, q = 1,and N = 6 [19℄. (a): T = 0, (b): T = Trit. In (b) the dilaton independent termAT 4rit has been subtrated (f. Eq. (9)).above, in pratie K00 is a very small parameter suh that one an expand in powersof K 00. Then, the extrema appear due to anellations between the two `singular'terms and we have the approximate relationK 000K 00 ' � 3� : (41)Due to the spiky shape of the potential, the point of vanishing urvature, V 00 = 0,is very lose to the loal maximum. On the other hand, the anellations betweenthe 1=K00 and 1=(K 00)2 terms in Eq. (40) are not preise at this point and one anapproximate their sum by the larger term. Using the fat that K and 
 do notvary signi�antly between xmin and xrit, one obtains from Eqs. (24) and (41),V 0���xrit � a eK 1K00 � 3��3 
2 � 1K 00 � 3��3 m23=2 ; (42)where K 00 is evaluated at the loal maximum xmax. Note that this result is identialto Eq. (33) whih we have obtained for raetrak models. However, for these models1=(K 00)1=4 = px = O(1), whereas now K 00 is a very small, but otherwise essentiallyfree parameter.Using Eq. (12) we �nd the same expression for the ritial temperature as inraetrak models,Trit � pm3=2 � 3��3=4� �K 00�1=4 : (43)11



Sine K 00 is small in realisti models, the upper bound on allowed temperaturesrelaxes ompared to raetrak models. As before, Eq. (43) agrees within a fator� 2 with numerial results. A typial value of the ritial temperature is obtainedfor m3=2 � 100 GeV, � � 0:1 and K 00 � 10�4,Trit � 1012GeV : (44)For the dilaton mass one obtainsmS � � 3��2 1K 00 m3=2 : (45)Again, we �nd that the dilaton is muh heavier than the gravitino.4 Impliations for osmologyAs we have seen in the previous setion, the dilaton gets destabilized at hightemperature. The maximal allowed temperature is given by Trit � 1011�1012GeV.In this setion, we study impliations of this bound for osmology.Most importantly, Trit represents a model independent upper bound on thetemperature of the early universe,T < Trit : (46)This bound applies to a large lass of theories, with weakly oupled heteroti stringmodels being the most prominent representatives. It is worth emphasizing that thedilaton destabilization e�et is qualitatively di�erent from the gravitino [20℄ ormoduli problems [6, 7℄ in that it annot be irumvented by invoking other e�etsin late{time osmology suh as additional entropy prodution. One the dilatongoes over the barrier, it annot ome bak.The present bound applies to any radiation dominated era in the early universe,even if additional inationary phases our afterwards. Therefore, Trit not onlyprovides an upper bound on the reheating temperature TR of the last ination,but also an be regarded as an absolute upper bound on the temperature of theradiation dominated era in the history of the universe.4.1 S{modulus problem and thermal leptogenesisIn addition to the bound disussed above, one an have further, more model depen-dent, onstraints on temperatures ourring at various stages of the evolution ofthe universe. In this subsetion, we disuss one of them, related to the S{modulusproblem.Even if the reheating temperature does not exeed the ritial one, thermale�ets shift the minimum of the dilaton potential. Due to this shift, S starts oher-ent osillations after reheating. Sine the energy density stored in the osillations12



behaves like non{relativisti matter, �os / R�3, with R being the sale fator, itgrows relative to the energy density of the thermal bath, �rad / R�4, until S de-ays. Its lifetime an be estimated as (�S)�1 �M2P=m3S ' 0:004 s (mS=100TeV)�3.In the examples studied in Se. 3, mS � 10TeV, so that S deays before BBN.Thus, there is no onventional moduli problem, i.e., dilaton deays do not spoil theBBN predition of the abundane of light elements.However, even for these large masses, oherent osillations of S may a�et thehistory of the universe via entropy prodution [6, 7℄. Let us estimate the initialamplitude of these osillations. At a given temperature T � Trit, the dilatonpotential around the minimum an be reast asVT = 12m2S �2 �r 2�2K 00T 4 �MP ; (47)where � =MPpK 00=2 Re(S � Smin). The minimum of the potential is ath�iT ' r 2�2K 00 T 4m2SMP : (48)Thus, at T = TR, the displaement of � from its zero temperature minimum isestimated as ��jTR � h�iTR. Then, the entropy produed in dilaton deays is (seeAppendix),� = saftersbefore � 1�2K 00 � TR1010GeV�5�106GeVmS �7=2 : (49)The deay ours at temperatures of order 10MeV, i.e., after the baryon asym-metry and the dark matter abundane have been �xed. Thus, we see that forTR & 1010GeV (mS=106GeV)7=10(�2K00)1=5, the baryon asymmetry and reli darkmatter density get signi�antly diluted.For instane, suessful thermal leptogenesis [21℄ requires TR & TL ' 3 �109GeV [22℄. For TR & TL, the baryon asymmetry an be enhaned by TR=TL,but later it gets diluted by a fator / T 5R. Hene, there is only a narrow temper-ature range where thermal leptogenesis is ompatible with the usual mehanismsof dilaton stabilization. We note further that, in this range of temperatures, thebound on the light neutrino masses tightens. For instane, TR < 3 � 1010GeVimplies3 mi . 0:07 eV, whih is more stringent than the temperature{independentonstraint, mi . 0:1 eV [24℄.Conerning dark matter, we note that in WIMP old dark matter senarios,at the time of the dilaton deay the pair annihilation proesses have frozen outso that the entropy prodution redues 
CDM.4 This e�et ould be welome inparameter regions where otherwise WIMPs are overprodued. Entropy produtionould also ontribute to the solution of the gravitino problem.3Here we have used Fig. 10 of Ref. [22℄, m1 < em1 [23℄, and m23 �m21 ' �m2atm.4WIMP dark matter may be diretly produed by moduli deay [25℄.13
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Figure 5: Three epohs in inationary models: ination, inaton osillation dom-ination and radiation domination [26℄.It is important to remember that the T{moduli problem remains. Thermale�ets shift all moduli from their zero temperature minima, thereby induing theirlate oherent osillations. Unlike the dilaton, other moduli typially have massesof order m3=2 and thus tend to spoil the BBN preditions.In summary, there exists a range of reheating temperatures, 10�2Trit . TR .Trit, whih are osmologially aeptable, but for whih the history of the universeis onsiderably altered, in partiular via signi�ant entropy prodution at latetimes.4.2 Further onstraints on ination modelsIn this subsetion we disuss some impliations of the thermal e�ets at earliertimes, before the reheating proess ompletes. There are three important stages inthe inationary senario: ination, the inaton{osillation epoh, and the radiationdominated epoh (see Fig. 5).During ination, the energy density of the universe is dominated by the poten-tial energy of the inaton �. After the end of ination, inaton starts its oherentosillations. The energy density of the universe is still dominated by the inaton�, until the reheating proess ompletes and radiation energy takes over with tem-perature T = TR. The nonzero energy density of the inaton indues additionalSUSY breaking e�ets [27℄. Hene, one may expet that the dilaton potential isalso a�eted by the �nite energy of the inaton � during these �{dominated eras.Further, in the �{osillation era there is radiation with temperature T '(T 2RMPH)1=4 [26℄, where H is the Hubble parameter. Although its energy densityis small ompared to that of inaton (see Fig. 5), it a�ets the dilaton potentialas we have disussed in Se. 3. Sine the maximum temperature Tmax in the �{osillation era is generially higher than the reheating temperature TR, one expetsstronger onstraints from Tmax < Trit. 14



Whether it is radiation or inaton that a�ets the dilaton potential more, de-pends on the oupling between dilaton and inaton. As this is model dependent,below we onsider the three possible ases:(i) destabilizing dilaton{inaton oupling. The inaton{dilaton ouplingdrives the dilaton to larger values and may let it run away to in�nity. This putssevere onstraints on the ination model. Some models an be exluded indepen-dently of the reheating temperature.(ii) stabilizing dilaton{inaton oupling. The inaton e�ets move thedilaton to smaller values. In this ase, the previously obtained bound on the re-heating temperature TR < Trit provides the most stringent onstraint. Note thatthe shift of the dilaton may ause a large initial amplitude of its osillation, whihan result in a late{time entropy prodution as disussed in Se. 4.1.(iii) negligible dilaton{inaton oupling. In this ase, the e�et of radi-ation during the �{osillation era (preheating epoh) is dominant. The maximalradiation temperature an be expressed in terms of the reheating temperature [26℄,Tmax ' (T 2RMPHinf)1=4 ; (50)where Hinf is the Hubble expansion rate during ination. Tmax must be below theritial temperature, or the dilaton will run away to weak oupling. This onstrainttranslates into a bound on the reheating temperature depending on Hinf ,TR . � T 4ritMPHinf�1=2 ' 6� 107GeV� Trit1011GeV�2�1010GeVHinf �1=2 ; (51)as shown in Fig. 6. The upper bound on TR now beomes muh severer. For in-stane, taking Trit ' 1011GeV and typial values ofHinf in some ination models 5(f. [29℄), we obtain the following bounds:haoti ination: Hinf ' 1013GeV, TR . 106GeV,hybrid ination: Hinf � 108{1012GeV, TR . 107{109GeV,new ination: Hinf � 106{1012GeV, TR . 107{1010GeV.These bounds apply if already during the preheating phase partiles with gaugeinterations form a plasma with temperature Tmax and the dilaton is near thephysial minimum.5 ConlusionsAt �nite temperature the e�etive potential of the dilaton aquires loally anegative linear term. As we have seen, this important fat is established be-yond perturbation theory by lattie gauge theory results. As a onsequene, at5In urvaton senarios [28℄ the values of Hinf are muh less onstrained.15
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Figure 6: Upper bounds on the reheating temperature for Trit = 1011GeV and1012GeV assuming a small inaton{dilaton oupling (ase (iii)). The darker re-gion is exluded for Trit = 1012GeV; for Trit = 1011GeV the lighter region isexluded as well.suÆiently high temperatures the dilaton S, and subsequently all other mod-uli �elds, are destabilized and the system is driven to the unphysial groundstate with vanishing gauge oupling. We have alulated the orresponding rit-ial temperature Trit whih is larger than the sale of supersymmetry breaking,MSUSY = pMPm3=2 = O(1010GeV), but signi�antly smaller than the sale ofgaugino ondensation, � = [d exp(�3S=(2�))℄1=3MP = 1013{1014GeV. This is themain result of our paper.Our result is based on the well understood thermodynamis of the observablesetor. In ontrast, the temperature of gaugino ondensation an plae a bound onthe temperature of the early universe only under the additional assumption thatthe hidden setor is thermalized.The upper bound on the temperature in the radiation dominated phase of theearly universe, T < Trit � 1011{1012GeV, has important osmologial implia-tions. In partiular, it severely onstrains baryogenesis mehanisms and inationsenarios. Models requiring or prediting T > Trit are inompatible with dila-ton stabilization. In ontrast to other osmologial onstraints, this upper boundannot be irumvented by late{time entropy prodution.We have also disussed more model dependent osmologial onstraints. Evenif T < Trit, the S{modulus problem restrits the allowed temperature of thermalleptogenesis and makes the orresponding upper bound on light neutrino massesmore stringent. Furthermore, depending on the assumed oupling between dilatonand inaton, stronger bounds an apply to the reheating temperature.Our disussion has been based on the assumption that moduli are stabilized bynon{perturbative e�ets whih break supersymmetry. Thus the barrier separating16



the realisti vauum from the unphysial one with zero gauge ouplings is related tosupersymmetry breaking. Reently, an interesting lass of string ompati�ationshas been disussed where uxes lead to moduli stabilization and supersymmetrybreaking (see, for example, [30, 31, 32℄). Realisti, metastable de Sitter vaua alsorequire non{perturbative ontributions to the superpotential from instanton e�etsor gaugino ondensation [31℄. It remains to be seen how muh uxes an modifythe ritial temperature in realisti string ompati�ations.AknowledgmentsWe would like to thank A. Hebeker, T. Kobayashi, J. Louis and T. Moroi forhelpful omments.Appendix Evolution of � and entropy produtionIn the following, we derive the dilution fator, Eq. (49). The dilaton starts oherentosillations soon after the radiation dominated era begins. This is beause the e�etof the temperature term in Eq. (47) disappears very quikly and when j��h�iT j &h�iT the potential beomes essentially quadrati. As an be veri�ed numerially,the initial amplitude of subsequent osillations is lose to the initial displaementof the dilaton from its zero temperature minimum, ��jTR � h�iTR. The Hubblefrition is very small at these times, H �mS .The ratio of �os to the entropy density s before the dilaton deays is given by(f. Eq. (48)),�oss ���before � m2Sh�i2TRs(TR) = 2T 5R(2�2=45) g�(TR) �2K 00m2SM2P : (52)The ratio stays onstant sine �os / s / R�3. Just after the dilaton deays, theratio of �rad to s is�rads ���after = 34Td ' 34 ��290 g�(Td)��1=4p�SMP : (53)If �os=s > �rad=s, the dilaton deay auses large entropy prodution. Using�radjafter ' �osjbefore, we obtain Eq. (49). Note that there are large numerialunertainties in this expression due to the dependene on initial onditions. In ex-treme senarios, � an be lose to one. However, the resulting unertainty in TRis usually rather small sine it appears with the �fth power.Referenes[1℄ H. P. Nilles, Phys. Lett. B 115 (1982) 193;S. Ferrara, L. Girardello, H. P. Nilles, Phys. Lett. B 125 (1983) 457;M. Dine, R. Rohm, N. Seiberg, E. Witten, Phys. Lett. B 156 (1985) 55.17
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