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The CFT desription of D{branes is relatively well under ontrol and the hargesfor N = 1 supersymmetri WZW models on simply-onneted Lie groups have beenomputed in [3, 4, 5℄ and for N = 2 oset models in [6, 7℄. Due to the non-trivialNSNS 3-form ux in these bakgrounds, the main ators on the other side of theonjeture are twisted K{theories. For simply-onneted group manifolds these havebeen obtained in [3, 8, 9℄ and for N = 2 oset models in [10, 11℄, and shown to be inperfet agreement with the CFT predition of the harge groups | as far as these areaessible. One of the most useful tools in determining the twisted K{groups, whihwill also feature prominently in the present paper, is the seminal work by Freed,Hopkins and Teleman (FHT) [12, 13, 14, 15℄ relating twisted equivariant K{theoryto the representation theory of loop groups (see also [16, 17℄). This allows to reduemany of the K{theoretial omputations to algebrai problems.The presene of at least N = 1 supersymmetry is vital for the omparison withK{theory. The importane of fermions should not be surprising as K{theory has deepties with spinors and the Dira operator, and in string theory it is general lore thatthere are no onserved D{brane harges in the bosoni string. The most transparentjusti�ation1 of this point is as follows: from a boundary �eld theory point of view theharges are determined by boundary onditions modulo RG-ows. Thus, in order toobtain non-trivial harges or equivalently non-trivial path omponents of the boundarytheory, it is neessary to projet out the unit operator [18℄.Based on the harge relations derived by Fredenhagen and Shomerus [3℄, reently,Gaberdiel and Gannon [19℄ determined the harges of D{branes in WZW modelson non-simply onneted group manifolds. The purpose of the present paper is toompute the orresponding K{theories for the simplest suh group, SO3 def= SO(3).There is one key subtlety in the ase of non-simply onneted groups, that makesthe omputations slightly more umbersome (and thus more interesting) ompared tothe simply-onneted ase. K{theoretially this an be phrased as follows: in additionto the standard twisting in H3(G;Z) there is an additional possibility to twist withan element in H1(G;Z2). In the ase of interest to us, H1(SO3;Z2) = Z2, whihan be interpreted as an additional grading of the twisted K{theories. This additionalhoie has a preise ounterpart in the world-sheet desription, where it orresponds todi�erent spin-strutures for the fermions. In fat, this interpretation is most apparentusing the identi�ation proven by Atiyah and Hopkins [20℄ of H1(X;Z2){twisted K{theory with the Hopkins K{theory K�(X), whih made its �rst appearanes in theontext of D{brane harges in (�1)F orbifolds, where F is the (left-moving) spae-timefermion number, see e.g. [2, 21℄.In summary, we obtain the following piture: let G be a non-simply onnetedgroup, with universal over eG suh that G = eG=Z2. Then one has in general twoN = 1 supersymmetri WZW models for G, orresponding to the hoies of twistings1We thank G. Moore for pointing this out. 2



in H1(G;Z2) = Z2. Equivalently, these hoies distinguish two modular invariantsorresponding to the WZW model on G, in the preise sense that they are obtainedas simple urrent extensions from the supersymmetriWZW model on eG, whih di�erby the ation of a Z2 simple urrent on the free fermion theory. In ase the latter istrivial the resulting model is simply the tensor produt of the bosoni WZW modelon G as of [22, 23, 24℄ with free fermions. This is the kind of model that is relevant forthe disussion in [19℄. On the other hand if the ation on the fermions is non-trivial,the resulting modular invariant does not fator into bosoni and fermioni parts, andhas not been disussed in the literature. We shall refer to these models as (�){twistedand (+){twisted supersymmetri WZW models on G, respetively. Clearly, it wouldbe interesting to systematially explore these models further. This onstrution hasalso interesting appliations in �nding new symmetry-breaking boundary onditions,whih we shall omment upon in our onluding remarks.The outline of this paper is as follows. Setion 2 gives an overview of the onformal�eld-theoretial aspets of the supersymmetri WZW models on SO3, in partiulargiving a detailed exposition of the two di�erent hoies of spin strutures, and theharge groups in either model. The K{theory omputation omprises the main bodyof the paper, starting with a purely topologial omputation in setion 3. This is thenre�ned using FHT-like methods in hapter 4, where we provide a omplete derivationof the twisted K{theories for both types of twists in H1(SO3;Z2). We onlude insetion 5 and disuss various diretions in whih the present work an be extended.2 Supersymmetri WZW models on SO32.1 The level manifestoLet us begin by addressing the tehnial and subtle, but very ruial issue of the levelor equivalently, the twisting or equivalently, the NSNS ux. Although we are reallyonly interested in the SO3 supersymmetri WZW model we are about to enountervarious auxiliary WZW models. In addition, in view of the K{theory omputation, wewish to use a meaningful notation for the levels, where preisely the positive integersare allowed. We will denote them as follows:k The level of the bosoni WZW model on SO3, i.e. k = 0 is the model withonly one primary �eld, k = 1 is the next smallest model and so on. This is theinteger that lassi�es the LSO3 entral extension.� The H3(SO3;Z) = Z twist in the orresponding K{theory, equivalently theNSNS bakground ux. 3



The di�erene between the level and the ux is a onstant alled the adjoint shift, inour ase (see setion 4.1) � = k + 1 (1)Now we are really interested only in the supersymmetri WZW model, where� The level of the N = 1 supersymmetri WZW model on SO3, i.e. the entralelement in the super Ka{Moody algebra.As we will disuss in more detail later, this is always a Z2 orbifold of the N = 1supersymmetri WZW model on SU2 at level 2�. As is well-known [25℄, the lattermodel is isomorphi to a level-shifted bosoni SU2 WZW model together with a freefermion theory where2� � 2 = 2k The level of this bosoni SU2 WZW model.Our use of k vs. � is the standard notation to distinguish between the supersymmetriand bosoni levels, respetively. For the omparison with the CFT omputation weshould also omment upon the relation of our onventions to the ones hosen in [19, 26℄,where the authors study only the bosoni SO3 WZW model and denote its level byk 2 2Z. (i.e. with a spurious fator of 2). Denote their k by kGG, then the followingonversion rules apply: k = kGG2 ; � = kGG2 + 1 : (2)2.2 Supersymmetri WZW modelsOur present objetive is to study D{brane harges in N = 1 supersymmetri WZWmodels on SO3. The key ingredient for the onstrution is to observe that SO3 =SU2=Z2, where the Z2 ats as the antipodal map. The bosoni SO3 WZW modelan therefore be onstruted as a simple-urrent extension of the diagonal bsu(2)2ktheory [22, 23, 24℄, where the order 2 simple urrent ats on the integrable highestweights � = [2k � �; �℄ with � 2 0 : : : 2k, asJ : [2k � �; �℄! [�; 2k � �℄ : (3)The thereby resulting state spae for the WZW model on SO3 is (see [19℄) for k oddand even, respetively,k 2 2Z�+ 1 : HSO3 = kMn=0 H2n 
 �H2n � kMn=1 H2n�1 
 �H2k�2n+1k 2 2Z� : HSO3 = k=2�1Mn=0 (H2n �H2k�2n)
 � �H2n � �H2k�2n�� 2 �Hk 
 �Hk� : (4)4



But the bosoni theory does not have any onserved D{brane harges and is notinteresting for our purposes. We want to study the supersymmetri version hereof.The supersymmetri bsu(2) model at level 2� has a desription in terms of thehiral algebra A = bsu(2)2k � bso(3)1 ; (5)where � = k + 1. The diagonal modular invariant for eq. (5) isHdiag = M� H� 
 �H�!
 Ml=0;1;2Hl 
 �Hl!= Hsu(2)2k 
HF : (6)In partiular, one obtains a supersymmetriWZW model on SO3 by tensoring eq. (4)with the state spae HF of the bso(3)1 free fermion theory. This is the model studiedin [19℄.In the above onstrution, it was assumed that the simple urrent ats only onthe bsu(2)2k part. However, one ould also ontemplate the following onstrution ofa supersymmetri SO3 WZW model: Extend by the order 2 simple urrent hJ � ji,where the simple urrent j ats on the bso(3)1 weights byj : [2� l; l℄! [l; 2� l℄ ; l = 0; 1; 2 : (7)The urrents J and j generate a simple urrent group G = Z2 �Z2 for the theoryeq. (5). We shall be interested in the following Z2 subgroups of G:(�) twist: G(�) = hJ � Idi(+) twist: G(+) = hJ � ji : (8)The orresponding simple urrent extensions of eq. (6) will be denoted by (�){twistedmodel and (+){twisted model, respetively (this notation will be explained in se-tion 4.1). In partiular, the (�){twisted model is the one disussed in [19℄.The state spae for the (�){twisted model is given byHSO3;(�) = HSO3 
HF : (9)The state spae for the (+){twisted model is straight forward to obtain using simple-urrent tehniques. As this will not be of main onern to our disussion, we shallleave this for future work.Note that if one was to extend the theory with all of G, non-trivial disrete tor-sion [27, 28℄ is allowed as H2�Z2�Z2; U1� =Z2. We will not pursue these here sinethey do not orrespond to a bona �de (non-orbifolded) WZW model on SO3.5



2.3 D{brane hargesIn [19℄ the harge groups for the D{branes in the (�){twisted model were omputed,and obtained to be KSO3;(�) = (Z2�Z2 kGG � 0 mod 4Z4 kGG � 2 mod 4 : (10)The NIM-reps N��� for the (+){twisted model follow straight forwardly, thanks toknown simple-urrent tehnology. The derivation of the harges neessitates a gener-alization of [3℄ to supersymmetri CFT, where the fermions do not neessarily fatorout and therefore the NIM{reps do not separate into an aÆne and a free fermion part.We leave this for future disussions, see also [29℄.We shall for the present paper ontent ourselves with the following heuristi deriva-tion of the harge groups. Geometrially, the two hoies of twist orrespond to thefollowing identi�ations in the bsu(2) WZW model. The (�){twisted ase orrespondsto the superposition of the brane with harge q� with its image under the antipodalmap, i.e. the brane of harge q2k��. So in this model one superposes the brane withits anti-brane (see also [19℄) resulting in(�) twist : q(�);� = q� + q2k�� = (�+ 1 + 2k � �+ 1)q0 == (2�)q0 = 0 ; (11)using q� = (� + 1)q0. Thus these branes do not arry any non-trivial harges. If 2jkthen there is a brane invariant under the antipodal map, yielding a Z2 harge.The (+){twist on the other hand orresponds to superposing the q�-harged branewith the anti-brane of the brane with weight 2k � �, wherefore(+) twist : q(+);� = q� � q2k�� = (2� � 2k)q0= (2� + 2)q0 ; (12)whih implies that the orresponding harge group is Zk+1 = Z�. Furthermore, thebrane with label � = k arries harge: identifying it with its image under the antipodalmap results in an unoriented world-volume, thus allowing for at most 2-torsion harges.The K{theory omputation below will on�rm this. Clearly there are no spae-�llingD3{branes [30℄. We should stress that a proper derivation of the harge relations insupersymmetri theories should on�rm this.6



3 Pure topology3.1 Quik review of twisted ohomologyThe arhetypial example of a twisted ohomology theory is �Ceh ohomology for anontrivialZbundle, that is instead of taking onstant oeÆients we take them to beonly loally onstant but with a monodromy around some nonontratible loop in ourspae X. This obviously hanges the ohomology groups, for example H0(X;Z) =Zfor any onneted spae (given by the onstants, i.e. setions of the trivial Zbundle)whereas the twisted ohomology group is tH0(X;Z) = 0: There are no setions in anontrivial Zbundle exept the zero setion.Clearly, the possible twists in ordinary ohomology are de�ned by speifying themonodromies around nonontratible loops, so by a map �1(X) ! GL1(Z) = Z2.But sine the target is abelian suh a group homomorphism must fator through theabelianization �1(X)=[�;�℄ = H1(X;Z). So the twist represents an element of thedual of homology, i.e. of H1(X;Z2). Tehnially the hoie of twist always depends onthe representative of the ohomology lass, but di�erent representatives of the twistlass lead to isomorphi (albeit not anonially) twisted ohomology theories. We willignore this subtlety usually.Sine we will use them shortly let us ompute the (twisted) ohomology groups ofRP3, say using CW-ohomology. The real projetive 3{spae has a ell deompositioninto a single ell i in dimensions i = 0 to 3, and eah ell i is attahed suh that twopoints of �i are identi�ed with one point in the lower dimensional skeleton �i�1. Sothe attahing maps would be degree 2 if it were not for the orientation: for examplethe 2 endpoints of the interval �1 map to �0 = 0 but with opposite orientation, sothey anel. So the ohomology is the homology of the ohain omplex:H i(RP3;Z) = Hi� 0 // Z 0 // Z 2 // Z 0 // Z 0 // 0 � = 8>>><>>>:Z i = 3Z2 i = 20 i = 1Z i = 0 : (13)Now sine H1(RP3;Z2) =Z2 there is also a twisted ohomology, whih we will denote�H(RP3;Z). The twisting e�ets the orientations in the boundary maps �i ! �i�1:Where the two ontributions in the untwisted ase added up, they now anel andvie versa. So the twisted ohomology is�H i(RP3;Z) = Hi� 0 // Z 2 // Z 0 // Z 2 // Z 0 // 0 � = 8>>><>>>:Z2 i = 30 i = 2Z2 i = 10 i = 0 : (14)7



Now let us turn towards K{theory. Here it turns out that (some of) the possibletwists are representing a lass in H1(X;Z2) � H3(X;Z). The e�et of the twist inH1(X;Z2) is again a twisted identi�ation as one goes around a nonontratible loop:If [E℄�[F ℄ is an element in the twisted K{theory then the bundles E, F are exhangedas one goes around a \twist" loop.The H3(X;Z) part of the twist lass an be understood from the transition fun-tion point of view (see e.g. [31℄). By a standard argument this orresponds to a U1valued funtion 'ijk : Ui \ Uj \ Uk ! U1 on eah triple overlap. The transition fun-tions gij : Ui \ Uj ! GL of a twisted bundle then do not quite �t together, but up toa phase fator: gijgjkgki = 'ijk on Ui \ Uj \ Uk : (15)Again there is a subtlety here in that for non torsion twist lasses one annot use�nite dimensional bundles, but this tehnial problem an be dealt with so we willignore it in the following.3.2 Twisted K{theoryFor any generalized ohomology theory there is some Atiyah{Hirzebruh{Whiteheadspetral sequene relating it to ordinary ohomology. For the ase at hand this is thefollowing:Theorem 1 (Generalized Rosenberg spetral sequene). Fix a losed manifoldX and let t1� t3 be a oyle in H1(X;Z2)�H3(X;Z). Then there is a Z�Z2 gradedspetral sequene with Ep;q2 = t1Hp�X; Kq(X)� ; (16)onverging to the twisted K{theory t1�t3K�(X). The spetral sequene is bounded in pand moreover the �rst di�erential is d3 = Sq3 + t3[.Proof. The only novelty is the t1 2 H1(X;Z2) twist, everything else an be foundin [32℄. Again let Xn be the n{skeleton of a ell deomposition of X. Then there is aspetral sequene withEp;q1 = t1�t3Kp+q�Xp;Xp�1� ' Kp+q�Xp;Xp�1� ' Kq�fpt.g� (17)The only novelty is the di�erential d1, whih is now the t1{twisted oboundary oper-ator. Hene the E2 tableau is eq. (16).We are interested in SO(3) ' RP3 with the possible2 twists(�; �) 2 Z2�Z> � H1(RP3;Z2)�H3(RP3;Z) : (18)2Of ourse we are only interested in positive levels.8



In the (+) ase we �nd (2{periodi in q)Ep;q2 = q=2 Z d3=�
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0 Z2 Zp=0 p=1 p=2 p=3 ; Ep;q3 = Ep;q1 = q=2 0 0 Z2 Z�q=1 0 0 0 0q=0 0OO
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//
Z2 0 Z2p=0 p=1 p=2 p=3) (�;�)K1(RP3) =Z2�Z2 or Z4; (�;�)K0(RP3) = 0 : (20)Almost everything is determined diretly from our knowledge of Rosenberg's spetralsequene. We are left only with one tiny ambiguity, we annot deide the group lawon the order 4 harge group (�;�)K1(RP3).In general we expet for eah possible twisted K{theory some CFT or string om-pati�ation unless there is some physial reason why this partiular hoie of disretetorsion is forbidden. So we should expet there to be di�erent WZW models for everyhoie of twist (�; �) 2 Z2 �Z>. Espeially we should not be too surprised if theorder of the harge group is independent of the level.It remains of ourse to deide the �nal ambiguity, but this is surprisingly hardompared to how easily we found almost the omplete answer. The atual omputationwill be in setion 4 and is quite lengthy, but has the redeeming feature that it makesontat with CFT methods.For now let us have a loser look at the (�; 0){twisted K{theory, where we an usea simple trik to disern between the two possibilities for (�;0)K1(RP3). The idea (seealso [21℄ for a similar use) is that this K{theory is the K�(S3) of [20℄, where S3 omeswith the antipodal involution. Then this K{group an be omputed as the ordinaryK{theory of L def= �S(4;0)�R(1;1)�=Z2, the nontrivial real line bundle over RP3. Now ithappens that the one point ompati�ation of L is smooth, and in fat RP4. Hene9



we �nd (�;0)K i(RP3) = K i�(S3) = K i+1(L) = K i+1(RP4�fpt.g) == eK i+1(RP4) = (Z4 i = 10 i = 0 : (21)Unfortunately this trik is not easily extended to twistings (�; �) with � > 0, but itis already tantalizing to see that the twisted K{groups are indeed di�erent from thetwisted ohomology �H�(RP3) =Z2�Z2.4 FHT omputation for SO3So far we only used purely topologial methods to �nd the relevant K{groups. Thisseems to yield the orret result, although we are unable to resolve the remainingZ2�Z2 vs. Z4 ambiguity. It would be nie if we ould resolve this, and even moreinterestingly, if we ould draw a parallel between the representation theoreti argumenton the CFT side and the K{theory omputation.We ahieve this in the by now familiar way (see [10℄): Use some basi triks torewrite the desired K{group tK(SO3) as equivariant K{theory of some produt spae,and then use the equivariant K�unneth theorem [33℄ to relate that to tensor produtsinvolving tKG(GAd). The latter is | by the FHT theorem [12, 14, 15℄ | the Verlindealgebra, also known as the fusion ring. The omputation of the twisted K{theory thusboils down to simple algebra involving fusion rings. We will not make use of the FHTtheorem diretly but determine all neessary rings in the following diretly.In partiular we use tK� (SO3) = tK�SU2�SOAd3 � SUL2 � ; (22)where the supersripts Ad, L denote the SU2 group3 ation: Adjoint and Left multi-pliation. It turns out that the twist lass is only on the �rst fator, so the Cartesianprodut really is a produt, even onsidering the twist. Then we an apply the equiv-ariant K�unneth theorem to the e�et that we get a spetral sequeneE�;�2 = Tor�R(SU2)�tK�SU2(SOAd3 ); Z�== Tor�R(SU2)�tK�SU2(SOAd3 ); tK�SU2(SUL2 )�) tK�SU2�SOAd3 � SUL2 � = tK� (SO3) : (23)3It is important to use SU2 (as opposed to SO3) equivariant K{theory sine the K�unneth theoremwould not hold in the latter ase: SO3 is not a Hodgkin group.10



So now we �rst have to ompute the twisted equivariant K{group tKSU2(SO3), whihwill oupy setions 4.1 to 4.5 (Note that this is similar, but not quite the same astKSO3(SO3), whih is omputed in [14℄). Then we will evaluate the K�unneth spetralsequene in setions 4.6 and 4.7. Finally we ompare our result with the CFT analysisin setion 4.8.4.1 Poinar�e duality and adjoint shiftWe want to ompute the D{brane harge group of the N = 1 supersymmetri WZWmodel at level �, so what is the orret level for the orresponding bosoni WZWmodel? A partial answer is well-known for simply onneted Lie groups, where thelevel of the auxiliary bosoni WZW model is � � h_. But this shift (by the dualCoxeter number in the simply onneted ase) is not the whole story. Really we haveto shift by the twist lass indued via the adjoint representation Ad : G ! SO(g)from the element (f. [14℄)(�; 1;�) 2 H1SO(SO;Z2)�H3SO(SO;Z)'Z2� �Z�Z2� : (24)In our ase we want to use G = SO3 and then the double over fSO3 = SU2, i.e. pullbak H�SO(SO) �! H�SO3�SO3� �! H�SU2�SO3� : (25)It is easy to see that the �nal adjoint shift is1 2 H3SU2�SO3;Z�'Z and � 2 H1SU2�SO3;Z2� 'Z2 : (26)An important point is that we also have to ip the sign, so the straightforward bosoniSO3 WZW model tensored with free fermions orresponds to the � 2 H1(SO3;Z2)twisted K{theory.Furthermore it will be more onvenient to alulate the twisted equivariant K{groups in K{homology in the following. Poinar�e duality (see [14℄) relates this bakto the K{ohomology as of (�;�)K iG(X) = (�;�)KGdim(G)�i(X) : (27)4.2 Mayer{Vietoris sequeneSU2 ats by onjugation on SO3 = SU2=�. There are three kinds of orbits:� The orbit of 1 2 SU2=�, a �xed point.The stabilizer is the whole SU2. 11



� The orbit of ( 0 �11 0 ) 2 SU2=�, whih is topologially RP2.The stabilizer is Z2n U1 � SU2.� The orbit of a generi point is an S2.The stabilizer is a U1 � SU2.This suggests the following ell deomposition of SO3 ' RP3:U The omplement of the RP2.V The omplement of 1 2 SU2=�.suh thatU is ontratible to the �xed point.V is ontratible to the speial RP2 orbit.U \ V is ontratible to a generi S2 orbit.The Mayer{Vietoris sequene in K{homology for the over U , V of SO3 is then thefollowing 6 term yli exat sequene:tKSU21 (SOAd3 )
��

tKSU21 (RP2)oo 0ooR(U1) Ind // R(SU2)� tKSU20 (RP2) // tKSU20 (SOAd3 ) :OO (28)The inlusion i : RP2 ,! RP3 identi�es the ohomology groupsi� : H1(RP3;Z2) ��! H1(RP2;Z2) ; (29)so we an take the oyle's support disjoint from U in the yli exat sequene.Now onerning the K{groups of RP2, they are again the representation ring of thestabilizer, as SU2 ats transitively. But there is a subtlety as this ell might ome witha nontrivial twist lass. Even more deliately, the identi�ation of the K{homologygroups with the representation ring uses Poinar�e duality, and this ips the sign ofthe twist as RP2 is not orientable:tKSU20 �RP2� = �tK0SU2 �RP2� = �tR (Z2n U1) : (30)12



4.3 The (twisted) representation ringsLet us review the representation rings that our in our disussion to �x notation.The most important one is for SU2, sine everything in eq. (28) is an R(SU2) module:R(SU2) =Z[�℄ ; (31)generated by the fundamental (2 dimensional) representation �. Instead of takingpowers of � there is a di�erent Zbasis that is very useful in pratie. This basis arethe irreduible representations of SU2, whih are all symmetri powers of �. They aregiven reursively as Sym�1(�) = 0Sym0(�) = 1�Symn� = Symn+1(�) + Symn�1(�) : (32)Next we have the representations of U1, those areR(U1) =Z[�;��1℄ ; (33)with R(SU2) module struture � : R(SU2) �R(U1) ! R(U1) indued by the embed-ding U1 � SU2. Expliitly the R(SU2) ation is given by�(�; x) = (�+ ��1)x 8x 2 R(U1) : (34)The representation theory of the semidiret produt Z2nU1 is more ompliated.This is abstratly the groupZ2nU1 = �(s; �) : s 2Z2; � 2 R=2�Z	; (s1; �1) � (s2; �2) = (s1s2; �1+ s1�2) ; (35)whih is the same as O2, but more naturally we should think of it as the double overof O2. There are two obvious one dimensional representations, the trivial and the signrepresentation �. In addition to those we also have the 2 dimensional representationfrom the embeddingZ2nU1 � SU2, whih we all again � (this notation makes sense,sine by de�nition then the R(SU2) module struture is just multipliation)�(+1; �) = �e�i� 00 ei�� �(�1;  ) = � 0 �ei ei 0 � : (36)One an easily hek that � 
 � is onjugate to � 
 1 = �, while � is of ourse notonjugate to 1. Hene the representation ring is+R(Z2n U1) def= R(Z2n U1) =Z[�; �℄.
�2 � 1; �(� � 1)� : (37)13



Finally, there is the possibility to twist the Z2n U1 representations, and we get theorresponding twisted representation rings. Really those are de�ned as the twistedequivariant K{groups of a point, and for the ase at hand are (see [13℄):�K1Z2nU1�fpt.g� def= �R1�Z2n U1� = h� � 1iR(Z2nU1) (38a)�K0Z2nU1�fpt.g� def= �R�Z2n U1� = h� + 1iR(Z2nU1) (38b)' R(SU2) =Z[�℄ as R(SU2) module :4.4 Dira indutionThe essential part of the whole omputation is to identify the map dubbed Ind ineq. (28). The pushforward in K{homology is atually Dira indution, a version ofBorel{Weil indution that does not require omplex strutures (see [15℄)Ind : R(U1)! R(SU2)� �R(Z2n U1) : (39)The �rst omponent is just the usual indution, preomposed with multipliation by�� whih is the e�et of the twist lass � = k + 1 2 H3SU2(SO3):�1 Æ Ind(�n) = Symn+�� : (40)Conerning the seond omponent we have to distinguish between the possible �twists (for representation rings it makes also sense to all this a grading), we willome to that shortly.Having identi�ed the indution map and assuming that � > 0 (as we will alwaysdo) it is then easy to see that the total Ind is injetive, so we an indeed determineall the unknowns in the exat sequene eq. (28):tKSU21 �SO3� = �tR1�Z2n U1� (41a)tKSU20 �SO3� = �R(SU2)� �tR�Z2n U1��. Ind �R(U1)� : (41b)Moreover the �rst omponent turns out to be surjetive, so we an write tKSU20 �SO3�as a quotient of �tR�Z2n U1� only.4.4.1 Twisted Poinar�e dualityIt remains to identify the seond omponent of the indution map eq. (39). This isalmost, but not quite, the Dira indutionInd� : R(U1)! �R(Z2n U1) : (42)14



An important subtlety here is that in the twisted Poinar�e duality �K0SU2 �RP2� =�KSU20 �RP2� we had to pik a fundamental lass, or dually a lass in �K0SU2 �RP2�.But the generator is 1 2 �R(Z2n U1) whih is a nontrivial4 twisted representation.To ompensate for this we have to make sure that our K-homology pushforward�2 Æ Ind(1) is again the fundamental lass. From that we an identify5�2 Æ Ind(� ) = Ind�(� � � ) ; (43)using the results on Ind� from the remainder of this setion.4.4.2 Ungraded IndutionFirst, let us look at the indution involving only untwisted representation rings (thisomputes then the (�){twisted K{theory). We �nd�2 Æ Ind(1) = Ind+(�) = � (44a)�2 Æ Ind(��1) = Ind+(1) = 1 + � : (44b)Let us pause to explain the latter eq. (44b), whih might be less obvious. This isa rather degenerate ase of Dira indution as the quotient (Z2 n U1)ÆU1 ' Z2 is0{dimensional.Reall the usual Dira indution for a subgroup H � G, see e.g. [34, 35℄: Givena representation � : H ! V we an onstrut a G representation on �(G �H V ).The problem is that the latter (the spae of setions) will in general not be �nitedimensional. The solution is to de�ne an ellipti operator D : �(G�H V1)! �(G�HV2), then the G equivariant index IndexG(D) 2 R(G) yields a �nite dimensional(virtual) representation.But in the ase at hand G=H ' Z2 is just two points, so �(G �H V ) is 2 dim(V )dimensional. Espeially for V = C the trivial representation we see that �(G�H C ) =L2(Z2) = spanC (1; �) is generated by the trivial and the sign representation, thisexplains eq. (44b).4.4.3 Graded IndutionThe indution to �R�Z2 n U1� (whih neessary for the (+){twisted K{theory) isrelated to the untwisted restrition and indution via the following diagram with4In other words, the trivial representation is not \�" twisted.5Or Ind�(��1 � � ), depending on the hosen orientation.15



exat rows R�Z2n U1� Res+ // R�U1� Ind� // �R�Z2n U1�R�Z2n U1� R�U1�Ind+oo �R�Z2n U1� ;Res�oo

(45)and moreover indution and restrition are adjoint funtors, i.e.HomR(U1)(Res� � ; � ) = Hom�R(Z2nU1)(� ; Ind� � ) : (46)Furthermore all maps are R�Z2n U1�{module maps using the module struture dis-ussed in setion 4.3, so to speify the maps we just have to write down the image ofgenerators in the respetive presentations eqns. (37),(38b),(33):Res+ (1) = 1Res� (1) = �� ��1 : (47)The ordinary restrition Res+ is obvious. For the twisted restrition Res� note that� � ��1 generates the kernel of Ind+, and sine the horizontal lines in eq. (45) areexat this already �xes the restrition6 (up to an irrelevant overall sign).Now Ind� is right adjoint to Res�, so e.g.C ' HomR(U1)��� ��1; �� = HomR(U1)�Res�(1); �� == Hom�R(Z2nU1)�1; Ind�(�)� : (48)Together with exatness of the top row in eq. (45) this determines�2 Æ Ind(1) = Ind�(�) = 1�2 Æ Ind(��1) = Ind�(1) = 0 : (49)4.5 Determining the quotientThe representation ring R(U1) is a free R(SU2) module, generated by �n and �n+1(i.e. any two onseutive powers of � are R(SU2){linearly independent and generateall of R(U1)). Their image under the pushforward then generates Ind �R(U1)� as anR(SU2) module. Taking n = ��� 1, the pushforward has the formInd(���) = Sym0(�)� � � � � � = 1� � � � � �Ind(����1) = Sym�1(�)� � � � � � = 0 � ��2 Æ Ind(����1)� : (50)6One an make this more preise using the desription as super-representations.16



So using the �rst relation we an write every equivalene lass in the quotient eq. (41b)uniquely as 0� (something). The seond relation keeps that hoie of representative,so tKSU20 �SO3� = �tR�Z2n U1�.���2 Æ Ind(����1)� �R(SU2)� : (51)In the (+) ase we found�2 Æ Ind(�n) = Symn(�) 2 �R�Z2n U1� ; (52)in the same way as for the �rst omponent of Ind. Applying eq. (32) we �nd that�2 Æ Ind(����1) = �Sym��1(�) = ����1 + � � � 2 �R�Z2n U1� ; (53)generates the relation.In the (�) ase it is not quite so easy to write down a formula, however we an�nd Ind(�n) reursively using the R(SU2) module struture� Ind(�n) = Ind���n� = Ind��� + ��1��n� = Ind(�n+1) + Ind(�n�1) ; (54)and eq. (44a),(44b). The result is that�2 Æ Ind(��n�1) = (pn(�) 8n evenpn(�) + (�1)n2 (1 + �) 8n odd 2 +R�Z2n U1� ; (55)where pn is a polynomial of degree jnj without onstant part. Its value at 2 will beimportant in the following, by straightforward indution one an show thatpn(2) = 8><>:2 8n 2 2Z+ 14 8n 2 4Z+ 20 8n 2 4Z: (56)Putting everything together we �nd7(+;�)KSU21 �SO3� = Z[�℄=�(+;�)KSU20 �SO3� = Z[�℄.
Sym��1(�)�(�;�)KSU21 �SO3� = 0(�;� odd)KSU20 �SO3� = Z[�; �℄.
�(� � 1); �2 � 1; p�(�)�(�;� even)KSU20 �SO3� = Z[�; �℄.
�(� � 1); �2 � 1; p�(�) + (�1)�2 (1 + �)� (57)as R(SU2) =Z[�℄modules, the orresponding ohomology groups are then determinedby Poinar�e duality eq. (27).7In the (�){twisted ase here the h�i means: At with all of Z[�; �℄. But we really only want tomod out the R(SU2) =Z[�℄ image of Ind(����1). However, this is the same thing sine �pn(�) =pn(�), beause pn does not have a onstant part.17



4.6 The tensor produtNow that we determined the twisted equivariant K{groups we an apply the equiv-ariant K�unneth theorem and determine the orresponding non{equivariant K{theory.The result is a spetral sequene withE�;�2 = Tor�R(SU2)�tK�SU2(SO3); Z� ; (58)where R(SU2) = Z[�℄ ats on Zby multipliation with the dimension of the repre-sentation. With other words, �
R(SU2)Zis evaluation at � = 2:(+;�)KSU21 �SO3�
R(SU2)Z = Z2(+;�)KSU20 �SO3�
R(SU2)Z = Z�(�;�)KSU21 �SO3�
R(SU2)Z = 0(�;� odd)KSU20 �SO3�
R(SU2)Z = Z[�℄.
2(� � 1); �2 � 1; 2� == Z2[�℄.h�2 � 1i =Z2�Z2(�;�24Z>)KSU20 �SO3�
R(SU2)Z = Z[�℄.
2(� � 1); �2 � 1; 1 + �� =Z4(�;�24Z�+2)KSU20 �SO3�
R(SU2)Z = Z[�℄.
2(� � 1); �2 � 1; 3 � �)� == ZÆgd(4; 8) =Z4 : (59)4.7 Higher TorThe CFT harge equation [3℄ dim(�)qa =XN�abqb ; (60)really tells you that the harge group is the tensor produtN 
RGZ; (61)where N is the algebra of the qa with struture onstants Nab.But the derivation of the harge equation is by no means mathematially strit.Indeed we know examples where the twisted K{theory and hene the harge groupis stritly bigger than eq. (61), for example most8 WZW models on ompat simplyonneted simple Lie groups (see [9℄). But by a generalized nonsense argument in-volving the K�unneth spetral sequene we know that the tensor produt eq. (61) is a8With the exeption of SU2 at arbitrary level and other Lie groups at speial levels where theK{groups vanish. 18



subgroup of the K{group, i.e. there are no additional relations between the hargesin eq. (60).But to �nd the whole harge group we must determine the whole Tor(�;�), notjust its degree zero piee � 
 �. Sine the seond argument Z= Z[�℄=h�� 2i hasonly one relation as R(SU2) module, only Tor0 = 
 and Tor1 an be nonvanishing.A quik way to argue that Tor1 always vanishes is the following: There annotbe any nontrivial di�erential after E2 in the K�unneth spetral sequene, so any non-vanishing Tor1 would inrease the order of the harge groups. But we know fromomparison with the generalized Rosenberg spetral sequene already that Tor0 a-ounts for all elements of the K{group.Nevertheless it would be nie to see diretly that Tor1 has to vanish. This willbe the topi of the remainder of this setion. In the simpler (+){twisted ase we anstraightforwardly determine the derived tensor produt (as in [9℄) and �ndTor1R(SU2)�(+;�)K1SU2�SO3�; Z�= 0 ; Tor1R(SU2)�(+;�)K0SU2�SO3�; Z�= 0 : (62)The (�){twisted ase is more ompliated sine there are additional relations, seeeq. (57). We again have to distinguish odd and even �.If � is even, then the K{groups �t into a short exat sequene (reall that thepolynomials pn have no onstant term):0 // Z[�℄.D p�(�)� E �� // (�;� odd)K1SU2(SO3) � 7!0 // Z[�℄.h�2 � 1i // 0 : (63)The long exat sequene for Tor then yields the desired result.Finally, if � is even then we an use the relationp�(�) + (�1)�2 (1 + �) = 0 , � = �(�1)�2 p�(�)� 1 ; (64)to eliminate � and write(�;� even)K1SU2(SO3) =Z[�℄.h~p�(�)i; ~p�(2) 6= 0 ; (65)and again we see that the Tor1 vanishes.For referene, we get(+;�)K1(SO3)=Z� (+;�)K0(SO3)=Z2(�;�)K1(SO3)=(Z2�Z2 � oddZ4 � even (�;�)K0(SO3)= 0 : (66)Note that sine � = k + 1 = kGG=2 + 1, this agrees preisely with the result of [19℄.19



4.8 Comparison with the CFT omputationHow does all this relate to the CFT harge omputation? We atually did somethingvery similar. First, note that the twisted equivariant K{group(�;�)KSU20 �SO3� = �R(SU2)� +R�Z2n U1��. Ind �R(U1)� ; (67)is the same R(SU2) module as the harges q0; : : : ; q��2; q+; q� of Gaberdiel and Gan-non, see [19℄ eq. (2.23) | of ourse up to our more rational labeling of the level, i.e.their nGG = kGG2 + 2 = � + 1. To see this de�neq` def= Sym`(�)� 0 80 � ` � �� 2q+ def= 0� (�1) q� def= 0� (��) ; (68)and take the following R(SU2) generators for the image of the Dira indution:Ind(��1) = Sym��1(�)� (1 + �) (69a)Ind(��2) = Sym��2(�)�� : (69b)Then learly R(SU2) ats as follows on the q generators:�q0 = ��1 � 0� = q1�q` = �Sym`(�)� 0 = �Sym`�1(�) + Sym`+1(�)�� 0 == q`�1 + q`+1 81 � ` � �� 3�q��2 = �Sym��3(�) + Sym��1(�)�� 0 == q��3 � �0 � (1 + �)� = q��3 + q+ + q��q+ = 0 � (��) = Sym��2(�)� 0 = q��2�q� = 0 � (��) = Sym��2(�)� 0 = q��2 : (70)Sine Gaberdiel and Gannon were then omputing the tensor produt of the q withZit is no wonder that they obtain the same result as we did. However the presentationof the module we are working with, eq. (57), is more useful for the omputation ofthe tensor produt, whih is now just one line.5 Conlusions and outlookIn this paper we omputed the harges of D{branes on SO3 as twisted K{theories andfound perfet agreement with the CFT results of [19℄. Furthermore, the twisted K{20



theory point of view eluidated ertain aspets of supersymmetri9 WZW models onnon-simply onneted groups, in partiular it fores us to study two inequivalent suhtheories, whih we all (+) and (�){twisted SO3 WZW model. The latter is simplythe well-known bosoni SO3 WZW model tensored with free fermions, whereas theformer is a novel theory, that to our knowledge has not been disussed in the literatureso far.There are two key points in our analysis, whih we should emphasize. Firstly,the twisted K{theories for SO3 ome in two guises, distinguished by a sign � 2H1(SO3;Z2) =Z2, by whih the K{theory is twisted in addition to the standard twistlass � 2 H3(SO3;Z). A very subtle point in the supersymmetri CFT onstrutionis that the oneptually simpler (�){twisted WZW model orresponds to the � 2H1(SO3;Z2) twisted K{theory. Be that as it may, by applying similar tehnology asin the work of Freed, Hopkins and Teleman [12, 13, 14, 15℄ we are able to determinethe relevant K{groups as in [9, 10, 11℄.Seondly, the additional twisting in the K{theory enfores that there should betwo inequivalent N = 1 supersymmetri WZW models on SO3, whih are preiselydistinguished by the sign in H1(SO3;Z2). This motivates us to de�ne the (+) and(�){twisted models as a simple urrent extension of the supersymmetri SU2 WZWmodel: there are two simple urrents, whih have the same ation on the bosonibsu(2) part but di�er in their ation on the free fermions in bso(3)1. The non-trivialation on the fermions essentially amounts to inluding (�1)F in the orbifold ation.This is in partiular in aord with the identi�ation of H1(G;Z2) twisted K{theorywith Hopkins' K� [20℄.There are several avenues in whih to extend the present work. Clearly, it wouldbe very interesting to disuss the novel (+){twisted SO3 WZW model in more detail,both from the bulk and boundary CFT point of view. In fat, the onstrution of the(+){twisted model obviously applies to the more general setting of any non-simplyonneted Lie group G with j�1(G)j even. The inequivalent supersymmetri WZWmodels for G an be obtained by an analogous simple urrent onstrution.The generalized CFT onstrution suggested above should of ourse be omple-mented by the orresponding twisted K{theory alulation. We have seen a beautifulmath between the two sides in the SO3 ase, whih should generalize to all om-pat Lie groups. We shall address this question elsewhere. Extensions to orientifoldsare also oneivable, e.g. the D{branes for SO3 have been omputed in [36℄ and therelevant K{theory would be a suitably twisted version of Real K{theory.The key point of this paper is that we annot simply analyze supersymmetriWZW models by looking at the bosoni part and ompletely ignoring the fermions.A possibly very interesting appliation of this would be to revisit the onstrution9K{theory would not be relevant for boundary states in the purely bosoni SO3 WZW model, asexplained in the introdution. 21



of symmetry breaking boundary onditions in WZW models. Let us sketh the idea:the analysis of boundary states in WZW models and the orresponding harge om-putation has so far essentially negleted the fermions. In partiular, the symmetry-breaking boundary onditions that have been onstruted so far only break parts ofthe bosoni hiral algebra. It is however oneivable that new boundary states ariseif the free fermion part of the hiral algebra is partially broken as well, e.g. by im-plementing a simple-urrent ation of j = (�1)F in addition to the simple urrents ofthe bosoni hiral algebra.Reently [37℄ there has been some progress for SU(n) WZW{models in under-standing the long-standing mismath between twisted K{theory and WZW D{braneharges for higher rank simply-onneted groups. The onstrution we suggest abovegives rise to a set of new boundary states and it would be important to see whetherthese yield additional harges. The proof of ompleteness and linear-independene ofharges is ertainly one of the main unresolved issue in the CFT analysis of D{braneharges, a rigorous treatment of whih may be inspired by K{theory.AknowledgmentsWe thank Stefan Fredenhagen for useful disussions and omments on the manusript.SSN thanks the University of Pennsylvania for hospitality, while related work wasbegun. The work of VB is supported in part by the NSF Foused Researh GrantDMS 0139799 the DOE under ontrat No. DE-AC02-76-ER-03071.Bibliography[1℄ R. Minasian and G. W. Moore, K{theory and Ramond-Ramond harge, JHEP11 (1997) 002, [http://arXiv.org/abs/hep-th/9710230℄.[2℄ E. Witten, D{branes and K{theory, JHEP 12 (1998) 019,[http://arXiv.org/abs/hep-th/9810188℄.[3℄ S. Fredenhagen and V. Shomerus, Branes on group manifolds, gluonondensates, and twisted K{theory, JHEP 04 (2001) 007,[http://arXiv.org/abs/hep-th/0012164℄.[4℄ P. Bouwknegt, P. Dawson, and D. Ridout, D{branes on group manifolds andfusion rings, JHEP 12 (2002) 065, [http://arXiv.org/abs/hep-th/0210302℄.[5℄ M. R. Gaberdiel and T. Gannon, The harges of a twisted brane, JHEP 01(2004) 018, [http://arXiv.org/abs/hep-th/0311242℄.22

http://xxx.lanl.gov/abs/http://arXiv.org/abs/hep-th/9710230
http://xxx.lanl.gov/abs/http://arXiv.org/abs/hep-th/9810188
http://xxx.lanl.gov/abs/http://arXiv.org/abs/hep-th/0012164
http://xxx.lanl.gov/abs/http://arXiv.org/abs/hep-th/0210302
http://xxx.lanl.gov/abs/http://arXiv.org/abs/hep-th/0311242


[6℄ J. M. Maldaena, G. W. Moore, and N. Seiberg, Geometrial interpretation ofD-branes in gauged WZW models, JHEP 07 (2001) 046,[http://arXiv.org/abs/hep-th/0105038℄.[7℄ W. Lerhe and J. Walher, Boundary rings and N = 2 oset models, Nul.Phys. B625 (2002) 97{127, [http://arXiv.org/abs/hep-th/0011107℄.[8℄ J. M. Maldaena, G. W. Moore, and N. Seiberg, D{brane instantons andK{theory harges, JHEP 11 (2001) 062,[http://arXiv.org/abs/hep-th/0108100℄.[9℄ V. Braun, Twisted K{theory of Lie groups, JHEP 03 (2004) 029,[http://arXiv.org/abs/hep-th/0305178℄.[10℄ S. Sh�afer-Nameki, D{branes in N = 2 oset models and twisted equivariantK{theory, http://arXiv.org/abs/hep-th/0308058.[11℄ S. Sh�afer-Nameki, \The N = 2 hiral ring is twisted equivariant K{theory." Toappear.[12℄ D. S. Freed, The Verlinde algebra is twisted equivariant K{theory, Turkish J.Math. 25 (2001), no. 1 159{167, [http://arXiv.org/abs/math.RT/0101038℄.[13℄ D. S. Freed, Twisted K{theory and loop groups,http://arXiv.org/abs/math.AT/0206237.[14℄ D. S. Freed, M. J. Hopkins, and C. Teleman, Twisted equivariant K{theory withomplex oeÆients, http://arXiv.org/abs/math.AT/0206257. v3 ontainsrelevant hanges.[15℄ D. S. Freed, M. J. Hopkins, and C. Teleman, Twisted K{theory and loop grouprepresentations, http://arXiv.org/abs/math.at/0312155.[16℄ J. Mikelsson, Gerbes, (twisted) K{theory, and the supersymmetri WZWmodel, http://arXiv.org/abs/hep-th/0206139.[17℄ J. Mikelsson, Twisted K{theory invariants,http://arXiv.org/abs/math.at/0401130.[18℄ G. Moore, K-theory from a physial perspetive,http://arXiv.org/abs/hep-th/0304018.[19℄ M. R. Gaberdiel and T. Gannon, D{brane harges on non-simply onnetedgroups, http://arXiv.org/abs/hep-th/0403011.23

http://xxx.lanl.gov/abs/http://arXiv.org/abs/hep-th/0105038
http://xxx.lanl.gov/abs/http://arXiv.org/abs/hep-th/0011107
http://xxx.lanl.gov/abs/http://arXiv.org/abs/hep-th/0108100
http://xxx.lanl.gov/abs/http://arXiv.org/abs/hep-th/0305178
http://xxx.lanl.gov/abs/http://arXiv.org/abs/hep-th/0308058
http://xxx.lanl.gov/abs/http://arXiv.org/abs/math.RT/0101038
http://xxx.lanl.gov/abs/http://arXiv.org/abs/math.AT/0206237
http://xxx.lanl.gov/abs/http://arXiv.org/abs/math.AT/0206257
http://xxx.lanl.gov/abs/http://arXiv.org/abs/math.at/0312155
http://xxx.lanl.gov/abs/http://arXiv.org/abs/hep-th/0206139
http://xxx.lanl.gov/abs/http://arXiv.org/abs/math.at/0401130
http://xxx.lanl.gov/abs/http://arXiv.org/abs/hep-th/0304018
http://xxx.lanl.gov/abs/http://arXiv.org/abs/hep-th/0403011


[20℄ M. Atiyah and M. Hopkins, A variant of K{theory: K�,http://arXiv.org/abs/math.kt/0302128.[21℄ M. R. Gaberdiel and S. Sh�afer-Nameki, Non-BPS D{branes and M{theory,JHEP 09 (2001) 028, [http://arXiv.org/abs/hep-th/0108202℄.[22℄ D. Gepner and E. Witten, String theory on group manifolds, Nul. Phys. B278(1986) 493.[23℄ G. Felder, K. Gawedzki, and A. Kupiainen, The spetrum ofWess{Zumino{Witten models, Nul. Phys. B299 (1988) 355{366.[24℄ G. Felder, K. Gawedzki, and A. Kupiainen, Spetra of Wess{Zumino{Wittenmodels with arbitrary simple groups, Commun. Math. Phys. 117 (1988) 127{158.[25℄ Y. Kazama and H. Suzuki, New N = 2 superonformal �eld theories andsuperstring ompati�ation, Nul. Phys. B321 (1989) 232.[26℄ P. Bordalo and A. Wurtz, D{branes in lens spaes, Phys. Lett. B568 (2003)270{280, [http://arXiv.org/abs/hep-th/0303231℄.[27℄ C. Vafa, Modular invariane and disrete torsion on orbifolds, Nul. Phys.B273 (1986) 592.[28℄ P. Bordalo, Disrete torsion and WZW orbifolds, Phys. Lett. B582 (2004)86{94, [http://arXiv.org/abs/hep-th/0310029℄.[29℄ S. Fredenhagen, D{brane harges on SO(3),http://arXiv.org/abs/hep-th/0404017.[30℄ E. Witten, Baryons and branes in anti de Sitter spae, JHEP 07 (1998) 006,[http://arXiv.org/abs/hep-th/9805112℄.[31℄ P. Bouwknegt, A. L. Carey, V. Mathai, M. K. Murray, and D. Stevenson,Twisted K{theory and K{theory of bundle gerbes, Commun. Math. Phys. 228(2002) 17{49, [http://arXiv.org/abs/hep-th/0106194℄.[32℄ J. Rosenberg, Homologial invariants of extensions of C�{algebras, inProeedings of Symposia in Pure Mathematis Volume 38 Part 1, pp. 35{75,1982.[33℄ J. Rosenberg and C. Shohet, The K�unneth theorem and the universaloeÆient theorem for equivariant K{theory and KK{theory, Mem. Amer.Math. So. 62 (1986), no. 348 vi+95.[34℄ S. Sternberg, \Gainesville letures on Kostant's Dira operator." Unpublished.24

http://xxx.lanl.gov/abs/http://arXiv.org/abs/math.kt/0302128
http://xxx.lanl.gov/abs/http://arXiv.org/abs/hep-th/0108202
http://xxx.lanl.gov/abs/http://arXiv.org/abs/hep-th/0303231
http://xxx.lanl.gov/abs/http://arXiv.org/abs/hep-th/0310029
http://xxx.lanl.gov/abs/http://arXiv.org/abs/hep-th/0404017
http://xxx.lanl.gov/abs/http://arXiv.org/abs/hep-th/9805112
http://xxx.lanl.gov/abs/http://arXiv.org/abs/hep-th/0106194


[35℄ G. D. Landweber, Representation rings of Lie superalgebras,http://arXiv.org/abs/math.RT/0403203.[36℄ N. Couhoud, D{branes and orientifolds of SO(3), JHEP 03 (2002) 026,[http://arXiv.org/abs/hep-th/0201089℄.[37℄ M. R. Gaberdiel, T. Gannon, and D. Roggenkamp, The D{branes of SU(n),http://arXiv.org/abs/hep-th/0403271.

25

http://xxx.lanl.gov/abs/http://arXiv.org/abs/math.RT/0403203
http://xxx.lanl.gov/abs/http://arXiv.org/abs/hep-th/0201089
http://xxx.lanl.gov/abs/http://arXiv.org/abs/hep-th/0403271

	Introduction
	Supersymmetric WZW models on SO3
	The level manifesto
	Supersymmetric WZW models
	D--brane charges

	Pure topology
	Quick review of twisted cohomology
	Twisted K--theory

	FHT computation for SO3
	Poincaré duality and adjoint shift
	Mayer--Vietoris sequence
	The (twisted) representation rings
	Dirac induction
	Twisted Poincaré duality
	Ungraded Induction
	Graded Induction

	Determining the quotient
	The tensor product
	Higher Tor
	Comparison with the CFT computation

	Conclusions and outlook
	Bibliography

