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tWe assemble the spe
trum of single-tra
e operators in free N = 4 SU(N)SYM theory into irredu
ible representations of the Higher Spin symmetry alge-bra hs(2; 2j4). Higher Spin representations or YT-pletons are asso
iated to Youngtableaux (YT) 
orresponding to representations of the symmetri
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1 Introdu
tionPushing Malda
ena's 
onje
ture [1℄ to its extreme 
onsequen
es, one is led to 
on
ludethat free N = 4 super Yang-Mills theory (SYM) with SU(N) gauge group should beholographi
ally dual to type IIB superstring on an extremely 
urved AdS5 � S5 [2℄. TheHagedorn growth of single-tra
e gauge-invariant SYM operators at large N pre
isely re-produ
es (tree level) string expe
tations and one is led to take the limit seriously [2{5℄and try to mat
h the spe
tra on the two sides of the 
orresponden
e. At vanishing gauge
oupling 
onstant (gYM = 0) N = 4 SYM theory develops a higher spin (HS) symmetryhs(2; 2j4). One thus expe
ts the same should happen in the tensionless limit [6℄ or ratherat some very small radius of order R � p�0 [7℄ for the type IIB superstring on AdS5�S5(see [8{10℄ for studies of higher spin gauge theories in various dimensions). Despite someprogress [11℄, string quantization in the presen
e of RR ba
kgrounds is poorly understoodin general, let alone at large 
urvatures, and one has to devise some alternative strategyfor the time being.In [12℄ a pre
ision test of the 
orresponden
e was 
arried out by �rst extrapolating thenaive Kaluza-Klein (KK) redu
tion on S5 of the type IIB superstring spe
trum from tendimensions to the point of enhan
ed HS symmetry and then postulating a mass formulafor the resulting string ex
itations that 
ould a

ount for the appearan
e of the expe
tedmassless HS gauge �elds. The impressive agreement with single-tra
e SYM operators atlarge N up to dimension 4, in
luding those belonging to genuinely long supermultiplets,led us to suspe
t that one 
ould do better and �nd a more a

urate energy formula validfor all superstring states at the point of HS symmetry enhan
ement. Indeed by relyingon the BMN limit [13℄ and extrapolating the plane-wave frequen
ies down to �nite J (atgYM = 0!) su
h a formula was found [14℄� = J + � ; (1.1)where � = PnNn is the string o

upation number and J the 
harge under an so(2)subgroup of a hidden so(10) symmetry [14,15℄ that organizes the KK string spe
trum 1 .Despite its simpli
ity, (1.1) en
ompasses the 
orre
t `energies' for all string states to mat
hthose of SYM operators up to dimension � = 10 together with their superdes
endantsthat neatly assemble into (long) supermultiplets of psu(2; 2j4).2The aim of this paper is to rearrange the SYM / string spe
trum into multiplets ofthe higher spin (HS) extension hs(2; 2j4) of the super
onformal group. Representations1While this paper was being published an interesting paper by Itzhak Bars appeared on the ar
hive [16℄that dis
ussed how the spe
trum of higher spin 
urrents in N=4 SYM 
ould be related to a parti
ulargauge �xing of the two-time superstring and reviewed previous work [15℄ where the higher dimensionalorigin of the SO(10) symmetry had been advo
ated.2The upper bound of � = 10 is imposed on us by 
omputer 
apabilities.2



of hs(2; 2j4) 
an be built out of multiple tensor produ
ts of singleton multiplets. Thesingleton of hs(2; 2j4) turns out to 
oin
ide with the singleton of psu(2; 2j4) with vanishing
entral 
harge, that 
onsists of the fundamental SYM �elds together with their derivatives[10,7,17,18℄. In the absen
e of abelian fa
tors in the gauge group, the singleton does notgive rise to well de�ned s
aling operators. In the holographi
 des
ription it 
orrespondsto the low-lying open-string ex
itations that 
annot propagate in the bulk of AdS. Its(gauge invariant) 
omposites whi
h 
orrespond to 
losed-string ex
itations 
an [19℄. Thesymmetri
 produ
t of two singletons gives rise to the HS `massless' doubleton 
ontainingall twist 2 gauge-invariant operators and their superpartners. They are dual to the HSgauge �elds and their superpartners in the bulk. More pre
isely, the symmetri
 doubletonprodu
t de
omposes into an in�nite number of su(2; 2j4) multiplets [20,17,18,7,21{23℄(VF � VF )S = 1Xn=0 V2n : (1.2)Here VF denotes the singleton and V2n�2 are semishort 
urrent multiplets with primariestransforming as singlets of SU(4) and 
arrying spin 2n � 2. For instan
e V2 denotesthe (semishort) N = 4 Konishi multiplet [24℄. Finally, V0 is the 12-BPS super
urrentmultiplet. The anti-symmetri
 doubletons with odd spin V2n+1 do not appear in the freeSYM spe
trum due to the 
y
li
ity of the tra
e but play a role in the intera
tions.As we will see, the pattern persists for higher tensor multiplets. For gauge groupSU(N), the tensor produ
t of L singletons de
omposes into representationsof hs(2; 2j4),that may be termed YT-pletons sin
e they are 
ompletely 
lassi�ed by those Youngtableaux (YT) with L boxes that are 
ompatible with the 
y
li
ity of the tra
e. Atlarge N , mixing among single and multi tra
e operators is suppressed [25,26℄. It is impos-sible anyway at L = 3, where we will �nd only two `massive' representations: the totallysymmetri
 one in
luding the �rst KK re
urren
e of the HS `massless' doubleton, and thetotally antisymmetri
 one, always present, that in
ludes part of the lower spin Goldstone/ St�u
kelberg �elds needed for the Higgsing of the HS `massless' gauge �elds when depart-ing from the HS symmetry enhan
ement point [17,18,7,12℄. For other gauge groups, su
has SO(N) or Sp(2N), one has to also take into a

ount the symmetry under transpositionthat is holographi
ally dual to a 
ombination of worldsheet parity, spa
etime inversionand fermion parity [27℄. At L = 3 this proje
ts out the 
ompletely symmetri
 YT tableauleaving only the 
ompletely antisymmetri
 \Goldstone" multiplet. Related aspe
ts of theSYM spe
trum have been studied in [28,5℄.In the boundary theory, turning on intera
tions (gYM 6= 0) breaks the HS symme-try down to the super
onformal supergroup psu(2; 2j4). As a result, both massless andmassive representations of hs(2; 2j4) typi
ally de
ompose into in�nite series of psu(2; 2j4)supermultiplets. Massive representations of HS symmetry algebras have not been mu
h3



studied in the past [29℄. Here we present the simplest o

urren
es of massive represen-tations of hs(2; 2j4). They will play a 
ru
ial role in the Pantagrueli
 Higgs me
hanism(`Grande Bou�e') in the AdS bulk that gives masses to all HS gauge �elds ex
ept thegraviton and its superpartners.In a (super
onformal) quantum �eld theory the violation of a symmetry due to quan-tum e�e
ts re
e
ts into the 
orresponding 
urrent a
quiring an anomalous dimension[30, 31℄. Anomalous dimensions 
an be 
omputed either by old-fashion QFT meth-ods [32,25,26,33,21,22℄ or by brand-new te
hniques based on the identi�
ation of the pla-nar dilatation operator [34℄ with the Hamiltonian of an integrable super-spin 
hain [35{37℄.Non planar dynami
s is des
ribed by a spin 
hain with non-lo
al intera
tions a

ountingfor joining and splitting of SYM tra
es [34, 38℄. Here we apply the spin 
hain te
hniquesto determine the one-loop anomalous dimensions for some operators 
onsisting of three
onstituent �elds in N = 4 SYM.The plan of the paper is as follows. In se
tion 2 we dis
uss the algebra hs(2; 2j4),the HS extension of the super
onformal algebra psu(2; 2j4), and its representations. We
onsider �rst the 
ase of hs(1; 1), the HS extension of su(1; 1) � sl(2), spanned in N = 4SYM by a single (
omplex) s
alar �eld and its derivatives in a given (
omplex) dire
tion.This trun
ation illustrates already the main features of the HS representation theorywhi
h apply to HS extensions of Poin
ar�e and super
onformal algebras in any dimension.3In parti
ular we argue that irredu
ible representations of hs(2; 2j4) are in one-to-one
orresponden
e with Young tableaux built out of singletons. Only a subset of theserepresentations survives tra
ing over 
olor indi
es.In se
tion 3 we des
ribe how the spe
trum of operators in free N = 4 SYM 
an beassembled into irredu
ible representation of hs(2; 2j4). We determine via Polya theorythe set of Young tableaux surviving the tra
ing over SU(N) gauge indi
es and displaythe psu(2; 2j4) 
ontent of the �rst o

urren
es of massive HS representations at `twist'3. Higher L-pletons involve more 
ompli
ated de
ompositions spanning several in�nitetowers of N = 4 multiplets.In se
tion 4 we restri
t to states sitting in semishort multiplets of the N = 4 SCA.Disposing of superdes
endants by means of a semishort-sieve, we derive 
ompa
t expres-sions for Zshortsuprim, the partition fun
tion of BPS and semishort primaries. In se
tion 5we turn on intera
tions, i.e. a small non-vanishing SYM 
oupling gYM 6= 0, that breakhs(2; 2j4) down to psu(2; 2j4) and 
ompute the anomalous dimensions of tripletons tolowest non-trivial order in g2YMN at large N . Finally, in se
tion 6, we 
on
lude with some
omments on L-pletons and integrability. Appendix A introdu
es a unifying notation for3HS algebras in other dimensions are supported by non-
onformal free SYM theories living on Dp-branes are their gravity duals on warped AdS geometries [39℄.4



N = 4 UIR's and shortenings originally dis
ussed in [40℄. Appendi
es B and C 
olle
tother useful formulae.2 The higher spin algebra and its representationsAt vanishing gauge 
oupling 
onstant (gYM = 0) the SCA psu(2; 2j4) of N = 4 SYMtheory gets enhan
ed to the HS symmetry algebra hs(2; 2j4) [17, 18, 7, 9, 41, 31℄. The HSsymmetry algebra is generated by an in�nite set of 
onserved 
urrents of arbitrarily high(even) spin s = 2n asso
iated to totally symmetri
 and tra
eless tensorsJ�1:::�2n = Tr'i�(�1 : : : ��2n)'i + : : : ; (2.1)and their superpartners. Together with the lowest ultra-short 12 -BPS multiplet that 
on-tains the unbroken 
urrents of the super
onformal algebra psu(2; 2j4), the in�nite towerof HS multiplets builds a single massless multiplet of the HS algebra hs(2; 2j4), the dou-bleton (1.2). The doubleton 
olle
ts all gauge-invariant operators built from two SYMelementary �elds fA�; ��A; ��A_� ; 'ig and derivatives thereof modulo �eld equations. In gen-eral, all states belonging to a HS multiplet have a 
ommon length L, i.e. number of
onstituents or `partons' (L = 2 for the doubleton), sin
e any linearly realized symmetryat gYM = 0 preserves the number of letters.4 However, for a given length L > 2, sev-eral HS multiplets appear. In [17℄, the psu(2; 2j4) 
ontent of the HS massless multipletwas determined, and the HS gauge theory realizing the algebra hs(2; 2j4) on AdS5 wasformulated at the linearized level.Here we 
onsider massive representations5 of hs(2; 2j4). As we will see they play a
ru
ial role in the de
omposition of the free N = 4 SYM spe
trum on the boundary andin the Pantagrueli
 Higgs me
hanism in the AdS bulk. Although our dis
ussion will fo
uson hs(2; 2j4) for its relevan
e to N = 4, the analysis 
an be adapted to HS extensions ofsuper
onformal or Poin
ar�e groups in other dimensions. To this purpose, it is instru
tiveto start des
ribing representations of the simplest HS algebra hs(1; 1), the HS extensionof su(1; 1) � sl(2) [10℄. This subalgebra, generated by a single derivative, is part of anyHS algebra independently of the dimension. As we will see later on, the dis
ussion ofhs(2; 2j4), like any other HS extension, is an almost straightforward generalization of thissimple 
ase.The algebra hs(2; 2j4) and its irredu
ible representations, or YT-pletons, are subse-quently dis
ussed in subse
tion 2.2. The de
omposition of YT-pletons into an in�nite4A 
losely related notion is the `twist' � = �� s, with � the s
aling dimension and s the spin. L = �for semishort primaries.5At gYM = 0, the lowest 
ases (L = 3; 4) still 
ontain some marginal s
alar operators dual to somemassless s
alars in bulk. 5



sum of irredu
ible representations of the N = 4 super
onformal subalgebra psu(2; 2j4)will be further dis
ussed in se
tion 3.2.1 Representations of hs(1; 1)Here we des
ribe the representations of the HS algebra hs(1; 1). This algebra is realizedon a single 
omplex s
alar (in the adjoint of the gauge group) and its derivatives alonga 
hosen (
omplex) dire
tion. The aim of this se
tion is to establish a one-to-one 
orre-sponden
e between irredu
ible representations of hs(1; 1) and Young tableaux made outof singletons. This se
tion 
an be read independently of the rest of the paper and appliesto HS algebras in any dimension 
ontaining hs(1; 1) as a subgroup.sl(2)We start by 
onsidering the sl(2) subalgebra:[J�; J+℄ = 2J3 ; [J3; J�℄ = �J� : (2.2)This algebra may be represented in terms of os
illatorsJ+ = ay+ ayaya ; J3 = 12 + aya ; J� = a ; (2.3)where, as usual, [a; ay℄ = 1. For our purpose it is 
onvenient to work in the spa
e offun
tions f(ay), wherein a = �=�ay. sl(2) highest weight states (HWS's) are de�ned byJ�f(ay)j0i = 0 ) f(ay) = 1 : (2.4)Any state (ay)nj0i in this de�ning representation 
an be generated from its HWS j0i bya
ting with Jn+. Therefore f(ay) de�nes a single irredu
ible representation of sl(2). Forlater purposes, we 
all this representation singleton and denote it by VF . The sl(2) spinof this representation is �J3 j0i = �12j0i. In N = 4 SYM, the 
omponents of the sl(2)singleton may be 
hosen in psu(2; 2j4)=sl(2) di�erent ways. In parti
ular, the HWS 
anbe identi�ed with the (
omplex) s
alar Z = '5 + i'6 and its sl(2) des
endants 
an begenerated by the a
tion of the derivative along a 
hosen 
omplex dire
tion D = D1+ iD2,(ay)nj0i $ DnZ : (2.5)In a similar way, the tensor produ
t of L singletons may be represented in the spa
e offun
tions f(ay(1); ay(2); : : : ; ay(L)) with ay(s) a
ting on the sth site. The resulting representation6



is no longer irredu
ible. This 
an be seen by looking for sl(2) HWS'sJ� f(ay(1); : : : ; ay(L)) = LXs=1 �s f(ay(1); : : : ; ay(L)) = 0 : (2.6)with �s = ��ay(s) . There are indeed several solutions to these equations given by all possiblefun
tions of the di�eren
es fL(ay(s) � ay(s0)). A basis for sl(2) HWS's 
an be 
hosen asjj1; : : : ; jL�1i = (ay(L) � ay(1))j1(ay(L) � ay(2))j2 : : : (ay(L) � ay(L�1))jL�1 j0i ; (2.7)with spin J3 = 12 +Ps js. In parti
ular for L = 2 one �nds the known resultVF � VF = 1Xj=0 Vj ; (2.8)with Vj generated by a
ting with J+ on the HWS jji = (ay(2)�ay(1))j j0i. The 
orrespondingstates in free N = 4 SYM follow from the di
tionary(ay(1))n1 (ay(2))n2 : : : (ay(L))nL j0i $ Dn1Z Dn2Z : : :DnLZ ; (2.9)with ni � 0.hs(1; 1)The HS extension hs(1; 1) of sl(2) is de�ned by introdu
ing the HS generators [10℄Jp;q = (ay)paq : (2.10)The Jp;q 
learly 
lose under the 
ommutator / produ
t into an HS algebra that 
ontainsthe sl(2) subalgebra (2.3). We 
all it hs(1; 1). The generators Jp;q with p < q are raisingoperators. The singleton is again a representation of this algebra sin
e j0i is annihilatedby all raising operators. In the tensor produ
t of L singletons, HWS's of hs(1; 1) aresolutions ofLXi=1 (ay(i))p �qi f(ay(1); ::; ay(L)) = 0 with p < q : (2.11)Equations (2.11) are highly restri
tive and solutions are rare. Our 
laim is that solutionsto these equations, i.e. irredu
ible representations of hs(1; 1), are in one-to-one 
orrespon-den
e with Young tableaux (YT) made out of L boxes, i.e. row in
reasing diagrams with7



boxes numbered always in
reasingly along rows and 
olumns (for a qui
k review on YTde
ompositions see the Appendix of [38℄).Sin
e hs(1; 1) HWS's are also HWS's of its sl(2) subalgebra we 
an restri
t our atten-tion to states of the type (2.7). For instan
e, for L = 2, the 
ondition J0;1f(ay(1); ay(2))j0i =0 is solved byjji = (ay(2) � ay(1))jj0i : (2.12)The 
onditions J0;njji = 0 leave only j0i and j1i as solutions. Indeed the two statesautomati
ally satisfy Jm�1;p�2jji = 0 and therefore are HWS's. They 
orrespond tothe two HWS's in the symmetri
 and antisymmetri
 tensor produ
t of two singletonsrespe
tively1 2 = j0i $ Z2 ;12 = (ay(2)� ay(1))j0i $ Z(DZ)� (DZ)Z : (2.13)In N = 4 SYM, the antisymmetri
 doubleton is proje
ted out after tra
ing over gauge in-di
es. The generalization to L > 2 states is straightforward. The HWS for the 
ompletelysymmetri
 representation is again given by f(ay(1); : : : ; ay(L)) = 1 while the HWS for the
ompletely antisymmetri
 tableau 
an be written as a produ
t of all the di�eren
es= LYi>j (ay(i) � ay(j))j0i $ Z (DZ) (D2Z) : : : (DL�1Z) + antisymm: (2.14)That this state satis�es (2.11) 
an be seen by noti
ing that being 
ompletely antisym-metri
, derivativesPi(ay(i))p �qi in the 
ompletely symmetri
 operator Jp;q 
an
el againstea
h other. Similarly one 
an build more general solutions from tensoring k 
olumns oftype (2.14) leading to= kYp=1 LpYip>jp(ay(ip) � ay(jp))j0i $ Zn1 (DZ)n2 : : : (DnsZ) + perms: (2.15)with L =Pp Lp, ni the number of boxes in the ith row and \perms" denoting all permu-tations spe
i�ed by the tableau. To ea
h of these solutions we asso
iate a Young Tableauxwith k 
olumns of length Lp and boxes labelled by ip 2 f1; 2; : : : ; Lpg. We believe thatthese are the only solutions to (2.11) but we have no rigorous proof of this uniqueness.8



For example, HWS's for L = 3 are given by1 2 3 = j0i $ Z3 ;1 23 = (ay(3) � ay(1))j0i $ Z2(DZ)� (DZ)Z2 ; (2.16)1 32 = (ay(2) � ay(1))j0i $ Z(DZ)Z � (DZ)Z2 ;123 = (ay(2) � ay(1))(ay(3)� ay(1))(ay(3) � ay(2))j0i $ Z(DZ)(D2Z) + antisymm:In N = 4 SYM, the two HS 3-pleton multiplets asso
iated to the hooked tableauxare proje
ted out after tra
ing over the gauge indi
es.2.2 A �rst look at hs(2; 2j4)In order to extend the previous analysis to the 
ase of our main interest, the higher spinalgebra hs(2; 2j4), we need to re
all some basi
 properties of this in�nite dimensionalHS (super)algebra. To this end we 
losely follow [17℄ and adopt their notations withminor 
hanges. The N = 4 super
onformal algebra psu(2; 2j4) 
an be realized in termsof (super-)os
illators �� = (ya; �A) with:[ya; �yb℄ = Æab ; f�A; ��Bg = ÆBA ; (2.17)where ya; �yb are bosoni
 os
illators with a; b = 1; :::4 a Weyl spinor index of so(4; 2) �su(2; 2) or, equivalently, a Dira
 spinor index of so(4; 1), while �A; ��B are fermioni
 os
il-lators with A;B = 1; :::4 a Weyl spinor index of so(6) � su(4).Generators of psu(2; 2j4) are written as `tra
eless' bilinears ����� of superos
illators. Inparti
ular, the `diagonal' 
ombinations realize the 
ompa
t so(6) and non
ompa
t so(4; 2)bosoni
 subalgebras respe
tively, while the mixed 
ombinations generate supersymmetries:Jab = �yayb � 12KÆab ; K = 12�yaya ;TAB = ��A�B � 12BÆAB ; B = 12 ��A�A ;QAa = ��Aya ; �QaA = �ya�A : (2.18)The 
ombinationC � K +B = 12 ����� ; (2.19)
ommutes with all the remaining generators and is thus a 
entral element. The abelianideal generated by C 
an be modded out e.g. by setting C to zero. At least in perturbation9



theory, this should make physi
al sense, sin
e the elementary SYM �elds fA�; ��A; ��A_� ; 'igand their 
omposites all have C = 0.6 Finally, the 
ombinationB is to be identi�ed as thegenerator of Intriligator's \bonus symmetry" [44℄ dual to the `anomalous' U(1)B 
hiralsymmetry of type IIB in the AdS bulk. It a
ts as an external automorphism [17℄ thatrotates the super
harges of the SCA. The psu(2; 2j4) invariant va
uum j0i, annihilatedby ��, 
orresponds to the identity operator whi
h 
an be viewed as the trivial singletrepresentation.The HS extension hs(2; 2j4) is roughly speaking generated by odd powers of the abovegenerators i.e. 
ombinations with equal odd numbers of �� and ���. More pre
isely, one�rst 
onsiders the enveloping algebra of psu(2; 2j4), whi
h is an asso
iative algebra and
onsists of all powers of the generators, then restri
ts it to the odd part whi
h 
loses as aLie algebra modulo the 
entral 
harge C, and �nally quotients the ideal generated by C.It is easy to show that B is never generated in 
ommutators (but C is!) and thus remainsan external automorphism of hs(2; 2j4). Generators of hs(2; 2j4) 
an be represented by`tra
eless' polynomials in the superos
illators:hs(2; 2j4) = �`A2`+1 = 1X̀=0 nJ2`+1 = P�1:::�2`+1�1:::�2`+1 ���1 : : : ���2`+1 ��1 : : : ��2`+1o ;(2.20)with elements J2`+1 in A2`+1, where ` is 
alled the level, parametrized by tra
eless rank(2`+1) (graded) symmetri
 tensors P�1:::�2`+1�1 :::�2`+1 . The 
ommutators of two elements however
lose only up to the ideal generated by C. In parti
ular they 
lose on the subspa
eof physi
al states de�ned by the 
ondition C � 0. The restri
tion to this subspa
ewill be always understood. Alternatively, the HS algebra 
an be more generally de�nedby identifying generators di�ering by terms that involve C, i.e. J � K i� J � K =Pk�1CkHk [17℄.To ea
h element in A2`+1 with su(2)L � su(2)R spins [j; �|℄ is asso
iated an hs(2; 2j4)HS gauge �eld in the AdS bulk with labels [j+ 12 ; �|+ 12 ℄. The su(4)� su(2)2 
ontent of theHS 
urrents 
an be easily read o� from (2.20) by expanding the polynomials in powersof �'s up to 4, sin
e �5 = 0. There is a single super
onformal multiplet V2` at ea
h level` � 2. The lowest spin 
ases ` = 0; 1, i.e. V̂0;2, are spe
ial. They di�er from the 
ontentof doubleton multiplets V0;2 by spin s < 1 states [17℄. The 
ontent of (2.20) 
an then be6In prin
iple, one 
an 
onsider quotienting by C � C0, where C0 is any (half) integer. This would
orrespond to 
hoosing as the basi
 building blo
k some singleton of SU (2; 2j4) with non vanishing 
entral
harge C = C0. These non self-
onjugate singletons play only a marginal a

essory role in (perturbative)N = 4 SYM theory [42,17,18,7,43℄. 10



written as (tables 4,5 of [17℄)V̂0 = ���4[ 12 ;0℄ + 1[1;0℄��2 � 1[ 12 ; 12 ℄V̂2 = ��4[ 12 ;0℄ + 6[1;0℄+ �4[ 32 ;0℄ + 1[2;0℄��2V2` = ��1[`�1;0℄ + 4[`� 12 ;0℄ + 6[`;0℄ + �4[`+ 12 ;0℄ + 1[`+1;0℄��2 ; ` � 2 ; (2.21)with r[j+ 12 ;�|+ 12 ℄ denoting the su(4) representation r and the labels of the u(1)2 2 su(2)2HWS's. Complex 
onjugates are given by 
onjugating su(4) representations and ex
hang-ing the spins j $ �|. The produ
t is understood in su(4) while u(1)2 labels simply add.The highest spin state 1[`+1;`+1℄ 
orresponds to the state y2`+1�y2`+1 with no �'s, 4[`+ 12 ;`+1℄,�4[`+1;`+ 12 ℄ to y2`�y2`+1�A, y2`+1�y2`��A, and so on. For ` = 0; 1, states with negative j; �| shouldbe deleted. In addition we subtra
t the 
urrent 1[ 12 ; 12 ℄ at ` = 0 asso
iated to C. In theN = 4 notation introdu
ed in Appendix A, V2` 
orresponds to the semishort multipletV2`;0[000℄[`�1�;`�1�℄ (see also table 4 in Appendix C).Representations of hs(2; 2j4)The basi
 representation of both psu(2; 2j4) and hs(2; 2j4) is the so 
alled \singleton"V1;0[0;1;0℄[0;0℄ asso
iated to the N = 4 SYM ve
tor multiplet. Its HWS jZi, i.e. the ground-state or `va
uum', whi
h is obviously di�erent from the trivial psu(2; 2j4) invariant va
uumj0i, is one of the 
omplex s
alars, let us say Z = '5 + i'6. The other (
omplex) 
ompo-nents will be denoted by X = '1 + i'2 and Y = '3 + i'4 in the following. Showing thatthe singleton is an irredu
ible representation of psu(2; 2j4) is tantamount to showing thatany elementary SYM state 
an be found by a
ting on the Fo
k spa
e va
uum jZi witha sequen
e of super
onformal generators 
hosen among (2.18). Looking at the singletonas an irrep of hs(2; 2j4) one sees an important di�eren
e: the sequen
e of super
onformalgenerators 7 is repla
ed by a single HS generator and therefore any 
omponent A in thesingleton multiplet 
an be rea
hed in a single step JA �B from any other one B. This 
anbe shown by noti
ing that, sin
e the 
entral 
harge C 
ommutes with all generators andannihilates the va
uum, a non-trivial sequen
e in (A1)2`+1 belongs to A2`+1. This di�er-en
e, irrelevant for one-letter states (L = 1), will be 
ru
ial in proving the irredu
ibilityof YT-pletons with respe
t to the HS algebra.87Without loss of generality we may assume the length of the sequen
e to be odd; for an even sequen
ewe may append an element of the Cartan subalgebra, e.g. the dilatation generator.8This property is also satis�ed by the fundamental representation of SU (m). Our proof below re-du
es in this 
ase to the familiar statement that irredu
ible representations of SU (m) are in one-to-one
orresponden
e with Young tableaux made out of fundamentals.11



Let us now 
onsider the tensor produ
t of L singletons. The generators of hs(2; 2j4)are realized as diagonal 
ombinations:J2`+1 � LXs=1 J (s)2`+1 (2.22)with J (s)2`+1 HS generators a
ting at the sth site. The tensor produ
t of L � 1 singletonsis generi
ally redu
ible not only under psu(2; 2j4) but also under hs(2; 2j4). This 
an beseen by noti
ing that the HS generators (2.22), being 
ompletely symmetri
, 
ommutewith symmetrizations and antisymmetrizations of the indi
es in the tensor produ
t ofsingletons. In parti
ular, the tensor produ
t de
omposes into a sum of representations
hara
terized by Young tableaux Y T with L boxes. A Young tableaux is de�ned bydistributing SYM letters among L boxes and a
ting on it with the operator OYT =AYTSYT that �rst symmetrizes all letters in the same row and then antisymmetrizes lettersin the same 
olumn. This operator 
learly 
ommutes with all generators of hs(2; 2j4), andtherefore di�erent Young tableaux belong to di�erent irredu
ible 
omponents.To prove irredu
ibility of L-pletons asso
iated to a spe
i�
 YT with L boxes underhs(2; 2j4), it is then enough to show that any state in the L-pleton under 
onsideration 
anbe found by a
ting on the relevant HWS with HS generators. Let us start by 
onsideringstates belonging to the totally symmetri
 tableau. The simplest examples of su
h statesare those with only one site di�erent from the va
uum Z, i.e. AZ : : :Z + symm.. Usingthe fa
t that any SYM letter A 
an rea
hed from the HWS Z using a single hs(2; 2j4)generator JA �Z we write the \one impurity" state as (JA �ZZ)Z : : : Z+symm:This state 
analso be written as JA �Z(ZL) and it is therefore a HS des
endant. The next simplest 
lassis given by states with \two impurities" ABZ : : : Z + symm:. On
e again this state 
anbe written as JA �ZJB �Z(ZL) up to the \one impurity" des
endant (JA �ZJB �ZZ)Z : : : Z ofthe type already found. Pro
eeding in this way the reader 
an easily 
onvin
e him/herselfthat all states in the 
ompletely symmetri
 tensor of L singletons 
an be written as HSdes
endants of the va
uum ZL.The same arguments hold for generi
 tableaux. For example, besides the des
endantsJA �Z(ZL) of ZL there are L � 1 \one impurity" multiplets of states asso
iated to theL � 1 Young tableaux with L � 1 boxes in the �rst row and a single box in the se
ondone9. The va
uum state of HS multiplets asso
iated to su
h tableaux 
an be taken tobe Y(k) � ZkY ZL�k�1 � Y ZL�1 with k = 1; : : : ; L � 1. Any state with one impurityZkAZL�k�1 � AZL�1 with k = 1; : : : ; L � 1 
an be found by a
ting on Y(k) with the HSgenerator JA�Y , where JA�Y is the HS generator that transforms Y into A (and annihilatesZ).9As we will momentarily see, HS multiplets of this kind are absent for N = 4 SYM theories withsemisimple gauge group. At any rate, they are instrumental to illustrate our point.12



Noti
e that the arguments rely heavily on the fa
t that any two states in the singletonare related by a one-step a
tion of a HS generator. This is not the 
ase for theN = 4 SCA,and indeed the 
ompletely symmetri
 tensor produ
t of L singletons is highly redu
iblewith respe
t to psu(2; 2j4), as we shall see in the following.3 HS 
ontent of N = 4 SYMThe on-shell �eld 
ontent of the singleton representation of psu(2; 2j4) is en
oded in thepartition fun
tionZ (t; yi) = 1Xs=0 ht1+s �[ s2 ; s2 ℄ �[010℄ + t2+s �[ s+22 ; s2 ℄ �[000℄ + t2+s �[ s2 ; s+22 ℄ �[000℄ +�t 3+s2 �[ s+12 ; s2 ℄ �[001℄ � t 3+s2 �[ s2 ; s+12 ℄ �[100℄i ; (3.1)with the di�erent terms 
orresponding to the six real s
alars 'i, the �eld strengths F���and the fermions ��A, ��A_� , respe
tively, together with their derivatives. Here t keeps tra
kof the bare 
onformal dimension �. �[j;�|℄�[q1;p;q2℄(yi) denotes the 
hara
ter polynomial ofthe so(4)�so(6) representation [j; �|℄[q1; p; q2℄10. In parti
ular, fo
using only on the s
alingdimensions � and performing expli
itly the sum over s, one �nds the one-letter partitionfun
tion11Z (t; yi)jyi=1 = 2 t (3 + t 12 )(1 + t 12 )3 : (3.2)As explained above, the singleton turns out to be the \fundamental representation" ofhs(2; 2j4) as well. Moreover, we have argued that representations of hs(2; 2j4) are builtin terms of tensor produ
ts of singletons properly de
omposed a

ording to irredu
iblerepresentations of the permutation group. These are asso
iated to Young Tableaux builtfrom � Z (t). The spe
trum of single-tra
e operators in N = 4 SYM theory withSU(N) gauge group is given by all possible 
y
li
 words built from letters 
hosen from Z .It 
an be 
omputed using Polya theory [46℄, whi
h gives the generating fun
tion [2,4,12℄Z(u; t; yi) =Xn�2 un Zn(t; yi) = Xn�2;djn un '(d)n Z (td; ydi )nd ; (3.3)10Chara
ters of UIR's of super
onformal algebras have been re
ently derived in [45℄.11At yi = 1 one has by de�nition �[q1 ;p;q2℄ = dim[q1; p; q2℄ = (q1+ 1)(p+ 1)(q2+1)(p+ q1+ 2)(p+ q2+2)(p+ q1 + q2 + 3)=12 and �[j;�|℄ = dim[j; �|℄ = (2j + 1)(2�|+ 1).13



for 
y
li
 words. Here u keeps tra
k of the length L, i.e. the number of letters / partons.The sum runs over all integers n > 2 and their divisors d, and '(d) is Euler's totientfun
tion, that equals the number of integers smaller than and relatively prime to d. Forlater 
onvenien
e, we have introdu
ed the notation Zn(t; yi) to denote the restri
tionto 
y
li
 words made out of n-letters. The partition fun
tion (3.3) a

ounts for SYM
omposite operators and all their derivatives, i.e. their so(4; 2)=(so(4)�so(2)) des
endants.so(4; 2) primaries 
an instead be read o� from bZ(u; t; yi), de�ned from Z(u; t; yi) byremoving total derivatives:bZ(u; t; yi) � Z(u; t; yi) �1� t �[ 12 12 ℄ + t2 (�[10℄ + �[01℄)� t3 �[ 12 12 ℄ + t4� : (3.4)We note that Z (ud; td; ydi ) denotes the alternating sum over length-d Young tableaux ofthe hook type:Z (td) = Z �� (t) � Z �� (t) + Z �� (t) � Z �� (t) + : : : : (3.5)Plugging this expansion into (3.3), we �nd for the �rst few 
ases:Z2 = Z ;Z3 = Z + Z ;Z4 = Z + Z + Z ;Z5 = Z + Z + 2Z + Z + Z ; et
. (3.6)Noti
e that only a subset of YT, those 
ompatible with 
y
li
ity of the tra
e, enters in(3.6). In parti
ular, HS multiplets asso
iated to the tableaux , , two out of the threeof type , and so on, are proje
ted out. The 
ontent of the various 
omponents in (3.6)
an be derived from the formulae:Z = 12! �Z (t)2 + Z (t2)�Z = 13! �Z (t)3 + 3Z (t2)Z (t) + 2Z (t3)�Z = 13! �Z (t)3 � 3Z (t2)Z (t) + 2Z (t3)�Z = 14! �Z (t)4 + 6Z (t2)Z (t)2 + 3Z (t2)2 + 8Z (t3)Z (t) + 6Z (t4)�Z = 14! �2Z (t)4 + 6Z (t2)2 � 8Z (t3)Z (t)�Z = 14! �3Z (t)4 � 6Z (t2)Z (t)2 � 3Z (t2)2 + 6Z (t4)� : (3.7)14



L name V�;B[j;�|℄[q1;p;q2℄ se
tor2 V0 V2;0[0y;0y℄[0;2;0℄ sl(2)j=�122 Vn Vn;0[ 12n�1� ; 12n�1� ℄[0;0;0℄ sl(2)j=�123 V0;0 V3;0[0y;0y℄[0;3;0℄ sl(2)j=�123 V0;n Vn+1;0[ 12n�1� ; 12n�1�℄[0;1;0℄ sl(2)j=�123 V1;n Vn+ 52 ;+ 12[n=2�;n=2�1=2�℄[0;0;1℄ sl(2)j=�13 V�1;n Vn+ 52 ;� 12[n=2�1=2�;n=2�℄[1;0;0℄ sl(2)j=�13 Vm�+2;n Vn+2m;1[ 12n+m�1�; 12n℄[0;0;0℄ su(1; 2)3 Vm��2;n Vn+2m;�1[ 12n; 12n+m�1� ℄[0;0;0℄ su(1; 2)Table 1: psu(2; 2j4) multiplets with L � 3.Formulae (3.7) 
an be expli
itly veri�ed with the use of (3.5).Under the super
onformal group psu(2; 2j4), the HS multiplet ZY T , asso
iated to agiven Young tableau Y T with L boxes, de
omposes into an in�nite sums of multiplets. TheHWS's 
an be found by 
omputing ZY T and eliminating the super
onformal des
endantsby passing ZY T through a sort of Erathostenes' (super) sieve [12℄. This will be the subje
tof the next subse
tion. Here we just state the results for L = 2; 3. The 
omplete list ofpsu(2; 2j4) multiplets appearing in the de
omposition of the �rst few HS multiplets withL = 2; 3 letters is 
olle
ted in table 1, see Appendix A for the notation of psu(2; 2j4)multiplets. The de
ompositions of the 
orresponding HS multiplets reads:Z = 1Xn=0 V2n ; Z = 1Xn=0 V2n+1 ;Z = 1Xk=�1 1Xn=0 
n [V2k;n + V2k+1;n+3℄ ;Z = 1Xk=�1 1Xn=0 dn [V2k;n+1 + V2k+1;n+1℄ ;Z = 1Xk=�1 1Xn=0 
n [V2k;n+3 + V2k+1;n℄ : (3.8)The 
oeÆ
ients 
n � 1+ [n=6℄� Æn;1 mod 6 and dn � 1+ [n=3℄ with [m℄ the integral part ofm, are the multipli
ities of psu(2; 2j4) multiplets inside hs(2; 2j4). More pre
isely 
n; dn
ount the number of ways one 
an distribute derivatives (HS des
endants) between theboxes in the tableaux. These multipli
ities will be 
omputed in the next se
tion, 
f. (4.23)below. For 
onvenien
e of the reader we display the translation of these formulae into15



psu(2; 2j4) notation V�;B[j;�|℄[q1;p;q2℄ in Appendix C.The multiplets with n = 0 or m = 0;�1 in table 1 are spe
ial: n = 0 
orrespondsto the 12 -BPS series, dual to N = 8 gauged supergravity and its KK re
urren
es, m =0;�1; n � 1 to semishort-semishort multiplets. Finally for m � 2 one �nds multipletssatisfying a bound of type long-semishort.The `symmetri
 doubleton' Z 
ontains the multiplets of 
onserved HS 
urrents V2n.The `antisymmetri
 doubleton' Z is ruled out by 
y
li
ity of the tra
e, 
f. (3.6). The`symmetri
 tripleton' Z (
orresponding to the 
ubi
 Casimir dab
) 
ontains the �rst KKre
urren
es of twist 2 semishort multiplets, the still semishort-semishort series V�1;n start-ing with fermioni
 primaries and long-semishort multiplets. The `antisymmetri
 tripleton'Z (
orresponding to the stru
ture 
onstants fab
) on the other hand 
ontains the Gold-stone multiplets that join to multiplets with twist 2 to form long multiplets when theHS symmetry is broken. In addition, fermioni
 semishort-semishort multiplets and long-semishort multiplets also appear.4 Partition fun
tion of semishort superprimariesIn this se
tion, we fo
us on the parti
ularly interesting 
lass of SYM operators sittingin BPS and semishort multiplets of the super
onformal algebra psu(2; 2j4) and derivemultipli
ity formulae for their superprimaries. Semishort and BPS multiplets are spe
ial inthat their 
omponents en
ompass all generalized `massless' states and their superpartners.By this we mean SYM operators whose dimensions saturate unitary bounds and whoseholographi
 duals would thus be massless in a manifestly SO(10; 2) symmetri
 des
riptionin the bulk [47, 14, 48℄. Not unexpe
tedly, we will �nd that general formulae drasti
allysimplify for these operators. When intera
tions are turned on (gYM 6= 0), i.e. departingfrom the HS enhan
ement point, only truly 1/2 BPS multiplets remain `massless' in theabove generalized sense. All semishort multiplets parti
ipate in the `Grande Bou�e',whereby they `eat' the relevant Goldstone / St�u
kelberg multiplets and be
ome massive.The resulting long multiplets a
quire anomalous dimensions and, in prin
iple, mix withone another 
ompatibly with their quantum numbers.A generi
 long psu(2; 2j4) multiplet will be denoted as V�;B[q1;p;q2℄[j;�|℄ by means of theDynkin labels of its HWS with respe
t to the 
ompa
t bosoni
 subalgebra su(4)�su(2)2�u(1)� and the `external' u(1)B hyper
harge. More pre
isely, [q1; p; q2℄ are Dynkin labelsof su(4) while [j; �|℄ denote the spins under su(2) � su(2). At parti
ular values of �, thelong multiplet V�;B[q1;p;q2℄[j;�|℄ may split into semi-short or BPS multiplets, 
f. Appendix A fordetails. 16



For the following, it is 
onvenient to split superos
illator indi
es with respe
t to thesu(2)a � su(2)b � su(2)
 � su(2)d subalgebra inside su(2; 2) � su(4), whi
h yields ya =(a�;�by_�), �ya = (ay�; b _�), �A = (
r; dy_r), ��A = (
yr; d _r), with indi
es �; _�; r; _r taking values1; 2 . In this notation, the basi
 representation, the singleton is denoted as V1;0[0;1;0℄[0;0℄.Its HWS jZi, i.e. the ground-state or `va
uum', is 
hosen to be the s
alar 
omponentZ = '5 + i'6 that satis�esa�jZi = b _�jZi = 
rjZi = d _rjZi = 0 : (4.1)and is thus invariant under the non-semisimple superalgebra that 
ombines iso(4)ab �iso(4)
d � u(1)��J � u(1)C with 24 super
harges (16 S's and 8 Q's). Clearly jZi 
annotbe obtained from the su(2; 2j4) invariant trivial, but still physi
al, va
uum j0i, asso
iatedto the identity operator, through the a
tion of a �nite number of os
illators.Physi
al states in the singleton representation are given by all possible ex
itations(ay)na(by)nb(
y)n
(dy)ndjZi satisfying the zero 
entral 
harge 
onditionna � nb + n
 � nd = 0 : (4.2)One 
an easily 
he
k that all elementary �elds of N = 4 SYM and their derivatives 
anbe represented in this way. The six s
alars 'i are given by the va
uum together withthe ex
itations 
yrdy_r, 
y1
y2dy1dy2. The left-handed gaugini ��A by the ex
itations ay�dy_r anday�
yrdy1dy2. The right-handed gaugini ��A_� by by_�
yr and by_�dy_r
y1
y2. The �eld strengths F��� byay�ay�dy1dy2, by_�by_�
y1
y2. Finally, spa
e-time derivatives are given by the a
tion of P� _� = ay�by_�.For the tensor produ
t of L singletons, os
illators a(s)� ,b(s)_� ,
(s)r , d(s)_r are to be thoughtas length L ve
tors with 
omponents a
ting at ea
h of the L sites and trivial (anti-)
ommutation relations between os
illators a
ting on di�erent sites. The va
uum ZLis the tensor produ
t of L 
opies of the singleton va
uum jZiL. The Dynkin labels[j; �|℄[q1; p; q2℄�;B of a length L SYM state made out of na, nb, n
 and nd os
illators followfrom the relations� = L+ 12na + 12nb ; B = 12nd � 12n
 = jC=0 12na � 12nb ;[j; �| ℄ = �12(na1�na2); 12(nb1�nb2)� ;[q1; p; q2 ℄ = [n
2 � n
1 ; L� n
2 � nd1 ; nd1 � nd2 ℄ ; (4.3)with na; nb; n
; nd, the total number of os
illators of a given type. In addition the zero
entral 
harge 
ondition (4.2), i.e. C(s) = 0, is imposed at ea
h site s.17



4.1 Restri
ted semishort multipletsThe os
illator numbers na, nb, n
, nd in (4.3) are required to be positive, sin
e jZiL isannihilated by all raising operators. This simple 
ondition imposes non-trivial bounds onthe allowed psu(2; 2j4) 
harges in the SYM spe
trum. For example na2 + n
1 � 0 andnb2 + nd2 � 0 together with (4.2) imply the lower bounds� � 2j + 32q1 + p + 12q2 ; � � 2�| + 12q1 + p+ 32q2 ; (4.4)for the 
onformal dimension of any state (not only HWS's!). In this se
tion we will fo
uson states that simultaneously saturate the two bounds (4.4), or equivalently satisfy theinterse
tion 
ondition� = p+ q1 + q2 + j + �| : (4.5)This kind of states are only present in BPS and semishort multiplets. This 
an be seenby noting that the �eld 
ontent of any multiplet is generated by a
ting on the HWS with(a subset of) the 16 super
harges QA�, �QA _�, 
f. Appendix A. The only supersymmetry
harges among (A.3) whose weights violate the bounds (4.4) are Q+1 ; �Q+4 and they doso by exa
tly one unit. Therefore a state satisfying (4.5) should belong to a multipletwhose HWS has a 
onformal dimension that ex
eeds (4.5) by at most two units, i.e. � �2 + p + q1 + q2 + j + �|. This happens only for BPS or semishort multiplets. Indeed, thestate under 
onsideration 
ould either be the HWS of a BPS multiplet that satis�es (4.5)and is annihilated by Q+1 ; �Q+4 or the level two superdes
endant,j	2i = Q+1 �Q+4 j	0i; (4.6)in a semishort multiplet whose HWS j	0i has �0 = 2 + p + q1 + q2 + j + �|.We will 
onveniently use states satisfying (4.5) as representatives of semishort andBPS multiplets. In terms of os
illators, this bound amounts to restri
ting attention tostates for whi
hna2 = nb2 = n
1 = nd2 = 0 : (4.7)For simpli
ity, in the following, we denote the surviving os
illators (a1; b1; 
2; d1) simplyby (a; b; 
; d). From (4.3) it follows that a SYM state with Dynkin labels [j; �|℄[q1; p; q2℄�;Bsatisfying (4.5) 
arries� = L+ j + �| ; L = p + q1 + q2 B = 12(q2�q1) ; (4.8)18



and will be represented by the os
illator monomial[j; �|℄[q1; p; q2℄�;B � a2j b2�| 
q1 dq2 yp+q1+q2 : (4.9)The letters a; b; 
; d here have a two-fold meaning. On the one hand they keep tra
k of thequantum numbers q1; q2; j; �|, on the other hand they des
ribe how a given state is madeout of os
illators a,b,
,d. Finally, the auxiliary variable y keeps tra
k of p. Noti
e thatfor states satisfying (4.5), p is related to the number of letters L = p + q1 + q2 via (4.8),and therefore powers of y simultaneously 
ount the number of letters, previously 
ountedby u.On these states, the residual super
onformal symmetry is su(1; 1j2) � psu(2; 2j4). Thesu(1; 1j2) raising operators among (2.18) areQ+2 = a
 ; �Q+2 = b
 ; Q+3 = ad ; �Q+3 = bd ; P = ab ; J = 
d ; (4.10)preserving the bound (4.5). Positive and negative powers in these expressions are asso
i-ated to 
reation and annihilation operators respe
tively, e.g. a
 � ay1
2; bd � by1d1, and soon. It is then 
onvenient to 
onsider for BPS and semishort multiplets instead of the full
hara
ter polynomials of psu(2; 2j4) and its bosoni
 subgroup so(4) � so(6), the restri
-tion to states satisfying (4.5), giving rise to 
hara
ter polynomials of su(1; 1j2) and itsbosoni
 subgroup sl(2)� su(2), respe
tively. We denote these as Vrst;�[j;�|℄[q1;p;q2℄ and �rst[j;�|℄[k;p;q℄,respe
tively. Dis
arding from now on sl(2) des
endants, i.e. total derivatives generatedby P = ab, the 
hara
ter polynomial ex
lusively generated by the su(2) raising operatorJ = 
d reads�rst[j;�|℄[q1;p;q2℄ = a2jb2�|
q1dq2yp+q1+q2 1� (
d)p+11� 
d : (4.11)As dis
ussed above, the restri
ted 
hara
ter polynomials Vrst;�[j;�|℄[q1;p;q2℄ is non-trivial only forBPS and semishort multiplets. For semishort multiplets one �ndsVrst;�[j�;�|�℄[q1;p;q2℄ = �rst[q1+1;p;q2+1℄(j+ 12 ;�|+ 12 ) Tshort = y2ab
d�rst[q1;p;q2℄(j;�|) Tshort ; (4.12)with Tshort = (1� ad)(1� b
)(1� a
 )(1� bd) ; (4.13)generated by the four psu(1; 1j2) super
harges (4.10). The fa
tor y2ab
d takes 
are of thehighest weight states of the restri
ted semishort multiplets, 
f. (4.6), and maps psu(1; 1j2)primaries to semishort N = 4 super
onformal primaries. The number of states inside19



the multiplet (4.12) is given by 24 times the restri
ted dimension of the highest weightstate, i.e. 24 (p+ 1). The ni
e fa
torized form (4.12) of the restri
ted semishort multipletis to be 
ontrasted with the more involved multipli
ity formulae for semishort multipletsin psu(2; 2j4). We will make use of this restri
tion as a powerful simplifying tool in ouranalysis. The simplest generi
 multiplet of type (4.12) is the restri
tion of the shortKonishi multipletVrst;2[0;0℄[0;0;0℄ = y2ab
d Tshort ; (4.14)with total dimension 24. Noti
e that the state y2ab
d, 
orresponding to the weight[101℄[12; 12 ℄, is the highest 
omponent of the Konishi 
urrent with �0 = 3 in the 15 = [1; 0; 1℄of SU(4) that is a singlet (p = 0) of su(2) � psu(1; 1j2).The fa
torized formula (4.12) also holds for the 14 -BPS multiplets whi
h are 
ounteda

ording to (A.8) below. In 
ontrast, the restri
ted 
hara
ter polynomial 
orrespondingto the 12 -BPS multiplet Vrst;n[0y;0y℄[0n0℄ is generated by J and the supersymmetry 
hargesQ+3 ; �Q+2 .12 With (4.10) one �nds:Vrst;n[0y;0y℄[0;n;0℄ = �rst[0;0℄[0;n;0℄� �rst[ 12 ;0℄[0;n;1℄ � �rst[0; 12 ℄[1;n;0℄+ �rst[ 12 ; 12 ℄[1;n;1℄= yn (1 � ad)(1 � b
)� (
d)n(a� 
)(b� d)(1 � 
d) : (4.15)4.2 The semishort primary sieveHere we derive multipli
ity formulae for semishort-semishort psu(2; 2j4) multiplets inN =4 SYM theory. A

ording to (4.7) the spe
trum of single-letter SYM words saturating thebound (4.5) 
onsists of all possible ex
itations satisfying (4.7). The multipli
ities of thesestates 
an be derived via Polya theory. The basi
 ingredient is the one-letter partitionfun
tion:Zrst1 = y 1 + 
d � ad� b
1� ab ; (4.16)obtained from (3.1) upon restri
tion. The four terms in the numerators 
orresponds tothe elementary SYM �elds saturating the bound (two s
alars and two fermioni
 
ompo-nents) while the expansion of the denominator generates their derivatives. The restri
tedpartition fun
tion is given by Polya's formula (3.3):Zrstn = yn(1 � ab) Xdjn '(d)n �1 + (
d)d � (ad)d � (b
)d1� (ab)d �n=d ; (4.17)12The full 12-BPS multiplet is generated by Q�3;4; �Q�1;2 supersymmetries and su(4) � so(4) 
harges,
f. Appendix A. 20



The fa
tor (1 � ab) removes total derivatives, in mu
h the same way as in (3.4). Therestri
ted polynomial (4.17) 
ontains only 
ontributions 
oming from 12-BPS and semishortmultiplets. This 
an be 
he
ked by noti
ing that on
e the BPS series Pn Vrst;n[0y;0y℄[0;n;0℄ issubtra
ted, the spe
trum organizes into multiplets of the type (4.12). Spe
i�
ally, thedi�eren
e (Zrstn � Vrst;n[0y;0y℄[0;n;0℄) vanishes at the four zeros of (4.13)(Zrstn � Vrst;n[0y;0y℄[0;n;0℄)���a=
; 1d = (Zrstn � Vrst;n[0y;0y℄[0;n;0℄)���b=d; 1
 = 0 ; (4.18)as follows from the remarkable identityPnjd '(d) = n. Semishort primaries 
an then beisolated by fa
toring out Tshort. More pre
isely,Zshortn;suprim � (y2 ab
d Tshort)�1 �Zrstn � Vrst[0y;0y℄[0;n;0℄�HW + yn�2a2b2 ; (4.19)is a regular rational fun
tion des
ribing the 
hara
ter polynomial of superprimaries sittingin semishort and BPS multiplets in the n-letter spe
trum of SYM states. (y2 ab
d Tshort)�1disposes of supersymmetry des
endants a

ording to (4.12)13. The subs
ript HW de-notes the redu
tion to su(2) highest weight states given by dividing out the su(2) multi-plets (4.11). This 
an be done by 
ounting states a

ording to the ruleyp+q1+q2
q1dq2 ! � yp+q1+q2
q1dq2 p � 0�yp+q1+q2
q1+p+1dq2+p+1 p < 0 ; (4.20)isolating su(2) HWS's. Alternatively the same result is found by multiplying Zrstn;suprim by(1 � 
d) and then deleting all bosons (fermions) 
oming with negative (positive) mul-tipli
ities. The term yn�2=a2b2 in (4.19) a

ounts for 12 -BPS primaries with weights[�1;�1℄[0; n� 2; 0℄ = [00℄[0n0℄ a

ording to (A.9). Noti
e that here powers of y areno longer related to the number of letters (powers of `) sin
e semishort primaries do notbelong to the psu(1; 1j2) se
tor.13In parti
ular the fa
tor y2 ab
d map su(1; 1j2) HWS to super
onformal primaries via (4.6).
21



For the lowest values of L, the above pro
edure yieldsZshort;suprim = 1a2b2(1 � a2b2) ; (4.21)Zshort;suprim = y ( 1a2b2 � 
a � db )(1� a2b2) (1� a3b3) ;Zshort;suprim = y a3b3 ( 1a2b2 � 
a � db )(1� a2b2) (1� a3b3) ;Zshort;suprim = y2 (1 + 
d (a3b3 + a5b5 + a8b8) + 
2a7b9 + d2a9b7)a2b2 (1� a2b2) (1� a3b3) (1 � a4b4)� y2 (
b+ da)(a2b2 + a3b3 + a4b4 � a6b6)(1� a2b2) (1 � a3b3) (1 � a4b4) ;Zshort;suprim = y2 (1 + 
d ( 1ab + a2b2 + a3b3) + 
2ab3 + d2a3b� (
b+ da) (1 + ab))(1 � a2b2)2(1� a3b3) ;Zshort;suprim = y2(ab+ 
d (1 + ab+ a2b2) + 
2b2 + d2a2 � (
b+ da) ( 1ab + a2b2))(1� ab)(1� a2b2)(1 � a4b4) :Continuing to higher L, the 
omplete list of semishort multiplets appearing in the N = 4SYM spe
trum is obtained. The su(2)2 � su(4) 
harges 
an be read o� from (4.9) i.e.[na2 ; nb2 ℄[n
; ny � n
 � nd; nd℄, while� = 2 + ny + 12(na + nb); B = 12(nd � n
) ; (4.22)and L is spe
i�ed by the subs
ript of Z's. The results for L = 2; 3 pre
isely mat
h (3.8)with the 
oeÆ
ients 
n given by the expansion1Xn=0 
n xn = 1(1�x2)(1�x3) : (4.23)Noti
e that representatives for a given YT-pleton 
an be always 
hosen inside the hs(1; 1)subgroup. This 
orresponds to setting 
 = d = 0 in (4.21).Similar te
hniques 
an be applied to the study of any 
losed subse
tor in the SYMspe
trum. For example SU(4) singlets in the AC series are des
ribed by states saturatingone of the bounds (4.4) and q1 = p = q2 = 0. The various 
onditions for the �rst bound
ombine to given
1 = n
2 = na2 = 0 nd1 = nd2 = L : (4.24)22



This leads to the su(2; 1) invariant subse
tor with letters ay12+n by1m by2n�mdy1dy2jZi, whi
hare essentially derivatives of the self-dual �eld strength Dm11Dn�m12 F11. Anomalous dimen-sions for three-letter states of this type will be 
omputed in the next se
tion using the
orresponding su(1; 2) spin 
hain.Semishort multiplets group into long multipletsWe 
an now expli
itly show that the semi-short multiplets appearing in the free N = 4SYM spe
trum above organize into long multiplets. This is expe
ted sin
e after swit
hingon intera
tions the shortening 
onditions (A.5) are generi
ally no longer satis�ed. Spe
if-i
ally, a semishort multiplet appearing in the de
omposition of an L-pleton joins twomultiplets from the (L+1)-pleton and a fourth one from the (L+2)-pleton to build a longmultiplet a

ording to (A.7). The semishort multiplets appearing in this de
ompositionare related to ea
h other by the a
tion of Q1� and �Q4� in (A.3).Our statement then is equivalent to 
laiming that the total partition fun
tion of thesemi-short SYM spe
trumZrst = 1Xn=2 Zrstn ; (4.25)after subtra
tion of the 12 -BPS multiplets 
ontains the fa
tors (1� y 
a) and (1� y db ). Toprove this, we write the total partition fun
tion asZrst = �(1 � ab) 1Xk=1 '(k)k lnn1� yk�1 + (
d)k � (ad)k � (b
)k1� (ab)k �o�y (1 + 
d � ad� b
) ; (4.26)while for the total partition fun
tion of 12 -BPS multiplets we obtainZrst12�BPS = 1Xn=2 Vrst;n[0y;0y℄[0;n;0℄ = y2(1 � ad)(1� b
)(1 � y)(1� 
d) � (
dy)2 (a� 
)(b� d)(1 � 
d)(1 � y
d) : (4.27)Using 1Xk=1 '(k)k ln(1� xk) = � x1� x ; (4.28)one �nds indeed that�Zrstjy!a
 �Zrst12�BPS����y!a
 = 0 ; (4.29)23



and likewise for y ! bd . Hen
e, the semishort multiplets in the free SYM spe
trum organizein long multiplets whose highest weight states are 
olle
ted in the regular fun
tionZ longsuprim � 1y2 ab
d T�1long �Zrst �Zrst12BPS�HW + 1a2b2 11 � y ; (4.30)with Tlong = (1 � y 
a)(1� ydb )(1� ad)(1� b
)(1� a
 )(1� bd) ; (4.31)de�ning the restri
tion of the long Konishi multiplet.5 Symmetry breaking and anomalous dimensionsIn the intera
ting theory only one out of the in�nite tower of 
onserved 
urrent doubletonmultipletsZ = 1Xn=0 V2n; Vj := Vj;0[�1+ 12 j�;�1+ 12 j�℄[0;0;0℄: (5.1)is prote
ted against quantum 
orre
tions to the s
aling dimension: the N = 4 super-
urrent multiplet V0 = V2;0[0y;0y℄[0y;2;0y℄. The remaining multiplets V2n a
quire anomalousdimensions whi
h violate the 
onservation of their HS 
urrents at the quantum level. Atone-loop, one has [49,21℄
1�loop(2n) = g2YMN2�2 h(2n); h(j) = jXk=1 1k ; (5.2)This elegant ('number theoreti
') formula gives a 
lue on how to 
ompute generi
 anoma-lous dimensions at �rst order in perturbation theory relying on symmetry breaking 
on-siderations. Naively, one would look for all o

urren
es of the broken 
urrents V2n withinsome operator O. Ea
h o

urren
e of some broken 
urrent should 
ontribute to theanomalous dimension of O a term proportional to h(2n). Indeed, this is nearly whathappens, the one-loop dilatation operator [36℄ 
an be written asH = LXs=1 H(s;s+1) = LXs=1 1Xj=0 2h(j)P j(s;s+1); (5.3)where P j(s;s+1) proje
ts the produ
t of �elds (`letters') at nearest neighboring sites s ands + 1 onto Vj. Here, the sum goes over all values of j and not just the even ones. Thepoint is that although bilinear 
urrents V2n+1 
orresponding to the broken generators areeliminated after tra
ing over 
olor indi
es, they still appear in subdiagrams inside abigger tra
e. The 
orresponding de
omposition for doubletons is given in (3.8).24



5.1 `Twist' three anomalous dimensionsExpressions (4.21) give not only multipli
ities and 
harges of semishort primaries but alsoa representative of ea
h multiplet in terms of the os
illators (a1; b1; 
2; d1). For instan
estates in the sl(2) se
tor inside psu(1; 1j2), asso
iated to words made out of powers of a1b1(i.e. a single s
alar and all its derivatives) 
an be taken as representatives for semishortmultiplets V0;n. The letters in this se
tor are:jki0 = (ay1by1)kjZi $ Dk1Z ; (5.4)with Di = D�=i; _�=i. Similarly derivatives of (aydy)3 appearing in Q+1 �Q+4 TshortZrst3;suprim 
anbe 
hosen as representatives of V1;n (similarly for the 
onjugate multiplets V�1;n). Indeedthere is a single state of this type inside ea
h fermioni
 semishort multiplet in Zrst3 . Theletters are now:jki1 = (ay1by1)k(ay1dy1)jZi $ Dk1� : (5.5)with � = ��=1; _r=1 one of the gaugini. The sl(2) generators in both 
ases 
an be writtenas J� = a1b1 ; J+ = ay1by1 ; J3 = 12a1ay1 � 12by1b1 ; (5.6)while the spin is given by J3jkim = (12 + m2 )jkim. Therefore for Vm;n, m = 0; 1, we usethe sl(2) spin 
hain with spin 12 + 12m. We use a uni�ed notation for a single spin state ofeither 
hainsjkim = (ay1)k+m(by1)k(dy1)mjZi $ mDk1� + (1�m)Dk1Z : (5.7)The Hamiltonian of the relevant (super) spin 
hains in the two subse
tors 
an be 
omputedusing the harmoni
 a
tion in [36℄. The resulting Hamiltonian `density' isH(12)jk; n� kim = nXk0=0 
(m)n;k;k0 jk0; n� k0im ; (5.8)with 
oeÆ
ients
(m)n;k;k0 =8>>>><>>>>:h(k +m) + h(n � k +m) for k = k0k!(n� k +m)!k0!(n� k0 +m)!(k � k0) for k > k0;(n� k)!(k +m)!(n� k0)!(k0 +m)!(k0 � k) for k < k0: (5.9)For m = 0 this is equivalent to the sl(2) subse
tor of letters DnZ up to a res
aling by n!25



nnm 0 1 2 3 4 5 63 1516 54 4732 13180 7140 1059560 446122405 3532 13396 761480 487280 125336720 3974920160 1387367206 227160 761480 967560 20691120 3934920160 27471344 392918487 581480 179120 37632240 1838310080 3913320160 75433696 94373443528 50873360 1403840 1818710080 3867720160 4971124640 25931232 629227288288Table 2: First few paired anomalous dimensions for Vm;n with L = 3For multiplets Vm;n with m � 2 we use the su(1; 2) spin 
hain 
orresponding to the
losed subse
tor with residual symmetry algebra su(1; 2). The spin states are now spe
i�edby two 
onserved 
harges 
orresponding to the rank two algebra su(1; 2)jk; li = (ay1)2+k+l(by1)k(by2)ldy1dy2jZi $ Dk1Dl2F ; (5.10)with F = F�=1;�=1. The planar, one-loop dilatation generator H a
ts on two adja
entspin sites asH(12)jk; l;m� k; n� li = mXr=0 nXs=0 
m;nk;l;r;sjr; s;m� r; n� si ; (5.11)with
m;nk;l;r;s =8>>>>>>>>>><>>>>>>>>>>:h(2 + k + l) + h(2 + n+m� k � l); for k = r; l = s;�k!l!(2 + n+m� k � l)!(k + l� r � s� 1)!r!s!(2 + n+m� r � s)!(k � r)!(l� s)! ; for k � r; l � s;�(m� k)!(n� l)!(2 + k + l)!(r + s� k � l � 1)!(m� r)!(n� s)!(2 + r + s)!(r � k)!(s� l)! ; for k � r; l � s;0; for k > r; l < s;0; for k < r; l > s: (5.12)The 
oeÆ
ients again follow from the harmoni
 a
tion.We now 
ompute the spe
trum of one-loop planar anomalous dimensions expli
itlyusing (5.8){(5.12).14 By inspe
ting the spe
trum of lowest-lying states and their energieswe �nd that almost all of them form pairs with degenerate energies. We list the pairsin Tab. 2.15 For the unpaired states one 
an observe a pattern in the table of energies,Tab. 3. We �nd that all energies agree with the formulaÆD = g2YMN8�2 �2h(12m� 12) + 2h(m+ 12n) + 2h(12m+ 12n) � 2h(�12)� : (5.13)14The Hamiltonian is related to the dilatation operator by ÆD = (g2YMN=8�2)H + O(g3YM).15The energies are all rational numbers be
ause there is always just a single pair up to n � 8. Startingfrom n = 9 there is more than one pair and the energies be
ome irrational.26



nnm 0 1 2 3 4 5 60 0 34 98 118 2516 13780 147802 12 2524 43 12380 407240 30671680 2711404 34 4940 7148 929560 95 96615040 225911206 1112 761560 191120 88515040 6635 221047110880 21031100808 2524 73815040 10160 10186155440 65813360 329899160160 216431008010 137120 8602155440 493280 27488711441440 2038310080 20354596096 12202955440Table 3: First few unpaired anomalous dimensions for Vm;n with L = 3. Parity is given by(�1)m+1.In parti
ular, for m = 1 the energies areÆD = g2YMN8�2 �+2h(1 + 12n) + 2h(12 + 12n)� 2h(�12)� = g2YMN2�2 h(n+ 2) ; (5.14)whi
h agrees pre
isely with the energy of the short twist 2 multiplet V2n+2, (5.1). Su-per
onformal invarian
e requires this degenera
y so that the short multiplets 
an jointo form a long multiplet. The 
ases m = 0 and n = 0 also seem interesting, we �ndÆD = (g2YMN=8�2)4h(12n) and ÆD = (g2YMN=8�2)6h(m).Let us note a pe
uliarity of the three parton states dis
ussed above. Intriguingly, forVm;n we 
an reprodu
e all su(2; 1) spin 
hain results also with a sl(2) spin 
hain with spin�m=2� 1=2 and n ex
itations given by (5.8),(5.9).6 Con
lusionsIn the present paper, we have studied the de
omposition of the spe
trum of single-tra
egauge invariant operators of free N = 4 SYM theory with SU(N) gauge group in irrepsof hs(2; 2j4), the HS extension of the super
onformal algebra psu(2; 2j4). To this endwe have shown that HS L-pleton multiplets 
an be asso
iated to Young tableaux madeof L boxes, ea
h representing a singleton of psu(2; 2j4)=hs(2; 2j4), 
ompatible with the
y
li
ity of the tra
e over 
olor indi
es. For other gauge groups, further restri
tions areto be imposed. For L = 2 only the symmetri
 produ
t gives rise to physi
al operatorsindependently of the 
hoi
e of the (simple) gauge group [17℄. The antisymmetri
 dou-bleton is ruled out by the 
y
li
ity of the tra
e but still its de
omposition is relevant todiagrammati
 
omputations of 
omposite operators where su
h 
ombinations appear inintermediate 
hannels. We have then fo
ussed on tripletons asso
iated to Young tableauxwith L = 3 boxes. The only tableaux 
ompatible with the 
y
li
ity of the tra
e are thetotally symmetri
 (dab
) and antisymmetri
 (fab
) tripletons. The former in
ludes the KK27



re
urren
es of the doubleton and the latter part of the Goldstone �elds. The remainingGoldstone �elds belong (in the free theory) to the L = 4-letter `window' .For higher L-pletons we have identi�ed all operators belonging to BPS or semishort-semishort multiplets of psu(2; 2j4) in the free theory. In parti
ular, we have derived thepartition fun
tion for N = 4 super
onformal primaries saturating both left and rightunitarity bounds. After intera
tions are turned on, they are shown to 
ombine su
h as togive rise to long multiplets of the super
onformal group as expe
ted from the boundarydes
ription of the `Grande Bou�e' in the AdS bulk.Finally, we have 
omputed anomalous dimensions of operators that appear in thede
omposition of tripletons in terms of psu(2; 2j4) multiples. Remarkably the resultinganomalous dimensions for the full tripleton tower follow from integrable spin 
hains withsymmetry group sl(2)j and arbitrarily high spin j. The regularity of the pattern suggeststhe presen
e of some not-so `hidden' symmetry. Indeed there are by now various inde-pendent indi
ations that some aspe
ts of the dynami
s of large N N = 4 SYM theoryand its holographi
 dual type IIB superstring on AdS5 � S5 expose an integrable stru
-ture. In the latter, the super
oset stru
ture of the target superspa
e and the (generalized)
atness of the super
oset 
urrents allow one to identify an in�nite number of 
onserved
harges that form a Yangian [50℄. In the former, the dilatation operator 
an be identi�edwith the Hamiltonian of an integrable super-spin 
hain to lowest orders. Some of thein�nite 
harges have been identi�ed and given expli
it perturbative expressions. Thesetwo routes to integrability have been 
onne
ted in [51℄. In the emergen
e of the inte-grable stru
ture HS symmetry enhan
ement has so far played only a marginal role. YetHS dynami
s in lower dimensions is typi
ally formulated in terms of a Cartan integrablesystem [9,41,17,18,7℄. It is then tempting to spe
ulate that at least at one loop and largeN , HS symmetry 
ould explain the pattern of mass-shifts and anomalous dimensions andgive some additional insight into the geometri
 origin of integrability.A
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A N = 4 shortening, yet again.Here we 
olle
t some notation for representations of the N = 4 super
onformal algebrapsu(2; 2j4) and their shortenings. We denote byV�;B[j;�|℄[q1;p;q2℄ ; (A.1)a generi
 long multiplet of psu(2; 2j4) with highest weight state in the R[j;�|℄[q1;p;q2℄ repre-sentation of su(2)� su(2)� su(4), 
onformal dimension � and hyper
harge B. As above,[q1; p; q2℄ are Dynkin labels of su(4) while [j; �|℄ denote the spins under su(2)� su(2).The representation 
ontent of the long multiplet (A.1) under the bosoni
 subalgebrasu(2)�su(2)�su(4) may be found from evaluating the tensor produ
t V2;0;0[0;0℄[0;0;0℄���2;B;P[j;�|℄[q1;p;q2℄,with the long Konishi multiplet V2;0;0[0;0℄[0;0;0℄, or expli
itly by using the Ra
ah-Speiser algo-rithm asV�;B[j;�|℄[q1;p;q2℄ = X�A�;��A_�2f0;1g�[j;�|℄[q1;p;q2℄+�A�QA�+��A_� �QA _� ; (A.2)with the sum running over the 216 
ombinations of the 16 supersymmetry 
harges QA�,�QA _�, A = 1; : : : ; 4; �; _� = 1; 2 withDynkin labels16Q1� = ay� 
1 � a�
1 = [�12; 0℄[1; 0; 0℄ ; �Q1 _� = by_� 
y1 � b _� 
1 = [0;�12℄[�1; 0; 0℄Q2� = ay� 
2 � a�
2 = [�12; 0℄[�1; 1; 0℄ ; �Q2 _� = by_� 
y2 � b _� 
2 = [0;�12℄[1;�1; 0℄ ;Q3� = ay� dy1 � a� d1 = [�12; 0℄[0;�1; 1℄ ; �Q3 _� = by_� d1 � b _�d1 = [0;�12℄[0; 1;�1℄ ;Q4� = ay� dy2 � a� d2 = [�12; 0℄[0; 0;�1℄ ; �Q4 _� = by_� d2 � b _�d2 = [0;�12℄[0; 0; 1℄ :(A.3)Every QA�, �QA _� raises the 
onformal dimension by 12 , parity is left invariant, and thehyper
harge B is lowered and raised by 12 by ea
h QA� and �QA _� respe
tively. In order tomake sense out of (A.2) also for small values of q1; p; q2; j; �|, we note that the 
hara
terpolynomials asso
iated with negative Dynkin labels are de�ned a

ording to�[j;�|℄[q1;p;q2℄ = ��[j;�|℄[�q1�2;p+q1+1;q2℄ = � �[j;�|℄[q1;p+q2+1;�q2�2℄= ��[j;�|℄[q1+p+1;�p�2;q2+p+1℄= ��[�j�1;�|℄[q1;p;q2℄ = � �[j;��|�1℄[q1;p;q2℄ : (A.4)16Noti
e the 
ip of notations for the 
onjugate 
harges with respe
t to [12℄ and the un
onventional useof os
illators in the denominator to mean annihilation operators.29



In parti
ular, this implies that �[j;�|℄[q1;p;q2℄ is identi
ally zero whenever any of the weightsq1, p, q2 takes the value �1 or one of the spins j, �| equals �12 .In N = 4 SYM, there are two types of (
hiral) shortening 
onditions for parti
ularvalues of the 
onformal dimension �: BPS (B) whi
h may o

ur when at least one ofthe spins is zero, and semi-short (C) ones. The 
orresponding multiplets are 
onstru
tedsimilar to the long ones (A.2), with the sum running only over a restri
ted number ofsupersymmetries. Spe
i�
ally, the 
riti
al values of the 
onformal dimensions and therestri
tions on the sums in (A.2) are given byBL: V�;B[0y;�|℄[q1;p;q2℄ � = p + 32q1 + 12q2 �1� = 0BR: V�;B[j;0y℄[q1;p;q2℄ � = p + 12q1 + 32q2 ��4� = 0CL: V�;B[j�;�|℄[q1;p;q2℄ � = 2 + 2j + p + 32q1 + 12q2 �1� = 0CR: V�;B[j;�|�℄[q1;p;q2℄ � = 2 + 2�|+ p + 12q1 + 32q2 ��4� = 0 (A.5)for the di�erent types of multiplets. They represent the basi
 18-BPS and 116 semishorten-ings in N = 4 SCA and are indi
ated as in with a \y" and a \�" respe
tively.If the 
onformal dimension � of the HWS of a long multiplet (A.1) satis�es one of the
onditions (A.5), the multiplet splits a

ording toL : V�;B[j;�|℄[q1;p;q2℄ = V�;B[j�;�|℄[q1;p;q2℄ + V�+ 12 ;B� 12[j� 12 �;�|℄[q1+1;p;q2℄ ;R : V�;B[j;�|℄[q1;p;q2℄ = V�;B[j;�|�℄[q1;p;q2℄ + V�+ 12 ;B+ 12[j;�|� 12 �℄[q1;p;q2+1℄ ; (A.6)where by `�' we denote the 1=16 semishortening. Consequently, we denote by V�;B[j�;�|�℄[q1;p;q2℄the 1=8 semi-short multiplets appearing in the de
ompositionV�;B[j;�|℄[q1;p;q2℄ = V�;B[j�;�|�℄[q1;p;q2℄ + V�+ 12 ;B� 12[j� 12 �;�|�℄[q1+1;p;q2℄ + V�+ 12 ;B+ 12[j�;�|� 12 �℄[q1;p;q2+1℄+ V�+1;B[j� 12 �;�|� 12 �℄[q1+1;p;q2+1℄ ; (A.7)if left and right shortening 
onditions in (A.5) are simultaneously satis�ed. The semishortmultiplets appearing in this de
omposition are 
onstru
ted expli
itly a

ording to (A.2),(A.5).Formulae (A.6) in
lude the spe
ial 
ases V�;B[j�;�|℄[0;p;q2℄, V�;B[j�;�|℄[0;0;q2℄, and V�;B[j�;�|℄[0;0;0℄, 
or-responding to (
hiral) 1=8, 3=16, and 1=4 semi-shortening, respe
tively; likewise forV�;B[j;�|�℄[q1;p;0℄, V�;B[j;�|�℄[q1;0;0℄, and V�;B[j;�|�℄[0;0;0℄. For j = 0 and �| = 0, respe
tively, the de
om-positions (A.6) yield negative spin labels. They are to be interpreted as BPS multiplets,30



denoted by `y', as followsV�;B[� 12 �;�|℄[q1;p;q2℄ � V�+ 12 ;B+ 12[0y;�|℄[q1+1;p;q2℄ ; V�;B[j;� 12 �℄[q1;p;q2℄ � V�+ 12 ;B� 12[j;0y℄[q1;p;q2+1℄ ; (A.8)where one veri�es that the BPS highest weight states satisfy the BPS shortening 
onditionsof (A.5). In addition, there is the series Vp;0[0y;0y℄[0y;p;0y℄ of 12-BPS multiplets.For 
onvenien
e (but not quite a

urately) we 
an also de�neVp;0[�1�;�1�℄[0;p;0℄ := Vp+2;0[0y;0y℄[0y;p+2;0y℄: (A.9)B Os
illator des
riptionHere we 
olle
t some useful formulae, 
on
erning the os
illator des
ription of psu(2; 2j4)representations.B.1 su(2)� su(2j4) invariant va
uumThe unphysi
al su(2)� su(2j4) invariant va
uum jUi is de�ned as the ground state of theset of bosoni
 a(s)� ; b(s)_� and fermioni
 os
illators �(s)A :a�;ijUi = b(s)_� jUi = �(s)A jUi = 0 ; (B.1)with the ve
tor index s = 1; : : : ; L running over the sites in the SYM state and �; _� = 1; 2A = 1; 2; 3; 4. Os
illators satisfy the usual 
reation-annihilation 
ommutation relations:[a(s)� ; a�(s0)℄ = Æss0Æ�� [b(s)_� ; b _�(s)℄ = Æss0Æ _�_� ;f�(s)A ; �B(s0)g = Æss0ÆBA : (B.2)A SYM state with psu(2; 2j4) 
harges [q1; p; q2℄[j; �|℄�;B;L 
an be 
onstru
ted by a
tingon jUi with�na1na2� = �12�+ 12B � 12L+ j12�+ 12B � 12L� j� ; �nb1nb2� = �12�� 12B � 12L+ �|12�� 12B � 12L� �|� ;0BBB�n�1n�2n�3n�41CCCA = 0BBB�12L� 12B � 12p� 34q1 � 14q212L� 12B � 12p + 14q1 � 14q212L� 12B + 12p+ 14q1 � 14q212L � 12B + 12p + 14q1 + 34q21CCCA : (B.3)31



The psu(2; 2j4) 
harges 
an instead be read from the inverse relations:� = L+ 12na + 12nb ; B = L� 12n� = 12na � 12nb ;[q1; p; q2℄ = [n�2 � n�1 ; n�3 � n�2 ; n�4 � n�3 ℄ ;[j; �|℄ = �12(na1 � na2); 12(nb1 � nb2)� : (B.4)Physi
al states are de�ned by the vanishing 
entral 
harge 
onditions:n(s)a � n(s)b + n(s)� = 2 : (B.5)at every site s = 1; : : : ; L.B.2 Physi
al va
uumThe physi
al va
uum jZi is de�ned as the ground state of the set of L spe
ies of bosoni
a(s)� ; b(s)_� and fermioni
 os
illators 
(s)r = �(s)r and d(s)_p = ��(s)_p :a(s)� jZi = b(s)_� jZi = 
(s)p jZi = d(s)_p jZi = 0 ; (B.6)with the ve
tor index s = 1; : : : ; L running over the sites in the SYM state and �; _�; p; _p =1; 2. Os
illators satisfy the usual 
reation-annihilation 
ommutation relations:[a(s)� ; a�(s0)℄ = Æss0Æ�� ; [b(s)_� ; b _�(s0)℄ = Æss0Æ _�_� ;f
(s)p ; 
r(s)g = Æss0Ærp ; fd(s)_p ; d _r(s)g = Æss0Æ _r_p : (B.7)A SYM state with psu(2; 2j4) 
harges [q1; p; q2℄[j; �|℄�;B;L 
an be 
onstru
ted by a
ting onjZZ : : : Zi with�na1na2� = �12�+ 12B � 12L+ j12�+ 12B � 12L� j� ; �nb1nb2� = �12�� 12B � 12L + �|12�� 12B � 12L� �|� ; (B.8)�n
1n
2� = �12L� 12B � 12p� 34q1 � 14q212L� 12B � 12p + 14q1 � 14q2� ; �nd1nd2� = �12L+ 12B � 12p� 14q1 + 14q212L + 12B � 12p � 14q1 � 34q2� :psu(2; 2j4) 
harges 
an instead be read from the inverse relations:� = L+ 12na + 12nb ; B = 12na � 12nb ;[q1; p; q2℄ = [n
2 � n
1 ; L� n
2 � nd1 ; nd1 � nd2 ℄ ;[j; �|℄ = �12(na1 � na2); 12(nb1 � nb2)� : (B.9)Physi
al states are de�ned by the vanishing 
entral 
harge 
onditions:C(s) = n(s)a � n(s)b + n(s)
 � n(s)d = 0 (B.10)at every site s = 1; : : : ; L. 32



C HS multiplets de
ompositionFor 
onvenien
e of the reader we display here the translations of formulae (3.8).Z = 1Xn=0 V2n;0[�1+n�;�1+n�℄[0;0;0℄ ;Z = 1Xn=0 V2n+1;0[� 12+n�;� 12+n�℄[0;0;0℄ ;Z = 1Xn=0 
n hV1+n;0[�1+ 12n�;�1+ 12n�℄[0;1;0℄+ �V 112 +n; 12[ 32+ 12n�;1+ 12n�℄[0;0;1℄+ h.
.�i+ 1Xm=0 1Xn=0 
n hV4+4m+n;1[1+2m+ 12n� ; 12n℄[0;0;0℄+ V9+4m+n;1[ 72+2m+ 12n�; 32+ 12n℄[0;0;0℄+ h.
.i ;Z = 1Xn=0 dn hV2+n;0[ 12n� 12 �; 12n� 12 �℄[0;1;0℄ + �V 72+n; 12[ 12+ 12n�; 12n�℄[0;0;1℄+ h.
�i+ 1Xm=0 1Xn=0 dn hV5+4m+n;1[ 32+2m+ 12n� ; 12+ 12n℄[0;0;0℄ + V7+4m+n;1[ 52+2m+ 12n�; 12+ 12n℄[0;0;0℄ + h.
.i ;Z = 1Xn=0 
n hV4+n;0[ 12+ 12n�; 12+ 12n�℄[0;1;0℄+ �V 52+n; 12[ 12n�;� 12+ 12n�℄[0;0;1℄+ h.
�i+ 1Xm=0 1Xn=0 
n hV6+4m+n;1[2+2m+ 12n� ; 12n℄[0;0;0℄+ V7+4m+n;1[ 52+2m+ 12n�; 32+ 12n℄[0;0;0℄+ h.
.i : (C.1)In table 4 we rewrite the 
ontent of hs(2; 2j4) 
urrents in the symmetri
 doubleton.su(4) su(2)� su(2)1 P2r=�2[`� r2 ; `� r2 ℄ + [`� 1; ` � 1℄ + [`� 1; `+ 1℄4 [`� 12 ; `� 1℄ + [`� 12; `℄ + [`� 1; ` + 12 ℄ + [`+ 1; ` + 12 ℄6 [`� 1; `℄ + [`+ 12 ; `� 12 ℄ + [`; ` + 1℄10 [`+ 12; ` � 12℄15 [`� 12 ; `� 12℄ + [`; `+ 1℄ + [`; `℄20 [`� 12 ; `℄200 [`; `℄Table 4: Content of V2`;0[000℄[`�1�;`�1�℄ for ` � 2.33
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