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DESY 04-062 April 2004Dilaton Destabilizationat High TemperatureW. Bu
hm�uller, K. Hamagu
hi, O. Lebedev, M. RatzDeuts
hes Elektronen-Syn
hrotron DESY, 22603 Hamburg, GermanyAbstra
tMany 
ompa
ti�
ations of higher{dimensional supersymmetri
 theories haveapproximate va
uum degenera
y. The asso
iated moduli �elds are stabilized bynon{perturbative e�e
ts whi
h break supersymmetry. We show that at �nite tem-perature the e�e
tive potential of the dilaton a
quires a negative linear term. Thisdestabilizes all moduli �elds at suÆ
iently high temperature. We 
ompute the 
or-responding 
riti
al temperature whi
h is determined by the s
ale of supersymmetrybreaking, the �{fun
tion asso
iated with gaugino 
ondensation and the 
urvatureof the K�ahler potential, T
rit �pm3=2MP (3=�)3=4K 00�1=4. For realisti
 models we�nd T
rit � 1011{1012GeV, whi
h provides an upper bound on the temperature ofthe early universe. In 
ontrast to other 
osmologi
al 
onstraints, this upper bound
annot be 
ir
umvented by late{time entropy produ
tion.



1 Introdu
tionCompa
ti�
ations of higher{dimensional supersymmetri
 theories generi
ally 
on-tain moduli �elds, whi
h are related to approximate va
uum degenera
y. In manymodels these �elds a
quire masses through 
ondensation of fermion pairs [1℄, whi
hbreaks supersymmetry. Generi
ally, gaugino 
ondensation models su�er from thedilaton `run{away' problem [2℄, whi
h 
an be solved, for example, by multiplegaugino 
ondensates [3℄ or non{perturbative string 
orre
tions [4, 5℄.Moduli play an important role in the e�e
tive low energy theory. Their valuesdetermine geometry of the 
ompa
ti�ed spa
e as well as gauge and Yukawa 
ou-plings. Their masses, determined by supersymmetry breaking, are mu
h smallerthan the 
ompa
ti�
ation s
ale. Hen
e, moduli 
an have important e�e
ts at lowenergies. Cosmologi
ally, they 
an 
ause the `moduli problem' [6, 7℄, in parti
ulartheir os
illations may dominate the energy density during nu
leosynthesis, whi
h isin 
on
i
t with the su

essful BBN predi
tions. For an exponentially steep dilatonpotential, like the one generated by gaugino 
ondensation, there is also the prob-lem that during the 
osmologi
al evolution the dilaton (S) may not settle in theshallow minimum at Re S � 2, but rather overshoot and run away to in�nity [8℄.These problems 
an be 
ured in several ways (
f. [9℄).In this paper we shall dis
uss a new 
osmologi
al impli
ation of the dilatondynami
s, the existen
e of a 
riti
al temperature T
rit whi
h represents an upperbound on allowed temperatures in the early universe. If ex
eeded, the dilatonwill run to the minimum at in�nity, whi
h 
orresponds to the unphysi
al 
ase ofvanishing gauge 
ouplings. The existen
e of a 
riti
al temperature is a 
onsequen
eof a negative linear term in the dilaton e�e
tive potential whi
h is generated by�nite{temperature e�e
ts in gauge theories [10℄. This shifts the dilaton �eld tolarger values and leads to smaller gauge 
ouplings at high temperature. As we shallsee, this e�e
t eventually destabilizes the dilaton, and subsequently all moduli,at suÆ
iently high temperatures. In the following we shall 
al
ulate the 
riti
altemperature T
rit beyond whi
h the physi
ally required minimum at Re S � 2disappears.There 
an be additional temperature{dependent 
ontributions to the dilatone�e
tive potential 
oming from the dilaton 
oupling to other s
alar �elds [11℄.These 
ontributions are model dependent and usually have a destabilizing e�e
ton the dilaton, at least in heteroti
 string models [12℄. Our results for the 
riti
altemperature 
an therefore be understood as 
onservative upper bounds on theallowed temperatures in the early universe.The paper is organized as follows. In Se
. 2 we review the dependen
e of the freeenergy on the gauge 
oupling in SU(N) gauge theories. As we shall see, one{loop
orre
tions already yield the qualitative behaviour of the full theory. In Se
. 3 westudy the dilaton potential at �nite temperature and derive the 
riti
al temperature2



T
rit for the most 
ommon models of dilaton stabilization. Se
. 4 is then devoted tothe dis
ussion of 
osmologi
al impli
ations, the generality of the obtained resultsis dis
ussed in Se
. 5, and the appendix gives some details on entropy produ
tionin dilaton de
ays.2 Gauge 
ouplings at high temperatureThe free energy of a supersymmetri
 SU(N
) gauge theory with Nf matter multi-plets in the fundamental representation readsF(g; T ) = ��2T 424 n�0 + �2g2 + O(g3)o ; (1)with g and T being the gauge 
oupling and temperature, respe
tively. The zerothorder 
oeÆ
ient, �0 = N2
 + 2N
Nf � 1, 
ounts the number of degrees of freedom,and the one{loop 
oeÆ
ient �2 is given by (
f. [13℄)�2 = � 38�2 (N2
 � 1)(N
 + 3Nf) : (2)It is very important that �2 is negative. Hen
e, gauge intera
tions in
rease the freeenergy, at least in the weak 
oupling regime. Consequently, if the gauge 
ouplingis given by the expe
tation value of some s
alar �eld (dilaton) and therefore isa dynami
al quantity, temperature e�e
ts will drive the system towards weaker
oupling [10℄.In reality, gauge 
ouplings are not small, e.g., g ' 1=p2 at the GUT s
ale.Thus, higher order terms in the free energy are relevant. These 
ould 
hange thequalitative behaviour of the free energy with respe
t to the gauge 
oupling. Forinstan
e, in the 
ase of a pure SU(N
) theory, the positive g3 term overrides thenegative g2 term for N
 � 3. The knowledge of higher order terms is therefore ne
-essary. These 
an be 
al
ulated perturbatively up to order g6 ln(1=g), where theexpansion in the 
oupling breaks down due to infrared divergen
es [13℄. The non{perturbative 
ontribution 
an be 
al
ulated by means of latti
e gauge theory. Fornon{supersymmetri
 gauge theories with matter in the fundamental representationthe free energy has been 
al
ulated up to g6 ln(1=g) [14℄. Comparison with numer-i
al latti
e QCD results shows that already the g2 term has the 
orre
t qualitativebehaviour, i.e., gauge intera
tions indeed in
rease the free energy. Furthermore, ifterms up to order g5 are taken into a

ount, perturbation theory and latti
e resultsare quantitatively 
onsistent, even for 
ouplings g = O(1) [14℄.To demonstrate this behaviour, we 
onsider the free energy of a non{supersymmetri
 gauge theory as a fun
tion of N
 and Nf using the results ofRef. [14℄ and earlier work [15℄. As dis
ussed, it is suÆ
ient to trun
ate the per-turbative expansion at order g5. We will be interested in the free energy in the3
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 = 10.Figure 1: The 
oeÆ
ient B (
f. Eq. (3)) for SU(N
) gauge theory withNf 
avours;g0 = 1=p2.vi
inity of a �xed 
oupling g0,g = g0 + Æg ;F(g; T )T 4 = A(g0) + B(g0) Æg+ O(Æg2) : (3)For our purposes, it is suÆ
ient to keep the dominant linear termO(Æg) and negle
thigher order 
ontributions O(Æg2), whi
h have the same sign. Fig. 1(a) displays the
oeÆ
ient B as a fun
tion of N
 with Nf = 0. Analogously, Fig. 1(b) shows thedependen
e of B on the number of matter multiplets Nf with N
 = 10. Obviously,B is positive and in
reases with the number of 
olours and 
avours. This behaviourhas to be the same for all non{Abelian gauge groups. The 
oeÆ
ient B will be evenlarger in supersymmetri
 theories due to gauginos and s
alars.3 Dilaton potential at �nite temperatureIn this se
tion, we dis
uss how �nite temperature e�e
ts modify the dilaton e�e
tivepotential. This dis
ussion applies to many string 
ompa
ti�
ations although detailsare model dependent. The major feature of the following analysis is that the dilatonpotential has a minimum at ReS � 2 whi
h is separated from another minimumat ReS !1 by a �nite barrier (see Fig. 2). This is a rather generi
 situation.It is well known that gaugino 
ondensation models generi
ally su�er from thedilaton `run{away' problem. That is, the minimum of the supergravity s
alar po-tential is at S !1, i.e., zero gauge 
oupling. The two most popular ways to re
tifythis problem in the framework of the heteroti
 string use multiple gaugino 
onden-sates [3,16℄ and non{perturbative 
orre
tions to the K�ahler potential [17,18℄. Theseme
hanisms produ
e a lo
al minimum at ReS � 2. As �nite temperature e�e
tsdue to thermalized gauge and matter �elds drive the dilaton towards weaker 
ou-pling, this minimum 
an turn into a saddle point, in whi
h 
ase the dilaton would4



Smin Smax
Re S

0

V

0Figure 2: Typi
al potential for dilaton stabilization (solid 
urve). A minimum atS = Smin ' 2 is separated from the other minimum at S !1 by a �nite barrier.For illustration, we also plot a typi
al run{away potential (dashed 
urve).again run away. This puts a 
onstraint on the allowed temperatures in the earlyuniverse.If the hidden se
tor is thermalized (
f. [9℄), su
h 
onstraints are meaningfulas long as the temperature is below the gaugino 
ondensation s
ale, � � 1013{1014GeV. Otherwise, by analogy with QCD, it is expe
ted that the gaugino 
on-densate evaporates and the dilaton potential vanishes.The 
riti
al temperature is obtained as follows. The stabilization me
hanismsgenerate a lo
al minimum of the dilaton potential at ReS � 2, immediately fol-lowed by a lo
al maximum, with a separation ÆReS = O(10�2). Beyond thislo
al maximum, the potential monotonously de
reases to the other minimum atReS ! 1. Sin
e the dilaton intera
tion rate �S � T 3=M2P is mu
h smaller thanthe Hubble parameter, the dilaton �eld is not in thermal equilibrium. It playsthe role of a ba
kground �eld for parti
les with gauge intera
tions sin
e its valuedetermines the gauge 
oupling,ReS = 1g2 : (4)As a 
onsequen
e, the 
omplete e�e
tive potential of the dilaton �eld is the sumof the zero{temperature potential V and the free energy F of parti
les with gaugeintera
tions,VT (ReS) = V (ReS) + F(g = 1=pReS; T ) : (5)As the temperature in
reases, the lo
al minimum and maximum of VT merge intoa saddle point at ReS
rit. This de�nes the 
riti
al temperature T
rit. ReS
rit and5



T
rit are determined by the two equations1V 0(ReS
rit) + F 0(1=pReS
rit; T
rit) = 0 ; (6)V 00(ReS
rit) + F 00(1=pReS
rit; T
rit) = 0 ; (7)where `prime' denotes di�erentiation with respe
t to ReS.We are only interested in the lo
al behaviour of the potential around ReSmin '2, where we 
an expand the free energy F(g; T ) as in Eq. (3) withÆg = � ÆReS2(ReSmin)3=2 : (8)This produ
es a linear term in ReS with a negative slope proportional to the fourthpower of the temperature,F(g = 1=pReS; T ) = A T 4 � ÆReS 1� T 4 +O((ÆReS)2) ; (9)where ��1 = B2(ReSmin)3=2 : (10)Note, that validity of the linear approximation is based on the relation (4) betweenthe gauge 
oupling and the dilaton �eld. In 
ase of an arbitrary fun
tion g =g(ReS) it does not ne
essarily hold.In the linear approximation the equations for the 
riti
al value of the dilaton�eld and the 
riti
al temperature be
ome (
f. (6), (7), (9)),V 00(ReS
rit) = 0 ; (11)T
rit = �� V 0���ReS
rit�1=4 : (12)At S
rit, whi
h lies between Smin and Smax, the slope of the zero{temperaturedilaton potential is maximal. It is 
ompensated by the negative slope of the freeenergy at the 
riti
al temperature T
rit. For temperatures above T
rit the dilatonis driven to the minimum at in�nity where the gauge 
oupling vanishes.We 
an now pro
eed to 
al
ulating the 
riti
al temperature in ra
etra
k andK�ahler stabilization models. In what follows, we will assume zero va
uum energy,whi
h 
an be arranged by adding a 
onstant to the s
alar potential. The hiddense
tor often 
ontains non{simple gauge groups, e.g. in the 
ase of nontrivial Wilsonlines. Then gaugino 
ondensation 
an o

ur in ea
h of the simple fa
tors [3℄. Giventhe right gauge groups and matter 
ontent, the resulting superpotential 
an lead todilaton stabilization at the realisti
 value of S [16℄. For simpli
ity, we shall restri
tourselves to the 
ase of two gaugino 
ondensates.1In the 
ase of more than one solution, the maximal T
rit is the 
riti
al temperature.6



The starting point is the superpotential of gaugino 
ondensation2,W (S; T ) = �(T )�6 
(S) ; (13)where � is the Dedekind �{fun
tion and
(S) = d1 exp�� 3S2�1�+ d2 exp�� 3S2�2� : (14)T is the overall T{modulus parametrizing the size of the 
ompa
ti�ed dimensions.We assume that 
ondensates form for two groups, SU(N1) and SU(N2), with M1and M2 matter multiplets in the fundamental and anti{fundamental representa-tions. The parameters di and the �{fun
tions �i are then given by (i = 1; 2),�i = 3Ni �Mi16�2 ; (15)di = �13Mi �Ni� �32�2 e�3(Mi�Ni)=(3Ni�Mi) �13Mi�Mi=(3Ni�Mi) : (16)Together with the K�ahler potentialK = K(S + �S)� 3 ln (T + T ) ; (17)the superpotential for gaugino 
ondensation yields the s
alar potential [16℄,V = j�(T )j�12(2ReT )3 eK � 1KS �S j
S +KS
j2 +�3(ReT )2�2 j bG2j2 � 3� j
j2� ; (18)where subs
ripts denote di�erentiation with respe
t to the spe
i�ed arguments,and the fun
tion bG2 is de�ned via the Dedekind �{fun
tion asbG2 = �� �ReT + 4� �0(T )�(T )� : (19)It is well known that the T{modulus settles at a value T � 1 in Plan
k units,independently of the 
ondensing gauge groups [16℄. Further, in the 
ase of two
ondensates, minimization in ImS simply leads to opposite signs for the two 
on-densates in 
. From Eq. (18) we then obtain a s
alar potential whi
h only dependson x � ReS, the real part of the dilaton �eld,V (x) = a eK  4K00 �
0 + 12K 0
�2 � b 
2! ; (20)where a ' b ' 3 and
(x) = d1 exp�� 3x2�1�� d2 exp�� 3x2�2� : (21)The dilaton is stabilized at a point xmin where the �rst derivative of the potential,V 0 = 2a eK �
0 + 12K 0
���
0 + 12K 0
��4K 0K 00 � 2K 000K 002�+ 4K00
00 ��K 02K00 + b� 2� 
� ; (22)2For simpli
ity, we negle
t the Green{S
hwarz term whi
h would be an unne
essary 
ompli
ation inour analysis. 7



vanishes, and the dilaton mass term is positive,m2S = 2 V 00K00 ����xmin > 0 : (23)In the following we shall determine the 
riti
al temperature for two models ofdilaton stabilization. The s
ales of dilaton mass and 
riti
al temperature are setby the gravitino mass,m23=2 = eKjW j2 ���xmin = a eK j
j2 ���xmin ; (24)and the s
ale of supersymmetry breaking, MSUSY = pm3=2, measured in Plan
kunits.3.1 Criti
al temperature for ra
etra
k modelsConsider �rst the 
ase with the standard K�ahler potential,K(S + �S) = � ln (S + �S) ; (25)and two gaugino 
ondensates, the so-
alled `ra
etra
k models'. The �rst derivativeof the s
alar potential (20) then be
omesV 0 = 2a eK �
0 + 12K 0
�� 4K 00
00 � (b� 1) 
� : (26)It has been shown [16℄ that the lo
al minimum is determined by the vanishing ofthe �rst fa
tor, (2 x
0(x)� 
(x))jxmin = 0.We now have to evaluate (26) at the point of zero 
urvature, V 00 = 0. Di�eren-tiation by x brings down a power of 3=(2�) � 1. Away from the extrema, where
an
ellations o

ur, we therefore have the following hierar
hy,j
j � j
0j � j
00j � j
000j : (27)This implies for the �rst and se
ond derivative of the potential,V 0 ' 2a eK 4K 00 
0
00 ; (28)V 00 ' 2a eK 4K 00 �
002+ 
0
000� : (29)For the slope of the potential at the 
riti
al point one then obtains the 
onvenientexpressionV 0���x
rit ' �2a eK 4K 00 (
0)2
000
00 : (30)For xmin < x < xmax one has
0 � � 32�max 
 ; 
000 � � 32�min 
00 ; (31)8
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(b) T = T
rit.Figure 3: Dilaton potential for (N1; N2) = (7; 8) and (M1;M2) = (8; 15). (a):T = 0, (b): T = T
rit. In (b) the dilaton independent term AT 4
rit has beensubtra
ted (
f. Eq. (9)).where �max (�min) is the larger (smaller) of the two �{fun
tions. This yields forthe slope of the potentialV 0���x
rit � 2a eK 4K 00 � 32�max�2� 32�min�
2 : (32)Sin
e 
 does not vary signi�
antly between xmin and x
rit, one �nally obtains(
f. (24)),V 0���x
rit � 1K00 � 3�max�2 � 3�min� m23=2 : (33)Using Eq. (12) we 
an now write down the 
riti
al temperature. Note thatin ra
etra
k models �min and �max are usually very similar. Introdu
ing � =(�min�2max)1=3, one obtainsT
rit � pm3=2 � 3��3=4� �K 00�1=4 : (34)We have determined T
rit also numeri
ally. The result agrees with Eq. (34) withina fa
tor � 2. The fa
tor pm3=2 appears sin
e the s
ale of the s
alar potential is setby m23=2. The �{fun
tion fa
tor 
orre
ts for the steepness of the s
alar potential,whereas (�=K 00)1=4 = O(1). With m3=2 � 100GeV, � � 0:1 and MP = 2:4 �1018GeV, one obtainsT
rit � 1011GeV ; (35)9



as a typi
al value of the 
riti
al temperature.A straightforward 
al
ulation yields for the dilaton massmS ' 9�1�2 1K00 m3=2 : (36)As a result, the dilaton mass is mu
h larger than the gravitino mass and lies in therange of hundreds of TeV. This fa
t will be important for us later when we dis
ussthe S{modulus problem.3.2 Criti
al temperature for K�ahler stabilizationAs a se
ond example we 
onsider dilaton stabilization through non{perturbative
orre
tions to the K�ahler potential. In this 
ase a single gaugino 
ondensate issuÆ
ient [17, 18℄. Like instanton 
ontributions, su
h 
orre
tions are expe
ted tovanish in the limit of zero 
oupling and also to all orders of perturbative expansion.A 
ommon parametrization of the non{perturbative 
orre
tions readseK = eK0 + eKnp ;eKnp = 
 xp=2 e�qpx ; (37)with K0 = � ln(2x), x = ReS, and parameters subje
t to K 00 > 0 and p; q > 0.For a single gaugino 
ondensate, one has
 = d exp��3x2�� ; (38)where 3=(2�) = 8�2=N and d = �N=(32�2e) for a 
ondensing SU(N) group withno matter. Note that the s
alar potential is independent of ImS.The s
alar potential and its derivative are given by the simple expressionsV (x) = a eK 
2  1K 00 �K 0 � 3��2 � b! ; (39)V 0(x) = a eK 
2 �K 0 � 3�� 1K 00 �K0 � 3��2� K 000(K 00)2 �K 0 � 3��� b+ 2� : (40)It has been shown [19,17℄ that realisti
 minima are asso
iated with the singularityat K00 = 0. That is, by tuning the parameters 
; p; q it is possible to adjust K00 = 0at some value x where the potential then blows up. By perturbing the parametersslightly, one obtains a �nite potential with positive but small K 00, and the singu-larity smoothed out into a �nite bump. The bump is lo
ated approximately at thepoint of minimal K 00, and the lo
al minimum of the potential at x � 2 lies very
lose to it, with a separation Æx = O(10�2).For realisti
 
ases, K 0(x � 2)� 3=�, and the extrema of the potential aroundx � 2 are asso
iated with the zeros of the last bra
ket in Eq. (40). As explained10
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(b) T = T
rit.Figure 4: Dilaton potential for K�ahler stabilization. 
 = 5:7391, p = 1:1, q = 1,and N = 6 [19℄. (a): T = 0, (b): T = T
rit. In (b) the dilaton independent termAT 4
rit has been subtra
ted (
f. Eq. (9)).above, in pra
ti
e K00 is a very small parameter su
h that one 
an expand in powersof K 00. Then, the extrema appear due to 
an
ellations between the two `singular'terms and we have the approximate relationK 000K 00 ' � 3� : (41)Due to the spiky shape of the potential, the point of vanishing 
urvature, V 00 = 0,is very 
lose to the lo
al maximum. On the other hand, the 
an
ellations betweenthe 1=K00 and 1=(K 00)2 terms in Eq. (40) are not pre
ise at this point and one 
anapproximate their sum by the larger term. Using the fa
t that K and 
 do notvary signi�
antly between xmin and x
rit, one obtains from Eqs. (24) and (41),V 0���x
rit � a eK 1K00 � 3��3 
2 � 1K 00 � 3��3 m23=2 ; (42)where K 00 is evaluated at the lo
al maximum xmax. Note that this result is identi
alto Eq. (33) whi
h we have obtained for ra
etra
k models. However, for these models1=(K 00)1=4 = px = O(1), whereas now K 00 is a very small, but otherwise essentiallyfree parameter.Using Eq. (12) we �nd the same expression for the 
riti
al temperature as inra
etra
k models,T
rit � pm3=2 � 3��3=4� �K 00�1=4 : (43)11



Sin
e K 00 is small in realisti
 models, the upper bound on allowed temperaturesrelaxes 
ompared to ra
etra
k models. As before, Eq. (43) agrees within a fa
tor� 2 with numeri
al results. A typi
al value of the 
riti
al temperature is obtainedfor m3=2 � 100 GeV, � � 0:1 and K 00 � 10�4,T
rit � 1012GeV : (44)For the dilaton mass one obtainsmS � � 3��2 1K 00 m3=2 : (45)Again, we �nd that the dilaton is mu
h heavier than the gravitino.4 Impli
ations for 
osmologyAs we have seen in the previous se
tion, the dilaton gets destabilized at hightemperature. The maximal allowed temperature is given by T
rit � 1011�1012GeV.In this se
tion, we study impli
ations of this bound for 
osmology.Most importantly, T
rit represents a model independent upper bound on thetemperature of the early universe,T < T
rit : (46)This bound applies to a large 
lass of theories, with weakly 
oupled heteroti
 stringmodels being the most prominent representatives. It is worth emphasizing that thedilaton destabilization e�e
t is qualitatively di�erent from the gravitino [20℄ ormoduli problems [6, 7℄ in that it 
annot be 
ir
umvented by invoking other e�e
tsin late{time 
osmology su
h as additional entropy produ
tion. On
e the dilatongoes over the barrier, it 
annot 
ome ba
k.The present bound applies to any radiation dominated era in the early universe,even if additional in
ationary phases o

ur afterwards. Therefore, T
rit not onlyprovides an upper bound on the reheating temperature TR of the last in
ation,but also 
an be regarded as an absolute upper bound on the temperature of theradiation dominated era in the history of the universe.4.1 S{modulus problem and thermal leptogenesisIn addition to the bound dis
ussed above, one 
an have further, more model depen-dent, 
onstraints on temperatures o

urring at various stages of the evolution ofthe universe. In this subse
tion, we dis
uss one of them, related to the S{modulusproblem.Even if the reheating temperature does not ex
eed the 
riti
al one, thermale�e
ts shift the minimum of the dilaton potential. Due to this shift, S starts 
oher-ent os
illations after reheating. Sin
e the energy density stored in the os
illations12



behaves like non{relativisti
 matter, �os
 / R�3, with R being the s
ale fa
tor, itgrows relative to the energy density of the thermal bath, �rad / R�4, until S de-
ays. Its lifetime 
an be estimated as (�S)�1 �M2P=m3S ' 0:004 s (mS=100TeV)�3.In the examples studied in Se
. 3, mS � 10TeV, so that S de
ays before BBN.Thus, there is no 
onventional moduli problem, i.e., dilaton de
ays do not spoil theBBN predi
tion of the abundan
e of light elements.However, even for these large masses, 
oherent os
illations of S may a�e
t thehistory of the universe via entropy produ
tion [6, 7℄. Let us estimate the initialamplitude of these os
illations. At a given temperature T � T
rit, the dilatonpotential around the minimum 
an be re
ast asVT = 12m2S �2 �r 2�2K 00T 4 �MP ; (47)where � =MPpK 00=2 Re(S � Smin). The minimum of the potential is ath�iT ' r 2�2K 00 T 4m2SMP : (48)Thus, at T = TR, the displa
ement of � from its zero temperature minimum isestimated as ��jTR � h�iTR. Then, the entropy produ
ed in dilaton de
ays is (seeAppendix),� = saftersbefore � 1�2K 00 � TR1010GeV�5�106GeVmS �7=2 : (49)The de
ay o

urs at temperatures of order 10MeV, i.e., after the baryon asym-metry and the dark matter abundan
e have been �xed. Thus, we see that forTR & 1010GeV (mS=106GeV)7=10(�2K00)1=5, the baryon asymmetry and reli
 darkmatter density get signi�
antly diluted.For instan
e, su

essful thermal leptogenesis [21℄ requires TR & TL ' 3 �109GeV [22℄. For TR & TL, the baryon asymmetry 
an be enhan
ed by TR=TL,but later it gets diluted by a fa
tor / T 5R. Hen
e, there is only a narrow temper-ature range where thermal leptogenesis is 
ompatible with the usual me
hanismsof dilaton stabilization. We note further that, in this range of temperatures, thebound on the light neutrino masses tightens. For instan
e, TR < 3 � 1010GeVimplies3 mi . 0:07 eV, whi
h is more stringent than the temperature{independent
onstraint, mi . 0:1 eV [24℄.Con
erning dark matter, we note that in WIMP 
old dark matter s
enarios,at the time of the dilaton de
ay the pair annihilation pro
esses have frozen outso that the entropy produ
tion redu
es 
CDM.4 This e�e
t 
ould be wel
ome inparameter regions where otherwise WIMPs are overprodu
ed. Entropy produ
tion
ould also 
ontribute to the solution of the gravitino problem.3Here we have used Fig. 10 of Ref. [22℄, m1 < em1 [23℄, and m23 �m21 ' �m2atm.4WIMP dark matter may be dire
tly produ
ed by moduli de
ay [25℄.13
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Figure 5: Three epo
hs in in
ationary models: in
ation, in
aton os
illation dom-ination and radiation domination [26℄.It is important to remember that the T{moduli problem remains. Thermale�e
ts shift all moduli from their zero temperature minima, thereby indu
ing theirlate 
oherent os
illations. Unlike the dilaton, other moduli typi
ally have massesof order m3=2 and thus tend to spoil the BBN predi
tions.In summary, there exists a range of reheating temperatures, 10�2T
rit . TR .T
rit, whi
h are 
osmologi
ally a

eptable, but for whi
h the history of the universeis 
onsiderably altered, in parti
ular via signi�
ant entropy produ
tion at latetimes.4.2 Further 
onstraints on in
ation modelsIn this subse
tion we dis
uss some impli
ations of the thermal e�e
ts at earliertimes, before the reheating pro
ess 
ompletes. There are three important stages inthe in
ationary s
enario: in
ation, the in
aton{os
illation epo
h, and the radiationdominated epo
h (see Fig. 5).During in
ation, the energy density of the universe is dominated by the poten-tial energy of the in
aton �. After the end of in
ation, in
aton starts its 
oherentos
illations. The energy density of the universe is still dominated by the in
aton�, until the reheating pro
ess 
ompletes and radiation energy takes over with tem-perature T = TR. The nonzero energy density of the in
aton indu
es additionalSUSY breaking e�e
ts [27℄. Hen
e, one may expe
t that the dilaton potential isalso a�e
ted by the �nite energy of the in
aton � during these �{dominated eras.Further, in the �{os
illation era there is radiation with temperature T '(T 2RMPH)1=4 [26℄, where H is the Hubble parameter. Although its energy densityis small 
ompared to that of in
aton (see Fig. 5), it a�e
ts the dilaton potentialas we have dis
ussed in Se
. 3. Sin
e the maximum temperature Tmax in the �{os
illation era is generi
ally higher than the reheating temperature TR, one expe
tsstronger 
onstraints from Tmax < T
rit. 14



Whether it is radiation or in
aton that a�e
ts the dilaton potential more, de-pends on the 
oupling between dilaton and in
aton. As this is model dependent,below we 
onsider the three possible 
ases:(i) destabilizing dilaton{in
aton 
oupling. The in
aton{dilaton 
ouplingdrives the dilaton to larger values and may let it run away to in�nity. This putssevere 
onstraints on the in
ation model. Some models 
an be ex
luded indepen-dently of the reheating temperature.(ii) stabilizing dilaton{in
aton 
oupling. The in
aton e�e
ts move thedilaton to smaller values. In this 
ase, the previously obtained bound on the re-heating temperature TR < T
rit provides the most stringent 
onstraint. Note thatthe shift of the dilaton may 
ause a large initial amplitude of its os
illation, whi
h
an result in a late{time entropy produ
tion as dis
ussed in Se
. 4.1.(iii) negligible dilaton{in
aton 
oupling. In this 
ase, the e�e
t of radi-ation during the �{os
illation era (preheating epo
h) is dominant. The maximalradiation temperature 
an be expressed in terms of the reheating temperature [26℄,Tmax ' (T 2RMPHinf)1=4 ; (50)where Hinf is the Hubble expansion rate during in
ation. Tmax must be below the
riti
al temperature, or the dilaton will run away to weak 
oupling. This 
onstrainttranslates into a bound on the reheating temperature depending on Hinf ,TR . � T 4
ritMPHinf�1=2 ' 6� 107GeV� T
rit1011GeV�2�1010GeVHinf �1=2 ; (51)as shown in Fig. 6. The upper bound on TR now be
omes mu
h severer. For in-stan
e, taking T
rit ' 1011GeV and typi
al values ofHinf in some in
ation models 5(
f. [29℄), we obtain the following bounds:
haoti
 in
ation: Hinf ' 1013GeV, TR . 106GeV,hybrid in
ation: Hinf � 108{1012GeV, TR . 107{109GeV,new in
ation: Hinf � 106{1012GeV, TR . 107{1010GeV.These bounds apply if already during the preheating phase parti
les with gaugeintera
tions form a plasma with temperature Tmax and the dilaton is near thephysi
al minimum.5 Con
lusionsAt �nite temperature the e�e
tive potential of the dilaton a
quires lo
ally anegative linear term. As we have seen, this important fa
t is established be-yond perturbation theory by latti
e gauge theory results. As a 
onsequen
e, at5In 
urvaton s
enarios [28℄ the values of Hinf are mu
h less 
onstrained.15
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Figure 6: Upper bounds on the reheating temperature for T
rit = 1011GeV and1012GeV assuming a small in
aton{dilaton 
oupling (
ase (iii)). The darker re-gion is ex
luded for T
rit = 1012GeV; for T
rit = 1011GeV the lighter region isex
luded as well.suÆ
iently high temperatures the dilaton S, and subsequently all other mod-uli �elds, are destabilized and the system is driven to the unphysi
al groundstate with vanishing gauge 
oupling. We have 
al
ulated the 
orresponding 
rit-i
al temperature T
rit whi
h is larger than the s
ale of supersymmetry breaking,MSUSY = pMPm3=2 = O(1010GeV), but signi�
antly smaller than the s
ale ofgaugino 
ondensation, � = [d exp(�3S=(2�))℄1=3MP = 1013{1014GeV. This is themain result of our paper.Our result is based on the well understood thermodynami
s of the observablese
tor. In 
ontrast, the temperature of gaugino 
ondensation 
an pla
e a bound onthe temperature of the early universe only under the additional assumption thatthe hidden se
tor is thermalized.The upper bound on the temperature in the radiation dominated phase of theearly universe, T < T
rit � 1011{1012GeV, has important 
osmologi
al impli
a-tions. In parti
ular, it severely 
onstrains baryogenesis me
hanisms and in
ations
enarios. Models requiring or predi
ting T > T
rit are in
ompatible with dila-ton stabilization. In 
ontrast to other 
osmologi
al 
onstraints, this upper bound
annot be 
ir
umvented by late{time entropy produ
tion.We have also dis
ussed more model dependent 
osmologi
al 
onstraints. Evenif T < T
rit, the S{modulus problem restri
ts the allowed temperature of thermalleptogenesis and makes the 
orresponding upper bound on light neutrino massesmore stringent. Furthermore, depending on the assumed 
oupling between dilatonand in
aton, stronger bounds 
an apply to the reheating temperature.Our dis
ussion has been based on the assumption that moduli are stabilized bynon{perturbative e�e
ts whi
h break supersymmetry. Thus the barrier separating16



the realisti
 va
uum from the unphysi
al one with zero gauge 
ouplings is related tosupersymmetry breaking. Re
ently, an interesting 
lass of string 
ompa
ti�
ationshas been dis
ussed where 
uxes lead to moduli stabilization and supersymmetrybreaking (see, for example, [30, 31, 32℄). Realisti
, metastable de Sitter va
ua alsorequire non{perturbative 
ontributions to the superpotential from instanton e�e
tsor gaugino 
ondensation [31℄. It remains to be seen how mu
h 
uxes 
an modifythe 
riti
al temperature in realisti
 string 
ompa
ti�
ations.A
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omments.Appendix Evolution of � and entropy produ
tionIn the following, we derive the dilution fa
tor, Eq. (49). The dilaton starts 
oherentos
illations soon after the radiation dominated era begins. This is be
ause the e�e
tof the temperature term in Eq. (47) disappears very qui
kly and when j��h�iT j &h�iT the potential be
omes essentially quadrati
. As 
an be veri�ed numeri
ally,the initial amplitude of subsequent os
illations is 
lose to the initial displa
ementof the dilaton from its zero temperature minimum, ��jTR � h�iTR. The Hubblefri
tion is very small at these times, H �mS .The ratio of �os
 to the entropy density s before the dilaton de
ays is given by(
f. Eq. (48)),�os
s ���before � m2Sh�i2TRs(TR) = 2T 5R(2�2=45) g�(TR) �2K 00m2SM2P : (52)The ratio stays 
onstant sin
e �os
 / s / R�3. Just after the dilaton de
ays, theratio of �rad to s is�rads ���after = 34Td ' 34 ��290 g�(Td)��1=4p�SMP : (53)If �os
=s > �rad=s, the dilaton de
ay 
auses large entropy produ
tion. Using�radjafter ' �os
jbefore, we obtain Eq. (49). Note that there are large numeri
alun
ertainties in this expression due to the dependen
e on initial 
onditions. In ex-treme s
enarios, � 
an be 
lose to one. However, the resulting un
ertainty in TRis usually rather small sin
e it appears with the �fth power.Referen
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