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h eviden
e has been provided re
ently in support of the 
onje
ture that 
harges ofD{branes in string theory are measured by K{theory [1, 2℄. Exa
tly solvable 
onformal�eld theory (CFT) ba
kgrounds su
h as Wess{Zumino{Witten (WZW) models and
osets thereof have proven to be parti
ularly fruitful grounds for testing this 
laim.1



The CFT des
ription of D{branes is relatively well under 
ontrol and the 
hargesfor N = 1 supersymmetri
 WZW models on simply-
onne
ted Lie groups have been
omputed in [3, 4, 5℄ and for N = 2 
oset models in [6, 7℄. Due to the non-trivialNSNS 3-form 
ux in these ba
kgrounds, the main a
tors on the other side of the
onje
ture are twisted K{theories. For simply-
onne
ted group manifolds these havebeen obtained in [3, 8, 9℄ and for N = 2 
oset models in [10, 11℄, and shown to be inperfe
t agreement with the CFT predi
tion of the 
harge groups | as far as these area

essible. One of the most useful tools in determining the twisted K{groups, whi
hwill also feature prominently in the present paper, is the seminal work by Freed,Hopkins and Teleman (FHT) [12, 13, 14, 15℄ relating twisted equivariant K{theoryto the representation theory of loop groups (see also [16, 17℄). This allows to redu
emany of the K{theoreti
al 
omputations to algebrai
 problems.The presen
e of at least N = 1 supersymmetry is vital for the 
omparison withK{theory. The importan
e of fermions should not be surprising as K{theory has deepties with spinors and the Dira
 operator, and in string theory it is general lore thatthere are no 
onserved D{brane 
harges in the bosoni
 string. The most transparentjusti�
ation1 of this point is as follows: from a boundary �eld theory point of view the
harges are determined by boundary 
onditions modulo RG-
ows. Thus, in order toobtain non-trivial 
harges or equivalently non-trivial path 
omponents of the boundarytheory, it is ne
essary to proje
t out the unit operator [18℄.Based on the 
harge relations derived by Fredenhagen and S
homerus [3℄, re
ently,Gaberdiel and Gannon [19℄ determined the 
harges of D{branes in WZW modelson non-simply 
onne
ted group manifolds. The purpose of the present paper is to
ompute the 
orresponding K{theories for the simplest su
h group, SO3 def= SO(3).There is one key subtlety in the 
ase of non-simply 
onne
ted groups, that makesthe 
omputations slightly more 
umbersome (and thus more interesting) 
ompared tothe simply-
onne
ted 
ase. K{theoreti
ally this 
an be phrased as follows: in additionto the standard twisting in H3(G;Z) there is an additional possibility to twist withan element in H1(G;Z2). In the 
ase of interest to us, H1(SO3;Z2) = Z2, whi
h
an be interpreted as an additional grading of the twisted K{theories. This additional
hoi
e has a pre
ise 
ounterpart in the world-sheet des
ription, where it 
orresponds todi�erent spin-stru
tures for the fermions. In fa
t, this interpretation is most apparentusing the identi�
ation proven by Atiyah and Hopkins [20℄ of H1(X;Z2){twisted K{theory with the Hopkins K{theory K�(X), whi
h made its �rst appearan
es in the
ontext of D{brane 
harges in (�1)F orbifolds, where F is the (left-moving) spa
e-timefermion number, see e.g. [2, 21℄.In summary, we obtain the following pi
ture: let G be a non-simply 
onne
tedgroup, with universal 
over eG su
h that G = eG=Z2. Then one has in general twoN = 1 supersymmetri
 WZW models for G, 
orresponding to the 
hoi
es of twistings1We thank G. Moore for pointing this out. 2



in H1(G;Z2) = Z2. Equivalently, these 
hoi
es distinguish two modular invariants
orresponding to the WZW model on G, in the pre
ise sense that they are obtainedas simple 
urrent extensions from the supersymmetri
WZW model on eG, whi
h di�erby the a
tion of a Z2 simple 
urrent on the free fermion theory. In 
ase the latter istrivial the resulting model is simply the tensor produ
t of the bosoni
 WZW modelon G as of [22, 23, 24℄ with free fermions. This is the kind of model that is relevant forthe dis
ussion in [19℄. On the other hand if the a
tion on the fermions is non-trivial,the resulting modular invariant does not fa
tor into bosoni
 and fermioni
 parts, andhas not been dis
ussed in the literature. We shall refer to these models as (�){twistedand (+){twisted supersymmetri
 WZW models on G, respe
tively. Clearly, it wouldbe interesting to systemati
ally explore these models further. This 
onstru
tion hasalso interesting appli
ations in �nding new symmetry-breaking boundary 
onditions,whi
h we shall 
omment upon in our 
on
luding remarks.The outline of this paper is as follows. Se
tion 2 gives an overview of the 
onformal�eld-theoreti
al aspe
ts of the supersymmetri
 WZW models on SO3, in parti
ulargiving a detailed exposition of the two di�erent 
hoi
es of spin stru
tures, and the
harge groups in either model. The K{theory 
omputation 
omprises the main bodyof the paper, starting with a purely topologi
al 
omputation in se
tion 3. This is thenre�ned using FHT-like methods in 
hapter 4, where we provide a 
omplete derivationof the twisted K{theories for both types of twists in H1(SO3;Z2). We 
on
lude inse
tion 5 and dis
uss various dire
tions in whi
h the present work 
an be extended.2 Supersymmetri
 WZW models on SO32.1 The level manifestoLet us begin by addressing the te
hni
al and subtle, but very 
ru
ial issue of the levelor equivalently, the twisting or equivalently, the NSNS 
ux. Although we are reallyonly interested in the SO3 supersymmetri
 WZW model we are about to en
ountervarious auxiliary WZW models. In addition, in view of the K{theory 
omputation, wewish to use a meaningful notation for the levels, where pre
isely the positive integersare allowed. We will denote them as follows:k The level of the bosoni
 WZW model on SO3, i.e. k = 0 is the model withonly one primary �eld, k = 1 is the next smallest model and so on. This is theinteger that 
lassi�es the LSO3 
entral extension.� The H3(SO3;Z) = Z twist in the 
orresponding K{theory, equivalently theNSNS ba
kground 
ux. 3



The di�eren
e between the level and the 
ux is a 
onstant 
alled the adjoint shift, inour 
ase (see se
tion 4.1) � = k + 1 (1)Now we are really interested only in the supersymmetri
 WZW model, where� The level of the N = 1 supersymmetri
 WZW model on SO3, i.e. the 
entralelement in the super Ka
{Moody algebra.As we will dis
uss in more detail later, this is always a Z2 orbifold of the N = 1supersymmetri
 WZW model on SU2 at level 2�. As is well-known [25℄, the lattermodel is isomorphi
 to a level-shifted bosoni
 SU2 WZW model together with a freefermion theory where2� � 2 = 2k The level of this bosoni
 SU2 WZW model.Our use of k vs. � is the standard notation to distinguish between the supersymmetri
and bosoni
 levels, respe
tively. For the 
omparison with the CFT 
omputation weshould also 
omment upon the relation of our 
onventions to the ones 
hosen in [19, 26℄,where the authors study only the bosoni
 SO3 WZW model and denote its level byk 2 2Z. (i.e. with a spurious fa
tor of 2). Denote their k by kGG, then the following
onversion rules apply: k = kGG2 ; � = kGG2 + 1 : (2)2.2 Supersymmetri
 WZW modelsOur present obje
tive is to study D{brane 
harges in N = 1 supersymmetri
 WZWmodels on SO3. The key ingredient for the 
onstru
tion is to observe that SO3 =SU2=Z2, where the Z2 a
ts as the antipodal map. The bosoni
 SO3 WZW model
an therefore be 
onstru
ted as a simple-
urrent extension of the diagonal bsu(2)2ktheory [22, 23, 24℄, where the order 2 simple 
urrent a
ts on the integrable highestweights � = [2k � �; �℄ with � 2 0 : : : 2k, asJ : [2k � �; �℄! [�; 2k � �℄ : (3)The thereby resulting state spa
e for the WZW model on SO3 is (see [19℄) for k oddand even, respe
tively,k 2 2Z�+ 1 : HSO3 = kMn=0 H2n 
 �H2n � kMn=1 H2n�1 
 �H2k�2n+1k 2 2Z� : HSO3 = k=2�1Mn=0 (H2n �H2k�2n)
 � �H2n � �H2k�2n�� 2 �Hk 
 �Hk� : (4)4



But the bosoni
 theory does not have any 
onserved D{brane 
harges and is notinteresting for our purposes. We want to study the supersymmetri
 version hereof.The supersymmetri
 bsu(2) model at level 2� has a des
ription in terms of the
hiral algebra A = bsu(2)2k � bso(3)1 ; (5)where � = k + 1. The diagonal modular invariant for eq. (5) isHdiag = M� H� 
 �H�!
 Ml=0;1;2Hl 
 �Hl!= Hsu(2)2k 
HF : (6)In parti
ular, one obtains a supersymmetri
WZW model on SO3 by tensoring eq. (4)with the state spa
e HF of the bso(3)1 free fermion theory. This is the model studiedin [19℄.In the above 
onstru
tion, it was assumed that the simple 
urrent a
ts only onthe bsu(2)2k part. However, one 
ould also 
ontemplate the following 
onstru
tion ofa supersymmetri
 SO3 WZW model: Extend by the order 2 simple 
urrent hJ � ji,where the simple 
urrent j a
ts on the bso(3)1 weights byj : [2� l; l℄! [l; 2� l℄ ; l = 0; 1; 2 : (7)The 
urrents J and j generate a simple 
urrent group G = Z2 �Z2 for the theoryeq. (5). We shall be interested in the following Z2 subgroups of G:(�) twist: G(�) = hJ � Idi(+) twist: G(+) = hJ � ji : (8)The 
orresponding simple 
urrent extensions of eq. (6) will be denoted by (�){twistedmodel and (+){twisted model, respe
tively (this notation will be explained in se
-tion 4.1). In parti
ular, the (�){twisted model is the one dis
ussed in [19℄.The state spa
e for the (�){twisted model is given byHSO3;(�) = HSO3 
HF : (9)The state spa
e for the (+){twisted model is straight forward to obtain using simple-
urrent te
hniques. As this will not be of main 
on
ern to our dis
ussion, we shallleave this for future work.Note that if one was to extend the theory with all of G, non-trivial dis
rete tor-sion [27, 28℄ is allowed as H2�Z2�Z2; U1� =Z2. We will not pursue these here sin
ethey do not 
orrespond to a bona �de (non-orbifolded) WZW model on SO3.5



2.3 D{brane 
hargesIn [19℄ the 
harge groups for the D{branes in the (�){twisted model were 
omputed,and obtained to be KSO3;(�) = (Z2�Z2 kGG � 0 mod 4Z4 kGG � 2 mod 4 : (10)The NIM-reps N��� for the (+){twisted model follow straight forwardly, thanks toknown simple-
urrent te
hnology. The derivation of the 
harges ne
essitates a gener-alization of [3℄ to supersymmetri
 CFT, where the fermions do not ne
essarily fa
torout and therefore the NIM{reps do not separate into an aÆne and a free fermion part.We leave this for future dis
ussions, see also [29℄.We shall for the present paper 
ontent ourselves with the following heuristi
 deriva-tion of the 
harge groups. Geometri
ally, the two 
hoi
es of twist 
orrespond to thefollowing identi�
ations in the bsu(2) WZW model. The (�){twisted 
ase 
orrespondsto the superposition of the brane with 
harge q� with its image under the antipodalmap, i.e. the brane of 
harge q2k��. So in this model one superposes the brane withits anti-brane (see also [19℄) resulting in(�) twist : q(�);� = q� + q2k�� = (�+ 1 + 2k � �+ 1)q0 == (2�)q0 = 0 ; (11)using q� = (� + 1)q0. Thus these branes do not 
arry any non-trivial 
harges. If 2jkthen there is a brane invariant under the antipodal map, yielding a Z2 
harge.The (+){twist on the other hand 
orresponds to superposing the q�-
harged branewith the anti-brane of the brane with weight 2k � �, wherefore(+) twist : q(+);� = q� � q2k�� = (2� � 2k)q0= (2� + 2)q0 ; (12)whi
h implies that the 
orresponding 
harge group is Zk+1 = Z�. Furthermore, thebrane with label � = k 
arries 
harge: identifying it with its image under the antipodalmap results in an unoriented world-volume, thus allowing for at most 2-torsion 
harges.The K{theory 
omputation below will 
on�rm this. Clearly there are no spa
e-�llingD3{branes [30℄. We should stress that a proper derivation of the 
harge relations insupersymmetri
 theories should 
on�rm this.6



3 Pure topology3.1 Qui
k review of twisted 
ohomologyThe ar
hetypi
al example of a twisted 
ohomology theory is �Ce
h 
ohomology for anontrivialZbundle, that is instead of taking 
onstant 
oeÆ
ients we take them to beonly lo
ally 
onstant but with a monodromy around some non
ontra
tible loop in ourspa
e X. This obviously 
hanges the 
ohomology groups, for example H0(X;Z) =Zfor any 
onne
ted spa
e (given by the 
onstants, i.e. se
tions of the trivial Zbundle)whereas the twisted 
ohomology group is tH0(X;Z) = 0: There are no se
tions in anontrivial Zbundle ex
ept the zero se
tion.Clearly, the possible twists in ordinary 
ohomology are de�ned by spe
ifying themonodromies around non
ontra
tible loops, so by a map �1(X) ! GL1(Z) = Z2.But sin
e the target is abelian su
h a group homomorphism must fa
tor through theabelianization �1(X)=[�;�℄ = H1(X;Z). So the twist represents an element of thedual of homology, i.e. of H1(X;Z2). Te
hni
ally the 
hoi
e of twist always depends onthe representative of the 
ohomology 
lass, but di�erent representatives of the twist
lass lead to isomorphi
 (albeit not 
anoni
ally) twisted 
ohomology theories. We willignore this subtlety usually.Sin
e we will use them shortly let us 
ompute the (twisted) 
ohomology groups ofRP3, say using CW-
ohomology. The real proje
tive 3{spa
e has a 
ell de
ompositioninto a single 
ell 
i in dimensions i = 0 to 3, and ea
h 
ell 
i is atta
hed su
h that twopoints of �
i are identi�ed with one point in the lower dimensional skeleton �i�1. Sothe atta
hing maps would be degree 2 if it were not for the orientation: for examplethe 2 endpoints of the interval �
1 map to �0 = 
0 but with opposite orientation, sothey 
an
el. So the 
ohomology is the homology of the 
o
hain 
omplex:H i(RP3;Z) = Hi� 0 // Z 0 // Z 2 // Z 0 // Z 0 // 0 � = 8>>><>>>:Z i = 3Z2 i = 20 i = 1Z i = 0 : (13)Now sin
e H1(RP3;Z2) =Z2 there is also a twisted 
ohomology, whi
h we will denote�H(RP3;Z). The twisting e�e
ts the orientations in the boundary maps �
i ! �i�1:Where the two 
ontributions in the untwisted 
ase added up, they now 
an
el andvi
e versa. So the twisted 
ohomology is�H i(RP3;Z) = Hi� 0 // Z 2 // Z 0 // Z 2 // Z 0 // 0 � = 8>>><>>>:Z2 i = 30 i = 2Z2 i = 10 i = 0 : (14)7



Now let us turn towards K{theory. Here it turns out that (some of) the possibletwists are representing a 
lass in H1(X;Z2) � H3(X;Z). The e�e
t of the twist inH1(X;Z2) is again a twisted identi�
ation as one goes around a non
ontra
tible loop:If [E℄�[F ℄ is an element in the twisted K{theory then the bundles E, F are ex
hangedas one goes around a \twist" loop.The H3(X;Z) part of the twist 
lass 
an be understood from the transition fun
-tion point of view (see e.g. [31℄). By a standard argument this 
orresponds to a U1valued fun
tion 'ijk : Ui \ Uj \ Uk ! U1 on ea
h triple overlap. The transition fun
-tions gij : Ui \ Uj ! GL of a twisted bundle then do not quite �t together, but up toa phase fa
tor: gijgjkgki = 'ijk on Ui \ Uj \ Uk : (15)Again there is a subtlety here in that for non torsion twist 
lasses one 
annot use�nite dimensional bundles, but this te
hni
al problem 
an be dealt with so we willignore it in the following.3.2 Twisted K{theoryFor any generalized 
ohomology theory there is some Atiyah{Hirzebru
h{Whiteheadspe
tral sequen
e relating it to ordinary 
ohomology. For the 
ase at hand this is thefollowing:Theorem 1 (Generalized Rosenberg spe
tral sequen
e). Fix a 
losed manifoldX and let t1� t3 be a 
o
y
le in H1(X;Z2)�H3(X;Z). Then there is a Z�Z2 gradedspe
tral sequen
e with Ep;q2 = t1Hp�X; Kq(X)� ; (16)
onverging to the twisted K{theory t1�t3K�(X). The spe
tral sequen
e is bounded in pand moreover the �rst di�erential is d3 = Sq3 + t3[.Proof. The only novelty is the t1 2 H1(X;Z2) twist, everything else 
an be foundin [32℄. Again let Xn be the n{skeleton of a 
ell de
omposition of X. Then there is aspe
tral sequen
e withEp;q1 = t1�t3Kp+q�Xp;Xp�1� ' Kp+q�Xp;Xp�1� ' Kq�fpt.g� (17)The only novelty is the di�erential d1, whi
h is now the t1{twisted 
oboundary oper-ator. Hen
e the E2 tableau is eq. (16).We are interested in SO(3) ' RP3 with the possible2 twists(�; �) 2 Z2�Z> � H1(RP3;Z2)�H3(RP3;Z) : (18)2Of 
ourse we are only interested in positive levels.8



In the (+) 
ase we �nd (2{periodi
 in q)Ep;q2 = q=2 Z d3=�
%%J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

J

0 Z2 Zq=1 0 0 0 0q=0 ZOO

//
0 Z2 Zp=0 p=1 p=2 p=3 ; Ep;q3 = Ep;q1 = q=2 0 0 Z2 Z�q=1 0 0 0 0q=0 0OO

//
0 Z2 Z�p=0 p=1 p=2 p=3) (+;�)K1(RP3) =Z�; (+;�)K0(RP3) =Z2 ; (19)whereas in the (�){twisted 
ase we obtainEp;q2 = Ep;q1 = q=2 0 Z2 0 Z2q=1 0 0 0 0q=0 0OO

//
Z2 0 Z2p=0 p=1 p=2 p=3) (�;�)K1(RP3) =Z2�Z2 or Z4; (�;�)K0(RP3) = 0 : (20)Almost everything is determined dire
tly from our knowledge of Rosenberg's spe
tralsequen
e. We are left only with one tiny ambiguity, we 
annot de
ide the group lawon the order 4 
harge group (�;�)K1(RP3).In general we expe
t for ea
h possible twisted K{theory some CFT or string 
om-pa
ti�
ation unless there is some physi
al reason why this parti
ular 
hoi
e of dis
retetorsion is forbidden. So we should expe
t there to be di�erent WZW models for every
hoi
e of twist (�; �) 2 Z2 �Z>. Espe
ially we should not be too surprised if theorder of the 
harge group is independent of the level.It remains of 
ourse to de
ide the �nal ambiguity, but this is surprisingly hard
ompared to how easily we found almost the 
omplete answer. The a
tual 
omputationwill be in se
tion 4 and is quite lengthy, but has the redeeming feature that it makes
onta
t with CFT methods.For now let us have a 
loser look at the (�; 0){twisted K{theory, where we 
an usea simple tri
k to dis
ern between the two possibilities for (�;0)K1(RP3). The idea (seealso [21℄ for a similar use) is that this K{theory is the K�(S3) of [20℄, where S3 
omeswith the antipodal involution. Then this K{group 
an be 
omputed as the ordinaryK{theory of L def= �S(4;0)�R(1;1)�=Z2, the nontrivial real line bundle over RP3. Now ithappens that the one point 
ompa
ti�
ation of L is smooth, and in fa
t RP4. Hen
e9



we �nd (�;0)K i(RP3) = K i�(S3) = K i+1(L) = K i+1(RP4�fpt.g) == eK i+1(RP4) = (Z4 i = 10 i = 0 : (21)Unfortunately this tri
k is not easily extended to twistings (�; �) with � > 0, but itis already tantalizing to see that the twisted K{groups are indeed di�erent from thetwisted 
ohomology �H�(RP3) =Z2�Z2.4 FHT 
omputation for SO3So far we only used purely topologi
al methods to �nd the relevant K{groups. Thisseems to yield the 
orre
t result, although we are unable to resolve the remainingZ2�Z2 vs. Z4 ambiguity. It would be ni
e if we 
ould resolve this, and even moreinterestingly, if we 
ould draw a parallel between the representation theoreti
 argumenton the CFT side and the K{theory 
omputation.We a
hieve this in the by now familiar way (see [10℄): Use some basi
 tri
ks torewrite the desired K{group tK(SO3) as equivariant K{theory of some produ
t spa
e,and then use the equivariant K�unneth theorem [33℄ to relate that to tensor produ
tsinvolving tKG(GAd). The latter is | by the FHT theorem [12, 14, 15℄ | the Verlindealgebra, also known as the fusion ring. The 
omputation of the twisted K{theory thusboils down to simple algebra involving fusion rings. We will not make use of the FHTtheorem dire
tly but determine all ne
essary rings in the following dire
tly.In parti
ular we use tK� (SO3) = tK�SU2�SOAd3 � SUL2 � ; (22)where the supers
ripts Ad, L denote the SU2 group3 a
tion: Adjoint and Left multi-pli
ation. It turns out that the twist 
lass is only on the �rst fa
tor, so the Cartesianprodu
t really is a produ
t, even 
onsidering the twist. Then we 
an apply the equiv-ariant K�unneth theorem to the e�e
t that we get a spe
tral sequen
eE�;�2 = Tor�R(SU2)�tK�SU2(SOAd3 ); Z�== Tor�R(SU2)�tK�SU2(SOAd3 ); tK�SU2(SUL2 )�) tK�SU2�SOAd3 � SUL2 � = tK� (SO3) : (23)3It is important to use SU2 (as opposed to SO3) equivariant K{theory sin
e the K�unneth theoremwould not hold in the latter 
ase: SO3 is not a Hodgkin group.10



So now we �rst have to 
ompute the twisted equivariant K{group tKSU2(SO3), whi
hwill o

upy se
tions 4.1 to 4.5 (Note that this is similar, but not quite the same astKSO3(SO3), whi
h is 
omputed in [14℄). Then we will evaluate the K�unneth spe
tralsequen
e in se
tions 4.6 and 4.7. Finally we 
ompare our result with the CFT analysisin se
tion 4.8.4.1 Poin
ar�e duality and adjoint shiftWe want to 
ompute the D{brane 
harge group of the N = 1 supersymmetri
 WZWmodel at level �, so what is the 
orre
t level for the 
orresponding bosoni
 WZWmodel? A partial answer is well-known for simply 
onne
ted Lie groups, where thelevel of the auxiliary bosoni
 WZW model is � � h_. But this shift (by the dualCoxeter number in the simply 
onne
ted 
ase) is not the whole story. Really we haveto shift by the twist 
lass indu
ed via the adjoint representation Ad : G ! SO(g)from the element (
f. [14℄)(�; 1;�) 2 H1SO(SO;Z2)�H3SO(SO;Z)'Z2� �Z�Z2� : (24)In our 
ase we want to use G = SO3 and then the double 
over fSO3 = SU2, i.e. pullba
k H�SO(SO) �! H�SO3�SO3� �! H�SU2�SO3� : (25)It is easy to see that the �nal adjoint shift is1 2 H3SU2�SO3;Z�'Z and � 2 H1SU2�SO3;Z2� 'Z2 : (26)An important point is that we also have to 
ip the sign, so the straightforward bosoni
SO3 WZW model tensored with free fermions 
orresponds to the � 2 H1(SO3;Z2)twisted K{theory.Furthermore it will be more 
onvenient to 
al
ulate the twisted equivariant K{groups in K{homology in the following. Poin
ar�e duality (see [14℄) relates this ba
kto the K{
ohomology as of (�;�)K iG(X) = (�;�)KGdim(G)�i(X) : (27)4.2 Mayer{Vietoris sequen
eSU2 a
ts by 
onjugation on SO3 = SU2=�. There are three kinds of orbits:� The orbit of 1 2 SU2=�, a �xed point.The stabilizer is the whole SU2. 11



� The orbit of ( 0 �11 0 ) 2 SU2=�, whi
h is topologi
ally RP2.The stabilizer is Z2n U1 � SU2.� The orbit of a generi
 point is an S2.The stabilizer is a U1 � SU2.This suggests the following 
ell de
omposition of SO3 ' RP3:U The 
omplement of the RP2.V The 
omplement of 1 2 SU2=�.su
h thatU is 
ontra
tible to the �xed point.V is 
ontra
tible to the spe
ial RP2 orbit.U \ V is 
ontra
tible to a generi
 S2 orbit.The Mayer{Vietoris sequen
e in K{homology for the 
over U , V of SO3 is then thefollowing 6 term 
y
li
 exa
t sequen
e:tKSU21 (SOAd3 )
��

tKSU21 (RP2)oo 0ooR(U1) Ind // R(SU2)� tKSU20 (RP2) // tKSU20 (SOAd3 ) :OO (28)The in
lusion i : RP2 ,! RP3 identi�es the 
ohomology groupsi� : H1(RP3;Z2) ��! H1(RP2;Z2) ; (29)so we 
an take the 
o
y
le's support disjoint from U in the 
y
li
 exa
t sequen
e.Now 
on
erning the K{groups of RP2, they are again the representation ring of thestabilizer, as SU2 a
ts transitively. But there is a subtlety as this 
ell might 
ome witha nontrivial twist 
lass. Even more deli
ately, the identi�
ation of the K{homologygroups with the representation ring uses Poin
ar�e duality, and this 
ips the sign ofthe twist as RP2 is not orientable:tKSU20 �RP2� = �tK0SU2 �RP2� = �tR (Z2n U1) : (30)12



4.3 The (twisted) representation ringsLet us review the representation rings that o

ur in our dis
ussion to �x notation.The most important one is for SU2, sin
e everything in eq. (28) is an R(SU2) module:R(SU2) =Z[�℄ ; (31)generated by the fundamental (2 dimensional) representation �. Instead of takingpowers of � there is a di�erent Zbasis that is very useful in pra
ti
e. This basis arethe irredu
ible representations of SU2, whi
h are all symmetri
 powers of �. They aregiven re
ursively as Sym�1(�) = 0Sym0(�) = 1�Symn� = Symn+1(�) + Symn�1(�) : (32)Next we have the representations of U1, those areR(U1) =Z[�;��1℄ ; (33)with R(SU2) module stru
ture � : R(SU2) �R(U1) ! R(U1) indu
ed by the embed-ding U1 � SU2. Expli
itly the R(SU2) a
tion is given by�(�; x) = (�+ ��1)x 8x 2 R(U1) : (34)The representation theory of the semidire
t produ
t Z2nU1 is more 
ompli
ated.This is abstra
tly the groupZ2nU1 = �(s; �) : s 2Z2; � 2 R=2�Z	; (s1; �1) � (s2; �2) = (s1s2; �1+ s1�2) ; (35)whi
h is the same as O2, but more naturally we should think of it as the double 
overof O2. There are two obvious one dimensional representations, the trivial and the signrepresentation �. In addition to those we also have the 2 dimensional representationfrom the embeddingZ2nU1 � SU2, whi
h we 
all again � (this notation makes sense,sin
e by de�nition then the R(SU2) module stru
ture is just multipli
ation)�(+1; �) = �e�i� 00 ei�� �(�1;  ) = � 0 �ei ei 0 � : (36)One 
an easily 
he
k that � 
 � is 
onjugate to � 
 1 = �, while � is of 
ourse not
onjugate to 1. Hen
e the representation ring is+R(Z2n U1) def= R(Z2n U1) =Z[�; �℄.
�2 � 1; �(� � 1)� : (37)13



Finally, there is the possibility to twist the Z2n U1 representations, and we get the
orresponding twisted representation rings. Really those are de�ned as the twistedequivariant K{groups of a point, and for the 
ase at hand are (see [13℄):�K1Z2nU1�fpt.g� def= �R1�Z2n U1� = h� � 1iR(Z2nU1) (38a)�K0Z2nU1�fpt.g� def= �R�Z2n U1� = h� + 1iR(Z2nU1) (38b)' R(SU2) =Z[�℄ as R(SU2) module :4.4 Dira
 indu
tionThe essential part of the whole 
omputation is to identify the map dubbed Ind ineq. (28). The pushforward in K{homology is a
tually Dira
 indu
tion, a version ofBorel{Weil indu
tion that does not require 
omplex stru
tures (see [15℄)Ind : R(U1)! R(SU2)� �R(Z2n U1) : (39)The �rst 
omponent is just the usual indu
tion, pre
omposed with multipli
ation by�� whi
h is the e�e
t of the twist 
lass � = k + 1 2 H3SU2(SO3):�1 Æ Ind(�n) = Symn+�� : (40)Con
erning the se
ond 
omponent we have to distinguish between the possible �twists (for representation rings it makes also sense to 
all this a grading), we will
ome to that shortly.Having identi�ed the indu
tion map and assuming that � > 0 (as we will alwaysdo) it is then easy to see that the total Ind is inje
tive, so we 
an indeed determineall the unknowns in the exa
t sequen
e eq. (28):tKSU21 �SO3� = �tR1�Z2n U1� (41a)tKSU20 �SO3� = �R(SU2)� �tR�Z2n U1��. Ind �R(U1)� : (41b)Moreover the �rst 
omponent turns out to be surje
tive, so we 
an write tKSU20 �SO3�as a quotient of �tR�Z2n U1� only.4.4.1 Twisted Poin
ar�e dualityIt remains to identify the se
ond 
omponent of the indu
tion map eq. (39). This isalmost, but not quite, the Dira
 indu
tionInd� : R(U1)! �R(Z2n U1) : (42)14



An important subtlety here is that in the twisted Poin
ar�e duality �K0SU2 �RP2� =�KSU20 �RP2� we had to pi
k a fundamental 
lass, or dually a 
lass in �K0SU2 �RP2�.But the generator is 1 2 �R(Z2n U1) whi
h is a nontrivial4 twisted representation.To 
ompensate for this we have to make sure that our K-homology pushforward�2 Æ Ind(1) is again the fundamental 
lass. From that we 
an identify5�2 Æ Ind(� ) = Ind�(� � � ) ; (43)using the results on Ind� from the remainder of this se
tion.4.4.2 Ungraded Indu
tionFirst, let us look at the indu
tion involving only untwisted representation rings (this
omputes then the (�){twisted K{theory). We �nd�2 Æ Ind(1) = Ind+(�) = � (44a)�2 Æ Ind(��1) = Ind+(1) = 1 + � : (44b)Let us pause to explain the latter eq. (44b), whi
h might be less obvious. This isa rather degenerate 
ase of Dira
 indu
tion as the quotient (Z2 n U1)ÆU1 ' Z2 is0{dimensional.Re
all the usual Dira
 indu
tion for a subgroup H � G, see e.g. [34, 35℄: Givena representation � : H ! V we 
an 
onstru
t a G representation on �(G �H V ).The problem is that the latter (the spa
e of se
tions) will in general not be �nitedimensional. The solution is to de�ne an ellipti
 operator D : �(G�H V1)! �(G�HV2), then the G equivariant index IndexG(D) 2 R(G) yields a �nite dimensional(virtual) representation.But in the 
ase at hand G=H ' Z2 is just two points, so �(G �H V ) is 2 dim(V )dimensional. Espe
ially for V = C the trivial representation we see that �(G�H C ) =L2(Z2) = spanC (1; �) is generated by the trivial and the sign representation, thisexplains eq. (44b).4.4.3 Graded Indu
tionThe indu
tion to �R�Z2 n U1� (whi
h ne
essary for the (+){twisted K{theory) isrelated to the untwisted restri
tion and indu
tion via the following diagram with4In other words, the trivial representation is not \�" twisted.5Or Ind�(��1 � � ), depending on the 
hosen orientation.15



exa
t rows R�Z2n U1� Res+ // R�U1� Ind� // �R�Z2n U1�R�Z2n U1� R�U1�Ind+oo �R�Z2n U1� ;Res�oo

(45)and moreover indu
tion and restri
tion are adjoint fun
tors, i.e.HomR(U1)(Res� � ; � ) = Hom�R(Z2nU1)(� ; Ind� � ) : (46)Furthermore all maps are R�Z2n U1�{module maps using the module stru
ture dis-
ussed in se
tion 4.3, so to spe
ify the maps we just have to write down the image ofgenerators in the respe
tive presentations eqns. (37),(38b),(33):Res+ (1) = 1Res� (1) = �� ��1 : (47)The ordinary restri
tion Res+ is obvious. For the twisted restri
tion Res� note that� � ��1 generates the kernel of Ind+, and sin
e the horizontal lines in eq. (45) areexa
t this already �xes the restri
tion6 (up to an irrelevant overall sign).Now Ind� is right adjoint to Res�, so e.g.C ' HomR(U1)��� ��1; �� = HomR(U1)�Res�(1); �� == Hom�R(Z2nU1)�1; Ind�(�)� : (48)Together with exa
tness of the top row in eq. (45) this determines�2 Æ Ind(1) = Ind�(�) = 1�2 Æ Ind(��1) = Ind�(1) = 0 : (49)4.5 Determining the quotientThe representation ring R(U1) is a free R(SU2) module, generated by �n and �n+1(i.e. any two 
onse
utive powers of � are R(SU2){linearly independent and generateall of R(U1)). Their image under the pushforward then generates Ind �R(U1)� as anR(SU2) module. Taking n = ��� 1, the pushforward has the formInd(���) = Sym0(�)� � � � � � = 1� � � � � �Ind(����1) = Sym�1(�)� � � � � � = 0 � ��2 Æ Ind(����1)� : (50)6One 
an make this more pre
ise using the des
ription as super-representations.16



So using the �rst relation we 
an write every equivalen
e 
lass in the quotient eq. (41b)uniquely as 0� (something). The se
ond relation keeps that 
hoi
e of representative,so tKSU20 �SO3� = �tR�Z2n U1�.���2 Æ Ind(����1)� �R(SU2)� : (51)In the (+) 
ase we found�2 Æ Ind(�n) = Symn(�) 2 �R�Z2n U1� ; (52)in the same way as for the �rst 
omponent of Ind. Applying eq. (32) we �nd that�2 Æ Ind(����1) = �Sym��1(�) = ����1 + � � � 2 �R�Z2n U1� ; (53)generates the relation.In the (�) 
ase it is not quite so easy to write down a formula, however we 
an�nd Ind(�n) re
ursively using the R(SU2) module stru
ture� Ind(�n) = Ind���n� = Ind��� + ��1��n� = Ind(�n+1) + Ind(�n�1) ; (54)and eq. (44a),(44b). The result is that�2 Æ Ind(��n�1) = (pn(�) 8n evenpn(�) + (�1)n2 (1 + �) 8n odd 2 +R�Z2n U1� ; (55)where pn is a polynomial of degree jnj without 
onstant part. Its value at 2 will beimportant in the following, by straightforward indu
tion one 
an show thatpn(2) = 8><>:2 8n 2 2Z+ 14 8n 2 4Z+ 20 8n 2 4Z: (56)Putting everything together we �nd7(+;�)KSU21 �SO3� = Z[�℄=�(+;�)KSU20 �SO3� = Z[�℄.
Sym��1(�)�(�;�)KSU21 �SO3� = 0(�;� odd)KSU20 �SO3� = Z[�; �℄.
�(� � 1); �2 � 1; p�(�)�(�;� even)KSU20 �SO3� = Z[�; �℄.
�(� � 1); �2 � 1; p�(�) + (�1)�2 (1 + �)� (57)as R(SU2) =Z[�℄modules, the 
orresponding 
ohomology groups are then determinedby Poin
ar�e duality eq. (27).7In the (�){twisted 
ase here the h�i means: A
t with all of Z[�; �℄. But we really only want tomod out the R(SU2) =Z[�℄ image of Ind(����1). However, this is the same thing sin
e �pn(�) =pn(�), be
ause pn does not have a 
onstant part.17



4.6 The tensor produ
tNow that we determined the twisted equivariant K{groups we 
an apply the equiv-ariant K�unneth theorem and determine the 
orresponding non{equivariant K{theory.The result is a spe
tral sequen
e withE�;�2 = Tor�R(SU2)�tK�SU2(SO3); Z� ; (58)where R(SU2) = Z[�℄ a
ts on Zby multipli
ation with the dimension of the repre-sentation. With other words, �
R(SU2)Zis evaluation at � = 2:(+;�)KSU21 �SO3�
R(SU2)Z = Z2(+;�)KSU20 �SO3�
R(SU2)Z = Z�(�;�)KSU21 �SO3�
R(SU2)Z = 0(�;� odd)KSU20 �SO3�
R(SU2)Z = Z[�℄.
2(� � 1); �2 � 1; 2� == Z2[�℄.h�2 � 1i =Z2�Z2(�;�24Z>)KSU20 �SO3�
R(SU2)Z = Z[�℄.
2(� � 1); �2 � 1; 1 + �� =Z4(�;�24Z�+2)KSU20 �SO3�
R(SU2)Z = Z[�℄.
2(� � 1); �2 � 1; 3 � �)� == ZÆg
d(4; 8) =Z4 : (59)4.7 Higher TorThe CFT 
harge equation [3℄ dim(�)qa =XN�abqb ; (60)really tells you that the 
harge group is the tensor produ
tN 
RGZ; (61)where N is the algebra of the qa with stru
ture 
onstants Nab
.But the derivation of the 
harge equation is by no means mathemati
ally stri
t.Indeed we know examples where the twisted K{theory and hen
e the 
harge groupis stri
tly bigger than eq. (61), for example most8 WZW models on 
ompa
t simply
onne
ted simple Lie groups (see [9℄). But by a generalized nonsense argument in-volving the K�unneth spe
tral sequen
e we know that the tensor produ
t eq. (61) is a8With the ex
eption of SU2 at arbitrary level and other Lie groups at spe
ial levels where theK{groups vanish. 18



subgroup of the K{group, i.e. there are no additional relations between the 
hargesin eq. (60).But to �nd the whole 
harge group we must determine the whole Tor(�;�), notjust its degree zero pie
e � 
 �. Sin
e the se
ond argument Z= Z[�℄=h�� 2i hasonly one relation as R(SU2) module, only Tor0 = 
 and Tor1 
an be nonvanishing.A qui
k way to argue that Tor1 always vanishes is the following: There 
annotbe any nontrivial di�erential after E2 in the K�unneth spe
tral sequen
e, so any non-vanishing Tor1 would in
rease the order of the 
harge groups. But we know from
omparison with the generalized Rosenberg spe
tral sequen
e already that Tor0 a
-
ounts for all elements of the K{group.Nevertheless it would be ni
e to see dire
tly that Tor1 has to vanish. This willbe the topi
 of the remainder of this se
tion. In the simpler (+){twisted 
ase we 
anstraightforwardly determine the derived tensor produ
t (as in [9℄) and �ndTor1R(SU2)�(+;�)K1SU2�SO3�; Z�= 0 ; Tor1R(SU2)�(+;�)K0SU2�SO3�; Z�= 0 : (62)The (�){twisted 
ase is more 
ompli
ated sin
e there are additional relations, seeeq. (57). We again have to distinguish odd and even �.If � is even, then the K{groups �t into a short exa
t sequen
e (re
all that thepolynomials pn have no 
onstant term):0 // Z[�℄.D p�(�)� E �� // (�;� odd)K1SU2(SO3) � 7!0 // Z[�℄.h�2 � 1i // 0 : (63)The long exa
t sequen
e for Tor then yields the desired result.Finally, if � is even then we 
an use the relationp�(�) + (�1)�2 (1 + �) = 0 , � = �(�1)�2 p�(�)� 1 ; (64)to eliminate � and write(�;� even)K1SU2(SO3) =Z[�℄.h~p�(�)i; ~p�(2) 6= 0 ; (65)and again we see that the Tor1 vanishes.For referen
e, we get(+;�)K1(SO3)=Z� (+;�)K0(SO3)=Z2(�;�)K1(SO3)=(Z2�Z2 � oddZ4 � even (�;�)K0(SO3)= 0 : (66)Note that sin
e � = k + 1 = kGG=2 + 1, this agrees pre
isely with the result of [19℄.19



4.8 Comparison with the CFT 
omputationHow does all this relate to the CFT 
harge 
omputation? We a
tually did somethingvery similar. First, note that the twisted equivariant K{group(�;�)KSU20 �SO3� = �R(SU2)� +R�Z2n U1��. Ind �R(U1)� ; (67)is the same R(SU2) module as the 
harges q0; : : : ; q��2; q+; q� of Gaberdiel and Gan-non, see [19℄ eq. (2.23) | of 
ourse up to our more rational labeling of the level, i.e.their nGG = kGG2 + 2 = � + 1. To see this de�neq` def= Sym`(�)� 0 80 � ` � �� 2q+ def= 0� (�1) q� def= 0� (��) ; (68)and take the following R(SU2) generators for the image of the Dira
 indu
tion:Ind(��1) = Sym��1(�)� (1 + �) (69a)Ind(��2) = Sym��2(�)�� : (69b)Then 
learly R(SU2) a
ts as follows on the q generators:�q0 = ��1 � 0� = q1�q` = �Sym`(�)� 0 = �Sym`�1(�) + Sym`+1(�)�� 0 == q`�1 + q`+1 81 � ` � �� 3�q��2 = �Sym��3(�) + Sym��1(�)�� 0 == q��3 � �0 � (1 + �)� = q��3 + q+ + q��q+ = 0 � (��) = Sym��2(�)� 0 = q��2�q� = 0 � (��) = Sym��2(�)� 0 = q��2 : (70)Sin
e Gaberdiel and Gannon were then 
omputing the tensor produ
t of the q withZit is no wonder that they obtain the same result as we did. However the presentationof the module we are working with, eq. (57), is more useful for the 
omputation ofthe tensor produ
t, whi
h is now just one line.5 Con
lusions and outlookIn this paper we 
omputed the 
harges of D{branes on SO3 as twisted K{theories andfound perfe
t agreement with the CFT results of [19℄. Furthermore, the twisted K{20



theory point of view elu
idated 
ertain aspe
ts of supersymmetri
9 WZW models onnon-simply 
onne
ted groups, in parti
ular it for
es us to study two inequivalent su
htheories, whi
h we 
all (+) and (�){twisted SO3 WZW model. The latter is simplythe well-known bosoni
 SO3 WZW model tensored with free fermions, whereas theformer is a novel theory, that to our knowledge has not been dis
ussed in the literatureso far.There are two key points in our analysis, whi
h we should emphasize. Firstly,the twisted K{theories for SO3 
ome in two guises, distinguished by a sign � 2H1(SO3;Z2) =Z2, by whi
h the K{theory is twisted in addition to the standard twist
lass � 2 H3(SO3;Z). A very subtle point in the supersymmetri
 CFT 
onstru
tionis that the 
on
eptually simpler (�){twisted WZW model 
orresponds to the � 2H1(SO3;Z2) twisted K{theory. Be that as it may, by applying similar te
hnology asin the work of Freed, Hopkins and Teleman [12, 13, 14, 15℄ we are able to determinethe relevant K{groups as in [9, 10, 11℄.Se
ondly, the additional twisting in the K{theory enfor
es that there should betwo inequivalent N = 1 supersymmetri
 WZW models on SO3, whi
h are pre
iselydistinguished by the sign in H1(SO3;Z2). This motivates us to de�ne the (+) and(�){twisted models as a simple 
urrent extension of the supersymmetri
 SU2 WZWmodel: there are two simple 
urrents, whi
h have the same a
tion on the bosoni
bsu(2) part but di�er in their a
tion on the free fermions in bso(3)1. The non-triviala
tion on the fermions essentially amounts to in
luding (�1)F in the orbifold a
tion.This is in parti
ular in a

ord with the identi�
ation of H1(G;Z2) twisted K{theorywith Hopkins' K� [20℄.There are several avenues in whi
h to extend the present work. Clearly, it wouldbe very interesting to dis
uss the novel (+){twisted SO3 WZW model in more detail,both from the bulk and boundary CFT point of view. In fa
t, the 
onstru
tion of the(+){twisted model obviously applies to the more general setting of any non-simply
onne
ted Lie group G with j�1(G)j even. The inequivalent supersymmetri
 WZWmodels for G 
an be obtained by an analogous simple 
urrent 
onstru
tion.The generalized CFT 
onstru
tion suggested above should of 
ourse be 
omple-mented by the 
orresponding twisted K{theory 
al
ulation. We have seen a beautifulmat
h between the two sides in the SO3 
ase, whi
h should generalize to all 
om-pa
t Lie groups. We shall address this question elsewhere. Extensions to orientifoldsare also 
on
eivable, e.g. the D{branes for SO3 have been 
omputed in [36℄ and therelevant K{theory would be a suitably twisted version of Real K{theory.The key point of this paper is that we 
annot simply analyze supersymmetri
WZW models by looking at the bosoni
 part and 
ompletely ignoring the fermions.A possibly very interesting appli
ation of this would be to revisit the 
onstru
tion9K{theory would not be relevant for boundary states in the purely bosoni
 SO3 WZW model, asexplained in the introdu
tion. 21



of symmetry breaking boundary 
onditions in WZW models. Let us sket
h the idea:the analysis of boundary states in WZW models and the 
orresponding 
harge 
om-putation has so far essentially negle
ted the fermions. In parti
ular, the symmetry-breaking boundary 
onditions that have been 
onstru
ted so far only break parts ofthe bosoni
 
hiral algebra. It is however 
on
eivable that new boundary states ariseif the free fermion part of the 
hiral algebra is partially broken as well, e.g. by im-plementing a simple-
urrent a
tion of j = (�1)F in addition to the simple 
urrents ofthe bosoni
 
hiral algebra.Re
ently [37℄ there has been some progress for SU(n) WZW{models in under-standing the long-standing mismat
h between twisted K{theory and WZW D{brane
harges for higher rank simply-
onne
ted groups. The 
onstru
tion we suggest abovegives rise to a set of new boundary states and it would be important to see whetherthese yield additional 
harges. The proof of 
ompleteness and linear-independen
e of
harges is 
ertainly one of the main unresolved issue in the CFT analysis of D{brane
harges, a rigorous treatment of whi
h may be inspired by K{theory.A
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