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1 IntrodutionPushing Maldaena's onjeture [1℄ to its extreme onsequenes, one is led to onludethat free N = 4 super Yang-Mills theory (SYM) with SU(N) gauge group should beholographially dual to type IIB superstring on an extremely urved AdS5 � S5 [2℄. TheHagedorn growth of single-trae gauge-invariant SYM operators at large N preisely re-produes (tree level) string expetations and one is led to take the limit seriously [2{5℄and try to math the spetra on the two sides of the orrespondene. At vanishing gaugeoupling onstant (gYM = 0) N = 4 SYM theory develops a higher spin (HS) symmetryhs(2; 2j4). One thus expets the same should happen in the tensionless limit [6℄ or ratherat some very small radius of order R � p�0 [7℄ for the type IIB superstring on AdS5�S5(see [8{10℄ for studies of higher spin gauge theories in various dimensions). Despite someprogress [11℄, string quantization in the presene of RR bakgrounds is poorly understoodin general, let alone at large urvatures, and one has to devise some alternative strategyfor the time being.In [12℄ a preision test of the orrespondene was arried out by �rst extrapolating thenaive Kaluza-Klein (KK) redution on S5 of the type IIB superstring spetrum from tendimensions to the point of enhaned HS symmetry and then postulating a mass formulafor the resulting string exitations that ould aount for the appearane of the expetedmassless HS gauge �elds. The impressive agreement with single-trae SYM operators atlarge N up to dimension 4, inluding those belonging to genuinely long supermultiplets,led us to suspet that one ould do better and �nd a more aurate energy formula validfor all superstring states at the point of HS symmetry enhanement. Indeed by relyingon the BMN limit [13℄ and extrapolating the plane-wave frequenies down to �nite J (atgYM = 0!) suh a formula was found [14℄� = J + � ; (1.1)where � = PnNn is the string oupation number and J the harge under an so(2)subgroup of a hidden so(10) symmetry [14,15℄ that organizes the KK string spetrum 1 .Despite its simpliity, (1.1) enompasses the orret `energies' for all string states to maththose of SYM operators up to dimension � = 10 together with their superdesendantsthat neatly assemble into (long) supermultiplets of psu(2; 2j4).2The aim of this paper is to rearrange the SYM / string spetrum into multiplets ofthe higher spin (HS) extension hs(2; 2j4) of the superonformal group. Representations1While this paper was being published an interesting paper by Itzhak Bars appeared on the arhive [16℄that disussed how the spetrum of higher spin urrents in N=4 SYM ould be related to a partiulargauge �xing of the two-time superstring and reviewed previous work [15℄ where the higher dimensionalorigin of the SO(10) symmetry had been advoated.2The upper bound of � = 10 is imposed on us by omputer apabilities.2



of hs(2; 2j4) an be built out of multiple tensor produts of singleton multiplets. Thesingleton of hs(2; 2j4) turns out to oinide with the singleton of psu(2; 2j4) with vanishingentral harge, that onsists of the fundamental SYM �elds together with their derivatives[10,7,17,18℄. In the absene of abelian fators in the gauge group, the singleton does notgive rise to well de�ned saling operators. In the holographi desription it orrespondsto the low-lying open-string exitations that annot propagate in the bulk of AdS. Its(gauge invariant) omposites whih orrespond to losed-string exitations an [19℄. Thesymmetri produt of two singletons gives rise to the HS `massless' doubleton ontainingall twist 2 gauge-invariant operators and their superpartners. They are dual to the HSgauge �elds and their superpartners in the bulk. More preisely, the symmetri doubletonprodut deomposes into an in�nite number of su(2; 2j4) multiplets [20,17,18,7,21{23℄(VF � VF )S = 1Xn=0 V2n : (1.2)Here VF denotes the singleton and V2n�2 are semishort urrent multiplets with primariestransforming as singlets of SU(4) and arrying spin 2n � 2. For instane V2 denotesthe (semishort) N = 4 Konishi multiplet [24℄. Finally, V0 is the 12-BPS superurrentmultiplet. The anti-symmetri doubletons with odd spin V2n+1 do not appear in the freeSYM spetrum due to the yliity of the trae but play a role in the interations.As we will see, the pattern persists for higher tensor multiplets. For gauge groupSU(N), the tensor produt of L singletons deomposes into representationsof hs(2; 2j4),that may be termed YT-pletons sine they are ompletely lassi�ed by those Youngtableaux (YT) with L boxes that are ompatible with the yliity of the trae. Atlarge N , mixing among single and multi trae operators is suppressed [25,26℄. It is impos-sible anyway at L = 3, where we will �nd only two `massive' representations: the totallysymmetri one inluding the �rst KK reurrene of the HS `massless' doubleton, and thetotally antisymmetri one, always present, that inludes part of the lower spin Goldstone/ St�ukelberg �elds needed for the Higgsing of the HS `massless' gauge �elds when depart-ing from the HS symmetry enhanement point [17,18,7,12℄. For other gauge groups, suhas SO(N) or Sp(2N), one has to also take into aount the symmetry under transpositionthat is holographially dual to a ombination of worldsheet parity, spaetime inversionand fermion parity [27℄. At L = 3 this projets out the ompletely symmetri YT tableauleaving only the ompletely antisymmetri \Goldstone" multiplet. Related aspets of theSYM spetrum have been studied in [28,5℄.In the boundary theory, turning on interations (gYM 6= 0) breaks the HS symme-try down to the superonformal supergroup psu(2; 2j4). As a result, both massless andmassive representations of hs(2; 2j4) typially deompose into in�nite series of psu(2; 2j4)supermultiplets. Massive representations of HS symmetry algebras have not been muh3



studied in the past [29℄. Here we present the simplest ourrenes of massive represen-tations of hs(2; 2j4). They will play a ruial role in the Pantagrueli Higgs mehanism(`Grande Bou�e') in the AdS bulk that gives masses to all HS gauge �elds exept thegraviton and its superpartners.In a (superonformal) quantum �eld theory the violation of a symmetry due to quan-tum e�ets reets into the orresponding urrent aquiring an anomalous dimension[30, 31℄. Anomalous dimensions an be omputed either by old-fashion QFT meth-ods [32,25,26,33,21,22℄ or by brand-new tehniques based on the identi�ation of the pla-nar dilatation operator [34℄ with the Hamiltonian of an integrable super-spin hain [35{37℄.Non planar dynamis is desribed by a spin hain with non-loal interations aountingfor joining and splitting of SYM traes [34, 38℄. Here we apply the spin hain tehniquesto determine the one-loop anomalous dimensions for some operators onsisting of threeonstituent �elds in N = 4 SYM.The plan of the paper is as follows. In setion 2 we disuss the algebra hs(2; 2j4),the HS extension of the superonformal algebra psu(2; 2j4), and its representations. Weonsider �rst the ase of hs(1; 1), the HS extension of su(1; 1) � sl(2), spanned in N = 4SYM by a single (omplex) salar �eld and its derivatives in a given (omplex) diretion.This trunation illustrates already the main features of the HS representation theorywhih apply to HS extensions of Poinar�e and superonformal algebras in any dimension.3In partiular we argue that irreduible representations of hs(2; 2j4) are in one-to-oneorrespondene with Young tableaux built out of singletons. Only a subset of theserepresentations survives traing over olor indies.In setion 3 we desribe how the spetrum of operators in free N = 4 SYM an beassembled into irreduible representation of hs(2; 2j4). We determine via Polya theorythe set of Young tableaux surviving the traing over SU(N) gauge indies and displaythe psu(2; 2j4) ontent of the �rst ourrenes of massive HS representations at `twist'3. Higher L-pletons involve more ompliated deompositions spanning several in�nitetowers of N = 4 multiplets.In setion 4 we restrit to states sitting in semishort multiplets of the N = 4 SCA.Disposing of superdesendants by means of a semishort-sieve, we derive ompat expres-sions for Zshortsuprim, the partition funtion of BPS and semishort primaries. In setion 5we turn on interations, i.e. a small non-vanishing SYM oupling gYM 6= 0, that breakhs(2; 2j4) down to psu(2; 2j4) and ompute the anomalous dimensions of tripletons tolowest non-trivial order in g2YMN at large N . Finally, in setion 6, we onlude with someomments on L-pletons and integrability. Appendix A introdues a unifying notation for3HS algebras in other dimensions are supported by non-onformal free SYM theories living on Dp-branes are their gravity duals on warped AdS geometries [39℄.4



N = 4 UIR's and shortenings originally disussed in [40℄. Appendies B and C olletother useful formulae.2 The higher spin algebra and its representationsAt vanishing gauge oupling onstant (gYM = 0) the SCA psu(2; 2j4) of N = 4 SYMtheory gets enhaned to the HS symmetry algebra hs(2; 2j4) [17, 18, 7, 9, 41, 31℄. The HSsymmetry algebra is generated by an in�nite set of onserved urrents of arbitrarily high(even) spin s = 2n assoiated to totally symmetri and traeless tensorsJ�1:::�2n = Tr'i�(�1 : : : ��2n)'i + : : : ; (2.1)and their superpartners. Together with the lowest ultra-short 12 -BPS multiplet that on-tains the unbroken urrents of the superonformal algebra psu(2; 2j4), the in�nite towerof HS multiplets builds a single massless multiplet of the HS algebra hs(2; 2j4), the dou-bleton (1.2). The doubleton ollets all gauge-invariant operators built from two SYMelementary �elds fA�; ��A; ��A_� ; 'ig and derivatives thereof modulo �eld equations. In gen-eral, all states belonging to a HS multiplet have a ommon length L, i.e. number ofonstituents or `partons' (L = 2 for the doubleton), sine any linearly realized symmetryat gYM = 0 preserves the number of letters.4 However, for a given length L > 2, sev-eral HS multiplets appear. In [17℄, the psu(2; 2j4) ontent of the HS massless multipletwas determined, and the HS gauge theory realizing the algebra hs(2; 2j4) on AdS5 wasformulated at the linearized level.Here we onsider massive representations5 of hs(2; 2j4). As we will see they play aruial role in the deomposition of the free N = 4 SYM spetrum on the boundary andin the Pantagrueli Higgs mehanism in the AdS bulk. Although our disussion will fouson hs(2; 2j4) for its relevane to N = 4, the analysis an be adapted to HS extensions ofsuperonformal or Poinar�e groups in other dimensions. To this purpose, it is instrutiveto start desribing representations of the simplest HS algebra hs(1; 1), the HS extensionof su(1; 1) � sl(2) [10℄. This subalgebra, generated by a single derivative, is part of anyHS algebra independently of the dimension. As we will see later on, the disussion ofhs(2; 2j4), like any other HS extension, is an almost straightforward generalization of thissimple ase.The algebra hs(2; 2j4) and its irreduible representations, or YT-pletons, are subse-quently disussed in subsetion 2.2. The deomposition of YT-pletons into an in�nite4A losely related notion is the `twist' � = �� s, with � the saling dimension and s the spin. L = �for semishort primaries.5At gYM = 0, the lowest ases (L = 3; 4) still ontain some marginal salar operators dual to somemassless salars in bulk. 5



sum of irreduible representations of the N = 4 superonformal subalgebra psu(2; 2j4)will be further disussed in setion 3.2.1 Representations of hs(1; 1)Here we desribe the representations of the HS algebra hs(1; 1). This algebra is realizedon a single omplex salar (in the adjoint of the gauge group) and its derivatives alonga hosen (omplex) diretion. The aim of this setion is to establish a one-to-one orre-spondene between irreduible representations of hs(1; 1) and Young tableaux made outof singletons. This setion an be read independently of the rest of the paper and appliesto HS algebras in any dimension ontaining hs(1; 1) as a subgroup.sl(2)We start by onsidering the sl(2) subalgebra:[J�; J+℄ = 2J3 ; [J3; J�℄ = �J� : (2.2)This algebra may be represented in terms of osillatorsJ+ = ay+ ayaya ; J3 = 12 + aya ; J� = a ; (2.3)where, as usual, [a; ay℄ = 1. For our purpose it is onvenient to work in the spae offuntions f(ay), wherein a = �=�ay. sl(2) highest weight states (HWS's) are de�ned byJ�f(ay)j0i = 0 ) f(ay) = 1 : (2.4)Any state (ay)nj0i in this de�ning representation an be generated from its HWS j0i byating with Jn+. Therefore f(ay) de�nes a single irreduible representation of sl(2). Forlater purposes, we all this representation singleton and denote it by VF . The sl(2) spinof this representation is �J3 j0i = �12j0i. In N = 4 SYM, the omponents of the sl(2)singleton may be hosen in psu(2; 2j4)=sl(2) di�erent ways. In partiular, the HWS anbe identi�ed with the (omplex) salar Z = '5 + i'6 and its sl(2) desendants an begenerated by the ation of the derivative along a hosen omplex diretion D = D1+ iD2,(ay)nj0i $ DnZ : (2.5)In a similar way, the tensor produt of L singletons may be represented in the spae offuntions f(ay(1); ay(2); : : : ; ay(L)) with ay(s) ating on the sth site. The resulting representation6



is no longer irreduible. This an be seen by looking for sl(2) HWS'sJ� f(ay(1); : : : ; ay(L)) = LXs=1 �s f(ay(1); : : : ; ay(L)) = 0 : (2.6)with �s = ��ay(s) . There are indeed several solutions to these equations given by all possiblefuntions of the di�erenes fL(ay(s) � ay(s0)). A basis for sl(2) HWS's an be hosen asjj1; : : : ; jL�1i = (ay(L) � ay(1))j1(ay(L) � ay(2))j2 : : : (ay(L) � ay(L�1))jL�1 j0i ; (2.7)with spin J3 = 12 +Ps js. In partiular for L = 2 one �nds the known resultVF � VF = 1Xj=0 Vj ; (2.8)with Vj generated by ating with J+ on the HWS jji = (ay(2)�ay(1))j j0i. The orrespondingstates in free N = 4 SYM follow from the ditionary(ay(1))n1 (ay(2))n2 : : : (ay(L))nL j0i $ Dn1Z Dn2Z : : :DnLZ ; (2.9)with ni � 0.hs(1; 1)The HS extension hs(1; 1) of sl(2) is de�ned by introduing the HS generators [10℄Jp;q = (ay)paq : (2.10)The Jp;q learly lose under the ommutator / produt into an HS algebra that ontainsthe sl(2) subalgebra (2.3). We all it hs(1; 1). The generators Jp;q with p < q are raisingoperators. The singleton is again a representation of this algebra sine j0i is annihilatedby all raising operators. In the tensor produt of L singletons, HWS's of hs(1; 1) aresolutions ofLXi=1 (ay(i))p �qi f(ay(1); ::; ay(L)) = 0 with p < q : (2.11)Equations (2.11) are highly restritive and solutions are rare. Our laim is that solutionsto these equations, i.e. irreduible representations of hs(1; 1), are in one-to-one orrespon-dene with Young tableaux (YT) made out of L boxes, i.e. row inreasing diagrams with7



boxes numbered always inreasingly along rows and olumns (for a quik review on YTdeompositions see the Appendix of [38℄).Sine hs(1; 1) HWS's are also HWS's of its sl(2) subalgebra we an restrit our atten-tion to states of the type (2.7). For instane, for L = 2, the ondition J0;1f(ay(1); ay(2))j0i =0 is solved byjji = (ay(2) � ay(1))jj0i : (2.12)The onditions J0;njji = 0 leave only j0i and j1i as solutions. Indeed the two statesautomatially satisfy Jm�1;p�2jji = 0 and therefore are HWS's. They orrespond tothe two HWS's in the symmetri and antisymmetri tensor produt of two singletonsrespetively1 2 = j0i $ Z2 ;12 = (ay(2)� ay(1))j0i $ Z(DZ)� (DZ)Z : (2.13)In N = 4 SYM, the antisymmetri doubleton is projeted out after traing over gauge in-dies. The generalization to L > 2 states is straightforward. The HWS for the ompletelysymmetri representation is again given by f(ay(1); : : : ; ay(L)) = 1 while the HWS for theompletely antisymmetri tableau an be written as a produt of all the di�erenes= LYi>j (ay(i) � ay(j))j0i $ Z (DZ) (D2Z) : : : (DL�1Z) + antisymm: (2.14)That this state satis�es (2.11) an be seen by notiing that being ompletely antisym-metri, derivativesPi(ay(i))p �qi in the ompletely symmetri operator Jp;q anel againsteah other. Similarly one an build more general solutions from tensoring k olumns oftype (2.14) leading to= kYp=1 LpYip>jp(ay(ip) � ay(jp))j0i $ Zn1 (DZ)n2 : : : (DnsZ) + perms: (2.15)with L =Pp Lp, ni the number of boxes in the ith row and \perms" denoting all permu-tations spei�ed by the tableau. To eah of these solutions we assoiate a Young Tableauxwith k olumns of length Lp and boxes labelled by ip 2 f1; 2; : : : ; Lpg. We believe thatthese are the only solutions to (2.11) but we have no rigorous proof of this uniqueness.8



For example, HWS's for L = 3 are given by1 2 3 = j0i $ Z3 ;1 23 = (ay(3) � ay(1))j0i $ Z2(DZ)� (DZ)Z2 ; (2.16)1 32 = (ay(2) � ay(1))j0i $ Z(DZ)Z � (DZ)Z2 ;123 = (ay(2) � ay(1))(ay(3)� ay(1))(ay(3) � ay(2))j0i $ Z(DZ)(D2Z) + antisymm:In N = 4 SYM, the two HS 3-pleton multiplets assoiated to the hooked tableauxare projeted out after traing over the gauge indies.2.2 A �rst look at hs(2; 2j4)In order to extend the previous analysis to the ase of our main interest, the higher spinalgebra hs(2; 2j4), we need to reall some basi properties of this in�nite dimensionalHS (super)algebra. To this end we losely follow [17℄ and adopt their notations withminor hanges. The N = 4 superonformal algebra psu(2; 2j4) an be realized in termsof (super-)osillators �� = (ya; �A) with:[ya; �yb℄ = Æab ; f�A; ��Bg = ÆBA ; (2.17)where ya; �yb are bosoni osillators with a; b = 1; :::4 a Weyl spinor index of so(4; 2) �su(2; 2) or, equivalently, a Dira spinor index of so(4; 1), while �A; ��B are fermioni osil-lators with A;B = 1; :::4 a Weyl spinor index of so(6) � su(4).Generators of psu(2; 2j4) are written as `traeless' bilinears ����� of superosillators. Inpartiular, the `diagonal' ombinations realize the ompat so(6) and nonompat so(4; 2)bosoni subalgebras respetively, while the mixed ombinations generate supersymmetries:Jab = �yayb � 12KÆab ; K = 12�yaya ;TAB = ��A�B � 12BÆAB ; B = 12 ��A�A ;QAa = ��Aya ; �QaA = �ya�A : (2.18)The ombinationC � K +B = 12 ����� ; (2.19)ommutes with all the remaining generators and is thus a entral element. The abelianideal generated by C an be modded out e.g. by setting C to zero. At least in perturbation9



theory, this should make physial sense, sine the elementary SYM �elds fA�; ��A; ��A_� ; 'igand their omposites all have C = 0.6 Finally, the ombinationB is to be identi�ed as thegenerator of Intriligator's \bonus symmetry" [44℄ dual to the `anomalous' U(1)B hiralsymmetry of type IIB in the AdS bulk. It ats as an external automorphism [17℄ thatrotates the superharges of the SCA. The psu(2; 2j4) invariant vauum j0i, annihilatedby ��, orresponds to the identity operator whih an be viewed as the trivial singletrepresentation.The HS extension hs(2; 2j4) is roughly speaking generated by odd powers of the abovegenerators i.e. ombinations with equal odd numbers of �� and ���. More preisely, one�rst onsiders the enveloping algebra of psu(2; 2j4), whih is an assoiative algebra andonsists of all powers of the generators, then restrits it to the odd part whih loses as aLie algebra modulo the entral harge C, and �nally quotients the ideal generated by C.It is easy to show that B is never generated in ommutators (but C is!) and thus remainsan external automorphism of hs(2; 2j4). Generators of hs(2; 2j4) an be represented by`traeless' polynomials in the superosillators:hs(2; 2j4) = �`A2`+1 = 1X̀=0 nJ2`+1 = P�1:::�2`+1�1:::�2`+1 ���1 : : : ���2`+1 ��1 : : : ��2`+1o ;(2.20)with elements J2`+1 in A2`+1, where ` is alled the level, parametrized by traeless rank(2`+1) (graded) symmetri tensors P�1:::�2`+1�1 :::�2`+1 . The ommutators of two elements howeverlose only up to the ideal generated by C. In partiular they lose on the subspaeof physial states de�ned by the ondition C � 0. The restrition to this subspaewill be always understood. Alternatively, the HS algebra an be more generally de�nedby identifying generators di�ering by terms that involve C, i.e. J � K i� J � K =Pk�1CkHk [17℄.To eah element in A2`+1 with su(2)L � su(2)R spins [j; �|℄ is assoiated an hs(2; 2j4)HS gauge �eld in the AdS bulk with labels [j+ 12 ; �|+ 12 ℄. The su(4)� su(2)2 ontent of theHS urrents an be easily read o� from (2.20) by expanding the polynomials in powersof �'s up to 4, sine �5 = 0. There is a single superonformal multiplet V2` at eah level` � 2. The lowest spin ases ` = 0; 1, i.e. V̂0;2, are speial. They di�er from the ontentof doubleton multiplets V0;2 by spin s < 1 states [17℄. The ontent of (2.20) an then be6In priniple, one an onsider quotienting by C � C0, where C0 is any (half) integer. This wouldorrespond to hoosing as the basi building blok some singleton of SU (2; 2j4) with non vanishing entralharge C = C0. These non self-onjugate singletons play only a marginal aessory role in (perturbative)N = 4 SYM theory [42,17,18,7,43℄. 10



written as (tables 4,5 of [17℄)V̂0 = ���4[ 12 ;0℄ + 1[1;0℄��2 � 1[ 12 ; 12 ℄V̂2 = ��4[ 12 ;0℄ + 6[1;0℄+ �4[ 32 ;0℄ + 1[2;0℄��2V2` = ��1[`�1;0℄ + 4[`� 12 ;0℄ + 6[`;0℄ + �4[`+ 12 ;0℄ + 1[`+1;0℄��2 ; ` � 2 ; (2.21)with r[j+ 12 ;�|+ 12 ℄ denoting the su(4) representation r and the labels of the u(1)2 2 su(2)2HWS's. Complex onjugates are given by onjugating su(4) representations and exhang-ing the spins j $ �|. The produt is understood in su(4) while u(1)2 labels simply add.The highest spin state 1[`+1;`+1℄ orresponds to the state y2`+1�y2`+1 with no �'s, 4[`+ 12 ;`+1℄,�4[`+1;`+ 12 ℄ to y2`�y2`+1�A, y2`+1�y2`��A, and so on. For ` = 0; 1, states with negative j; �| shouldbe deleted. In addition we subtrat the urrent 1[ 12 ; 12 ℄ at ` = 0 assoiated to C. In theN = 4 notation introdued in Appendix A, V2` orresponds to the semishort multipletV2`;0[000℄[`�1�;`�1�℄ (see also table 4 in Appendix C).Representations of hs(2; 2j4)The basi representation of both psu(2; 2j4) and hs(2; 2j4) is the so alled \singleton"V1;0[0;1;0℄[0;0℄ assoiated to the N = 4 SYM vetor multiplet. Its HWS jZi, i.e. the ground-state or `vauum', whih is obviously di�erent from the trivial psu(2; 2j4) invariant vauumj0i, is one of the omplex salars, let us say Z = '5 + i'6. The other (omplex) ompo-nents will be denoted by X = '1 + i'2 and Y = '3 + i'4 in the following. Showing thatthe singleton is an irreduible representation of psu(2; 2j4) is tantamount to showing thatany elementary SYM state an be found by ating on the Fok spae vauum jZi witha sequene of superonformal generators hosen among (2.18). Looking at the singletonas an irrep of hs(2; 2j4) one sees an important di�erene: the sequene of superonformalgenerators 7 is replaed by a single HS generator and therefore any omponent A in thesingleton multiplet an be reahed in a single step JA �B from any other one B. This anbe shown by notiing that, sine the entral harge C ommutes with all generators andannihilates the vauum, a non-trivial sequene in (A1)2`+1 belongs to A2`+1. This di�er-ene, irrelevant for one-letter states (L = 1), will be ruial in proving the irreduibilityof YT-pletons with respet to the HS algebra.87Without loss of generality we may assume the length of the sequene to be odd; for an even sequenewe may append an element of the Cartan subalgebra, e.g. the dilatation generator.8This property is also satis�ed by the fundamental representation of SU (m). Our proof below re-dues in this ase to the familiar statement that irreduible representations of SU (m) are in one-to-oneorrespondene with Young tableaux made out of fundamentals.11



Let us now onsider the tensor produt of L singletons. The generators of hs(2; 2j4)are realized as diagonal ombinations:J2`+1 � LXs=1 J (s)2`+1 (2.22)with J (s)2`+1 HS generators ating at the sth site. The tensor produt of L � 1 singletonsis generially reduible not only under psu(2; 2j4) but also under hs(2; 2j4). This an beseen by notiing that the HS generators (2.22), being ompletely symmetri, ommutewith symmetrizations and antisymmetrizations of the indies in the tensor produt ofsingletons. In partiular, the tensor produt deomposes into a sum of representationsharaterized by Young tableaux Y T with L boxes. A Young tableaux is de�ned bydistributing SYM letters among L boxes and ating on it with the operator OYT =AYTSYT that �rst symmetrizes all letters in the same row and then antisymmetrizes lettersin the same olumn. This operator learly ommutes with all generators of hs(2; 2j4), andtherefore di�erent Young tableaux belong to di�erent irreduible omponents.To prove irreduibility of L-pletons assoiated to a spei� YT with L boxes underhs(2; 2j4), it is then enough to show that any state in the L-pleton under onsideration anbe found by ating on the relevant HWS with HS generators. Let us start by onsideringstates belonging to the totally symmetri tableau. The simplest examples of suh statesare those with only one site di�erent from the vauum Z, i.e. AZ : : :Z + symm.. Usingthe fat that any SYM letter A an reahed from the HWS Z using a single hs(2; 2j4)generator JA �Z we write the \one impurity" state as (JA �ZZ)Z : : : Z+symm:This state analso be written as JA �Z(ZL) and it is therefore a HS desendant. The next simplest lassis given by states with \two impurities" ABZ : : : Z + symm:. One again this state anbe written as JA �ZJB �Z(ZL) up to the \one impurity" desendant (JA �ZJB �ZZ)Z : : : Z ofthe type already found. Proeeding in this way the reader an easily onvine him/herselfthat all states in the ompletely symmetri tensor of L singletons an be written as HSdesendants of the vauum ZL.The same arguments hold for generi tableaux. For example, besides the desendantsJA �Z(ZL) of ZL there are L � 1 \one impurity" multiplets of states assoiated to theL � 1 Young tableaux with L � 1 boxes in the �rst row and a single box in the seondone9. The vauum state of HS multiplets assoiated to suh tableaux an be taken tobe Y(k) � ZkY ZL�k�1 � Y ZL�1 with k = 1; : : : ; L � 1. Any state with one impurityZkAZL�k�1 � AZL�1 with k = 1; : : : ; L � 1 an be found by ating on Y(k) with the HSgenerator JA�Y , where JA�Y is the HS generator that transforms Y into A (and annihilatesZ).9As we will momentarily see, HS multiplets of this kind are absent for N = 4 SYM theories withsemisimple gauge group. At any rate, they are instrumental to illustrate our point.12



Notie that the arguments rely heavily on the fat that any two states in the singletonare related by a one-step ation of a HS generator. This is not the ase for theN = 4 SCA,and indeed the ompletely symmetri tensor produt of L singletons is highly reduiblewith respet to psu(2; 2j4), as we shall see in the following.3 HS ontent of N = 4 SYMThe on-shell �eld ontent of the singleton representation of psu(2; 2j4) is enoded in thepartition funtionZ (t; yi) = 1Xs=0 ht1+s �[ s2 ; s2 ℄ �[010℄ + t2+s �[ s+22 ; s2 ℄ �[000℄ + t2+s �[ s2 ; s+22 ℄ �[000℄ +�t 3+s2 �[ s+12 ; s2 ℄ �[001℄ � t 3+s2 �[ s2 ; s+12 ℄ �[100℄i ; (3.1)with the di�erent terms orresponding to the six real salars 'i, the �eld strengths F���and the fermions ��A, ��A_� , respetively, together with their derivatives. Here t keeps trakof the bare onformal dimension �. �[j;�|℄�[q1;p;q2℄(yi) denotes the harater polynomial ofthe so(4)�so(6) representation [j; �|℄[q1; p; q2℄10. In partiular, fousing only on the salingdimensions � and performing expliitly the sum over s, one �nds the one-letter partitionfuntion11Z (t; yi)jyi=1 = 2 t (3 + t 12 )(1 + t 12 )3 : (3.2)As explained above, the singleton turns out to be the \fundamental representation" ofhs(2; 2j4) as well. Moreover, we have argued that representations of hs(2; 2j4) are builtin terms of tensor produts of singletons properly deomposed aording to irreduiblerepresentations of the permutation group. These are assoiated to Young Tableaux builtfrom � Z (t). The spetrum of single-trae operators in N = 4 SYM theory withSU(N) gauge group is given by all possible yli words built from letters hosen from Z .It an be omputed using Polya theory [46℄, whih gives the generating funtion [2,4,12℄Z(u; t; yi) =Xn�2 un Zn(t; yi) = Xn�2;djn un '(d)n Z (td; ydi )nd ; (3.3)10Charaters of UIR's of superonformal algebras have been reently derived in [45℄.11At yi = 1 one has by de�nition �[q1 ;p;q2℄ = dim[q1; p; q2℄ = (q1+ 1)(p+ 1)(q2+1)(p+ q1+ 2)(p+ q2+2)(p+ q1 + q2 + 3)=12 and �[j;�|℄ = dim[j; �|℄ = (2j + 1)(2�|+ 1).13



for yli words. Here u keeps trak of the length L, i.e. the number of letters / partons.The sum runs over all integers n > 2 and their divisors d, and '(d) is Euler's totientfuntion, that equals the number of integers smaller than and relatively prime to d. Forlater onveniene, we have introdued the notation Zn(t; yi) to denote the restritionto yli words made out of n-letters. The partition funtion (3.3) aounts for SYMomposite operators and all their derivatives, i.e. their so(4; 2)=(so(4)�so(2)) desendants.so(4; 2) primaries an instead be read o� from bZ(u; t; yi), de�ned from Z(u; t; yi) byremoving total derivatives:bZ(u; t; yi) � Z(u; t; yi) �1� t �[ 12 12 ℄ + t2 (�[10℄ + �[01℄)� t3 �[ 12 12 ℄ + t4� : (3.4)We note that Z (ud; td; ydi ) denotes the alternating sum over length-d Young tableaux ofthe hook type:Z (td) = Z �� (t) � Z �� (t) + Z �� (t) � Z �� (t) + : : : : (3.5)Plugging this expansion into (3.3), we �nd for the �rst few ases:Z2 = Z ;Z3 = Z + Z ;Z4 = Z + Z + Z ;Z5 = Z + Z + 2Z + Z + Z ; et. (3.6)Notie that only a subset of YT, those ompatible with yliity of the trae, enters in(3.6). In partiular, HS multiplets assoiated to the tableaux , , two out of the threeof type , and so on, are projeted out. The ontent of the various omponents in (3.6)an be derived from the formulae:Z = 12! �Z (t)2 + Z (t2)�Z = 13! �Z (t)3 + 3Z (t2)Z (t) + 2Z (t3)�Z = 13! �Z (t)3 � 3Z (t2)Z (t) + 2Z (t3)�Z = 14! �Z (t)4 + 6Z (t2)Z (t)2 + 3Z (t2)2 + 8Z (t3)Z (t) + 6Z (t4)�Z = 14! �2Z (t)4 + 6Z (t2)2 � 8Z (t3)Z (t)�Z = 14! �3Z (t)4 � 6Z (t2)Z (t)2 � 3Z (t2)2 + 6Z (t4)� : (3.7)14



L name V�;B[j;�|℄[q1;p;q2℄ setor2 V0 V2;0[0y;0y℄[0;2;0℄ sl(2)j=�122 Vn Vn;0[ 12n�1� ; 12n�1� ℄[0;0;0℄ sl(2)j=�123 V0;0 V3;0[0y;0y℄[0;3;0℄ sl(2)j=�123 V0;n Vn+1;0[ 12n�1� ; 12n�1�℄[0;1;0℄ sl(2)j=�123 V1;n Vn+ 52 ;+ 12[n=2�;n=2�1=2�℄[0;0;1℄ sl(2)j=�13 V�1;n Vn+ 52 ;� 12[n=2�1=2�;n=2�℄[1;0;0℄ sl(2)j=�13 Vm�+2;n Vn+2m;1[ 12n+m�1�; 12n℄[0;0;0℄ su(1; 2)3 Vm��2;n Vn+2m;�1[ 12n; 12n+m�1� ℄[0;0;0℄ su(1; 2)Table 1: psu(2; 2j4) multiplets with L � 3.Formulae (3.7) an be expliitly veri�ed with the use of (3.5).Under the superonformal group psu(2; 2j4), the HS multiplet ZY T , assoiated to agiven Young tableau Y T with L boxes, deomposes into an in�nite sums of multiplets. TheHWS's an be found by omputing ZY T and eliminating the superonformal desendantsby passing ZY T through a sort of Erathostenes' (super) sieve [12℄. This will be the subjetof the next subsetion. Here we just state the results for L = 2; 3. The omplete list ofpsu(2; 2j4) multiplets appearing in the deomposition of the �rst few HS multiplets withL = 2; 3 letters is olleted in table 1, see Appendix A for the notation of psu(2; 2j4)multiplets. The deompositions of the orresponding HS multiplets reads:Z = 1Xn=0 V2n ; Z = 1Xn=0 V2n+1 ;Z = 1Xk=�1 1Xn=0 n [V2k;n + V2k+1;n+3℄ ;Z = 1Xk=�1 1Xn=0 dn [V2k;n+1 + V2k+1;n+1℄ ;Z = 1Xk=�1 1Xn=0 n [V2k;n+3 + V2k+1;n℄ : (3.8)The oeÆients n � 1+ [n=6℄� Æn;1 mod 6 and dn � 1+ [n=3℄ with [m℄ the integral part ofm, are the multipliities of psu(2; 2j4) multiplets inside hs(2; 2j4). More preisely n; dnount the number of ways one an distribute derivatives (HS desendants) between theboxes in the tableaux. These multipliities will be omputed in the next setion, f. (4.23)below. For onveniene of the reader we display the translation of these formulae into15



psu(2; 2j4) notation V�;B[j;�|℄[q1;p;q2℄ in Appendix C.The multiplets with n = 0 or m = 0;�1 in table 1 are speial: n = 0 orrespondsto the 12 -BPS series, dual to N = 8 gauged supergravity and its KK reurrenes, m =0;�1; n � 1 to semishort-semishort multiplets. Finally for m � 2 one �nds multipletssatisfying a bound of type long-semishort.The `symmetri doubleton' Z ontains the multiplets of onserved HS urrents V2n.The `antisymmetri doubleton' Z is ruled out by yliity of the trae, f. (3.6). The`symmetri tripleton' Z (orresponding to the ubi Casimir dab) ontains the �rst KKreurrenes of twist 2 semishort multiplets, the still semishort-semishort series V�1;n start-ing with fermioni primaries and long-semishort multiplets. The `antisymmetri tripleton'Z (orresponding to the struture onstants fab) on the other hand ontains the Gold-stone multiplets that join to multiplets with twist 2 to form long multiplets when theHS symmetry is broken. In addition, fermioni semishort-semishort multiplets and long-semishort multiplets also appear.4 Partition funtion of semishort superprimariesIn this setion, we fous on the partiularly interesting lass of SYM operators sittingin BPS and semishort multiplets of the superonformal algebra psu(2; 2j4) and derivemultipliity formulae for their superprimaries. Semishort and BPS multiplets are speial inthat their omponents enompass all generalized `massless' states and their superpartners.By this we mean SYM operators whose dimensions saturate unitary bounds and whoseholographi duals would thus be massless in a manifestly SO(10; 2) symmetri desriptionin the bulk [47, 14, 48℄. Not unexpetedly, we will �nd that general formulae drastiallysimplify for these operators. When interations are turned on (gYM 6= 0), i.e. departingfrom the HS enhanement point, only truly 1/2 BPS multiplets remain `massless' in theabove generalized sense. All semishort multiplets partiipate in the `Grande Bou�e',whereby they `eat' the relevant Goldstone / St�ukelberg multiplets and beome massive.The resulting long multiplets aquire anomalous dimensions and, in priniple, mix withone another ompatibly with their quantum numbers.A generi long psu(2; 2j4) multiplet will be denoted as V�;B[q1;p;q2℄[j;�|℄ by means of theDynkin labels of its HWS with respet to the ompat bosoni subalgebra su(4)�su(2)2�u(1)� and the `external' u(1)B hyperharge. More preisely, [q1; p; q2℄ are Dynkin labelsof su(4) while [j; �|℄ denote the spins under su(2) � su(2). At partiular values of �, thelong multiplet V�;B[q1;p;q2℄[j;�|℄ may split into semi-short or BPS multiplets, f. Appendix A fordetails. 16



For the following, it is onvenient to split superosillator indies with respet to thesu(2)a � su(2)b � su(2) � su(2)d subalgebra inside su(2; 2) � su(4), whih yields ya =(a�;�by_�), �ya = (ay�; b _�), �A = (r; dy_r), ��A = (yr; d _r), with indies �; _�; r; _r taking values1; 2 . In this notation, the basi representation, the singleton is denoted as V1;0[0;1;0℄[0;0℄.Its HWS jZi, i.e. the ground-state or `vauum', is hosen to be the salar omponentZ = '5 + i'6 that satis�esa�jZi = b _�jZi = rjZi = d _rjZi = 0 : (4.1)and is thus invariant under the non-semisimple superalgebra that ombines iso(4)ab �iso(4)d � u(1)��J � u(1)C with 24 superharges (16 S's and 8 Q's). Clearly jZi annotbe obtained from the su(2; 2j4) invariant trivial, but still physial, vauum j0i, assoiatedto the identity operator, through the ation of a �nite number of osillators.Physial states in the singleton representation are given by all possible exitations(ay)na(by)nb(y)n(dy)ndjZi satisfying the zero entral harge onditionna � nb + n � nd = 0 : (4.2)One an easily hek that all elementary �elds of N = 4 SYM and their derivatives anbe represented in this way. The six salars 'i are given by the vauum together withthe exitations yrdy_r, y1y2dy1dy2. The left-handed gaugini ��A by the exitations ay�dy_r anday�yrdy1dy2. The right-handed gaugini ��A_� by by_�yr and by_�dy_ry1y2. The �eld strengths F��� byay�ay�dy1dy2, by_�by_�y1y2. Finally, spae-time derivatives are given by the ation of P� _� = ay�by_�.For the tensor produt of L singletons, osillators a(s)� ,b(s)_� ,(s)r , d(s)_r are to be thoughtas length L vetors with omponents ating at eah of the L sites and trivial (anti-)ommutation relations between osillators ating on di�erent sites. The vauum ZLis the tensor produt of L opies of the singleton vauum jZiL. The Dynkin labels[j; �|℄[q1; p; q2℄�;B of a length L SYM state made out of na, nb, n and nd osillators followfrom the relations� = L+ 12na + 12nb ; B = 12nd � 12n = jC=0 12na � 12nb ;[j; �| ℄ = �12(na1�na2); 12(nb1�nb2)� ;[q1; p; q2 ℄ = [n2 � n1 ; L� n2 � nd1 ; nd1 � nd2 ℄ ; (4.3)with na; nb; n; nd, the total number of osillators of a given type. In addition the zeroentral harge ondition (4.2), i.e. C(s) = 0, is imposed at eah site s.17



4.1 Restrited semishort multipletsThe osillator numbers na, nb, n, nd in (4.3) are required to be positive, sine jZiL isannihilated by all raising operators. This simple ondition imposes non-trivial bounds onthe allowed psu(2; 2j4) harges in the SYM spetrum. For example na2 + n1 � 0 andnb2 + nd2 � 0 together with (4.2) imply the lower bounds� � 2j + 32q1 + p + 12q2 ; � � 2�| + 12q1 + p+ 32q2 ; (4.4)for the onformal dimension of any state (not only HWS's!). In this setion we will fouson states that simultaneously saturate the two bounds (4.4), or equivalently satisfy theintersetion ondition� = p+ q1 + q2 + j + �| : (4.5)This kind of states are only present in BPS and semishort multiplets. This an be seenby noting that the �eld ontent of any multiplet is generated by ating on the HWS with(a subset of) the 16 superharges QA�, �QA _�, f. Appendix A. The only supersymmetryharges among (A.3) whose weights violate the bounds (4.4) are Q+1 ; �Q+4 and they doso by exatly one unit. Therefore a state satisfying (4.5) should belong to a multipletwhose HWS has a onformal dimension that exeeds (4.5) by at most two units, i.e. � �2 + p + q1 + q2 + j + �|. This happens only for BPS or semishort multiplets. Indeed, thestate under onsideration ould either be the HWS of a BPS multiplet that satis�es (4.5)and is annihilated by Q+1 ; �Q+4 or the level two superdesendant,j	2i = Q+1 �Q+4 j	0i; (4.6)in a semishort multiplet whose HWS j	0i has �0 = 2 + p + q1 + q2 + j + �|.We will onveniently use states satisfying (4.5) as representatives of semishort andBPS multiplets. In terms of osillators, this bound amounts to restriting attention tostates for whihna2 = nb2 = n1 = nd2 = 0 : (4.7)For simpliity, in the following, we denote the surviving osillators (a1; b1; 2; d1) simplyby (a; b; ; d). From (4.3) it follows that a SYM state with Dynkin labels [j; �|℄[q1; p; q2℄�;Bsatisfying (4.5) arries� = L+ j + �| ; L = p + q1 + q2 B = 12(q2�q1) ; (4.8)18



and will be represented by the osillator monomial[j; �|℄[q1; p; q2℄�;B � a2j b2�| q1 dq2 yp+q1+q2 : (4.9)The letters a; b; ; d here have a two-fold meaning. On the one hand they keep trak of thequantum numbers q1; q2; j; �|, on the other hand they desribe how a given state is madeout of osillators a,b,,d. Finally, the auxiliary variable y keeps trak of p. Notie thatfor states satisfying (4.5), p is related to the number of letters L = p + q1 + q2 via (4.8),and therefore powers of y simultaneously ount the number of letters, previously ountedby u.On these states, the residual superonformal symmetry is su(1; 1j2) � psu(2; 2j4). Thesu(1; 1j2) raising operators among (2.18) areQ+2 = a ; �Q+2 = b ; Q+3 = ad ; �Q+3 = bd ; P = ab ; J = d ; (4.10)preserving the bound (4.5). Positive and negative powers in these expressions are assoi-ated to reation and annihilation operators respetively, e.g. a � ay12; bd � by1d1, and soon. It is then onvenient to onsider for BPS and semishort multiplets instead of the fullharater polynomials of psu(2; 2j4) and its bosoni subgroup so(4) � so(6), the restri-tion to states satisfying (4.5), giving rise to harater polynomials of su(1; 1j2) and itsbosoni subgroup sl(2)� su(2), respetively. We denote these as Vrst;�[j;�|℄[q1;p;q2℄ and �rst[j;�|℄[k;p;q℄,respetively. Disarding from now on sl(2) desendants, i.e. total derivatives generatedby P = ab, the harater polynomial exlusively generated by the su(2) raising operatorJ = d reads�rst[j;�|℄[q1;p;q2℄ = a2jb2�|q1dq2yp+q1+q2 1� (d)p+11� d : (4.11)As disussed above, the restrited harater polynomials Vrst;�[j;�|℄[q1;p;q2℄ is non-trivial only forBPS and semishort multiplets. For semishort multiplets one �ndsVrst;�[j�;�|�℄[q1;p;q2℄ = �rst[q1+1;p;q2+1℄(j+ 12 ;�|+ 12 ) Tshort = y2abd�rst[q1;p;q2℄(j;�|) Tshort ; (4.12)with Tshort = (1� ad)(1� b)(1� a )(1� bd) ; (4.13)generated by the four psu(1; 1j2) superharges (4.10). The fator y2abd takes are of thehighest weight states of the restrited semishort multiplets, f. (4.6), and maps psu(1; 1j2)primaries to semishort N = 4 superonformal primaries. The number of states inside19



the multiplet (4.12) is given by 24 times the restrited dimension of the highest weightstate, i.e. 24 (p+ 1). The nie fatorized form (4.12) of the restrited semishort multipletis to be ontrasted with the more involved multipliity formulae for semishort multipletsin psu(2; 2j4). We will make use of this restrition as a powerful simplifying tool in ouranalysis. The simplest generi multiplet of type (4.12) is the restrition of the shortKonishi multipletVrst;2[0;0℄[0;0;0℄ = y2abd Tshort ; (4.14)with total dimension 24. Notie that the state y2abd, orresponding to the weight[101℄[12; 12 ℄, is the highest omponent of the Konishi urrent with �0 = 3 in the 15 = [1; 0; 1℄of SU(4) that is a singlet (p = 0) of su(2) � psu(1; 1j2).The fatorized formula (4.12) also holds for the 14 -BPS multiplets whih are ountedaording to (A.8) below. In ontrast, the restrited harater polynomial orrespondingto the 12 -BPS multiplet Vrst;n[0y;0y℄[0n0℄ is generated by J and the supersymmetry hargesQ+3 ; �Q+2 .12 With (4.10) one �nds:Vrst;n[0y;0y℄[0;n;0℄ = �rst[0;0℄[0;n;0℄� �rst[ 12 ;0℄[0;n;1℄ � �rst[0; 12 ℄[1;n;0℄+ �rst[ 12 ; 12 ℄[1;n;1℄= yn (1 � ad)(1 � b)� (d)n(a� )(b� d)(1 � d) : (4.15)4.2 The semishort primary sieveHere we derive multipliity formulae for semishort-semishort psu(2; 2j4) multiplets inN =4 SYM theory. Aording to (4.7) the spetrum of single-letter SYM words saturating thebound (4.5) onsists of all possible exitations satisfying (4.7). The multipliities of thesestates an be derived via Polya theory. The basi ingredient is the one-letter partitionfuntion:Zrst1 = y 1 + d � ad� b1� ab ; (4.16)obtained from (3.1) upon restrition. The four terms in the numerators orresponds tothe elementary SYM �elds saturating the bound (two salars and two fermioni ompo-nents) while the expansion of the denominator generates their derivatives. The restritedpartition funtion is given by Polya's formula (3.3):Zrstn = yn(1 � ab) Xdjn '(d)n �1 + (d)d � (ad)d � (b)d1� (ab)d �n=d ; (4.17)12The full 12-BPS multiplet is generated by Q�3;4; �Q�1;2 supersymmetries and su(4) � so(4) harges,f. Appendix A. 20



The fator (1 � ab) removes total derivatives, in muh the same way as in (3.4). Therestrited polynomial (4.17) ontains only ontributions oming from 12-BPS and semishortmultiplets. This an be heked by notiing that one the BPS series Pn Vrst;n[0y;0y℄[0;n;0℄ issubtrated, the spetrum organizes into multiplets of the type (4.12). Spei�ally, thedi�erene (Zrstn � Vrst;n[0y;0y℄[0;n;0℄) vanishes at the four zeros of (4.13)(Zrstn � Vrst;n[0y;0y℄[0;n;0℄)���a=; 1d = (Zrstn � Vrst;n[0y;0y℄[0;n;0℄)���b=d; 1 = 0 ; (4.18)as follows from the remarkable identityPnjd '(d) = n. Semishort primaries an then beisolated by fatoring out Tshort. More preisely,Zshortn;suprim � (y2 abd Tshort)�1 �Zrstn � Vrst[0y;0y℄[0;n;0℄�HW + yn�2a2b2 ; (4.19)is a regular rational funtion desribing the harater polynomial of superprimaries sittingin semishort and BPS multiplets in the n-letter spetrum of SYM states. (y2 abd Tshort)�1disposes of supersymmetry desendants aording to (4.12)13. The subsript HW de-notes the redution to su(2) highest weight states given by dividing out the su(2) multi-plets (4.11). This an be done by ounting states aording to the ruleyp+q1+q2q1dq2 ! � yp+q1+q2q1dq2 p � 0�yp+q1+q2q1+p+1dq2+p+1 p < 0 ; (4.20)isolating su(2) HWS's. Alternatively the same result is found by multiplying Zrstn;suprim by(1 � d) and then deleting all bosons (fermions) oming with negative (positive) mul-tipliities. The term yn�2=a2b2 in (4.19) aounts for 12 -BPS primaries with weights[�1;�1℄[0; n� 2; 0℄ = [00℄[0n0℄ aording to (A.9). Notie that here powers of y areno longer related to the number of letters (powers of `) sine semishort primaries do notbelong to the psu(1; 1j2) setor.13In partiular the fator y2 abd map su(1; 1j2) HWS to superonformal primaries via (4.6).
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For the lowest values of L, the above proedure yieldsZshort;suprim = 1a2b2(1 � a2b2) ; (4.21)Zshort;suprim = y ( 1a2b2 � a � db )(1� a2b2) (1� a3b3) ;Zshort;suprim = y a3b3 ( 1a2b2 � a � db )(1� a2b2) (1� a3b3) ;Zshort;suprim = y2 (1 + d (a3b3 + a5b5 + a8b8) + 2a7b9 + d2a9b7)a2b2 (1� a2b2) (1� a3b3) (1 � a4b4)� y2 (b+ da)(a2b2 + a3b3 + a4b4 � a6b6)(1� a2b2) (1 � a3b3) (1 � a4b4) ;Zshort;suprim = y2 (1 + d ( 1ab + a2b2 + a3b3) + 2ab3 + d2a3b� (b+ da) (1 + ab))(1 � a2b2)2(1� a3b3) ;Zshort;suprim = y2(ab+ d (1 + ab+ a2b2) + 2b2 + d2a2 � (b+ da) ( 1ab + a2b2))(1� ab)(1� a2b2)(1 � a4b4) :Continuing to higher L, the omplete list of semishort multiplets appearing in the N = 4SYM spetrum is obtained. The su(2)2 � su(4) harges an be read o� from (4.9) i.e.[na2 ; nb2 ℄[n; ny � n � nd; nd℄, while� = 2 + ny + 12(na + nb); B = 12(nd � n) ; (4.22)and L is spei�ed by the subsript of Z's. The results for L = 2; 3 preisely math (3.8)with the oeÆients n given by the expansion1Xn=0 n xn = 1(1�x2)(1�x3) : (4.23)Notie that representatives for a given YT-pleton an be always hosen inside the hs(1; 1)subgroup. This orresponds to setting  = d = 0 in (4.21).Similar tehniques an be applied to the study of any losed subsetor in the SYMspetrum. For example SU(4) singlets in the AC series are desribed by states saturatingone of the bounds (4.4) and q1 = p = q2 = 0. The various onditions for the �rst boundombine to given1 = n2 = na2 = 0 nd1 = nd2 = L : (4.24)22



This leads to the su(2; 1) invariant subsetor with letters ay12+n by1m by2n�mdy1dy2jZi, whihare essentially derivatives of the self-dual �eld strength Dm11Dn�m12 F11. Anomalous dimen-sions for three-letter states of this type will be omputed in the next setion using theorresponding su(1; 2) spin hain.Semishort multiplets group into long multipletsWe an now expliitly show that the semi-short multiplets appearing in the free N = 4SYM spetrum above organize into long multiplets. This is expeted sine after swithingon interations the shortening onditions (A.5) are generially no longer satis�ed. Speif-ially, a semishort multiplet appearing in the deomposition of an L-pleton joins twomultiplets from the (L+1)-pleton and a fourth one from the (L+2)-pleton to build a longmultiplet aording to (A.7). The semishort multiplets appearing in this deompositionare related to eah other by the ation of Q1� and �Q4� in (A.3).Our statement then is equivalent to laiming that the total partition funtion of thesemi-short SYM spetrumZrst = 1Xn=2 Zrstn ; (4.25)after subtration of the 12 -BPS multiplets ontains the fators (1� y a) and (1� y db ). Toprove this, we write the total partition funtion asZrst = �(1 � ab) 1Xk=1 '(k)k lnn1� yk�1 + (d)k � (ad)k � (b)k1� (ab)k �o�y (1 + d � ad� b) ; (4.26)while for the total partition funtion of 12 -BPS multiplets we obtainZrst12�BPS = 1Xn=2 Vrst;n[0y;0y℄[0;n;0℄ = y2(1 � ad)(1� b)(1 � y)(1� d) � (dy)2 (a� )(b� d)(1 � d)(1 � yd) : (4.27)Using 1Xk=1 '(k)k ln(1� xk) = � x1� x ; (4.28)one �nds indeed that�Zrstjy!a �Zrst12�BPS����y!a = 0 ; (4.29)23



and likewise for y ! bd . Hene, the semishort multiplets in the free SYM spetrum organizein long multiplets whose highest weight states are olleted in the regular funtionZ longsuprim � 1y2 abd T�1long �Zrst �Zrst12BPS�HW + 1a2b2 11 � y ; (4.30)with Tlong = (1 � y a)(1� ydb )(1� ad)(1� b)(1� a )(1� bd) ; (4.31)de�ning the restrition of the long Konishi multiplet.5 Symmetry breaking and anomalous dimensionsIn the interating theory only one out of the in�nite tower of onserved urrent doubletonmultipletsZ = 1Xn=0 V2n; Vj := Vj;0[�1+ 12 j�;�1+ 12 j�℄[0;0;0℄: (5.1)is proteted against quantum orretions to the saling dimension: the N = 4 super-urrent multiplet V0 = V2;0[0y;0y℄[0y;2;0y℄. The remaining multiplets V2n aquire anomalousdimensions whih violate the onservation of their HS urrents at the quantum level. Atone-loop, one has [49,21℄1�loop(2n) = g2YMN2�2 h(2n); h(j) = jXk=1 1k ; (5.2)This elegant ('number theoreti') formula gives a lue on how to ompute generi anoma-lous dimensions at �rst order in perturbation theory relying on symmetry breaking on-siderations. Naively, one would look for all ourrenes of the broken urrents V2n withinsome operator O. Eah ourrene of some broken urrent should ontribute to theanomalous dimension of O a term proportional to h(2n). Indeed, this is nearly whathappens, the one-loop dilatation operator [36℄ an be written asH = LXs=1 H(s;s+1) = LXs=1 1Xj=0 2h(j)P j(s;s+1); (5.3)where P j(s;s+1) projets the produt of �elds (`letters') at nearest neighboring sites s ands + 1 onto Vj. Here, the sum goes over all values of j and not just the even ones. Thepoint is that although bilinear urrents V2n+1 orresponding to the broken generators areeliminated after traing over olor indies, they still appear in subdiagrams inside abigger trae. The orresponding deomposition for doubletons is given in (3.8).24



5.1 `Twist' three anomalous dimensionsExpressions (4.21) give not only multipliities and harges of semishort primaries but alsoa representative of eah multiplet in terms of the osillators (a1; b1; 2; d1). For instanestates in the sl(2) setor inside psu(1; 1j2), assoiated to words made out of powers of a1b1(i.e. a single salar and all its derivatives) an be taken as representatives for semishortmultiplets V0;n. The letters in this setor are:jki0 = (ay1by1)kjZi $ Dk1Z ; (5.4)with Di = D�=i; _�=i. Similarly derivatives of (aydy)3 appearing in Q+1 �Q+4 TshortZrst3;suprim anbe hosen as representatives of V1;n (similarly for the onjugate multiplets V�1;n). Indeedthere is a single state of this type inside eah fermioni semishort multiplet in Zrst3 . Theletters are now:jki1 = (ay1by1)k(ay1dy1)jZi $ Dk1� : (5.5)with � = ��=1; _r=1 one of the gaugini. The sl(2) generators in both ases an be writtenas J� = a1b1 ; J+ = ay1by1 ; J3 = 12a1ay1 � 12by1b1 ; (5.6)while the spin is given by J3jkim = (12 + m2 )jkim. Therefore for Vm;n, m = 0; 1, we usethe sl(2) spin hain with spin 12 + 12m. We use a uni�ed notation for a single spin state ofeither hainsjkim = (ay1)k+m(by1)k(dy1)mjZi $ mDk1� + (1�m)Dk1Z : (5.7)The Hamiltonian of the relevant (super) spin hains in the two subsetors an be omputedusing the harmoni ation in [36℄. The resulting Hamiltonian `density' isH(12)jk; n� kim = nXk0=0 (m)n;k;k0 jk0; n� k0im ; (5.8)with oeÆients(m)n;k;k0 =8>>>><>>>>:h(k +m) + h(n � k +m) for k = k0k!(n� k +m)!k0!(n� k0 +m)!(k � k0) for k > k0;(n� k)!(k +m)!(n� k0)!(k0 +m)!(k0 � k) for k < k0: (5.9)For m = 0 this is equivalent to the sl(2) subsetor of letters DnZ up to a resaling by n!25



nnm 0 1 2 3 4 5 63 1516 54 4732 13180 7140 1059560 446122405 3532 13396 761480 487280 125336720 3974920160 1387367206 227160 761480 967560 20691120 3934920160 27471344 392918487 581480 179120 37632240 1838310080 3913320160 75433696 94373443528 50873360 1403840 1818710080 3867720160 4971124640 25931232 629227288288Table 2: First few paired anomalous dimensions for Vm;n with L = 3For multiplets Vm;n with m � 2 we use the su(1; 2) spin hain orresponding to thelosed subsetor with residual symmetry algebra su(1; 2). The spin states are now spei�edby two onserved harges orresponding to the rank two algebra su(1; 2)jk; li = (ay1)2+k+l(by1)k(by2)ldy1dy2jZi $ Dk1Dl2F ; (5.10)with F = F�=1;�=1. The planar, one-loop dilatation generator H ats on two adjaentspin sites asH(12)jk; l;m� k; n� li = mXr=0 nXs=0 m;nk;l;r;sjr; s;m� r; n� si ; (5.11)withm;nk;l;r;s =8>>>>>>>>>><>>>>>>>>>>:h(2 + k + l) + h(2 + n+m� k � l); for k = r; l = s;�k!l!(2 + n+m� k � l)!(k + l� r � s� 1)!r!s!(2 + n+m� r � s)!(k � r)!(l� s)! ; for k � r; l � s;�(m� k)!(n� l)!(2 + k + l)!(r + s� k � l � 1)!(m� r)!(n� s)!(2 + r + s)!(r � k)!(s� l)! ; for k � r; l � s;0; for k > r; l < s;0; for k < r; l > s: (5.12)The oeÆients again follow from the harmoni ation.We now ompute the spetrum of one-loop planar anomalous dimensions expliitlyusing (5.8){(5.12).14 By inspeting the spetrum of lowest-lying states and their energieswe �nd that almost all of them form pairs with degenerate energies. We list the pairsin Tab. 2.15 For the unpaired states one an observe a pattern in the table of energies,Tab. 3. We �nd that all energies agree with the formulaÆD = g2YMN8�2 �2h(12m� 12) + 2h(m+ 12n) + 2h(12m+ 12n) � 2h(�12)� : (5.13)14The Hamiltonian is related to the dilatation operator by ÆD = (g2YMN=8�2)H + O(g3YM).15The energies are all rational numbers beause there is always just a single pair up to n � 8. Startingfrom n = 9 there is more than one pair and the energies beome irrational.26



nnm 0 1 2 3 4 5 60 0 34 98 118 2516 13780 147802 12 2524 43 12380 407240 30671680 2711404 34 4940 7148 929560 95 96615040 225911206 1112 761560 191120 88515040 6635 221047110880 21031100808 2524 73815040 10160 10186155440 65813360 329899160160 216431008010 137120 8602155440 493280 27488711441440 2038310080 20354596096 12202955440Table 3: First few unpaired anomalous dimensions for Vm;n with L = 3. Parity is given by(�1)m+1.In partiular, for m = 1 the energies areÆD = g2YMN8�2 �+2h(1 + 12n) + 2h(12 + 12n)� 2h(�12)� = g2YMN2�2 h(n+ 2) ; (5.14)whih agrees preisely with the energy of the short twist 2 multiplet V2n+2, (5.1). Su-peronformal invariane requires this degeneray so that the short multiplets an jointo form a long multiplet. The ases m = 0 and n = 0 also seem interesting, we �ndÆD = (g2YMN=8�2)4h(12n) and ÆD = (g2YMN=8�2)6h(m).Let us note a peuliarity of the three parton states disussed above. Intriguingly, forVm;n we an reprodue all su(2; 1) spin hain results also with a sl(2) spin hain with spin�m=2� 1=2 and n exitations given by (5.8),(5.9).6 ConlusionsIn the present paper, we have studied the deomposition of the spetrum of single-traegauge invariant operators of free N = 4 SYM theory with SU(N) gauge group in irrepsof hs(2; 2j4), the HS extension of the superonformal algebra psu(2; 2j4). To this endwe have shown that HS L-pleton multiplets an be assoiated to Young tableaux madeof L boxes, eah representing a singleton of psu(2; 2j4)=hs(2; 2j4), ompatible with theyliity of the trae over olor indies. For other gauge groups, further restritions areto be imposed. For L = 2 only the symmetri produt gives rise to physial operatorsindependently of the hoie of the (simple) gauge group [17℄. The antisymmetri dou-bleton is ruled out by the yliity of the trae but still its deomposition is relevant todiagrammati omputations of omposite operators where suh ombinations appear inintermediate hannels. We have then foussed on tripletons assoiated to Young tableauxwith L = 3 boxes. The only tableaux ompatible with the yliity of the trae are thetotally symmetri (dab) and antisymmetri (fab) tripletons. The former inludes the KK27



reurrenes of the doubleton and the latter part of the Goldstone �elds. The remainingGoldstone �elds belong (in the free theory) to the L = 4-letter `window' .For higher L-pletons we have identi�ed all operators belonging to BPS or semishort-semishort multiplets of psu(2; 2j4) in the free theory. In partiular, we have derived thepartition funtion for N = 4 superonformal primaries saturating both left and rightunitarity bounds. After interations are turned on, they are shown to ombine suh as togive rise to long multiplets of the superonformal group as expeted from the boundarydesription of the `Grande Bou�e' in the AdS bulk.Finally, we have omputed anomalous dimensions of operators that appear in thedeomposition of tripletons in terms of psu(2; 2j4) multiples. Remarkably the resultinganomalous dimensions for the full tripleton tower follow from integrable spin hains withsymmetry group sl(2)j and arbitrarily high spin j. The regularity of the pattern suggeststhe presene of some not-so `hidden' symmetry. Indeed there are by now various inde-pendent indiations that some aspets of the dynamis of large N N = 4 SYM theoryand its holographi dual type IIB superstring on AdS5 � S5 expose an integrable stru-ture. In the latter, the superoset struture of the target superspae and the (generalized)atness of the superoset urrents allow one to identify an in�nite number of onservedharges that form a Yangian [50℄. In the former, the dilatation operator an be identi�edwith the Hamiltonian of an integrable super-spin hain to lowest orders. Some of thein�nite harges have been identi�ed and given expliit perturbative expressions. Thesetwo routes to integrability have been onneted in [51℄. In the emergene of the inte-grable struture HS symmetry enhanement has so far played only a marginal role. YetHS dynamis in lower dimensions is typially formulated in terms of a Cartan integrablesystem [9,41,17,18,7℄. It is then tempting to speulate that at least at one loop and largeN , HS symmetry ould explain the pattern of mass-shifts and anomalous dimensions andgive some additional insight into the geometri origin of integrability.AknowledgementsThis work was supported in part by I.N.F.N., by the EC programs HPRN-CT-2000-00122,HPRN-CT-2000-00131 and HPRN-CT-2000-00148, by the INTAS ontrat 99-1-590, bythe MURST-COFIN ontrat 2001-025492 and by the NATO ontrat PST.CLG.978785.N.B. dankt der Studienstiftung des deutshen Volkes f�ur die Unterst�utzung durh einPromotionsf�orderungsstipendium. 28



A N = 4 shortening, yet again.Here we ollet some notation for representations of the N = 4 superonformal algebrapsu(2; 2j4) and their shortenings. We denote byV�;B[j;�|℄[q1;p;q2℄ ; (A.1)a generi long multiplet of psu(2; 2j4) with highest weight state in the R[j;�|℄[q1;p;q2℄ repre-sentation of su(2)� su(2)� su(4), onformal dimension � and hyperharge B. As above,[q1; p; q2℄ are Dynkin labels of su(4) while [j; �|℄ denote the spins under su(2)� su(2).The representation ontent of the long multiplet (A.1) under the bosoni subalgebrasu(2)�su(2)�su(4) may be found from evaluating the tensor produt V2;0;0[0;0℄[0;0;0℄���2;B;P[j;�|℄[q1;p;q2℄,with the long Konishi multiplet V2;0;0[0;0℄[0;0;0℄, or expliitly by using the Raah-Speiser algo-rithm asV�;B[j;�|℄[q1;p;q2℄ = X�A�;��A_�2f0;1g�[j;�|℄[q1;p;q2℄+�A�QA�+��A_� �QA _� ; (A.2)with the sum running over the 216 ombinations of the 16 supersymmetry harges QA�,�QA _�, A = 1; : : : ; 4; �; _� = 1; 2 withDynkin labels16Q1� = ay� 1 � a�1 = [�12; 0℄[1; 0; 0℄ ; �Q1 _� = by_� y1 � b _� 1 = [0;�12℄[�1; 0; 0℄Q2� = ay� 2 � a�2 = [�12; 0℄[�1; 1; 0℄ ; �Q2 _� = by_� y2 � b _� 2 = [0;�12℄[1;�1; 0℄ ;Q3� = ay� dy1 � a� d1 = [�12; 0℄[0;�1; 1℄ ; �Q3 _� = by_� d1 � b _�d1 = [0;�12℄[0; 1;�1℄ ;Q4� = ay� dy2 � a� d2 = [�12; 0℄[0; 0;�1℄ ; �Q4 _� = by_� d2 � b _�d2 = [0;�12℄[0; 0; 1℄ :(A.3)Every QA�, �QA _� raises the onformal dimension by 12 , parity is left invariant, and thehyperharge B is lowered and raised by 12 by eah QA� and �QA _� respetively. In order tomake sense out of (A.2) also for small values of q1; p; q2; j; �|, we note that the haraterpolynomials assoiated with negative Dynkin labels are de�ned aording to�[j;�|℄[q1;p;q2℄ = ��[j;�|℄[�q1�2;p+q1+1;q2℄ = � �[j;�|℄[q1;p+q2+1;�q2�2℄= ��[j;�|℄[q1+p+1;�p�2;q2+p+1℄= ��[�j�1;�|℄[q1;p;q2℄ = � �[j;��|�1℄[q1;p;q2℄ : (A.4)16Notie the ip of notations for the onjugate harges with respet to [12℄ and the unonventional useof osillators in the denominator to mean annihilation operators.29



In partiular, this implies that �[j;�|℄[q1;p;q2℄ is identially zero whenever any of the weightsq1, p, q2 takes the value �1 or one of the spins j, �| equals �12 .In N = 4 SYM, there are two types of (hiral) shortening onditions for partiularvalues of the onformal dimension �: BPS (B) whih may our when at least one ofthe spins is zero, and semi-short (C) ones. The orresponding multiplets are onstrutedsimilar to the long ones (A.2), with the sum running only over a restrited number ofsupersymmetries. Spei�ally, the ritial values of the onformal dimensions and therestritions on the sums in (A.2) are given byBL: V�;B[0y;�|℄[q1;p;q2℄ � = p + 32q1 + 12q2 �1� = 0BR: V�;B[j;0y℄[q1;p;q2℄ � = p + 12q1 + 32q2 ��4� = 0CL: V�;B[j�;�|℄[q1;p;q2℄ � = 2 + 2j + p + 32q1 + 12q2 �1� = 0CR: V�;B[j;�|�℄[q1;p;q2℄ � = 2 + 2�|+ p + 12q1 + 32q2 ��4� = 0 (A.5)for the di�erent types of multiplets. They represent the basi 18-BPS and 116 semishorten-ings in N = 4 SCA and are indiated as in with a \y" and a \�" respetively.If the onformal dimension � of the HWS of a long multiplet (A.1) satis�es one of theonditions (A.5), the multiplet splits aording toL : V�;B[j;�|℄[q1;p;q2℄ = V�;B[j�;�|℄[q1;p;q2℄ + V�+ 12 ;B� 12[j� 12 �;�|℄[q1+1;p;q2℄ ;R : V�;B[j;�|℄[q1;p;q2℄ = V�;B[j;�|�℄[q1;p;q2℄ + V�+ 12 ;B+ 12[j;�|� 12 �℄[q1;p;q2+1℄ ; (A.6)where by `�' we denote the 1=16 semishortening. Consequently, we denote by V�;B[j�;�|�℄[q1;p;q2℄the 1=8 semi-short multiplets appearing in the deompositionV�;B[j;�|℄[q1;p;q2℄ = V�;B[j�;�|�℄[q1;p;q2℄ + V�+ 12 ;B� 12[j� 12 �;�|�℄[q1+1;p;q2℄ + V�+ 12 ;B+ 12[j�;�|� 12 �℄[q1;p;q2+1℄+ V�+1;B[j� 12 �;�|� 12 �℄[q1+1;p;q2+1℄ ; (A.7)if left and right shortening onditions in (A.5) are simultaneously satis�ed. The semishortmultiplets appearing in this deomposition are onstruted expliitly aording to (A.2),(A.5).Formulae (A.6) inlude the speial ases V�;B[j�;�|℄[0;p;q2℄, V�;B[j�;�|℄[0;0;q2℄, and V�;B[j�;�|℄[0;0;0℄, or-responding to (hiral) 1=8, 3=16, and 1=4 semi-shortening, respetively; likewise forV�;B[j;�|�℄[q1;p;0℄, V�;B[j;�|�℄[q1;0;0℄, and V�;B[j;�|�℄[0;0;0℄. For j = 0 and �| = 0, respetively, the deom-positions (A.6) yield negative spin labels. They are to be interpreted as BPS multiplets,30



denoted by `y', as followsV�;B[� 12 �;�|℄[q1;p;q2℄ � V�+ 12 ;B+ 12[0y;�|℄[q1+1;p;q2℄ ; V�;B[j;� 12 �℄[q1;p;q2℄ � V�+ 12 ;B� 12[j;0y℄[q1;p;q2+1℄ ; (A.8)where one veri�es that the BPS highest weight states satisfy the BPS shortening onditionsof (A.5). In addition, there is the series Vp;0[0y;0y℄[0y;p;0y℄ of 12-BPS multiplets.For onveniene (but not quite aurately) we an also de�neVp;0[�1�;�1�℄[0;p;0℄ := Vp+2;0[0y;0y℄[0y;p+2;0y℄: (A.9)B Osillator desriptionHere we ollet some useful formulae, onerning the osillator desription of psu(2; 2j4)representations.B.1 su(2)� su(2j4) invariant vauumThe unphysial su(2)� su(2j4) invariant vauum jUi is de�ned as the ground state of theset of bosoni a(s)� ; b(s)_� and fermioni osillators �(s)A :a�;ijUi = b(s)_� jUi = �(s)A jUi = 0 ; (B.1)with the vetor index s = 1; : : : ; L running over the sites in the SYM state and �; _� = 1; 2A = 1; 2; 3; 4. Osillators satisfy the usual reation-annihilation ommutation relations:[a(s)� ; a�(s0)℄ = Æss0Æ�� [b(s)_� ; b _�(s)℄ = Æss0Æ _�_� ;f�(s)A ; �B(s0)g = Æss0ÆBA : (B.2)A SYM state with psu(2; 2j4) harges [q1; p; q2℄[j; �|℄�;B;L an be onstruted by atingon jUi with�na1na2� = �12�+ 12B � 12L+ j12�+ 12B � 12L� j� ; �nb1nb2� = �12�� 12B � 12L+ �|12�� 12B � 12L� �|� ;0BBB�n�1n�2n�3n�41CCCA = 0BBB�12L� 12B � 12p� 34q1 � 14q212L� 12B � 12p + 14q1 � 14q212L� 12B + 12p+ 14q1 � 14q212L � 12B + 12p + 14q1 + 34q21CCCA : (B.3)31



The psu(2; 2j4) harges an instead be read from the inverse relations:� = L+ 12na + 12nb ; B = L� 12n� = 12na � 12nb ;[q1; p; q2℄ = [n�2 � n�1 ; n�3 � n�2 ; n�4 � n�3 ℄ ;[j; �|℄ = �12(na1 � na2); 12(nb1 � nb2)� : (B.4)Physial states are de�ned by the vanishing entral harge onditions:n(s)a � n(s)b + n(s)� = 2 : (B.5)at every site s = 1; : : : ; L.B.2 Physial vauumThe physial vauum jZi is de�ned as the ground state of the set of L speies of bosonia(s)� ; b(s)_� and fermioni osillators (s)r = �(s)r and d(s)_p = ��(s)_p :a(s)� jZi = b(s)_� jZi = (s)p jZi = d(s)_p jZi = 0 ; (B.6)with the vetor index s = 1; : : : ; L running over the sites in the SYM state and �; _�; p; _p =1; 2. Osillators satisfy the usual reation-annihilation ommutation relations:[a(s)� ; a�(s0)℄ = Æss0Æ�� ; [b(s)_� ; b _�(s0)℄ = Æss0Æ _�_� ;f(s)p ; r(s)g = Æss0Ærp ; fd(s)_p ; d _r(s)g = Æss0Æ _r_p : (B.7)A SYM state with psu(2; 2j4) harges [q1; p; q2℄[j; �|℄�;B;L an be onstruted by ating onjZZ : : : Zi with�na1na2� = �12�+ 12B � 12L+ j12�+ 12B � 12L� j� ; �nb1nb2� = �12�� 12B � 12L + �|12�� 12B � 12L� �|� ; (B.8)�n1n2� = �12L� 12B � 12p� 34q1 � 14q212L� 12B � 12p + 14q1 � 14q2� ; �nd1nd2� = �12L+ 12B � 12p� 14q1 + 14q212L + 12B � 12p � 14q1 � 34q2� :psu(2; 2j4) harges an instead be read from the inverse relations:� = L+ 12na + 12nb ; B = 12na � 12nb ;[q1; p; q2℄ = [n2 � n1 ; L� n2 � nd1 ; nd1 � nd2 ℄ ;[j; �|℄ = �12(na1 � na2); 12(nb1 � nb2)� : (B.9)Physial states are de�ned by the vanishing entral harge onditions:C(s) = n(s)a � n(s)b + n(s) � n(s)d = 0 (B.10)at every site s = 1; : : : ; L. 32



C HS multiplets deompositionFor onveniene of the reader we display here the translations of formulae (3.8).Z = 1Xn=0 V2n;0[�1+n�;�1+n�℄[0;0;0℄ ;Z = 1Xn=0 V2n+1;0[� 12+n�;� 12+n�℄[0;0;0℄ ;Z = 1Xn=0 n hV1+n;0[�1+ 12n�;�1+ 12n�℄[0;1;0℄+ �V 112 +n; 12[ 32+ 12n�;1+ 12n�℄[0;0;1℄+ h..�i+ 1Xm=0 1Xn=0 n hV4+4m+n;1[1+2m+ 12n� ; 12n℄[0;0;0℄+ V9+4m+n;1[ 72+2m+ 12n�; 32+ 12n℄[0;0;0℄+ h..i ;Z = 1Xn=0 dn hV2+n;0[ 12n� 12 �; 12n� 12 �℄[0;1;0℄ + �V 72+n; 12[ 12+ 12n�; 12n�℄[0;0;1℄+ h.�i+ 1Xm=0 1Xn=0 dn hV5+4m+n;1[ 32+2m+ 12n� ; 12+ 12n℄[0;0;0℄ + V7+4m+n;1[ 52+2m+ 12n�; 12+ 12n℄[0;0;0℄ + h..i ;Z = 1Xn=0 n hV4+n;0[ 12+ 12n�; 12+ 12n�℄[0;1;0℄+ �V 52+n; 12[ 12n�;� 12+ 12n�℄[0;0;1℄+ h.�i+ 1Xm=0 1Xn=0 n hV6+4m+n;1[2+2m+ 12n� ; 12n℄[0;0;0℄+ V7+4m+n;1[ 52+2m+ 12n�; 32+ 12n℄[0;0;0℄+ h..i : (C.1)In table 4 we rewrite the ontent of hs(2; 2j4) urrents in the symmetri doubleton.su(4) su(2)� su(2)1 P2r=�2[`� r2 ; `� r2 ℄ + [`� 1; ` � 1℄ + [`� 1; `+ 1℄4 [`� 12 ; `� 1℄ + [`� 12; `℄ + [`� 1; ` + 12 ℄ + [`+ 1; ` + 12 ℄6 [`� 1; `℄ + [`+ 12 ; `� 12 ℄ + [`; ` + 1℄10 [`+ 12; ` � 12℄15 [`� 12 ; `� 12℄ + [`; `+ 1℄ + [`; `℄20 [`� 12 ; `℄200 [`; `℄Table 4: Content of V2`;0[000℄[`�1�;`�1�℄ for ` � 2.33
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