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A ommon feature of �ve-dimensional supersymmetri models are fermions propagat-ing in the bulk of the extra dimension. In order to extrat physial preditions at lowenergies, the four dimensional mass spetrum of those fermions has to be known. Forinstane, supersymmetry breaking is determined by the mass spetrum of the gravitino,the existene of a zero mode signalling unbroken supersymmetry. Similarly, when gaugemultiplets propagate in the bulk supersymmetry breaking is intimately linked to the ex-istene of gaugino zero modes. In partiular if supersymmetry breaking is implementedby non-trivial twist onditions, or Sherk-Shwarz mehanism [1℄, it ats in the same wayboth in the gravitino and the gaugino setors.The aim of this letter is to study fermions propagating in a at �ve-dimensional spae-time, with oordinates (x�; y), where the ompat �fth dimension (with radius R) has twofour-dimensional boundaries loated at y = 0 and y = �R. Often this spae is onstrutedas the orbifold S1=Z2, identifying points on the irle related by the reetion of the �fthoordinate y ! �y. Fields with odd parity with respet to the Z2 reetions are zeroat the �xed points, while the normal derivative of even �elds is fored to vanish. Thetreatment of fermions is ompliated in the presene of brane ations loalized at theboundaries. In the orbifold approah, these brane ations are introdued with a delta-funtion distribution, peaked at the loation of the orbifold �xed point. The latter induesdisontinuities in the wave funtions of the fermions whih take di�erent values at the �xedpoint and in�nitesimally lose to it [2, 3℄. A possible way to avoid these jumps is to giveup the rigid orbifold boundary onditions and instead enfore the �elds to be ontinuous,while the boundary onditions are determined by the boundary ation itself. This is alledthe interval approah and leads to physially equivalent spetra as those of the orbifoldapproah without any need of using, as the latter, singular funtions 6. To summarize, inthe orbifold approah one imposes �xed (orbifold) boundary onditions while the braneation indues jumps, whereas in the interval approah one imposes ontinuity and thebrane ation indues the boundary onditions.In this letter we will follow the interval approah and show how the boundary a-tion an give rise to onsistent boundary onditions for the fermions. In a forthomingpubliation [4℄ we will give a detailed treatment of how to translate the two pituresinto eah other. In a manifold M with a boundary the dynamis is determined by twoequally important ingredients: the bulk equations of motion and the boundary onditions(BC's). An eonomial way to determine a set of onsistent BC's together with the bulkequations of motion is the ation priniple 7: under a variation of the dynamial �eldsthe ation must be stationary. This in general translates into two separate onditions:the vanishing of the variation of the ation in the bulk and the vanishing of the variationat the boundary �M. Contributions to the ation variation at the boundary ome fromintegration by parts of bulk variation and, if present, from varying the boundary part6The interval approah is sometimes alled \downstairs" approah while the orbifold approah is alled\upstairs" approah.7For an alternative approah see [5℄. 1



of the ation (see [6℄ for a reent appliation to symmetry breaking). In the followingwe will onsider the �ve-dimensional (5D) manifoldM as the diret produt of the fourdimensional Minkowski spaeM4 and the interval [0; �R℄.Sine we are mainly interested in supersymmetri theories, we will take the fermionsto be sympleti-Majorana spinors, although a very similar treatment holds for the aseof fermioni matter �eld assoiated to Dira fermions. In partiular we will onsider thegaugino ase, the treatment of gravitinos being ompletely analogous. The 5D spinors 	isatisfy the sympleti-Majorana reality ondition and we an represent them in terms oftwo hiral 4D spinors aording to 8	i = � �i���i _�� ; ��i _� � �ij ��j��� � _� _� : (1)where �ij = i (�2)ij and �im�jm = Æij. Consider thus the bulk LagrangianLbulk = i �	MDM	 = i2 �	MDM	� i2DM �	M	 : (2)where the last equation is not due to partial integration but holds beause of the sympleti-Majorana property, Eq. (1). The derivative is ovariant with respet to the SU(2)R au-tomorphism symmetry and thus ontains the auxiliary gauge onnetion VM . The �eldVM is non propagating and appears in the o�-shell formulation of 5D supergravity [7℄. Avauum expetation value (VEV) 9VM = Æ5M !R ~q � ~� ; ~q 2 = 1 (3)implements a Sherk-Shwarz (SS) supersymmetry breaking mehanism [1℄ in the Hosotanibasis [8,9℄. The standard form of the SS mehanism, originally introdued for irle om-pati�ation, an be reovered by a gauge transformation U that transforms away VMbut twists the periodiity ondition for �elds harged under SU(2)R on the irle. As wewill see later in the interval a SS breaking term is equivalent to a suitable modi�ationof the BC's at one of the endpoints. The unitary vetor ~q points toward the diretion ofSS breaking. We supplement the bulk ation by the following boundary terms at y = yf(f = 0; �) with y0 = 0 and y� = �RLf = 12 �	 �T (f) + 5 V (f)�	 = 12 �iM (f)ij �j + h:: ; (4)where T (f) and V (f) are matries ating on SU(2) indies,M (f) = i�2 (T (f) � iV (f)) (5)and we have made use of the deomposition (1). Notie that the mass matrix is allowedto have omplex entries. Without loss of generality we take it to be symmetri, whihenfores T f and V f to be spanned by Pauli matries.8We use the Wess-Bagger onvention [10℄ for the ontration of spinor indies.9Consistent with the bulk equation of motion d (~q � ~V ) = 0 [7℄.2



The total bulk + boundary ation is then given byS = Sbulk+ Sboundary = Z d5xLbulk + Zy=0 d4xL0 � Zy=�R d4xL� : (6)The variation of the bulk ation givesÆSbulk = Z d5x i �Æ �	MDM	�DM �	M Æ	�� Z d4x �Æ�i �ij�j + h::��R0 ; (7)where the boundary piee omes from partial integration. One now has to add the varia-tion of the boundary ation. Enforing that the total ation S = Sbulk+Sboundary has zerovariation we get the standard Dira equation in the bulk provided that all the boundarypiees vanish. The latter are given by�Æ�i ��ij +M (f)ij � �j + h..���y=yf = 0 : (8)Sine we are onsidering unonstrained variations of the �elds, the BC's we obtain fromEqs. (8) are given by ��ij +M (f)ij � �j��y=yf = 0 : (9)These equations only have trivial solutions (are overonstrained) unlessdet ��ij +M (0)ij � = det ��ij +M (�)ij � = 0 : (10)Imposing these onditions, we get the two omplex BC's whih are needed for a systemof two �rst order equations. Note that this means that an arbitrary brane mass matrixdoes not yield viable BC's; in partiular a vanishing brane ation is inonsistent 10 sinedet(�ij) 6= 0 11. However this does not imply that the familiar orbifold BC �1 = 0 (�2 = 0)an not be ahieved; in the interval approah they orrespond to M = �1 (M = ��1).The BC's resulting from Eqs. (9) are of the form�1f �1 + 2f �2���y=yf = 0 ; (11)where 1;2f are omplex parameters or, setting zf = �(1f=2f )��2 � zf �1���y=yf = 0; zf 2 C : (12)Physially inequivalent BC's span a omplex projetive spae CP 1 homeomorphi to theRiemann sphere. In partiular, zf = 0 leads to a Dirihlet BC for �2, and the point atin�nity zf =1 leads to a Dirihlet BC for �1. Notie that these BC's ome from SU(2)Rbreaking mass terms. Speial values of zf orrespond to ases when these terms preservepart of the symmetry of the original bulk Lagrangian. In partiular when both the SS and10In the sense that the ation priniple does not provide a onsistent set of BC's as boundary equationsof motion.11Notie that this agrees with the methods reently used in Ref. [11℄.3



the preserved symmetry are aligned those ases an lead to a persistent supersymmetryas we will see. One (10) is satis�ed, the values of zf in terms of the brane mass termsare given by zf = � M (f)111 +M (f)12 = 1 �M (f)12M (f)22 (13)where the seond equality holds due to the ondition (10).The mass spetrum is found by solving the EOM with the boundary onditions (12).To simplify the bulk equations of motion it is onvenient to go from the Hosotani basis	i to the SS one �i, related by the transformation	 = U �; U = exp��i ~q � ~� ! yR� : (14)In the SS gauge the bulk equations readi M�M� = 0 : (15)We now deompose the hiral spinor �i(x; y) in the Hosotani basis as �i(x; y) = 'i(y) (x),with  (x) a 4D hiral spinor. Setting ' = U� we get the following equations of motionin the SS basis m�i � �ij d��jdy = 0 ; m ��j �ij + d�idy = 0 : (16)The parameter m in Eq. (16) is the Majorana mass eigenvalue of the 4D hiral spinor 12i���� � = m ; i����� = m � : (17)As a onsequene of the transformation (14) the SS parameter ! manifests itself only inthe BC at y = �R 13:�0 � �2�1 ����y=0 = z0; �� � �2�1 ����y=�R = tan(�!)(iq1� q2 � iq3 z�) + z�tan(�!)(iq1 z� + q2 z� + iq3) + 1 ; (18)where �f are the BC's in the SS basis. In partiular the boundary ondition �� is a funtionof !, ~q and z�. From this it follows that we an always gauge away the SS parameter ! inthe bulk Lagrangian going into the SS basis through (14). However now in the new basis! reappears in one of the BC's.The bulk equations have the following generi solution�(y) = � �a os(my) + �z0a sin(my)�a sin(my) + z0�a os(my)� ; (19)where a is a omplex number given in terms of z0 and ��:a = z0 � ��jz0 � ��j + 1 + z0���j1 + z0���j : (20)12The bar ating on a salar quantity, as e.g. ��i, and a hiral spinor, as e.g. � , denotes omplexonjugation.13Notie that U (y = 0) = 1. The roles of the branes and hene of z� and z0 an be interhanged byonsidering the SS transformation U 0(y) � U (y � �R).4



The solution (19) satis�es the BC's Eq. (18) for the following mass eigenvaluesmn = nR + 1�R artan ���� z0 � ��1 + z0 ��� ���� ; (21)where n 2Z. When z0 = �� there is a zero mode and supersymmetry remains unbroken.When the only soures of supersymmetry breaking reside on the branes, setting them toanel eah other, z0 = z�, preserves supersymmetry [12℄. One supersymmetry is furtherbroken in the bulk, an obvious way to restore it is by determining z� as a funtion ofz0 and ! using the relation (18) with �� = z0. This will lead to an !-dependent brane-Lagrangian at y = �R. In this ase we ould say that supersymmetry, that was brokenby BC's (SS twist) is restored by the given SS twist (BC's) [13℄.There is however a more interesting ase: suppose the brane Lagrangian determinesz� to be z� = z(~q ) � � � q3q1 � iq2 : (22)with � = �1. This speial value of z� is a �xed point of the SS transformation, i.e. �f = zf .For z� = z(~q ) the spetrum beomes independent on !. In other words, for this speialsubset of boundary Lagrangians, the VEV for the �eld ~q � ~V5 does not inuene thespetrum. The reason for this an be understood by going bak to the Lagrangian whihwe used to derive the BC's. From the relation (13) one an see that ondition (22) issatis�ed by the mass matrix M (�)12 = �q3M (�)11 = ��(q1 + iq2)M (�)22 = �(q1 � iq2) (23)whih an be translated into a mass term at the boundary y = y� along the diretion ofthe SS term, i.e. V (�) = 0 and T (�) = �� ~q � ~� in the notation of Eq. (4). In partiularthis brane mass term preserves a residual U(1)R aligned along the SS diretion ~q. Inother words, the SS-transformation U leaves both brane Lagrangians invariant and ! anbe gauged away. When we further impose z0 = z(�~q ), i.e. V (0) = 0 and T (0) = �T (�)the U(1)R symmetry is preserved by the bulk. In partiular if z0 = z(~q ) supersymmetryremains unbroken, although the VEV of ~q � ~V5 is nonzero. One ould say that in this asethe theory is persistently supersymmetri even in the presene of the SS twist, with massspetrum mn = n=R. On the other hand if z0 = z(�~q ) the theory is (persistently) non-supersymmetri and independent on the SS twist: the mass spetrum is given by mn =(n+1=2)=R. In this ase supersymmetry breaking amounts to an extraZ02 orbifolding [14℄.Notie that we have not hosen the most general solution to Eq. (22) but one whereV (f) = 0. In the most general ase the ondition (10) leads to (~T (f))2 � (~V (f))2 = 1and ~T (f) � ~V (f) = 0, and for ~V (f) 6= 0 Eq. (22) has in general a two-parameter familyof solutions. All of them should omply with the existene of persistent zero modes5



(irrespetive of the SS twist). However the ondition for an (o�-shell) supersymmetriation is only onsistent with the solution with V (f) = 0, as we will see below.Something similar happens in the warped ase [4℄: when bulk osmologial onstantand brane tensions are turned on, invariane of the ation under loal supersymmetry re-quires gravitino mass terms on the brane. In the tuned ase, { i.e. in the Randall-Sundrum(RS) model { those brane mass terms preisely give rise to the BC z0 = z� = z(~q) [15℄.Note that there ~q � ~V5 is replaed by A5, the �fth omponent of the graviphoton. In fat, ithas been shown that in this ase there always exists a Killing spinor and supersymmetryremains unbroken [16, 17℄, onsistent with the result that in RS supersymmetry an notbe spontaneously broken 14 by the SS mehanism [15,19℄. This and other issues, suh asthe omparison between the interval and the orbifold approahes and how to relate them,will be presented elsewhere [4℄.Up to now, we have foused on the fermion setor spetrum. Adding the ompletevetor multiplet does not invalidate our onditions for supersymmetry restoration as longas the supersymmetry breaking brane terms are of the form given by Eq. (4). We wouldlike to show the invariane of our gaugino Lagrangian, Eq. (6), under (global) supersym-metry. To this end, let us fous on a simple abelian gauge multiplet. Clearly, sine weare not imposing any a priori boundary ondition on the �elds in the ation, we have toworry about the total derivatives whih arise in the variation of the bulk ation. Thelatter is given by 15SU(1)bulk = ZM�2 ~X � ~X � ��2�� 12�M��M� + i�	=�	� 14GMNGMN� : (24)Under a global supersymmetri transformation the Lagrangian transforms into a totalderivative giving rise to the supersymmetry boundary-variation:Æ�SU(1)bulk = Z�M ��i5�; � = �i ~X � ~� � �=� � 14MNGMN � 12=���	: (25)To ompensate for this, we add to it the brane ationSU(1)brane = Z�M�2~T (f) � � ~X + 12 �	T (f)	� (26)whih transforms into Æ�SU(1)brane = Z�M �� T (f)�: (27)Now the supersymmetry variation at eah boundary is proportional to (1+i5T (f)))�(yf).Denoting with � [see Eq. (1)℄ the upper part of �, whenever (~T (f))2 = 1 these variationsan anel provided the transformation parameter satis�es the BC's �2 = z(~T (f)) �1. Theonly possibility is that T (0) = T (�), sine � is onstant for global supersymmetry. Notie14A disrete supersymmetry breaking by BC's, z0 = z(�~q), z� = z(~q ), was performed in Ref. [18℄.15Besides the gauge �eld BM with �eld strength GMN and the gaugino 	 the 5D vetor multipletontains the real salar � and the auxiliary SU (2)R triplet ~X .6



that aording to Eqs. (10) and (5), this gives rise to the same BC's for the gaugino,�2 = z(~T (f)) �1. The remaining EOM then �x the boundary onditions G�5 = ~X = � = 0.The bottom line of the o�-shell approah is that, in the presene of a boundary, at mostone supersymmetry an be preserved. Global SUSY invariane for the ation of a vetormultiplet singles out a speial boundary mass term for gauginos suh that z0 = z� whihis at origin of the zero mode in the spetrum [see Eq. (21) for ! = 0 16.℄ We expet thereto be a loally supersymmetri extension of the ation (24)+(26) for T (0) 6= T (�). In thisase the SU(2)R auxiliary gauge onnetion ~VM from the supergravity multiplet gives anadditional soure of supersymmetry breaking. Notie that for a globally supersymmetrivauum there must then be a solution to the Killing spinor equation5D5�(y) = 0; �2(yf ) = z(~T (f)) �1(yf ); (28)where D5 is ovariant with respet to SU(2)R. These equations oinide with the zeromode ondition for the gaugino onsidered above.In onlusion we have studied in this letter the issues of fermion mass spetrum, andsupersymmetry breaking in the presene of Sherk-Shwarz twists 17, in the interval ap-proah with arbitrary BC's �xed by boundary mass terms. If alignment ours, i.e. BC'sare invariant under the SS twist, the mass spetrum (supersymmetri or not) beomesindependent on the SS parameter. If the BC's are idential for the di�erent boundariesthere appears a zero mode in the spetrum: supersymmetry is restored by a anella-tion between BC's and the SS twist. When the two previous onditions are ful�lled,i.e. the BC's are equal at di�erent boundaries and SS twist invariant, the mass spetrumis supersymmetri and independent on the SS parameter: supersymmetry is persistentin the presene of the SS twist. In this ase the bulk + brane Lagrangian is invariantunder a remaining U(1)R symmetry. The onditions imposed on the brane Lagrangiansin the persistent supersymmetry ase an be regarded as tehnially natural, sine onethey are satis�ed at tree level, they will not be upset by orretions oming from thebulk + brane Lagrangian to any order. Only after the addition of extra breaking terms,for example brane kineti terms, supersymmetry would be broken in a ontrollable way.Those two onditions ould have their origin on a higher dimensional ompletion of thetheory, as it takes plae at Horava's gaugino ondensation model [12℄, and they wouldlead to persistent supersymmetry after ompati�ation down to �ve dimensions. In oursenario, alignment would give rise to a model where supersymmetry ould be broken,but the breaking sale would be ompletely �xed by the ompati�ation sale 1=R andthe relative size of brane breaking terms zf , irrespetive of the SS-breaking sale !. Thisphenomenon opens new possibilities for model building whenever one needs to ontrol the16In the global theory on the interval, all supersymmetry breaking is enoded in the T (f): there is noauxiliary �eld VM whose VEV ould ontribute to the breaking .17We have studied SS or Hosotani breaking in the bulk, but one ould similarly onsider radion F -termbreaking [20℄. 7
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