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DESY 04-039MPP-2004-37The Evolution of Hadron Spetra in the Modi�ed LeadingLogarithm ApproximationS. Albino, B. A. Kniehl, and G. KramerII. Institut f�ur Theoretishe Physik, Universit�at Hamburg,Luruper Chaussee 149, 22761 Hamburg, GermanyW. OhsMax-Plank-Institut f�ur Physik (Werner-Heisenberg-Institut),F�ohringer Ring 6, 80805 M�unhen, Germany(Dated: April 30, 2004)AbstratWe perform �ts of �QCD and the gluon fragmentation funtion D(x;Q) at initial sale Q0 ��QCD to harged light hadron momentum spetra data by evolving in the Modi�ed Leading Log-arithm Approximation. Without additional assumptions, we ahieve a good desription of theavailable data for � = ln(1=x) up to and around the Gaussian peak, and values of �QCD aeptablylose to those in the literature. In partiular, we �nd that this proedure desribes the position ofthe peak, and, in ontrast to the Limiting Spetrum, also the normalization.
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I. INTRODUCTIONCross setions in whih hadrons are deteted in the �nal state urrently annot be reliablyalulated from �rst priniples in Quantum Chromodynamis (QCD). However, as a result ofthe fatorization theorem, one an separate these ross setions into perturbatively alulablehard parts onvoluted with parton densities if there are hadrons in the initial state andfragmentation funtions (FF's), whih ontain all the information on the soft transition froma parton a to the produed hadron h. FF's for harged partiles have been well determinedover large and intermediate values of the hadroni momentum fration x = 2p=ps, where pis the momentum of the hadron h and ps is the entre-of-mass energy, by �tting to a wealthof experimental data [1℄. However, data at x < 0:1 have always been exluded from �tsbeause the onvergene of the �xed order perturbation series for the evolution of the FF'sis spoilt by terms of the form �ns lnm(1=x), and so FF's are not well understood at smallx. A theory whih resums these logarithms at leading and sub-leading order exists | theModi�ed Leading Logarithm Approximation (MLLA) [2℄ (for reviews see Refs. [3, 4℄). TheMLLA is a systemati improvement over an earlier approximation, the Double LogarithmiApproximation (DLA), whih resums leading logarithms by summing tree level diagrams inwhih the outgoing gluons are strongly ordered in their angles of emission, thereby givingthe largest logarithm of the gluon FF at the order in �s of the diagram [5℄.The MLLA has been primarily studied in the ontext of the Loal Parton-Hadron Duality(LPHD) approah [6℄. Here, one assumes that, when the longitudal momentum fration zof the observed hadron relative to the parent parton is low, a suÆiently inlusive hadroniproess has similar properties to the orresponding proess involving partons with transversemomentum less than the order of the hadron's mass. The FF's desribe all partons withtransverse momentum less than the fatorization sale Q, so for light hadron prodution theshape in x spae of the initial FF's with initial fatorization sale Q0 = O(�QCD) will besimilar to the shape of the probability for a parton to emit a parton, i.e. these FF's are deltafuntions in (1 � z), and only the absolute normalization Kh is undetermined. Using thisassumption, and �xing Q0 = �QCD, where the MLLA resummed evolution is well behaved,leads to the so-alled Limiting Spetrum [7, 8℄ whih an make preditions for data at smallx with just two free parameters to be �tted, Kh and �QCD. Together with the onventionalhoie Q = ps=2, this approah has been very suessful at desribing the � = ln(1=x)2



dependene of small x data, provided some modi�ations are made to the MLLA evolvednormalization: in Ref. [8℄ an additional omponent not provided by the MLLA was added,whereas in Ref. [9℄ a di�erent Kh was �tted for eah value of ps.In this paper, we are interested in studying MLLA evolution without using strong as-sumptions about the non-perturbative physis suh as the LPHD, or modifying the MLLAevolution itself. There are a number of important reasons for this. Firstly, it is interesting todetermine whether the MLLA an desribe the ps dependene of the overall normalizationof the data. Seondly, in urrent analyses, where only the NLO alulation has been used,suh as in Ref. [1℄, �tting is ahievable only to data for whih x & 0:1 (� . 2:3). A ontinuedrise in the data as x dereases is predited, whereas the experimental data reah a peak andthen fall. Therefore it is important to know if one an use the MLLA to improve the hardpart at small x suh that the �tting an be extended over that in the literature to inludedata for whih x < 0:1 and therefore, sine the ross setion depends on the FF's for z � x,obtain FF's in that region. Thirdly, using weaker assumptions will allow for a purer test ofthe MLLA and determine its kinemati range of validity better. This an be ahieved, asin global �ts, by taking Q0 � �QCD to stay in the perturbative region, in whih ase onedoes not need to assume the Limiting Spetrum to be valid, and absorbing the soft physisat energy sales less than Q0 into a parameterized FF, whose free parameters an be �ttedto data at Q by evolving this initial FF in the MLLA. The distorted Gaussian in �, with noMLLA evolution, gives a good desription of data over the range of Q � �QCD [7, 10℄, sowe shall employ this parameterization at Q = Q0.The organization of this work is as follows. In Setion II we shall repeat the basi MLLAequation in moment spae and disuss various approximations to it. Setion III ontainsthe omparison with e+e� single harged hadron spetra at the larger sale Q > Q0 and thedetermination of �QCD. In Setion IV we make some hanges to the theoretial input tofurther understand the limitations of our general approah. Finally in Setion V we presentour onlusions.II. MLLA EVOLUTIONBefore we present our results onerning the evolution of the low x spetra based on theMLLA evolution equations, we shall list the basi equations on whih our analysis rests.3



We work in the LO approximation where the inlusive ross setion for e+e� ! hX as afuntion of x is related to the FF's Dhq (x;Q) for the transitions q ! h and �q ! h by1�tot d�hdx = Pq e2qDhq (x;Q)Pq e2q ; (1)where eq is the eletoweak harge on quark q, �tot = NPq 4�e2q�2=(3s) is the total rosssetion, and �h is the ross setion for the inlusive prodution of a hadron h.As usual we also use the variable �. At suÆiently small x, i.e. large �, the ontributionto the ross setion from the non-singlet setor may be negleted in our approah sine thenon-singlet evolution is free from small x logarithms. Writing eah quark FF in the formDhq (x;Q) = Dh�(x;Q) +DhNS;q(x;Q); (2)where the singlet Dh�(x;Q) is de�ned to be the sum over all quark FF's divided by thenumber of quark avours Nf and the DhNS;q(x;Q) are the non-singlets, we therefore see thateah quark FF in Eq. (1) may be replaed by the singlet FF. Furthermore, at small x onean make the approximation, good within MLLA auray, that the singlet FF is related tothe gluon FF by Dh�(x;Q) = 2CFN Dhg (x;Q); (3)where CF = (N2 � 1)=(2N). Using these approximations in Eq. (1), we �nd that the rosssetion in the MLLA an be written1�tot d�hdx = 2CFN Dhg (x;Q): (4)In other words, for desribing the fragmentation q(�q) ! h at large � we an just use theFF for g ! h. Note therefore that the ross setion an only depend on Nf through theevolution of the gluon FF, whih we will onsider just now. In the following we shall skip theupper and lower indies and write Dhg (x;Q) = D(x;Q). The MLLA equation for D(x;Q) ismost easily written by introduing the moment transform Dj(Q) of D(x;Q), whih isDj(Q) = Z 10 dxxj�1D(x;Q); (5)with the inverse transformationD(x;Q) = Z �+i1��i1 dj2�ix�jDj(Q); (6)4



where � must be hosen suh that the integration ontour lies to the right of all poles inDj(Q). We introdue ! = j � 1 and write D!(Y ) = Dj(Q) with Y = ln(Q=Q0). Then theMLLA equation for D!(Y ) is [3℄�! + ddY � ddY D!(Y )� 4N �s2�D!(Y ) = �a�! + ddY � �s2�D!(Y ); (7)where a = 11N=3+2Nf=(3N2 ). The solution to this equation forD!(Y ) is weakly dependenton Nf . Indeed, as shown in Ref. [8℄, the moments of the data alulated with Nf = 3and those alulated with Nf inreasing by unity whenever ps is large enough for theontribution from heavy quark avour to beome relevant give similar results up to ps =202 GeV within the error range on the moments extrated from the experimental data.This observation is also substantiated by a reent experimental analysis [11℄, where it wasfound that at the Z0 resonane, where the e�et of heavy quark prodution is maximal,the � spetra at the peak determined for all avours di�ers from the one for just the lightavours by about 8%. In analyses using the Limiting Spetrum it has been suÆient for allavailable data to set Nf = 3, and we will therefore use this value throughout this paper. Byintroduing the anomalous dimension !(�s), we haveD!(Y ) = D!(0) exp�Z Y0 dy!(�s(y))�: (8)If D!(0) is known from the FF at the starting sale Q0, whih must be taken from experi-mental data, Eq. (8) gives us the solution for arbitrary Y , if we know !(�s). Equation (7)is equivalent to the following di�erential equation for !:(! + !) ! � 4N �s2� = ��(�s) dd�s! � a (! + !) �s2� + ab��s2��2 ; (9)where �(�s) = ddY �s(Y ) = �b�2s2�; (10)with b = 11N=3 � 2Nf=3. The �rst term on the right hand side of Eq. (9) originates fromthe running of �s. The seond term gives the hard single-logarithmi orretion to the DLAsoft emission. The last term is formally a next-to-MLLA term, whih may be negleted. Ageneral solution of Eq. (7) in terms of onuent hypergeometri funtions is known [3, 7℄.Equivalently, one an solve Eq. (9) in terms of Whittaker funtions. However, sine theMLLA equation is only valid in the region �s � 1 and ! = O(p�s), we an obtain a5



simpler but equally aurate solution to Eq. (9) by expanding in �s=! � 1 while keeping�s=!2 = O(1) �xed, ! = 1Xn=1 ��s! �n gn ��s!2� ; (11)and solving for eah term. The �rst and seond term will then resum double and singlelogarithms respetively, but the higher terms obtained this way will be inomplete sine theMLLA does not treat terms in ! whih are of O(�3=2s ) or higher in the region of validitygiven above.The DLA orresponds to the n = 1 term only in Eq. (11), in whih ase the terms in Eq.(9) proportional to �(�s) and a an be negleted. One obtains two solutions:�! = 12 ��! �q!2 + 420� ; (12)with 20 = 4N �s2� : (13)For �s ! 0 we obtain +! = 20! = 4N! �s2�; �! = �2!; (14)i.e. +! has the familiar singularity � 1=! whih determines the small x behaviour of D(x;Q)in the Leading Logarithm Approximation (LLA). Therefore the orret solution in the DLAis ! = +! . This solution is �nite for ! ! 0 and is equal to 0 � p�s.One the solution for the n = 1 term in Eq. (11) has been hosen, there is only onesolution for the n = 2 term, and we have �nally! = 12 ��! +q!2 + 420�+ �s2� "b 20!2 + 420 � a2  1 + !p!2 + 420!#+O���s! �3 �s!2� :(15)This approximate solution is usually referred to as the MLLA result [3℄. The term propor-tional to a modi�es the �s ! 0 limit to! = �4N! � a� �s2� (16)whih reprodues the �nite orretion to the LO +! in the LLA. The result in Eq. (15) mustbe substituted in Eq. (8) to obtain the orresponding MLLA solution for D!(Y ). WritingD!(Y ) = D!(0) eD!(Y ); (17)6



we have ln eD!(Y ) = Z Y0 dy!(�s(y)): (18)Using the LO formula �s(y) = 2�=[b(y + �)℄, where we introdue � = ln(Q0=�QCD), theintegration in Eq. (18) with ! given in Eq. (15) yieldsln eD!(Y ) = f(!; Y; �)� f(!; 0; �); (19)where f(!; Y; �) =� 12Z + 12pZ(Z + 4A) + (2A�B) ln�pZ + 4A+pZ�+�14 � B2 � lnZ � 14 ln(Z + 4A): (20)In Eq. (20) we introdued A = 4N=(b!), B = a=b and Z = !(Y + �). Then the solutioneD!(Y ) an be written as eD!(Y ) = ef(!;Y;�)�f(!;0;�); (21)with ef(!;Y;�) = e� 12Z+ 12pZ(Z+4A) hpZ + 4A+pZi2A�B � ZZ + 4A�14 Z�B2 : (22)By �xing �QCD the evolution of D!(Y ) is ompletely determined by Eqs. (21) and (22).This solution has for Y !1 the following asymptoti behaviour:ef(!;Y;�) ' ZA�B : (23)In Refs. [3℄ and [12℄ it was found that for ! & 1, ! in the MLLA aidentally mimisthe behaviour of the LLA LO ! reasonably well. This is aided by the observation that the! !1 limit of Eq. (15) is equal, up to terms of O(1=!), to that of Eq. (16), the �s; ! ! 0limit of the LLA LO !, whose O(!) orretions turn out to be rather unimportant at! = O(1) and negative at large !. Therefore we neglet those orretions beyond MLLAwhih are important at small �.Solving Eq. (9) for the n = 3 term of Eq. (11) gives us a ontribution to the next-to-MLLAorretion whih readsNMLLA! = ��s! �3 g3 ��s!2�= ��s2��2 "a2 20(!2 + 420) 32 + ab2  1p!2 + 420 � !3(!2 + 420)2!+ b2 220(!2 + 420 ) 32 � 540(!2 + 420) 52 !#: (24)7



The addition of this term to the expression in Eq. (15) would give a more aurate ap-proximation to the exat solution to Eq. (9) if Eq. (11) were a suitably onvergent series.However, these results are not omplete at next-to-MLLA order; in partiular they refer onlyto gluon jets. In the omplete next-to-MLLA ross setion both the evolution and Eq. (3)obtain a orretion, the latter arising from the energy dependent di�erenes between quarkand gluon jets [13℄. In any ase, we an at least use the term in Eq. (24) to determine thestability of our form for the MLLA evolution in di�erent regions of � and ps.Finally, sine partons are treated as massless in the MLLA, the parton momentum spe-trum is equivalent to the parton energy spetrum. Consequently the MLLA formalism needsmodi�ation in order to inorporate hadron mass e�ets, whih beome more relevant as� inreases. However, suh e�ets will be negleted in our analysis sine otherwise modelassumptions are needed.III. FITTING THE EXPERIMENTAL DATAIn this setion we test how well the MLLA desribed in the previous setion agrees withexperimental data, both by �tting free parameters to data sets and by using the resulting�tted parameters to predit other data sets.�QCD is the only parameter on whih MLLA evolution depends, and should therefore beobtainable by �tting to data at widely separated energies, starting from TASSO data atQ0 = 14 GeV=2 [14℄. Therefore we use data at the highest ps, namely the reent data atps = 202 GeV from OPAL [9℄, as well as data at 91 GeV [15℄ from the same ollaboration,whih have the highest auray. For all experimental data used in this paper, systematiand statistial errors are added in quadrature. As in Ref. [9℄, we impose a lower bound onthe OPAL data of � > 0:75 + 0:33 ln �ps=GeV� (25)sine at lower � the experimental errors are too small to �t using only one parameter.Inluding these small � points in fat does not hange the results signi�antly but leads toa muh higher minimized �2. To ontrol the number of data used in the non-perturbativeregion of hadroni momentum p = O(�QCD), we introdue a ut-o� mass salem and impose8



an upper limit on the data used of p > m, or� < ln ps2m: (26)The initial gluon FF used for this �t was obtained by independently �tting it to data at thelowest ps, namely the TASSO data at ps = 14 GeV, using a distorted Gaussian,xD(x;Q0) = N�p2� exp"18k � 12sÆ � 14(2 + k)Æ2 + 16sÆ3 + 124kÆ4#; (27)where Æ = (� � �)=� and Q0 = 14 GeV=2, and the results are shown in Table I. The errorswere obtained from the diagonal omponents of the inverted matrix of seond derivatives of�2 at the minimum. Sine this method assumes that �2 is quadrati in the parameters, theseerrors should not be taken too seriously. In this ase there was no need to impose a lower �bound on the TASSO data sine there were 5 free parameters in the �t. We also imposed noupper � bound on this data, sine doing so either made little di�erene for m . 0:5 GeV ordid not onstrain the parameters suÆiently for m & 0:5 GeV. The ahieved �2 per degree offreedom, �2DF , is 0.76, and the results in Table I for the parameters of the distorted Gaussian�t agree well with earlier �ts in the literature [16℄.TABLE I: Fit of a distorted Gaussian to all 20 TASSO data points atps = 14 GeV withQ0 = ps=2.Parameter N � �2 s kValue 9.71 2.33 0.61 �0:11 �0:77Error 0.11 0.01 0.02 0.05 0.12The resulting values of �QCD when performing this proedure, and utting the data usingvalues of m ranging from 0:3 to 0:6 GeV, are shown in Table II, where it an be seen thatthe obtained value for �QCD with Nf = 3 depends somewhat on the upper limit for �. Theerrors were alulated by varying �QCD, in both diretions, from its value at the minimumuntil �2 inreased by unity. The errors were found to be symmetri and lose to the inverseof the seond derivative of �2 with respet to �QCD. If we hoose the �QCD from the �t withthe smallest �2DF we have �QCD = 317 MeV in reasonable agreement with LO �QCD valueswith Nf = 3 obtained in other analyses [8, 16℄.9



TABLE II: Four independent �ts of �QCD to OPAL data at 91 and 202 GeV, where the uts ineah ase are labelled by the value of m.m (GeV) 0.3 0.4 0.5 0.6�QCD (MeV) 258�8 293�9 307�10 317�10�2DF 7.0 3.0 2.3 1.8The �ts for m = 0:3 and 0.6 GeV are shown graphially in Figs. 1 and 2. These �guresalso show the preditions of the respetive �ts for TPC data at 29 GeV [17℄, TASSO dataat 35 and 44 GeV [14℄, TOPAZ data at 58 GeV [18℄ and OPAL data at 133 [19℄ and 172GeV [20℄. In all plots in this paper, eah urve is shifted up from the urve below by 0.8 forlarity. The data are well desribed almost up to the peak, about one half or one unit in �below. Beyond the peak the preditions fail.In Ref. [8℄ a muh better agreement with data over the whole � range was obtained, but theMLLA predition was modi�ed in two aspets. Firstly, an energy independent bakgroundterm was added to the MLLAmultipliity formula and, seondly, a orretion for mass e�etsat large � was added. In ontrast, our �t, starting from the Gaussian parameterization of theTASSO data at 14 GeV, predits the � distributions at higher energies using only a singleparameter, �QCD; it is remarkable that MLLA evolution predits all data sets at higherenergies very well up to the peak region. The disrepany beyond the peak region in ourase is too large to be attributed to mass e�ets.The distorted Gaussian parameters are highly orrelated with one another, so in order toonstrain them better, we �t these parameters and �QCD simultaneously to TASSO data at14 GeV and OPAL data at 91 and 202 GeV. We again impose the upper bound of Eq. (26),but this time on all three data sets for onsisteny. However, we impose no lower bound onany of the data, beause all distorted Gaussian parameters are free in the �t. Taking �rstm = 0:4 GeV, we obtained the results presented in Table III with �2DF = 2:3, whih areshown graphially in Fig. 3. This �gure also ontains preditions for other data sets not usedin the �t. The ase for m = 0:5 GeV is shown in Table IV and Fig. 4, where �2DF = 2:1.Sine the dependene of �2 on the parameters annot be adequately approximated by aquadrati, and sine the present study does not aim at a preise determination of �QCD, werefrain from alulating the errors in these and subsequent tables.10
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FIG. 1: Fit of �QCD to OPAL data at ps = 91 and 202 GeV, after �tting the initial gluon FFto TASSO data at 14 GeV. The � region of data is hosen as desribed in Eqs. (25) and (26),and is indiated by the vertial dotted lines. The upper bound orresponds to m = 0:3 GeV. Thepreditions from this �t of other data sets is also shown. The lowest urve shows the independentdistorted Gaussian �t to TASSO data at 14 GeV. Eah urve is shifted up by 0.8 for larity.TABLE III: Fit of gluon FF and �QCD to all TASSO data at 14 GeV and OPAL data at 91 and202 GeV (88 data points), with m = 0:4 GeV.N � �2 s k �QCD (MeV)7.86 2.11 0.40 �0:46 �1:32 649TABLE IV: As in Table III, but with 83 data points and m = 0:5 GeV.N � �2 s k �QCD (MeV)11.80 2.60 0.67 �0:26 �1:48 87The data around the peak region are better desribed for m = 0:5 GeV. We note thatthere is a large di�erene between the parameters in eah ase, whih may be due to the fatthat the theory annot aomodate some or all of the three main features of the data, being11
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FIG. 2: As in Fig. 1, with an upper bound in � on the data used orresponding to m = 0:6 GeVand indiated by a vertial dotted line. Eah urve is shifted up by 0.8 for larity. (Note againthat the lowest urve is from an independent �t to all TASSO data at ps = 14 GeV, and hene isidential to the orresponding urve in Fig. 1.)the position of the maximum, the width and the normalization. Indeed, two loal minimawere found in eah �t, and the global minimum shifted from one of these two loal minimato the other as m inreased from 0:4 to 0:5 GeV.The resulting values for �QCD in the �ts of Tables III and IV are learly too di�erentfor either of them to be taken seriously. This is probably due to the fat that �QCD andthe distorted Gaussian parameters are highly orrelated with one another. In the �ts ofTable II, the values of �QCD are more onsistent with eah other sine they were ompletelyunorrelated with the distorted Gaussian parameters.To better onstrain all the parameters would require using more data sets in the �t.Therefore we �t the distorted Gaussian parameters and �QCD to all available data sets,namely the data sets in Figs. 1 { 4, as well as TASSO data at 22 GeV [21℄, ALEPH [22℄,DELPHI [23℄, L3 [24℄ and SLD [25℄ data at 91 GeV, ALEPH data at 133 GeV [26℄, DELPHIdata at 161 GeV [27℄ and OPAL data at 183 and 189 GeV [20℄. For m = 0:5 GeV, weobtained the results shown in Table V and Fig. 5, for whih �2DF = 4:0 was ahieved. The12
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FIG. 3: Fit of gluon FF and �QCD to TASSO data at 14 GeV and OPAL data at 91 and 202GeV, with an upper bound in � on the data used orresponding to m = 0:4 GeV and indiated bya vertial dotted line. Other data sets are shown for omparison. The upper bound on � for eahdata set used in the �t is indiated by a vertial dotted line.results do not di�er signi�antly from those in Table IV and Fig. 4, nor from similar �tswith m = 0:4 and 0.6 GeV, for whih we obtained �QCD = 106 and 129 MeV respetively.In all ases we found that there were more than one loal minimum, from whih we seletedthe minimum with the smallest �2.TABLE V: Fit to all available data (413 data points), with m = 0:5 GeV (see text).N � �2 s k �QCD (MeV)11.65 2.57 0.70 �0:19 �1:17 130The �t in Fig. 5 is the main result of this paper. A global �t in whih the parameters ofthe distribution at the lowest sale Q0 are �tted simultaneously with the parameter �QCDleads to an improvement over the �ts in Figs. 1 and 2. At all energies the desription isnow good up to the peak or even beyond. We stress again that this �t, beyond the inputparameterization at Q0, does not involve any additional assumptions beyond the MLLAevolution. 13
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FIG. 4: As in Fig. 3, but with m = 0:5 GeV.IV. FURTHER STUDIESIn all our �ts so far we obtained a good desription of the data below the maximum, i.e.for small � values, but a rather bad desription in the region above the peak, i.e. for large �(with the exeption of the TASSO 14 GeV data, when it was �tted over the whole � range).This disrepany may have several reasons.Sine the MLLA approah is supposed to be partiularly valid for suÆiently large �,presumably in the peak region, despite the disussion at the end of Setion II it may havebeen neessary to exlude data below a given �, e.g. that of Eq. (25), in our approah of�tting the distorted Gaussian parameters and �QCD simultaneously to all three data sets.However, with this approah only a few data points are left, in partiular for the TASSOdata at 14 GeV, when imposing also the upper limit on � in Eq. (26). Therefore a lower �ut with the approah applied in Tables III and IV does not work.Alternatively, it may be that the upward evolution of the higher moments tends to beomeunstable. To investigate this possibility, we �t the distorted Gaussian parameters and �QCDto TASSO data at 14 GeV and OPAL data at 91 and 202 GeV as before, but this timewe set Q0 = 202 GeV=2, i.e. we �t the initial distribution at the highest energy and evolvedownwards. The results of this �t are shown in Table VI and Fig. 6, where �2DF = 3:9. The14
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FIG. 5: Global �t of gluon FF and �QCD, with m = 0:5 GeV, to the data shown here and otherdata listed in the text.value of �QCD obtained is in good agreement with that obtained in other analyses. Theresulting � distributions also �t better to the data at the highest energies at larger � valuesbeyond the peak, whereas at the remaining energies the desription of the data around thepeak beomes worse.TABLE VI: Fit of gluon FF to TASSO data at 14 GeV and OPAL data at 91 and 202 GeV (83data points), using Q0 = 202 GeV=2 and downward evolution, with m = 0:5 GeV.N � �2 s k �QCD (MeV)26.83 3.66 1.17 �0:52 �1:49 225Another possibility for our large � disrepany may be due to the region of funtion spaein � available to the parameterization in Eq. (27) being insuÆient. To enlarge this region,we added a term C5Æ5 + C6Æ6 (28)to the argument of the exponential in Eq. (27), and inludeC5 and C6 in the list of parametersto be �tted. However, when performing this �t with m = 0:5 GeV, there was no signi�ant15
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FIG. 6: Fit of gluon FF to TASSO data at 14 GeV and OPAL data at 91 and 202 GeV, usingQ0 = 202 GeV=2 and downward evolution, with m = 0:5 GeV.improvement over the �t in Fig. 4.This indiates that the failure to desribe the region above the peak is inherent to theMLLA formalism as it is applied here. A better approximation to the full analyti solutionto Eq. (7) may improve the large � desription, sine it inludes ertain orretions of next-to-MLLA order. Suh orretions are also inluded, for example, in the Limiting Spetrumwithin the LPHD approah, where, ompared to our �ts, a better desription of the databeyond the peak is ahieved, given suitable modi�ations to the MLLA evolution of thenormalization (see Setion I). Therefore we repeated the �t of Fig. 4, but this time inludingthe extra term given by Eq. (24) in the evolution. In this ase �2DF inreased to 2:6, and thisinrease an be attributed to the fat that the deviations from the data were slightly largerbeyond the peak. However, up to the peak the desription was as good as the �t of Fig. 4.Furthermore the theoretial urves were rather similar to those of Fig. 4 in the � range ofthe data. This suggests that the MLLA an only desribe data up to the peak, and thata full next-to-MLLA alulation is required beyond the peak, whih inludes, in partiular,the orrelation between the evolution of quark and gluon jets.16



V. CONCLUSIONSIn this work we perform �ts to the available momentum spetra data of e+e� annihilationin the energy range 14 { 202 GeV using MLLA evolution. No additional assumptions, suh asthe LPHD, is used other than a onjetured funtional form for the gluon FF, and thereforewe have ahieved a partiularly pure test of the MLLA. We �nd a good desription of thedata in the region up to the maximum of the distribution in the saling variable �, withonly a minimal number of parameters. In partiular we �nd that MLLA evolution withoutadditional input gives a good desription of the normalization up to the peak, and also theapproximate position of the peak.Our �tted values of �QCD over a large range. However, in our model-independent ap-proah, there is some theoretial ambiguity in �QCD. We have hosen the renormalisationand fatorization sales to be Q = ps=2, but we ould also have hosen some fator of this,of O(1). With this theoretial error, our results for �QCD are onsistent with those of otherstudies [1, 8, 9, 16℄.Clearly, our form for the MLLA evolution is insuÆient to desribe the data above thepeak. The inlusion of the next-to-MLLA ontribution, Eq. (24), did not improve our results.At this order, a full treatment of momentumdistributions would inlude quark-gluon mixing,whih may be the most important e�et at this order and therefore may signi�antly helpto redue the large � disrepany.Finally, it will be interesting to inorporate the MLLA into the full NLO �ts whih applyto the large x range, in order to extend the region of validity towards lower values of x. Ourreipe for �tting the fragmentation funtions is onsistent and ompatible with the standard�tting.AknowledgmentsThis work was supported in part by the Deutshe Forshungsgemeinshaft through GrantNo. KN 365/1-2, by the Bundesministerium f�ur Bildung und Forshung through Grant No.05 HT1GUA/4, and by Sun Mirosystems through Aademi Equipment Grant No. EDUD-17
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