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A 
ommon feature of �ve-dimensional supersymmetri
 models are fermions propagat-ing in the bulk of the extra dimension. In order to extra
t physi
al predi
tions at lowenergies, the four dimensional mass spe
trum of those fermions has to be known. Forinstan
e, supersymmetry breaking is determined by the mass spe
trum of the gravitino,the existen
e of a zero mode signalling unbroken supersymmetry. Similarly, when gaugemultiplets propagate in the bulk supersymmetry breaking is intimately linked to the ex-isten
e of gaugino zero modes. In parti
ular if supersymmetry breaking is implementedby non-trivial twist 
onditions, or S
herk-S
hwarz me
hanism [1℄, it a
ts in the same wayboth in the gravitino and the gaugino se
tors.The aim of this letter is to study fermions propagating in a 
at �ve-dimensional spa
e-time, with 
oordinates (x�; y), where the 
ompa
t �fth dimension (with radius R) has twofour-dimensional boundaries lo
ated at y = 0 and y = �R. Often this spa
e is 
onstru
tedas the orbifold S1=Z2, identifying points on the 
ir
le related by the re
e
tion of the �fth
oordinate y ! �y. Fields with odd parity with respe
t to the Z2 re
e
tions are zeroat the �xed points, while the normal derivative of even �elds is for
ed to vanish. Thetreatment of fermions is 
ompli
ated in the presen
e of brane a
tions lo
alized at theboundaries. In the orbifold approa
h, these brane a
tions are introdu
ed with a delta-fun
tion distribution, peaked at the lo
ation of the orbifold �xed point. The latter indu
esdis
ontinuities in the wave fun
tions of the fermions whi
h take di�erent values at the �xedpoint and in�nitesimally 
lose to it [2, 3℄. A possible way to avoid these jumps is to giveup the rigid orbifold boundary 
onditions and instead enfor
e the �elds to be 
ontinuous,while the boundary 
onditions are determined by the boundary a
tion itself. This is 
alledthe interval approa
h and leads to physi
ally equivalent spe
tra as those of the orbifoldapproa
h without any need of using, as the latter, singular fun
tions 6. To summarize, inthe orbifold approa
h one imposes �xed (orbifold) boundary 
onditions while the branea
tion indu
es jumps, whereas in the interval approa
h one imposes 
ontinuity and thebrane a
tion indu
es the boundary 
onditions.In this letter we will follow the interval approa
h and show how the boundary a
-tion 
an give rise to 
onsistent boundary 
onditions for the fermions. In a forth
omingpubli
ation [4℄ we will give a detailed treatment of how to translate the two pi
turesinto ea
h other. In a manifold M with a boundary the dynami
s is determined by twoequally important ingredients: the bulk equations of motion and the boundary 
onditions(BC's). An e
onomi
al way to determine a set of 
onsistent BC's together with the bulkequations of motion is the a
tion prin
iple 7: under a variation of the dynami
al �eldsthe a
tion must be stationary. This in general translates into two separate 
onditions:the vanishing of the variation of the a
tion in the bulk and the vanishing of the variationat the boundary �M. Contributions to the a
tion variation at the boundary 
ome fromintegration by parts of bulk variation and, if present, from varying the boundary part6The interval approa
h is sometimes 
alled \downstairs" approa
h while the orbifold approa
h is 
alled\upstairs" approa
h.7For an alternative approa
h see [5℄. 1



of the a
tion (see [6℄ for a re
ent appli
ation to symmetry breaking). In the followingwe will 
onsider the �ve-dimensional (5D) manifoldM as the dire
t produ
t of the fourdimensional Minkowski spa
eM4 and the interval [0; �R℄.Sin
e we are mainly interested in supersymmetri
 theories, we will take the fermionsto be symple
ti
-Majorana spinors, although a very similar treatment holds for the 
aseof fermioni
 matter �eld asso
iated to Dira
 fermions. In parti
ular we will 
onsider thegaugino 
ase, the treatment of gravitinos being 
ompletely analogous. The 5D spinors 	isatisfy the symple
ti
-Majorana reality 
ondition and we 
an represent them in terms oftwo 
hiral 4D spinors a

ording to 8	i = � �i���i _�� ; ��i _� � �ij ��j��� � _� _� : (1)where �ij = i (�2)ij and �im�jm = Æij. Consider thus the bulk LagrangianLbulk = i �	
MDM	 = i2 �	
MDM	� i2DM �	
M	 : (2)where the last equation is not due to partial integration but holds be
ause of the symple
ti
-Majorana property, Eq. (1). The derivative is 
ovariant with respe
t to the SU(2)R au-tomorphism symmetry and thus 
ontains the auxiliary gauge 
onne
tion VM . The �eldVM is non propagating and appears in the o�-shell formulation of 5D supergravity [7℄. Ava
uum expe
tation value (VEV) 9VM = Æ5M !R ~q � ~� ; ~q 2 = 1 (3)implements a S
herk-S
hwarz (SS) supersymmetry breaking me
hanism [1℄ in the Hosotanibasis [8,9℄. The standard form of the SS me
hanism, originally introdu
ed for 
ir
le 
om-pa
ti�
ation, 
an be re
overed by a gauge transformation U that transforms away VMbut twists the periodi
ity 
ondition for �elds 
harged under SU(2)R on the 
ir
le. As wewill see later in the interval a SS breaking term is equivalent to a suitable modi�
ationof the BC's at one of the endpoints. The unitary ve
tor ~q points toward the dire
tion ofSS breaking. We supplement the bulk a
tion by the following boundary terms at y = yf(f = 0; �) with y0 = 0 and y� = �RLf = 12 �	 �T (f) + 
5 V (f)�	 = 12 �iM (f)ij �j + h:
: ; (4)where T (f) and V (f) are matri
es a
ting on SU(2) indi
es,M (f) = i�2 (T (f) � iV (f)) (5)and we have made use of the de
omposition (1). Noti
e that the mass matrix is allowedto have 
omplex entries. Without loss of generality we take it to be symmetri
, whi
henfor
es T f and V f to be spanned by Pauli matri
es.8We use the Wess-Bagger 
onvention [10℄ for the 
ontra
tion of spinor indi
es.9Consistent with the bulk equation of motion d (~q � ~V ) = 0 [7℄.2



The total bulk + boundary a
tion is then given byS = Sbulk+ Sboundary = Z d5xLbulk + Zy=0 d4xL0 � Zy=�R d4xL� : (6)The variation of the bulk a
tion givesÆSbulk = Z d5x i �Æ �	
MDM	�DM �	
M Æ	�� Z d4x �Æ�i �ij�j + h:
:��R0 ; (7)where the boundary pie
e 
omes from partial integration. One now has to add the varia-tion of the boundary a
tion. Enfor
ing that the total a
tion S = Sbulk+Sboundary has zerovariation we get the standard Dira
 equation in the bulk provided that all the boundarypie
es vanish. The latter are given by�Æ�i ��ij +M (f)ij � �j + h.
.���y=yf = 0 : (8)Sin
e we are 
onsidering un
onstrained variations of the �elds, the BC's we obtain fromEqs. (8) are given by ��ij +M (f)ij � �j��y=yf = 0 : (9)These equations only have trivial solutions (are over
onstrained) unlessdet ��ij +M (0)ij � = det ��ij +M (�)ij � = 0 : (10)Imposing these 
onditions, we get the two 
omplex BC's whi
h are needed for a systemof two �rst order equations. Note that this means that an arbitrary brane mass matrixdoes not yield viable BC's; in parti
ular a vanishing brane a
tion is in
onsistent 10 sin
edet(�ij) 6= 0 11. However this does not imply that the familiar orbifold BC �1 = 0 (�2 = 0)
an not be a
hieved; in the interval approa
h they 
orrespond to M = �1 (M = ��1).The BC's resulting from Eqs. (9) are of the form�
1f �1 + 
2f �2���y=yf = 0 ; (11)where 
1;2f are 
omplex parameters or, setting zf = �(
1f=
2f )��2 � zf �1���y=yf = 0; zf 2 C : (12)Physi
ally inequivalent BC's span a 
omplex proje
tive spa
e CP 1 homeomorphi
 to theRiemann sphere. In parti
ular, zf = 0 leads to a Diri
hlet BC for �2, and the point atin�nity zf =1 leads to a Diri
hlet BC for �1. Noti
e that these BC's 
ome from SU(2)Rbreaking mass terms. Spe
ial values of zf 
orrespond to 
ases when these terms preservepart of the symmetry of the original bulk Lagrangian. In parti
ular when both the SS and10In the sense that the a
tion prin
iple does not provide a 
onsistent set of BC's as boundary equationsof motion.11Noti
e that this agrees with the methods re
ently used in Ref. [11℄.3



the preserved symmetry are aligned those 
ases 
an lead to a persistent supersymmetryas we will see. On
e (10) is satis�ed, the values of zf in terms of the brane mass termsare given by zf = � M (f)111 +M (f)12 = 1 �M (f)12M (f)22 (13)where the se
ond equality holds due to the 
ondition (10).The mass spe
trum is found by solving the EOM with the boundary 
onditions (12).To simplify the bulk equations of motion it is 
onvenient to go from the Hosotani basis	i to the SS one �i, related by the transformation	 = U �; U = exp��i ~q � ~� ! yR� : (14)In the SS gauge the bulk equations readi 
M�M� = 0 : (15)We now de
ompose the 
hiral spinor �i(x; y) in the Hosotani basis as �i(x; y) = 'i(y) (x),with  (x) a 4D 
hiral spinor. Setting ' = U� we get the following equations of motionin the SS basis m�i � �ij d��jdy = 0 ; m ��j �ij + d�idy = 0 : (16)The parameter m in Eq. (16) is the Majorana mass eigenvalue of the 4D 
hiral spinor 12i���� � = m ; i����� = m � : (17)As a 
onsequen
e of the transformation (14) the SS parameter ! manifests itself only inthe BC at y = �R 13:�0 � �2�1 ����y=0 = z0; �� � �2�1 ����y=�R = tan(�!)(iq1� q2 � iq3 z�) + z�tan(�!)(iq1 z� + q2 z� + iq3) + 1 ; (18)where �f are the BC's in the SS basis. In parti
ular the boundary 
ondition �� is a fun
tionof !, ~q and z�. From this it follows that we 
an always gauge away the SS parameter ! inthe bulk Lagrangian going into the SS basis through (14). However now in the new basis! reappears in one of the BC's.The bulk equations have the following generi
 solution�(y) = � �a 
os(my) + �z0a sin(my)�a sin(my) + z0�a 
os(my)� ; (19)where a is a 
omplex number given in terms of z0 and ��:a = z0 � ��jz0 � ��j + 1 + z0���j1 + z0���j : (20)12The bar a
ting on a s
alar quantity, as e.g. ��i, and a 
hiral spinor, as e.g. � , denotes 
omplex
onjugation.13Noti
e that U (y = 0) = 1. The roles of the branes and hen
e of z� and z0 
an be inter
hanged by
onsidering the SS transformation U 0(y) � U (y � �R).4



The solution (19) satis�es the BC's Eq. (18) for the following mass eigenvaluesmn = nR + 1�R ar
tan ���� z0 � ��1 + z0 ��� ���� ; (21)where n 2Z. When z0 = �� there is a zero mode and supersymmetry remains unbroken.When the only sour
es of supersymmetry breaking reside on the branes, setting them to
an
el ea
h other, z0 = z�, preserves supersymmetry [12℄. On
e supersymmetry is furtherbroken in the bulk, an obvious way to restore it is by determining z� as a fun
tion ofz0 and ! using the relation (18) with �� = z0. This will lead to an !-dependent brane-Lagrangian at y = �R. In this 
ase we 
ould say that supersymmetry, that was brokenby BC's (SS twist) is restored by the given SS twist (BC's) [13℄.There is however a more interesting 
ase: suppose the brane Lagrangian determinesz� to be z� = z(~q ) � � � q3q1 � iq2 : (22)with � = �1. This spe
ial value of z� is a �xed point of the SS transformation, i.e. �f = zf .For z� = z(~q ) the spe
trum be
omes independent on !. In other words, for this spe
ialsubset of boundary Lagrangians, the VEV for the �eld ~q � ~V5 does not in
uen
e thespe
trum. The reason for this 
an be understood by going ba
k to the Lagrangian whi
hwe used to derive the BC's. From the relation (13) one 
an see that 
ondition (22) issatis�ed by the mass matrix M (�)12 = �q3M (�)11 = ��(q1 + iq2)M (�)22 = �(q1 � iq2) (23)whi
h 
an be translated into a mass term at the boundary y = y� along the dire
tion ofthe SS term, i.e. V (�) = 0 and T (�) = �� ~q � ~� in the notation of Eq. (4). In parti
ularthis brane mass term preserves a residual U(1)R aligned along the SS dire
tion ~q. Inother words, the SS-transformation U leaves both brane Lagrangians invariant and ! 
anbe gauged away. When we further impose z0 = z(�~q ), i.e. V (0) = 0 and T (0) = �T (�)the U(1)R symmetry is preserved by the bulk. In parti
ular if z0 = z(~q ) supersymmetryremains unbroken, although the VEV of ~q � ~V5 is nonzero. One 
ould say that in this 
asethe theory is persistently supersymmetri
 even in the presen
e of the SS twist, with massspe
trum mn = n=R. On the other hand if z0 = z(�~q ) the theory is (persistently) non-supersymmetri
 and independent on the SS twist: the mass spe
trum is given by mn =(n+1=2)=R. In this 
ase supersymmetry breaking amounts to an extraZ02 orbifolding [14℄.Noti
e that we have not 
hosen the most general solution to Eq. (22) but one whereV (f) = 0. In the most general 
ase the 
ondition (10) leads to (~T (f))2 � (~V (f))2 = 1and ~T (f) � ~V (f) = 0, and for ~V (f) 6= 0 Eq. (22) has in general a two-parameter familyof solutions. All of them should 
omply with the existen
e of persistent zero modes5



(irrespe
tive of the SS twist). However the 
ondition for an (o�-shell) supersymmetri
a
tion is only 
onsistent with the solution with V (f) = 0, as we will see below.Something similar happens in the warped 
ase [4℄: when bulk 
osmologi
al 
onstantand brane tensions are turned on, invarian
e of the a
tion under lo
al supersymmetry re-quires gravitino mass terms on the brane. In the tuned 
ase, { i.e. in the Randall-Sundrum(RS) model { those brane mass terms pre
isely give rise to the BC z0 = z� = z(~q) [15℄.Note that there ~q � ~V5 is repla
ed by A5, the �fth 
omponent of the graviphoton. In fa
t, ithas been shown that in this 
ase there always exists a Killing spinor and supersymmetryremains unbroken [16, 17℄, 
onsistent with the result that in RS supersymmetry 
an notbe spontaneously broken 14 by the SS me
hanism [15,19℄. This and other issues, su
h asthe 
omparison between the interval and the orbifold approa
hes and how to relate them,will be presented elsewhere [4℄.Up to now, we have fo
used on the fermion se
tor spe
trum. Adding the 
ompleteve
tor multiplet does not invalidate our 
onditions for supersymmetry restoration as longas the supersymmetry breaking brane terms are of the form given by Eq. (4). We wouldlike to show the invarian
e of our gaugino Lagrangian, Eq. (6), under (global) supersym-metry. To this end, let us fo
us on a simple abelian gauge multiplet. Clearly, sin
e weare not imposing any a priori boundary 
ondition on the �elds in the a
tion, we have toworry about the total derivatives whi
h arise in the variation of the bulk a
tion. Thelatter is given by 15SU(1)bulk = ZM�2 ~X � ~X � ��2�� 12�M��M� + i�	=�	� 14GMNGMN� : (24)Under a global supersymmetri
 transformation the Lagrangian transforms into a totalderivative giving rise to the supersymmetry boundary-variation:Æ�SU(1)bulk = Z�M ��i
5�; � = �i ~X � ~� � �=� � 14
MNGMN � 12=���	: (25)To 
ompensate for this, we add to it the brane a
tionSU(1)brane = Z�M�2~T (f) � � ~X + 12 �	T (f)	� (26)whi
h transforms into Æ�SU(1)brane = Z�M �� T (f)�: (27)Now the supersymmetry variation at ea
h boundary is proportional to (1+i
5T (f)))�(yf).Denoting with � [see Eq. (1)℄ the upper part of �, whenever (~T (f))2 = 1 these variations
an 
an
el provided the transformation parameter satis�es the BC's �2 = z(~T (f)) �1. Theonly possibility is that T (0) = T (�), sin
e � is 
onstant for global supersymmetry. Noti
e14A dis
rete supersymmetry breaking by BC's, z0 = z(�~q), z� = z(~q ), was performed in Ref. [18℄.15Besides the gauge �eld BM with �eld strength GMN and the gaugino 	 the 5D ve
tor multiplet
ontains the real s
alar � and the auxiliary SU (2)R triplet ~X .6



that a

ording to Eqs. (10) and (5), this gives rise to the same BC's for the gaugino,�2 = z(~T (f)) �1. The remaining EOM then �x the boundary 
onditions G�5 = ~X = � = 0.The bottom line of the o�-shell approa
h is that, in the presen
e of a boundary, at mostone supersymmetry 
an be preserved. Global SUSY invarian
e for the a
tion of a ve
tormultiplet singles out a spe
ial boundary mass term for gauginos su
h that z0 = z� whi
his at origin of the zero mode in the spe
trum [see Eq. (21) for ! = 0 16.℄ We expe
t thereto be a lo
ally supersymmetri
 extension of the a
tion (24)+(26) for T (0) 6= T (�). In this
ase the SU(2)R auxiliary gauge 
onne
tion ~VM from the supergravity multiplet gives anadditional sour
e of supersymmetry breaking. Noti
e that for a globally supersymmetri
va
uum there must then be a solution to the Killing spinor equation
5D5�(y) = 0; �2(yf ) = z(~T (f)) �1(yf ); (28)where D5 is 
ovariant with respe
t to SU(2)R. These equations 
oin
ide with the zeromode 
ondition for the gaugino 
onsidered above.In 
on
lusion we have studied in this letter the issues of fermion mass spe
trum, andsupersymmetry breaking in the presen
e of S
herk-S
hwarz twists 17, in the interval ap-proa
h with arbitrary BC's �xed by boundary mass terms. If alignment o

urs, i.e. BC'sare invariant under the SS twist, the mass spe
trum (supersymmetri
 or not) be
omesindependent on the SS parameter. If the BC's are identi
al for the di�erent boundariesthere appears a zero mode in the spe
trum: supersymmetry is restored by a 
an
ella-tion between BC's and the SS twist. When the two previous 
onditions are ful�lled,i.e. the BC's are equal at di�erent boundaries and SS twist invariant, the mass spe
trumis supersymmetri
 and independent on the SS parameter: supersymmetry is persistentin the presen
e of the SS twist. In this 
ase the bulk + brane Lagrangian is invariantunder a remaining U(1)R symmetry. The 
onditions imposed on the brane Lagrangiansin the persistent supersymmetry 
ase 
an be regarded as te
hni
ally natural, sin
e on
ethey are satis�ed at tree level, they will not be upset by 
orre
tions 
oming from thebulk + brane Lagrangian to any order. Only after the addition of extra breaking terms,for example brane kineti
 terms, supersymmetry would be broken in a 
ontrollable way.Those two 
onditions 
ould have their origin on a higher dimensional 
ompletion of thetheory, as it takes pla
e at Horava's gaugino 
ondensation model [12℄, and they wouldlead to persistent supersymmetry after 
ompa
ti�
ation down to �ve dimensions. In ours
enario, alignment would give rise to a model where supersymmetry 
ould be broken,but the breaking s
ale would be 
ompletely �xed by the 
ompa
ti�
ation s
ale 1=R andthe relative size of brane breaking terms zf , irrespe
tive of the SS-breaking s
ale !. Thisphenomenon opens new possibilities for model building whenever one needs to 
ontrol the16In the global theory on the interval, all supersymmetry breaking is en
oded in the T (f): there is noauxiliary �eld VM whose VEV 
ould 
ontribute to the breaking .17We have studied SS or Hosotani breaking in the bulk, but one 
ould similarly 
onsider radion F -termbreaking [20℄. 7
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