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DESY 04-039MPP-2004-37The Evolution of Hadron Spe
tra in the Modi�ed LeadingLogarithm ApproximationS. Albino, B. A. Kniehl, and G. KramerII. Institut f�ur Theoretis
he Physik, Universit�at Hamburg,Luruper Chaussee 149, 22761 Hamburg, GermanyW. O
hsMax-Plan
k-Institut f�ur Physik (Werner-Heisenberg-Institut),F�ohringer Ring 6, 80805 M�un
hen, Germany(Dated: April 30, 2004)Abstra
tWe perform �ts of �QCD and the gluon fragmentation fun
tion D(x;Q) at initial s
ale Q0 ��QCD to 
harged light hadron momentum spe
tra data by evolving in the Modi�ed Leading Log-arithm Approximation. Without additional assumptions, we a
hieve a good des
ription of theavailable data for � = ln(1=x) up to and around the Gaussian peak, and values of �QCD a

eptably
lose to those in the literature. In parti
ular, we �nd that this pro
edure des
ribes the position ofthe peak, and, in 
ontrast to the Limiting Spe
trum, also the normalization.
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I. INTRODUCTIONCross se
tions in whi
h hadrons are dete
ted in the �nal state 
urrently 
annot be reliably
al
ulated from �rst prin
iples in Quantum Chromodynami
s (QCD). However, as a result ofthe fa
torization theorem, one 
an separate these 
ross se
tions into perturbatively 
al
ulablehard parts 
onvoluted with parton densities if there are hadrons in the initial state andfragmentation fun
tions (FF's), whi
h 
ontain all the information on the soft transition froma parton a to the produ
ed hadron h. FF's for 
harged parti
les have been well determinedover large and intermediate values of the hadroni
 momentum fra
tion x = 2p=ps, where pis the momentum of the hadron h and ps is the 
entre-of-mass energy, by �tting to a wealthof experimental data [1℄. However, data at x < 0:1 have always been ex
luded from �tsbe
ause the 
onvergen
e of the �xed order perturbation series for the evolution of the FF'sis spoilt by terms of the form �ns lnm(1=x), and so FF's are not well understood at smallx. A theory whi
h resums these logarithms at leading and sub-leading order exists | theModi�ed Leading Logarithm Approximation (MLLA) [2℄ (for reviews see Refs. [3, 4℄). TheMLLA is a systemati
 improvement over an earlier approximation, the Double Logarithmi
Approximation (DLA), whi
h resums leading logarithms by summing tree level diagrams inwhi
h the outgoing gluons are strongly ordered in their angles of emission, thereby givingthe largest logarithm of the gluon FF at the order in �s of the diagram [5℄.The MLLA has been primarily studied in the 
ontext of the Lo
al Parton-Hadron Duality(LPHD) approa
h [6℄. Here, one assumes that, when the longitudal momentum fra
tion zof the observed hadron relative to the parent parton is low, a suÆ
iently in
lusive hadroni
pro
ess has similar properties to the 
orresponding pro
ess involving partons with transversemomentum less than the order of the hadron's mass. The FF's des
ribe all partons withtransverse momentum less than the fa
torization s
ale Q, so for light hadron produ
tion theshape in x spa
e of the initial FF's with initial fa
torization s
ale Q0 = O(�QCD) will besimilar to the shape of the probability for a parton to emit a parton, i.e. these FF's are deltafun
tions in (1 � z), and only the absolute normalization Kh is undetermined. Using thisassumption, and �xing Q0 = �QCD, where the MLLA resummed evolution is well behaved,leads to the so-
alled Limiting Spe
trum [7, 8℄ whi
h 
an make predi
tions for data at smallx with just two free parameters to be �tted, Kh and �QCD. Together with the 
onventional
hoi
e Q = ps=2, this approa
h has been very su

essful at des
ribing the � = ln(1=x)2



dependen
e of small x data, provided some modi�
ations are made to the MLLA evolvednormalization: in Ref. [8℄ an additional 
omponent not provided by the MLLA was added,whereas in Ref. [9℄ a di�erent Kh was �tted for ea
h value of ps.In this paper, we are interested in studying MLLA evolution without using strong as-sumptions about the non-perturbative physi
s su
h as the LPHD, or modifying the MLLAevolution itself. There are a number of important reasons for this. Firstly, it is interesting todetermine whether the MLLA 
an des
ribe the ps dependen
e of the overall normalizationof the data. Se
ondly, in 
urrent analyses, where only the NLO 
al
ulation has been used,su
h as in Ref. [1℄, �tting is a
hievable only to data for whi
h x & 0:1 (� . 2:3). A 
ontinuedrise in the data as x de
reases is predi
ted, whereas the experimental data rea
h a peak andthen fall. Therefore it is important to know if one 
an use the MLLA to improve the hardpart at small x su
h that the �tting 
an be extended over that in the literature to in
ludedata for whi
h x < 0:1 and therefore, sin
e the 
ross se
tion depends on the FF's for z � x,obtain FF's in that region. Thirdly, using weaker assumptions will allow for a purer test ofthe MLLA and determine its kinemati
 range of validity better. This 
an be a
hieved, asin global �ts, by taking Q0 � �QCD to stay in the perturbative region, in whi
h 
ase onedoes not need to assume the Limiting Spe
trum to be valid, and absorbing the soft physi
sat energy s
ales less than Q0 into a parameterized FF, whose free parameters 
an be �ttedto data at Q by evolving this initial FF in the MLLA. The distorted Gaussian in �, with noMLLA evolution, gives a good des
ription of data over the range of Q � �QCD [7, 10℄, sowe shall employ this parameterization at Q = Q0.The organization of this work is as follows. In Se
tion II we shall repeat the basi
 MLLAequation in moment spa
e and dis
uss various approximations to it. Se
tion III 
ontainsthe 
omparison with e+e� single 
harged hadron spe
tra at the larger s
ale Q > Q0 and thedetermination of �QCD. In Se
tion IV we make some 
hanges to the theoreti
al input tofurther understand the limitations of our general approa
h. Finally in Se
tion V we presentour 
on
lusions.II. MLLA EVOLUTIONBefore we present our results 
on
erning the evolution of the low x spe
tra based on theMLLA evolution equations, we shall list the basi
 equations on whi
h our analysis rests.3



We work in the LO approximation where the in
lusive 
ross se
tion for e+e� ! hX as afun
tion of x is related to the FF's Dhq (x;Q) for the transitions q ! h and �q ! h by1�tot d�hdx = Pq e2qDhq (x;Q)Pq e2q ; (1)where eq is the ele
toweak 
harge on quark q, �tot = N
Pq 4�e2q�2=(3s) is the total 
rossse
tion, and �h is the 
ross se
tion for the in
lusive produ
tion of a hadron h.As usual we also use the variable �. At suÆ
iently small x, i.e. large �, the 
ontributionto the 
ross se
tion from the non-singlet se
tor may be negle
ted in our approa
h sin
e thenon-singlet evolution is free from small x logarithms. Writing ea
h quark FF in the formDhq (x;Q) = Dh�(x;Q) +DhNS;q(x;Q); (2)where the singlet Dh�(x;Q) is de�ned to be the sum over all quark FF's divided by thenumber of quark 
avours Nf and the DhNS;q(x;Q) are the non-singlets, we therefore see thatea
h quark FF in Eq. (1) may be repla
ed by the singlet FF. Furthermore, at small x one
an make the approximation, good within MLLA a

ura
y, that the singlet FF is related tothe gluon FF by Dh�(x;Q) = 2CFN
 Dhg (x;Q); (3)where CF = (N2
 � 1)=(2N
). Using these approximations in Eq. (1), we �nd that the 
rossse
tion in the MLLA 
an be written1�tot d�hdx = 2CFN
 Dhg (x;Q): (4)In other words, for des
ribing the fragmentation q(�q) ! h at large � we 
an just use theFF for g ! h. Note therefore that the 
ross se
tion 
an only depend on Nf through theevolution of the gluon FF, whi
h we will 
onsider just now. In the following we shall skip theupper and lower indi
es and write Dhg (x;Q) = D(x;Q). The MLLA equation for D(x;Q) ismost easily written by introdu
ing the moment transform Dj(Q) of D(x;Q), whi
h isDj(Q) = Z 10 dxxj�1D(x;Q); (5)with the inverse transformationD(x;Q) = Z �+i1��i1 dj2�ix�jDj(Q); (6)4



where � must be 
hosen su
h that the integration 
ontour lies to the right of all poles inDj(Q). We introdu
e ! = j � 1 and write D!(Y ) = Dj(Q) with Y = ln(Q=Q0). Then theMLLA equation for D!(Y ) is [3℄�! + ddY � ddY D!(Y )� 4N
 �s2�D!(Y ) = �a�! + ddY � �s2�D!(Y ); (7)where a = 11N
=3+2Nf=(3N2
 ). The solution to this equation forD!(Y ) is weakly dependenton Nf . Indeed, as shown in Ref. [8℄, the moments of the data 
al
ulated with Nf = 3and those 
al
ulated with Nf in
reasing by unity whenever ps is large enough for the
ontribution from heavy quark 
avour to be
ome relevant give similar results up to ps =202 GeV within the error range on the moments extra
ted from the experimental data.This observation is also substantiated by a re
ent experimental analysis [11℄, where it wasfound that at the Z0 resonan
e, where the e�e
t of heavy quark produ
tion is maximal,the � spe
tra at the peak determined for all 
avours di�ers from the one for just the light
avours by about 8%. In analyses using the Limiting Spe
trum it has been suÆ
ient for allavailable data to set Nf = 3, and we will therefore use this value throughout this paper. Byintrodu
ing the anomalous dimension 
!(�s), we haveD!(Y ) = D!(0) exp�Z Y0 dy
!(�s(y))�: (8)If D!(0) is known from the FF at the starting s
ale Q0, whi
h must be taken from experi-mental data, Eq. (8) gives us the solution for arbitrary Y , if we know 
!(�s). Equation (7)is equivalent to the following di�erential equation for 
!:(! + 
!) 
! � 4N
 �s2� = ��(�s) dd�s
! � a (! + 
!) �s2� + ab��s2��2 ; (9)where �(�s) = ddY �s(Y ) = �b�2s2�; (10)with b = 11N
=3 � 2Nf=3. The �rst term on the right hand side of Eq. (9) originates fromthe running of �s. The se
ond term gives the hard single-logarithmi
 
orre
tion to the DLAsoft emission. The last term is formally a next-to-MLLA term, whi
h may be negle
ted. Ageneral solution of Eq. (7) in terms of 
on
uent hypergeometri
 fun
tions is known [3, 7℄.Equivalently, one 
an solve Eq. (9) in terms of Whittaker fun
tions. However, sin
e theMLLA equation is only valid in the region �s � 1 and ! = O(p�s), we 
an obtain a5



simpler but equally a

urate solution to Eq. (9) by expanding in �s=! � 1 while keeping�s=!2 = O(1) �xed, 
! = 1Xn=1 ��s! �n gn ��s!2� ; (11)and solving for ea
h term. The �rst and se
ond term will then resum double and singlelogarithms respe
tively, but the higher terms obtained this way will be in
omplete sin
e theMLLA does not treat terms in 
! whi
h are of O(�3=2s ) or higher in the region of validitygiven above.The DLA 
orresponds to the n = 1 term only in Eq. (11), in whi
h 
ase the terms in Eq.(9) proportional to �(�s) and a 
an be negle
ted. One obtains two solutions:
�! = 12 ��! �q!2 + 4
20� ; (12)with 
20 = 4N
 �s2� : (13)For �s ! 0 we obtain 
+! = 
20! = 4N
! �s2�; 
�! = �2!; (14)i.e. 
+! has the familiar singularity � 1=! whi
h determines the small x behaviour of D(x;Q)in the Leading Logarithm Approximation (LLA). Therefore the 
orre
t solution in the DLAis 
! = 
+! . This solution is �nite for ! ! 0 and is equal to 
0 � p�s.On
e the solution for the n = 1 term in Eq. (11) has been 
hosen, there is only onesolution for the n = 2 term, and we have �nally
! = 12 ��! +q!2 + 4
20�+ �s2� "b 
20!2 + 4
20 � a2  1 + !p!2 + 4
20!#+O���s! �3 �s!2� :(15)This approximate solution is usually referred to as the MLLA result [3℄. The term propor-tional to a modi�es the �s ! 0 limit to
! = �4N
! � a� �s2� (16)whi
h reprodu
es the �nite 
orre
tion to the LO 
+! in the LLA. The result in Eq. (15) mustbe substituted in Eq. (8) to obtain the 
orresponding MLLA solution for D!(Y ). WritingD!(Y ) = D!(0) eD!(Y ); (17)6



we have ln eD!(Y ) = Z Y0 dy
!(�s(y)): (18)Using the LO formula �s(y) = 2�=[b(y + �)℄, where we introdu
e � = ln(Q0=�QCD), theintegration in Eq. (18) with 
! given in Eq. (15) yieldsln eD!(Y ) = f(!; Y; �)� f(!; 0; �); (19)where f(!; Y; �) =� 12Z + 12pZ(Z + 4A) + (2A�B) ln�pZ + 4A+pZ�+�14 � B2 � lnZ � 14 ln(Z + 4A): (20)In Eq. (20) we introdu
ed A = 4N
=(b!), B = a=b and Z = !(Y + �). Then the solutioneD!(Y ) 
an be written as eD!(Y ) = ef(!;Y;�)�f(!;0;�); (21)with ef(!;Y;�) = e� 12Z+ 12pZ(Z+4A) hpZ + 4A+pZi2A�B � ZZ + 4A�14 Z�B2 : (22)By �xing �QCD the evolution of D!(Y ) is 
ompletely determined by Eqs. (21) and (22).This solution has for Y !1 the following asymptoti
 behaviour:ef(!;Y;�) ' ZA�B : (23)In Refs. [3℄ and [12℄ it was found that for ! & 1, 
! in the MLLA a

identally mimi
sthe behaviour of the LLA LO 
! reasonably well. This is aided by the observation that the! !1 limit of Eq. (15) is equal, up to terms of O(1=!), to that of Eq. (16), the �s; ! ! 0limit of the LLA LO 
!, whose O(!) 
orre
tions turn out to be rather unimportant at! = O(1) and negative at large !. Therefore we negle
t those 
orre
tions beyond MLLAwhi
h are important at small �.Solving Eq. (9) for the n = 3 term of Eq. (11) gives us a 
ontribution to the next-to-MLLA
orre
tion whi
h reads
NMLLA! = ��s! �3 g3 ��s!2�= ��s2��2 "a2 
20(!2 + 4
20) 32 + ab2  1p!2 + 4
20 � !3(!2 + 4
20)2!+ b2 2
20(!2 + 4
20 ) 32 � 5
40(!2 + 4
20) 52 !#: (24)7



The addition of this term to the expression in Eq. (15) would give a more a

urate ap-proximation to the exa
t solution to Eq. (9) if Eq. (11) were a suitably 
onvergent series.However, these results are not 
omplete at next-to-MLLA order; in parti
ular they refer onlyto gluon jets. In the 
omplete next-to-MLLA 
ross se
tion both the evolution and Eq. (3)obtain a 
orre
tion, the latter arising from the energy dependent di�eren
es between quarkand gluon jets [13℄. In any 
ase, we 
an at least use the term in Eq. (24) to determine thestability of our form for the MLLA evolution in di�erent regions of � and ps.Finally, sin
e partons are treated as massless in the MLLA, the parton momentum spe
-trum is equivalent to the parton energy spe
trum. Consequently the MLLA formalism needsmodi�
ation in order to in
orporate hadron mass e�e
ts, whi
h be
ome more relevant as� in
reases. However, su
h e�e
ts will be negle
ted in our analysis sin
e otherwise modelassumptions are needed.III. FITTING THE EXPERIMENTAL DATAIn this se
tion we test how well the MLLA des
ribed in the previous se
tion agrees withexperimental data, both by �tting free parameters to data sets and by using the resulting�tted parameters to predi
t other data sets.�QCD is the only parameter on whi
h MLLA evolution depends, and should therefore beobtainable by �tting to data at widely separated energies, starting from TASSO data atQ0 = 14 GeV=2 [14℄. Therefore we use data at the highest ps, namely the re
ent data atps = 202 GeV from OPAL [9℄, as well as data at 91 GeV [15℄ from the same 
ollaboration,whi
h have the highest a

ura
y. For all experimental data used in this paper, systemati
and statisti
al errors are added in quadrature. As in Ref. [9℄, we impose a lower bound onthe OPAL data of � > 0:75 + 0:33 ln �ps=GeV� (25)sin
e at lower � the experimental errors are too small to �t using only one parameter.In
luding these small � points in fa
t does not 
hange the results signi�
antly but leads toa mu
h higher minimized �2. To 
ontrol the number of data used in the non-perturbativeregion of hadroni
 momentum p = O(�QCD), we introdu
e a 
ut-o� mass s
alem and impose8



an upper limit on the data used of p > m, or� < ln ps2m: (26)The initial gluon FF used for this �t was obtained by independently �tting it to data at thelowest ps, namely the TASSO data at ps = 14 GeV, using a distorted Gaussian,xD(x;Q0) = N�p2� exp"18k � 12sÆ � 14(2 + k)Æ2 + 16sÆ3 + 124kÆ4#; (27)where Æ = (� � �)=� and Q0 = 14 GeV=2, and the results are shown in Table I. The errorswere obtained from the diagonal 
omponents of the inverted matrix of se
ond derivatives of�2 at the minimum. Sin
e this method assumes that �2 is quadrati
 in the parameters, theseerrors should not be taken too seriously. In this 
ase there was no need to impose a lower �bound on the TASSO data sin
e there were 5 free parameters in the �t. We also imposed noupper � bound on this data, sin
e doing so either made little di�eren
e for m . 0:5 GeV ordid not 
onstrain the parameters suÆ
iently for m & 0:5 GeV. The a
hieved �2 per degree offreedom, �2DF , is 0.76, and the results in Table I for the parameters of the distorted Gaussian�t agree well with earlier �ts in the literature [16℄.TABLE I: Fit of a distorted Gaussian to all 20 TASSO data points atps = 14 GeV withQ0 = ps=2.Parameter N � �2 s kValue 9.71 2.33 0.61 �0:11 �0:77Error 0.11 0.01 0.02 0.05 0.12The resulting values of �QCD when performing this pro
edure, and 
utting the data usingvalues of m ranging from 0:3 to 0:6 GeV, are shown in Table II, where it 
an be seen thatthe obtained value for �QCD with Nf = 3 depends somewhat on the upper limit for �. Theerrors were 
al
ulated by varying �QCD, in both dire
tions, from its value at the minimumuntil �2 in
reased by unity. The errors were found to be symmetri
 and 
lose to the inverseof the se
ond derivative of �2 with respe
t to �QCD. If we 
hoose the �QCD from the �t withthe smallest �2DF we have �QCD = 317 MeV in reasonable agreement with LO �QCD valueswith Nf = 3 obtained in other analyses [8, 16℄.9



TABLE II: Four independent �ts of �QCD to OPAL data at 91 and 202 GeV, where the 
uts inea
h 
ase are labelled by the value of m.m (GeV) 0.3 0.4 0.5 0.6�QCD (MeV) 258�8 293�9 307�10 317�10�2DF 7.0 3.0 2.3 1.8The �ts for m = 0:3 and 0.6 GeV are shown graphi
ally in Figs. 1 and 2. These �guresalso show the predi
tions of the respe
tive �ts for TPC data at 29 GeV [17℄, TASSO dataat 35 and 44 GeV [14℄, TOPAZ data at 58 GeV [18℄ and OPAL data at 133 [19℄ and 172GeV [20℄. In all plots in this paper, ea
h 
urve is shifted up from the 
urve below by 0.8 for
larity. The data are well des
ribed almost up to the peak, about one half or one unit in �below. Beyond the peak the predi
tions fail.In Ref. [8℄ a mu
h better agreement with data over the whole � range was obtained, but theMLLA predi
tion was modi�ed in two aspe
ts. Firstly, an energy independent ba
kgroundterm was added to the MLLAmultipli
ity formula and, se
ondly, a 
orre
tion for mass e�e
tsat large � was added. In 
ontrast, our �t, starting from the Gaussian parameterization of theTASSO data at 14 GeV, predi
ts the � distributions at higher energies using only a singleparameter, �QCD; it is remarkable that MLLA evolution predi
ts all data sets at higherenergies very well up to the peak region. The dis
repan
y beyond the peak region in our
ase is too large to be attributed to mass e�e
ts.The distorted Gaussian parameters are highly 
orrelated with one another, so in order to
onstrain them better, we �t these parameters and �QCD simultaneously to TASSO data at14 GeV and OPAL data at 91 and 202 GeV. We again impose the upper bound of Eq. (26),but this time on all three data sets for 
onsisten
y. However, we impose no lower bound onany of the data, be
ause all distorted Gaussian parameters are free in the �t. Taking �rstm = 0:4 GeV, we obtained the results presented in Table III with �2DF = 2:3, whi
h areshown graphi
ally in Fig. 3. This �gure also 
ontains predi
tions for other data sets not usedin the �t. The 
ase for m = 0:5 GeV is shown in Table IV and Fig. 4, where �2DF = 2:1.Sin
e the dependen
e of �2 on the parameters 
annot be adequately approximated by aquadrati
, and sin
e the present study does not aim at a pre
ise determination of �QCD, werefrain from 
al
ulating the errors in these and subsequent tables.10
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FIG. 1: Fit of �QCD to OPAL data at ps = 91 and 202 GeV, after �tting the initial gluon FFto TASSO data at 14 GeV. The � region of data is 
hosen as des
ribed in Eqs. (25) and (26),and is indi
ated by the verti
al dotted lines. The upper bound 
orresponds to m = 0:3 GeV. Thepredi
tions from this �t of other data sets is also shown. The lowest 
urve shows the independentdistorted Gaussian �t to TASSO data at 14 GeV. Ea
h 
urve is shifted up by 0.8 for 
larity.TABLE III: Fit of gluon FF and �QCD to all TASSO data at 14 GeV and OPAL data at 91 and202 GeV (88 data points), with m = 0:4 GeV.N � �2 s k �QCD (MeV)7.86 2.11 0.40 �0:46 �1:32 649TABLE IV: As in Table III, but with 83 data points and m = 0:5 GeV.N � �2 s k �QCD (MeV)11.80 2.60 0.67 �0:26 �1:48 87The data around the peak region are better des
ribed for m = 0:5 GeV. We note thatthere is a large di�eren
e between the parameters in ea
h 
ase, whi
h may be due to the fa
tthat the theory 
annot a

omodate some or all of the three main features of the data, being11
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FIG. 2: As in Fig. 1, with an upper bound in � on the data used 
orresponding to m = 0:6 GeVand indi
ated by a verti
al dotted line. Ea
h 
urve is shifted up by 0.8 for 
larity. (Note againthat the lowest 
urve is from an independent �t to all TASSO data at ps = 14 GeV, and hen
e isidenti
al to the 
orresponding 
urve in Fig. 1.)the position of the maximum, the width and the normalization. Indeed, two lo
al minimawere found in ea
h �t, and the global minimum shifted from one of these two lo
al minimato the other as m in
reased from 0:4 to 0:5 GeV.The resulting values for �QCD in the �ts of Tables III and IV are 
learly too di�erentfor either of them to be taken seriously. This is probably due to the fa
t that �QCD andthe distorted Gaussian parameters are highly 
orrelated with one another. In the �ts ofTable II, the values of �QCD are more 
onsistent with ea
h other sin
e they were 
ompletelyun
orrelated with the distorted Gaussian parameters.To better 
onstrain all the parameters would require using more data sets in the �t.Therefore we �t the distorted Gaussian parameters and �QCD to all available data sets,namely the data sets in Figs. 1 { 4, as well as TASSO data at 22 GeV [21℄, ALEPH [22℄,DELPHI [23℄, L3 [24℄ and SLD [25℄ data at 91 GeV, ALEPH data at 133 GeV [26℄, DELPHIdata at 161 GeV [27℄ and OPAL data at 183 and 189 GeV [20℄. For m = 0:5 GeV, weobtained the results shown in Table V and Fig. 5, for whi
h �2DF = 4:0 was a
hieved. The12
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FIG. 3: Fit of gluon FF and �QCD to TASSO data at 14 GeV and OPAL data at 91 and 202GeV, with an upper bound in � on the data used 
orresponding to m = 0:4 GeV and indi
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al dotted line. Other data sets are shown for 
omparison. The upper bound on � for ea
hdata set used in the �t is indi
ated by a verti
al dotted line.results do not di�er signi�
antly from those in Table IV and Fig. 4, nor from similar �tswith m = 0:4 and 0.6 GeV, for whi
h we obtained �QCD = 106 and 129 MeV respe
tively.In all 
ases we found that there were more than one lo
al minimum, from whi
h we sele
tedthe minimum with the smallest �2.TABLE V: Fit to all available data (413 data points), with m = 0:5 GeV (see text).N � �2 s k �QCD (MeV)11.65 2.57 0.70 �0:19 �1:17 130The �t in Fig. 5 is the main result of this paper. A global �t in whi
h the parameters ofthe distribution at the lowest s
ale Q0 are �tted simultaneously with the parameter �QCDleads to an improvement over the �ts in Figs. 1 and 2. At all energies the des
ription isnow good up to the peak or even beyond. We stress again that this �t, beyond the inputparameterization at Q0, does not involve any additional assumptions beyond the MLLAevolution. 13
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FIG. 4: As in Fig. 3, but with m = 0:5 GeV.IV. FURTHER STUDIESIn all our �ts so far we obtained a good des
ription of the data below the maximum, i.e.for small � values, but a rather bad des
ription in the region above the peak, i.e. for large �(with the ex
eption of the TASSO 14 GeV data, when it was �tted over the whole � range).This dis
repan
y may have several reasons.Sin
e the MLLA approa
h is supposed to be parti
ularly valid for suÆ
iently large �,presumably in the peak region, despite the dis
ussion at the end of Se
tion II it may havebeen ne
essary to ex
lude data below a given �, e.g. that of Eq. (25), in our approa
h of�tting the distorted Gaussian parameters and �QCD simultaneously to all three data sets.However, with this approa
h only a few data points are left, in parti
ular for the TASSOdata at 14 GeV, when imposing also the upper limit on � in Eq. (26). Therefore a lower �
ut with the approa
h applied in Tables III and IV does not work.Alternatively, it may be that the upward evolution of the higher moments tends to be
omeunstable. To investigate this possibility, we �t the distorted Gaussian parameters and �QCDto TASSO data at 14 GeV and OPAL data at 91 and 202 GeV as before, but this timewe set Q0 = 202 GeV=2, i.e. we �t the initial distribution at the highest energy and evolvedownwards. The results of this �t are shown in Table VI and Fig. 6, where �2DF = 3:9. The14
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FIG. 5: Global �t of gluon FF and �QCD, with m = 0:5 GeV, to the data shown here and otherdata listed in the text.value of �QCD obtained is in good agreement with that obtained in other analyses. Theresulting � distributions also �t better to the data at the highest energies at larger � valuesbeyond the peak, whereas at the remaining energies the des
ription of the data around thepeak be
omes worse.TABLE VI: Fit of gluon FF to TASSO data at 14 GeV and OPAL data at 91 and 202 GeV (83data points), using Q0 = 202 GeV=2 and downward evolution, with m = 0:5 GeV.N � �2 s k �QCD (MeV)26.83 3.66 1.17 �0:52 �1:49 225Another possibility for our large � dis
repan
y may be due to the region of fun
tion spa
ein � available to the parameterization in Eq. (27) being insuÆ
ient. To enlarge this region,we added a term C5Æ5 + C6Æ6 (28)to the argument of the exponential in Eq. (27), and in
ludeC5 and C6 in the list of parametersto be �tted. However, when performing this �t with m = 0:5 GeV, there was no signi�
ant15
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FIG. 6: Fit of gluon FF to TASSO data at 14 GeV and OPAL data at 91 and 202 GeV, usingQ0 = 202 GeV=2 and downward evolution, with m = 0:5 GeV.improvement over the �t in Fig. 4.This indi
ates that the failure to des
ribe the region above the peak is inherent to theMLLA formalism as it is applied here. A better approximation to the full analyti
 solutionto Eq. (7) may improve the large � des
ription, sin
e it in
ludes 
ertain 
orre
tions of next-to-MLLA order. Su
h 
orre
tions are also in
luded, for example, in the Limiting Spe
trumwithin the LPHD approa
h, where, 
ompared to our �ts, a better des
ription of the databeyond the peak is a
hieved, given suitable modi�
ations to the MLLA evolution of thenormalization (see Se
tion I). Therefore we repeated the �t of Fig. 4, but this time in
ludingthe extra term given by Eq. (24) in the evolution. In this 
ase �2DF in
reased to 2:6, and thisin
rease 
an be attributed to the fa
t that the deviations from the data were slightly largerbeyond the peak. However, up to the peak the des
ription was as good as the �t of Fig. 4.Furthermore the theoreti
al 
urves were rather similar to those of Fig. 4 in the � range ofthe data. This suggests that the MLLA 
an only des
ribe data up to the peak, and thata full next-to-MLLA 
al
ulation is required beyond the peak, whi
h in
ludes, in parti
ular,the 
orrelation between the evolution of quark and gluon jets.16



V. CONCLUSIONSIn this work we perform �ts to the available momentum spe
tra data of e+e� annihilationin the energy range 14 { 202 GeV using MLLA evolution. No additional assumptions, su
h asthe LPHD, is used other than a 
onje
tured fun
tional form for the gluon FF, and thereforewe have a
hieved a parti
ularly pure test of the MLLA. We �nd a good des
ription of thedata in the region up to the maximum of the distribution in the s
aling variable �, withonly a minimal number of parameters. In parti
ular we �nd that MLLA evolution withoutadditional input gives a good des
ription of the normalization up to the peak, and also theapproximate position of the peak.Our �tted values of �QCD 
over a large range. However, in our model-independent ap-proa
h, there is some theoreti
al ambiguity in �QCD. We have 
hosen the renormalisationand fa
torization s
ales to be Q = ps=2, but we 
ould also have 
hosen some fa
tor of this,of O(1). With this theoreti
al error, our results for �QCD are 
onsistent with those of otherstudies [1, 8, 9, 16℄.Clearly, our form for the MLLA evolution is insuÆ
ient to des
ribe the data above thepeak. The in
lusion of the next-to-MLLA 
ontribution, Eq. (24), did not improve our results.At this order, a full treatment of momentumdistributions would in
lude quark-gluon mixing,whi
h may be the most important e�e
t at this order and therefore may signi�
antly helpto redu
e the large � dis
repan
y.Finally, it will be interesting to in
orporate the MLLA into the full NLO �ts whi
h applyto the large x range, in order to extend the region of validity towards lower values of x. Ourre
ipe for �tting the fragmentation fun
tions is 
onsistent and 
ompatible with the standard�tting.A
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